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Abstract 

This article presents the application of finite-element fuzzy model updating to the DLR AIRMOD 

structure. The statement of the problem is well explained by the use of a mass-spring system with three 

degrees of freedom. Considering the effect of the assembly process on variability measurements, modal 

tests were carried out for the repeatedly disassembled and reassembled DLR AIRMOD structure. The 

histograms of the measured data attributed to the uncertainty of the structural components in terms of mass 

and stiffness are utilised to obtain the membership functions of the chosen fuzzy outputs and to determine 

the updated membership functions of the uncertain input parameters represented by fuzzy variables. In this 

regard, a fuzzy parameter is introduced to represent a set of interval parameters through the membership 

function, and a meta model (kriging, in this work) is used to speed up the updating. The use of non-

probabilistic models, i.e. interval and fuzzy models, for updating models with uncertainties is often more 

practical when the large quantities of test data that are necessary for probabilistic model updating are 

unavailable. 
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1 Introduction 

Considerable attention has been devoted in recent years toward investigating how the uncertainty of 

measured modal parameters affects the process of model updating. In order to address this problem, 

stochastic model updating has been introduced. Uncertainty inevitably exists in the measured modal data. 

It can arise from many sources, such as measurement noise, manufacturing tolerances in structures, and 

environmental erosion. In the literature of statistical analysis [1,2], two classes of uncertainties may be 

defined which are known as epistemic and aleatory uncertainties. Epistemic uncertainty is reducible, while 

aleatory uncertainty is not. Distinguishing between these two types of uncertainty in a real experiment is 

not trivial. However, by carrying out a controlled experiment such as those shown in [3], such a distinction 

may be made. The authors of reference [3] demonstrated that among different uncertainty sources, the 

manufacturing variability related to the assembling process is the most dominant. Manufacturing 

variability is not reducible, and therefore, it can be considered to belong to the class of aleatory 

uncertainty. The review paper by Simoen et al. [4] and references therein show that this subject has 

already garnered a great deal of attention. 
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Different methods have been proposed to represent uncertainty in the context of stochastic model 

updating. These methods may be generally classified as either probabilistic or non-probabilistic. Emphasis 

has been given to the use of probabilistic models and methods in stochastic model updating. In this regard, 

several methods were developed. Examples of probabilistic methods dealing with irreducible uncertainty 

are briefly explained here. Fonseca et al. [5] proposed the use of the maximum likelihood method for the 

stochastic model updating of a cantilever beam with a point mass with location variability. Hua et al. [6] 

and Khodaparast et al. [7] considered the uncertainty arising from manufacturing tolerances in multiple 

test pieces, all built identically with the same materials, by using perturbation methods. Khodaparast et al. 

[7] showed that the computation of the Hessian matrix is unnecessary. The perturbation-based updating 

method was subsequently tested in applications to welded structures [8] and composite structures [9]. 

Govers and Link [10] used the analytical output covariance matrix for the problem of stochastic model 

updating. Covariance formulas produced by Khodaparast et al. [7] and Govers and Link [10] were shown 

to be identical by Silva [11], who developed a technique for parameter selection based on the 

decomposition of the output covariance matrix. Recently, Govers et al. compared the covariance and 

interval updating techniques [12] by using data obtained by repeated disassembly and reassembly of the 

DRL AIRMOD structure [3]. Jacquelin et al. [13] used random matrix theory and derived closed-form 

expressions for the mean and the covariance matrix of the updated stiffness matrix. Bayesian model 

updating was initially developed by Beck and Katafygiotis ([14, 15]), and their work led to the current 

high level of interest in the technique (e.g. [16-21]). One problem with the Bayesian approach is the large 

computational resource required for sampling when using Markov chain Monte Carlo (MCMC) 

algorithms. Stochastic response surfaces (such as polynomial chaos expansion; PCE [22]) appear to be the 

most promising tools to accelerate the Bayesian updating approach. The use of stochastic response surface 

methods such as PCE, traditional response surface methods, and the kriging predictor for efficient 

stochastic model updating has been frequently reported in literature (e.g. [23-28]).  

The probabilistic model updating techniques need large volumes of data. However, in most of the real 

applications, obtaining such large amounts of data is expensive. In contrast, the non-probabilistic model 

updating methods, such as interval and fuzzy methods, do not require large quantities of test data and may 

be considered better approaches in these cases. Interval model updating was proposed by Khodaparast et 

al. [23]; in their method, the interval models were used to represent irreducible uncertain measured data, 

and the upper and lower bounds of the updating parameters were updated using a kriging meta model. 

Haag et al. [28] proposed an inverse approach capable of identifying the fuzzy-valued parameters of a 

model with epistemic (reducible) uncertainties. The application of fuzzy model selection and identification 

to the modelling of a brake pad was demonstrated in [29]. In a more recent study by Erdogan and Bakir 

[30], fuzzy models were incorporated to model the uncertainty due to measurement noise. In this study, 

the genetic algorithm was used to update the membership functions of uncertain parameters by minimising 

an objective function. Erdogan et al. [31] later showed the application of fuzzy model updating to the 

problem of damage detection. In the same context, a method was proposed by Liu and Duan [32] for fuzzy 

finite element (FE) model updating. In this method, fuzzy models are used to represent the uncertainty in 

the parameters of the model, and fuzzy model updating is carried out by fuzzifying a traditional objective 

function. Subsequently, a method was developed to determine the fuzziness of updating parameters by 

using various degrees of fuzziness of the objective function. An FE model of a bridge was used to 

demonstrate the application of the aforementioned proposed method. So far, the proposed fuzzy updating 

methods have dealt with reducible uncertainty in the problem of model updating in structural dynamics. 

As already mentioned, these are known as epistemic uncertainties, for example the existing measurement 

noise in the test data. However, when irreducible uncertain measured data are available, these techniques 

cannot be used as they cannot predict the physical membership functions of the uncertain parameters. 

 

This paper proposes a method for fuzzy FE model updating when the uncertainty in the measured data is 

classified as aleatory uncertainty and hence is irreducible. The application of the proposed method for the 

DLR AIRMOD structure with uncertainties due to manufacturing tolerances is demonstrated. In order to 

represent this source of uncertainty in a set of identical structures, it was decided to assemble and 

reassemble the DLR AIRMOD structure 130 times [3, 12]. This paper will extend the theory of interval 

model updating, developed in [23], to fuzzy model updating. The proposed fuzzy model updating starts 

with a method to determine the so-called “measured fuzzy membership functions.” In this study, the 



measured data are natural frequencies and mode shapes of the DLR AIRMOD structures. The histograms 

of the measured data are used to determine these membership functions. It is evident that there is no 

unique way of determining the measured fuzzy membership functions. This could cause additional 

uncertainty, but it is beyond the scope of this study. We refer the reader to references [34, 35] for more 

details about the calculation of uncertain measured data fuzzy membership functions. Once the measured 

data membership functions are known, the membership functions of the updating parameters can be 

calculated by the method proposed in this paper. A set of interval variables at different levels of 

membership functions, known as �-cuts, are used to describe the measured fuzzy membership functions. 

Once the measured fuzzy membership functions are determined, the problem of fuzzy FE model updating 

can be solved using the solution of a number of interval FE model updating problems. The interval model 

updating techniques, proposed by the first author in [23], can then be exploited to update the upper and 

lower bounds of the uncertain parameters at different levels of membership functions. Once the updated 

bounds are determined, the fuzzy membership functions of the updating parameters will be computed. A 

mass-spring model with three degrees of freedom is used to demonstrate the application of the proposed 

method numerically. Finally, the measured modal data containing irreducible uncertainty due to the 

assembling and reassembling of the DLR AIRMOD structure (mimicking manufacturing variability) are 

used, and the method is tested with these data.  

2 Theory 

The objective is to develop a framework that can be used for solving the problem of fuzzy FE model 

updating. To this end, the aim is to update the membership functions of the uncertain parameters of FE 

models based on the measured membership functions. This inverse problem has to be solved when it is not 

possible to directly measure the variability of the uncertain parameters. For example, stiffness and 

damping terms in structural joints or variability in the properties of the materials cannot be directly 

measured. Instead, the variability in the dynamic responses of the structure, such as natural frequencies, 

mode-shapes, or frequency response functions, can be measured. In this application, the fuzzy 

membership function is the dynamic response - typically, the natural frequencies and mode shapes. Figure 

1 shows the procedure of fuzzy FE model updating for a function of two triangular fuzzy variables with 

five �-levels. As shown in the figure, the method starts with an initial estimate of the membership 

functions of the input parameters. The fuzzy membership functions of the outputs are then used, and 

several-interval model updating exercises at different levels of membership functions are performed to 

update the initial fuzzy membership of input parameters.  

 

When multiple sets of experimental data exist, we first need to determine the fuzzy membership functions 

of these measured data. We propose to use the histograms fitted to experimental data to compute these 

fuzzy membership functions. The method uses the observations in a histogram plot and partitions them 

into bins using a small number of intervals. Therefore, each bin corresponds to a specific number of 

observations of that output (natural frequencies and mode shapes here). Then, as shown in Figure 2, one 

point at the middle of each bin is selected to construct the fuzzy membership functions. As indicated in the 

figure, for the zero level of membership functions, point A, which is the beginning point of the first bin on 

the left, and point C, which is the last point in the histogram on the right, are chosen. These points define 

the maximum ranges of variation of the measured data, which is defined by the zero-level cut in the 

membership function. The x-coordinate (the midpoint of the bins) and y-coordinate (the number of 

observations) of the selected remaining points are extracted from the histogram. In Figure 2, these points 

are shown by black circles and the bins by gray rectangles. Once the positions of these points are known, 

we compute the fuzzy membership functions by drawing straight lines that pass through the 

aforementioned points. This process is demonstrated in Figure 2. We normalize the membership functions 

(the alpha values vary from zero to one), and therefore, the fuzzy variables are called normal fuzzy 

variables. In the construction of the membership functions, expert knowledge can also be included to 

modify the ranges of variations at different levels of membership functions [30, 31].    



 

Figure 1: Flowchart for fuzzy finite element model updating using the �-cuts strategy.  

 

Figure 2: Computing the fuzzy membership function of the measured data using a histogram 

As already mentioned in this paper, we use a number of interval variables at different α-cuts to represent a 

fuzzy variable. We normalize the bounds of interval variables in such a way that the minimum values are 



mapped to -1, while the maximum values are mapped to 1 [36, 37]. This is useful as it normalizes the 

updating parameters and output data. As illustrated in Figure 1, the membership functions of the measured 

data can be iteratively used in the fuzzy model updating method to determine the updating parameters 

fuzzy membership functions. This can be done by performing a deterministic model updating and a 

number of interval model updating exercises. The deterministic model updating is carried out at � � 1, 

while interval model updating will be performed at lower levels of membership functions.  

One may describe the FE fuzzy model updating problem using the following recursive equation:  
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is the vector of the fuzzy predicted output data; ��� ∈ !%#� is the vector of fuzzy updating parameters at 

iteration &; 
�� ∈ !%#" is a fuzzy transformation matrix; ��'� is the (th fuzzy eigenvalue of the structure 

(( � 1,… , *� and *�is the number of retained natural frequencies); �� '� is the (th *+-dimensional fuzzy 

eigenvector of the dynamic system (( � 1,… , *� and *� is the number of the retained eigenvectors); , is 

the number of updating parameters, and - � *� 	 *�*+ is the number of output data. Interested readers are 

referred to well-known texts [38-40] for more details about the definition of fuzzy variables, vectors, and 

matrices. Each element of a fuzzy vector or matrix in the above equations is represented using a fuzzy 

variable. For example, consider a fuzzy element .̃ ∈ ! of vector �
 ∈ !"#�. This element may be 

described as a pair, including the element . ∈ !, and its membership function value 01
�.�:  
 

 .̃ � 2�., 01
�.��3. ∈ !, 01
�.� ∈ 40,167 (4) 

   

In this paper, we describe a fuzzy variable with a set of interval variables. Each interval variable is linked 

with a specific value of membership function. It is evident that the interval variable with the widest range 

of variation is associated with the zero values of membership function,	01
�.�, while the membership 

function of one indicates the interval variable with the lowest range of variation or a deterministic value. 

As shown in Figure 2, the midpoint of the bin that has the maximum number of observations (normalized 

number of observation here) is given a membership function of 1. As just mentioned, we assign a zero 

membership function to the widest possible range of variations shown by points A and C in Figure 2. For 

the membership functions between zero and 1, 0 8 01
�.� 8 1, the membership function is gradually 

increased based on the points defined in the histograms. The crisp set .̃9:  is defined according to the �-cut 

of .̃ as follows: 

  
.̃9: � ;.|01
�.� = �, . ∈ !, 0 8 � 8 1	> 

(5) 

 

In above equation, the interval variable .̃9:  is obtained by intersecting the membership function at 01
�.� �
�. This can mathematically be expressed as follows: 

 



 .̃9: � ?.�9�, .̅�9�A � 2. ∈ !|.�9� 8 . 8 .̅�9�7 (6) 

   

where . is the lower bound and . is the upper bound of interval variable .̃9: . Based on the above definition, 

we can perform the fuzzy finite model updating at each �-cut by using Eq. (1). Based on this view, Eq. (1) 

may be expressed as follows:  
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Eq. (7) may be solved using interval arithmetic, but as mentioned in the literature, the solution obtained by 

interval arithmetic is conservative in many cases. The authors of reference [23] provided a solution to Eq. 

(7) by using the kriging predictor, which is known as a meta-model in general. The solution is 

approximate and is case dependent. In the proposed solution, a meta model, for example, a kriging 

predictor, is a highly efficient surrogate for the numerical FE model. Obviously, the type of meta-model is 

very important and can affect the accuracy of the results. Moreover, the relationship between the input and 

the output is important in the selection of the meta-model and the sampling method that is used for 

training the meta model. As shown in [12, 23], the performance of the kriging meta-model in the 

prediction of FE model behaviour (particularly, with non-smooth behaviour) was excellent. Kriging also 

provides the residual between the model outputs and the surrogate itself that can be interpreted using 

probabilistic models. In the first step of fuzzy FE model updating, deterministic model updating is carried 

out at the highest-level membership function, i.e. at α � 1. The updating parameters obtained by 

deterministic model updating can be represented by a point in the space of input parameters, as shown in 

Figure 3. The next step involves constructing an initial hypercube around this point and using the meta-

model (the kriging model in this case) to map the initial hypercube space of updating parameters to the 

outputs space. Engineering expert judgment may be used to determine the dimensions of the initial 

hypercube. It is important to ensure that the mapping is sufficiently good to describe the relationship 

between the inputs and outputs accurately. This can be achieved by adding more samples when training 

the kriging predictor until the mean squared error at an un-sampled point falls below a threshold and the 

kriging model is considered sufficiently good. The inverse problem introduced by Eq. (7) is then solved 

using the kriging predictor. This is performed separately at each α-level. Care should be taken when 

determining the dimension of the initial hypercube. If the dimension is greater than the dimension of the 

updated hypercube at the zero level of the membership function, a new meta model need not be 

constructed, and this will save computational time. In the proposed method, we carry out interval FE 

model updating at each level of membership functions (α-level), and the upper and lower bounds of 

measured data at each α-level are used for interval model updating at the corresponding level. Figure 1 

illustrates the proposed method of fuzzy FE model updating, and the process of interval FE model 

updating is shown in Figure 3. The details of interval model updating using a kriging predictor can be 

found in [23]. 

  



 

Figure 3: Procedure of interval model updating [23]. 

3 Case studies on the evaluation of the proposed method 

3.1 Case study 1: Three degree-of-freedom mass-spring system 

Figure 4 shows a three degree-of-freedom mass-spring system. The model was used to investigate the 

performance of the proposed fuzzy FE model updating. The deterministic parameters of the model, as 

shown in Figure 4, are as follows: 

 F' � 1 kg , ( � 1,2,3    I+ � IJ � 1  N/m  and IK � 3.0 N/m (8) 

The stiffness parameters, I�, I�, and IM are considered uncertain and modelled as fuzzy variables. First, 

we assume that all three uncertain parameters have similar true and erroneous fuzzy membership 

functions. This is shown in Figure 5 (a), where ( � 1,2,5, and therefore, I' represents all three stiffness 

parameters i.e. I�, I�, and IM. For this case, the measured data are simulated. For simulating the measured 

data, we can use the parameter vertex solution [41, 43] because a monotonic relationship exists between 

the outputs and inputs. This is because the output data are the eigenvalues of the dynamical system [23], 

and the global stiffness matrix is linearly proportional to the updating parameters. Using the simulated 

measured data at different level of membership functions, i.e. � � 0, 0.2, 0.4, 0.6, 0.8	and	1, the measured 

fuzzy membership functions are calculated. The measured fuzzy membership functions (simulated in this 

case) is then utilized in the proposed FE fuzzy model updating to determine or update the fuzzy 

membership functions of the uncertain parameters. Figures 5 (b), (c), and (d) show the results, and an 

excellent agreement is seen between the measured fuzzy membership functions and the ones predicted by 

the numerical model.  

 

Figure 4: Mass spring system with three degrees of freedom. 

 



 

Figure 5: (a) Fuzzy membership functions of the updating parameters (solid: true; dashed: initial), (b) 

Fuzzy membership functions of the first eigenvalue (solid: measured; dashed: updated), (c) the second 

eigenvalue (solid: measured; dashed: updated), (d) and the third eigenvalue (solid: measured; dashed: 

updated) with no measurement noise. 

 

Now, we assume 1% measurement noise in the measured data to show how noisy measured data can affect 

the accuracy of fuzzy model updating. The results are shown in Figures (6a), (6b), and (6c). As shown in 

the figures, the measurement noise can deteriorate the identification process. The worst case is the non-

convex updated membership function of the third eigenvalue. We expect a convex fuzzy membership 

functions, and we proposed to fit a convex membership function to input parameters. This is illustrated in 

Figures (6a), (6b), and (6c). This fitting procedure will be also used in the analysis described in the next 

section where we deal with physical test data. 

 



 

Figure 6: (a) Fuzzy membership functions of the first eigenvalue (solid: measured; dashed: updated), (b) 

the second eigenvalue (solid: measured; dashed: updated), (c) and the third eigenvalue (solid: measured; 

dashed: updated) with 1% measurement noise. 

 

3.2 Case study 2: AIRMOD test structure using the proposed fuzzy finite element model updating 

 

In this section, we demonstrate the application of the method to the DLR AIRMOD structure. This 

structure is a replica of the GARTEUR SM-AG19 benchmark, which was proposed by Balmes [19]. 

Figures 7 (a) and (b) shows the AIRMOD structure and the corresponding FE model. The structure 

consists of six aluminium beam components. The components are connected to each other using bolted 

joints as shown in Figure 8. The dimensions of the wing are listed in Table 1. 

 

Wing span 2 m 

Fuselage length 1.5 m 

Tail-plane height 0.46 m 

Table 1: Dimensions of the AIRMOD structure. 

 

The mass of the structure is 44 kg. To ensure that the wing torsional modes are excited, two extra masses 

of 167 g were attached at the winglets tips, as shown in Figure 7 (a). MSC/NASTRAN was used to build 

the FE model. The details of the FE model are presented in Table 2. Rod elements were used to represent 

sensor cables and bungee cords. 



 

 

Element type  Number  

CHEXA 1440 

CPENTA 6 

CELAS1 561 

CMASS1 55 

CONM2 18 

CROD 3 

Table 2: Details of the finite element model. 

 

  

(a) (b) 

Figure 7: AIRMOD (a) the physical structure and (b) the finite element model. 

      

Winglet  Wing/Fuselage  VTP/Fuselage VTP/HTP 

Figure 8: Beam joints. 

DLR designed test rigs and carried out a series of modal tests in order to assess the variability in the 

measured data due to different sources of uncertainty. Interested readers can see reference [3] for more 

details about the tests and their results. The maximum variability was shown to arise from the 

disassembling and reassembling of structures. Disassembling and reassembling changes the stiffness of 

the joints and the mass distribution. This results in significant modal variability, which is aleatory 

uncertainty. The first 30 natural frequencies and mode shapes of the physical structure were measured at 

every stage of the assembling process. For fuzzy FE model updating, we only considered 14 modes; note 

that this is for the interval model updating case. For deterministic model updating at a membership of one, 

a set of natural frequencies and mode shapes are used, and therefore, the deterministic model updating is 

over-determined. The initial and updated results at α = 1, are listed in Table 3. The highlighted modes in 

the table, namely, modes 1–8, 10–12, 14, 19, and 20, are the ones that are used for fuzzy FE model 

updating because of their significant variability.  

 

 



# Mode Experimental 

frequency (Hz) 

Initial FE 

frequency (Hz) 

Updated FE 

frequency (Hz) 

Error after 

updating % 

1 RBM Yaw 0.23 - 0.23 0.01 

2 RBM Roll 0.65 0.56 0.65 -0.01 

3 RBM Pitch 0.83 0.82 0.83 -0.00 

4 RBM Heave 2.17 2.14 2.17 -0.02 

5 2nWingBending 5.50 5.65 5.52 0.40 

6 3nWingBending 14.91 15.11 14.91 -0.01 

7 WingTorsionAnti 31.96 33.31 32.04 0.25 

8 WingTorsionSym 32.33 33.62 32.19 -0.42 

9 VtpBending 34.38 35.39 34.77 1.14 

10 4nWingBending 43.89 44.66 43.85 -0.08 

11 1nWingForeAft 46.71 47.21 46.72 0.02 

12 2nWingForeAft 51.88 52.91 51.91 0.05 

13 5nWingBending 58.59 60.59 59.35 1.29 

14 VtpTorsion 65.93 67.69 65.90 -0.05 

15 2nFuseLat 100.05 102.59 102.12 2.07 

16 2nVtpBending 124.56 128.62 126.40 1.48 

17 6nWingBending 129.38 132.08 129.20 -0.14 

18 7nWingBending 141.47 145.91 142.55 0.76 

19 2nHtpBending 205.59 206.73 205.51 -0.04 

20 HtpForeAft 219.07 225.73 219.31 0.11 

21 WingBendingRight 254.73 261.53 254.68 -0.02 

22 WingBendingLeft 255.02 262.64 255.84 0.32 

23 3nWingForeAft 272.08 278.71 276.00 1.44 

24 WingletBendingLeft 303.96 320.15 310.77 2.24 

25 WingletBendingRight 304.32 321.64 311.47 2.35 

26 3nFuseLat 313.68 324.12 321.18 2.39 

27 WingTorsionSym2 328.55 336.31 330.52 0.60 

28 WingTorsionAnti2 331.18 341.15 333.53 0.71 

29 4nWingForeAft 336.21 343.55 335.71 -0.15 

30 2nFuseVert 348.68 359.54 354.85 1.77 

Table 3: Deterministic model updating results; gray rows are the modes that are used for updating and the 

white rows are used for model validation.  

 

The description of the 18 updating parameters is presented in Table 4. The updating parameters include 

stiffness and the mass parameters of the FE model of the AIRMOD structure. The stiffness parameters are 

categorized in two groups, namely, joint stiffnesses (θ4 to θ10) and support stiffnesses (θ1 to θ3 and θ11 to 

θ12). Note that it is not easy to estimate the masses of the instrument cables and their distribution, and 

therefore, they too are considered as updating parameters. These masses may change slightly during the 

disassembly and reassembly of the structure. The concentrated mass parameter at the VTP joint 

(vertical/horizontal tail-plane joint) is represented by θ13, and the distributed mass over the wings span are 

indicated by θ14 to θ18. The method described in Section 2 is used to compute the measured fuzzy 



membership functions of the 14 natural frequencies listed in Table 3. The 14 measured fuzzy membership 

functions are shown in Figure 9. The figure indicates that the membership functions for the 14th and 20th 

natural frequencies exhibit a non-convex behaviour with two peaks in their fuzzy membership functions. 

This indicates clustering of the data into two distinct regions for these two modes. From an engineering 

point of view, one may ignore this non-convex behaviour of these two modes and only consider the upper 

and lower bounds at these α-levels. We also need to investigate further to understand why these two 

modes have non-convex properties. However, for the sake of completeness, we assume that the 14th and 

20th measured fuzzy membership functions remain non-convex and propose a method to deal with this 

situation during fuzzy model updating. As already mentioned, fuzzy FE model updating was performed 

under certain levels of membership functions. Herein, α varied from 0 to 1 in steps of 0.1. Figure 9 shows 

how the measured data for the 14th and 20th natural frequencies are clustered for the membership functions 

from 0.2 to 0. 7. To deal with the non-convex measured fuzzy membership function in the fuzzy FE model 

updating, we propose to perform interval FE model updating for four cases when � varies between 0.2 and 

0.7. At these levels of membership functions, each fuzzy variable is represented by two intervals, called 

left and right intervals in this paper. Considering that two modes have non-convex behaviours, there will 

be 2 × 2 = 4 possible combinations of these intervals, and therefore, four interval FE model updating 

exercises are required at each level. The above four possible cases for interval FE model updating can be 

expressed as follows: 

 

Case 1: The left intervals of the 14th and 20th natural frequencies with intervals of the other modes 

Case 2: The left interval of the 14th natural frequency and the right interval of 20th natural frequency with 

intervals of the other modes 

Case 3: The right interval of the 14th natural frequency and the left interval of the 20th natural frequency 

with intervals of the other modes 

Case 4: The right intervals of the 14th and 20th natural frequencies with intervals of the other modes 

 

After applying the proposed fuzzy FE model updating along with the aforementioned classification at 

membership functions between 0.2 and 0.7, the updated membership functions of the uncertain parameters 

are determined. The results are presented in Figure 10. Note that updating parameters are normalised with 

respect to their initial values given in Table 4. The results show that four intervals are obtained for the 

updating parameters at membership functions between 0.2 and 0.7. This is attributed to the application of 

interval model updating for four cases at these membership functions levels. The updated fuzzy 

membership functions of the natural frequencies are determined by fuzzy uncertainty propagation using 

the trained kriging model. Fuzzy propagation is carried out at all membership functions levels using a 

careful selection of the updated bounds of updating parameters for each case. For uncertainty propagation 

at each α-cut, Monte Carlo simulation (MCS) is used. Note that the MCS is computationally efficient in 

this case because of the use of a kriging meta model. The kriging model is trained using 600 samples 

within the space of the initial updating parameters at the zero membership level. In [23], it was shown that 

an accurate mapping between the updating parameters and the selected natural frequencies can be 

achieved by using 600 samples. The membership functions obtained by the four cases are then used to 

compute the updated fuzzy membership functions of the natural frequencies. This should be carried out at 

each level of the membership function and for all of the four cases. If the updated bounds at all levels 

overlap with each other, the extreme points, that is the lowest and highest possible values of the updating 

parameters, are the updated bounds. Otherwise, at any membership functions, the level at which the 

updated bounds of the output quantity do not overlap with each other, we represent the fuzzy membership 

functions by more than one interval variable at the given level. Figure 11 shows how the method identifies 

two distinct interval variables for the updated 20th natural frequency fuzzy membership function. Figure 

12 shows the results obtained using the proposed fuzzy FE model updating. As seen in the figure, there 

exists excellent agreement between the measured and updated fuzzy membership functions for the second 

and third natural frequencies. Further, the measured fuzzy membership functions of all the other natural 

frequencies are enclosed by their corresponding updated fuzzy membership functions. The updated 

regions at the zero level enclose all measured samples. This provides confidence that the proposed fuzzy 



FE model updating not only can improve the accuracy of fuzzy membership functions of the outputs 

predicted by the FE model, but also can predict the non-convexity of the 20th natural frequency. The 

method was not successful in achieving this prediction for the 14th natural frequency. This may be 

explained by the fact that the measured data are contaminated by noise, and therefore, the updated 

intervals at all membership functions levels are greater than their corresponding experimental bounds. 

Note also that the errors at different levels of membership functions are reasonably low, though they 

appear large in Figures 12 and 13. For example, consider the 7th and 8th natural frequencies: the maximum 

errors of the lower and upper bounds are 1% and 0.81%, respectively, for the 7th natural frequency and 

0.9% and 0.92%, respectively, for the 8th natural frequency. In addition, Figure 13 gives a two-

dimensional presentation of the fuzzy membership functions without considering the effects of non-

convex behaviour. Only 14 modes are shown here. The figure shows how different levels of membership 

functions indicate the possibility of enclosing all measured samples. Overall, the results show great 

improvements in the predictions of the updated fuzzy FE model considering the fact that, in this case, we 

are dealing with physical test data. 

 

 

Type Location Description Init. Val. Unit 

θ 1 stiffness VTP/HTP joint sensor cable – y dirn  1.30E+02 N/m 

θ 2 stiffness wing/fuselage joint sensor cable – y dirn (top) 7.00E+01 N/m 

θ 3 stiffness wing/fuselage joint sensor cable – y dirn (bottm) 7.00E+01 N/m 

θ 4 stiffness VTP/HTP joint joint stiffness – x, y dirns  1.00E+07 N/m 

θ 5 stiffness VTP/HTP joint joint stiffness – z dirn  1.00E+09 N/m 

θ 6 stiffness wing/fuselage joint joint stiffness – x dirn  2.00E+07 N/m 

θ 7 stiffness wing/fuselage joint joint stiffness – y dirn  2.00E+07 N/m 

θ 8 stiffness wing/fuselage joint joint stiffness – z dirn  7.00E+06 N/m 

θ 9 stiffness VTP/fuselage joint joint stiffness – x dirn  5.00E+07 N/m 

θ 10 stiffness VTP/fuselage joint joint stiffness – y dirn  1.00E+07 N/m 

θ11 stiffness front bungee cord support stiffness  1.80E+03 N/m2 

θ 12 stiffness rear bungee cord support stiffness  7.50E+03 N/m2 

θ 13 mass VTP/HTP joint sensor cables 2.00E-01 kg 

θ 14 mass wingtip right wing screws and glue  1.86E-01 kg 

θ 15 mass wingtip left wing screws and glue  1.86E-01 kg 

θ 16 mass wingtip left/right sensor cables on wings  1.50E-02 kg 

θ 17 mass outr wing left/right sensor cables on wings  1.50E-02 kg 

θ 18 mass innr wing left/right sensor cables on wings  1.50E-02 kg 

 

Table 4: Initial values of the selected updating parameters. 

 

 



 

Figure 9: Measured fuzzy membership functions of the AIRMOD structures (14 natural frequencies). 



 

Figure 10: The updated and fitted updated fuzzy membership functions of input parameters. 



 

Figure 11: Calculation of the updated fuzzy membership functions in the presence of (a) convex (b) non-

convex fuzzy membership functions. 

 

 

5- Conclusion  

  The problem of fuzzy finite model updating was considered in this study. It was shown that this problem 

can be solved using a series of interval FE model updating problems if a fuzzy variable is represented by a 

number of interval variables at different levels of its membership function. A method was proposed to 

compute the measured fuzzy membership functions of experimental data. The histograms of the measured 

data were used to determine the fuzzy membership functions of the experimental data. To this end, a 

method is proposed to extract these membership functions from the histograms fitted to the data. The 

measured fuzzy membership functions are then used in fuzzy FE model updating. The solution to the 

fuzzy FE model updating is obtained by interval FE model updating at different levels of membership 

functions (α-cuts). The interval model updating is carried out using the method proposed by the authors in 

[23]. The proposed fuzzy FE model updating method was validated numerically by considering a simple 

mass-spring system with three degrees of freedom. Further, the effect of noisy measured data on the 

performance of the proposed method was demonstrated. The application of the proposed method was also 

demonstrated via a physical test. The structure considered was the DLR AIRMOD, and the variability was 

due to the process of disassembly and reassembly. The measured fuzzy membership functions of the 

natural frequencies were determined using the proposed method in this study. Two of the measured fuzzy 

membership functions exhibited non-convex behaviour. A method was proposed to deal with this 

situation. Overall, there was a good agreement between the updated fuzzy membership functions of the 

outputs and the measured ones with a maximum error less than 2%. The proposed method was also 

capable of predicting the non-convex behaviour of one of the natural frequencies. 

 

 



 
 

Figure 12: The fuzzy finite element model updating results using the four cases and non-convex fuzzy 

membership functions of input parameters, individual updated and measured fuzzy membership functions. 

 

 

 



 
Figure 13: Two-dimensional fuzzy membership functions using convex hull (ignoring the effects of non-

convex fuzzy membership functions and using the fitted fuzzy membership functions in Figure 10) 
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