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Abstract—Smart Grids (SGs) have many advantages over
traditional power grids as they enhance the way electricity is gen-
erated, distributed, and consumed by adopting advanced sensing,
communication and control functionalities that depend on power
consumption profiles of consumers. Clustering algorithms (e.g.,
centralized clustering) are used for profiling individual’s power
consumption. Due to the distributed nature and ever growing
size of SGs, it is predicted that massive amounts of data will
be created. However, conventional clustering algorithms neither
efficient enough nor scalable enough to deal with such amount
of data. In addition, the cost for transferring and analyzing
large amounts of data is expensive high both computationally
and communicationally. This paper thus proposes a power
consumption profiling model based on two levels of clustering.
At the first level, local power consumption profiles are derived,
which are then used by the second level in order to create a global
power consumption profile. The followed approach reduces the
communication and computation complexity of the proposed two
level model and improves the privacy of consumers. We point out
that having good knowledge of the local power profiles leads to
more effective prediction model and cost-effective power pricing
scheme, especially in a heterogeneous grid topology. In addition,
the correlations between the local and global profiles can be
used to localize/identify power consumption outliers. Simulation
results illustrate that the proposed model is effective in reducing
the computational complexity without much affecting its accu-
racy. The reduction in computational complexity is about 52%
and the reduction in the communicational complexity is about
95% when compared to the centralized clustering approach.

Index Terms—Smart grid, power consumption profiling, clus-
tering.

I. INTRODUCTION

OR many years, conventional power grids have been used

to provide electricity to consumers. However, with the
growing demands of electricity, along with the diminishing
fossil fuels and the environmental effect (e.g., GreenHouse
Gas (GHG) emissions) related to electricity generation, de-
veloping more efficient, reliable, and sustainable power grids
has become a necessary need [1]. The phenomenal advances
that continue to be made in the various facets of Information
and Communication Technology (ICT) (e.g., Wireless Sensor
Networks (WSNs), Internet of Things (IoT)) enable the devel-
opment of the next generation of power grids, namely Smart
Grids (SGs).
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SGs use a two-way flow of power and data between devices
(e.g., substations, transformers, and switches) connected to
the grids, in order to automate and facilitate the power flow
optimization in terms of economic efficiency, reliability and
sustainability [2f]. To this end, each consumer location needs
to be equipped with a smart meter for monitoring, measuring,
and communicating the bi-directional flow of power on request
or on schedule. A Supervisory Control And Data Acquisition
(SCADA) system controls the grid operation by adjusting and
controlling each device connected to the grid.

Although SGs introduce many advantages over conventional
power grids, their utility depends heavily on the data gathered
from the devices (e.g., smart meters) connected to them. Data
of smart meters contains correlations, trends, and patterns that
are important for power consumption management, as well as
the stability of grids [3]]. For example, it is possible to predict
the peak power usage based on the power consumption profiles
of consumers and data of smart meters, enabling the supplier
to address the grid power demands.

Power consumption patterns of different types of consumers
vary based on the type of the consumer (e.g., commercial,
industrial, domestic). However, even the power consumption
pattern of the same type of consumers might be different [4].
To address this, power consumption profiling, which refers
to a power consumption for a consumer over a period of
time, is performed [5]. This enables producing, planning,
and provisioning of personalized power services based on the
knowledge of the consumers’ power consumption profiles [4]],
(6]

Clustering is the core technique of consumers power con-
sumption profiling in SGs [5]. The main idea is to partition
power consumption patterns into groups so that patterns in
the same group are more similar to each other than patterns
in other groups [7].

Several clustering methods have been explored in the con-
text of consumer power profiling, such as K-means [_8]-[10],
Fuzzy c-means [11]], hierarchical clustering method [12], and
others [[7]]. Such methods require that all data to be located at
a central site where they are analyzed. However, this approach
(i.e., centralized clustering) cannot be applied in the case of
multiple distributed datasets, unless all data are transferred
to a single location and then clustered [[13[]. In addition, the
centralized clustering approach is costly and energy-inefficient
because it: i) increases the amount of data that need to be
transfered to a centralized processor, ii) requires investment
in computing systems with high memory capabilities, and iii)
potentially increases the number of computations.

Due to the ever growing SGs and their distributed nature,
huge amounts of sensory data (i.e., big data) is expected to
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be produced and collected. However, as the size of the data
increases, the corresponding computational cost increases as
well. Therefore, not only the quality of clustering is important,
but also the corresponding efficiency and scalability of the
consumer power profiling model is important.

In this paper, we propose a multi-layered clustering model
for SG applications. The proposed model consists of two
levels of data clustering. Using the proposed model, the power
consumption data of each consumer is profiled both locally,
as part of a smaller scale grid (e.g., microgrid, neighborhood
grid), and globally, as part of the whole SG. The overall
complexity is reduced by only using the representative local
power profiles of the small-scale grids in the second level of
clustering (i.e., global clustering). In addition, since only the
local power consumption profiles are transfered to the central
processor of the smart grid, the privacy of the consumers is
enhanced.

The rest of this paper is organized as follows: Section II
provides a background of SGs and surveys some of related
studies of power consumption profiling. Section III introduces
the proposed multi-layered clustering model and provides
a complexity analysis of the proposed model. Section IV
describes the experiments and presents the results. Section V
concludes and discusses future work.

II. BACKGROUND

SG introduces a number of new technologies, concepts,
and ideas that improve reliability and reduce costs related to
power production and distribution [[14]]. The SG enables the
integration of distributed renewable energy generation, storage
equipment, and massive utilization of electric vehicles, which
poses further challenges on efficient operation of the electricity
grid [15]. In addition, it facilitates the users’ participation
to the optimization of the power consumption, via Demand
Response (DR) algorithms [16].

Under the umbrella of DR, several pricing schemes have
been proposed. The general idea of these schemes is to
encourage users to shift their usage of high-power appliances
to off-peak hours by providing economic incentives [17]. The
variable pricing schemes of electricity can be either based
on historical demand data or real-time demand. For instance,
real-time pricing is based on the real-time market price of
electricity. On the the other hand, Time of Use (ToU) is
based on seasonal and daily demand data. In both cases, the
price of electricity during high demand time is higher than
the price of electricity during low demand time [1]]. For the
effective energy pricing in heterogeneous grid topologies, the
concept of locational marginal prices has been introduced. It
enables the determination of different prices for different areas
of the electricity grid, which depends on parameters such as
the line capacities and type of local loads [18], [19]. In all
cases, without the installation of smart meters and the bi-
directional data flow in smart grid, the deployment of different
pricing schemes is not feasible. The network of smart meters
is known as the Advanced Metering Infrastructure (AMI) [1]].
Fig[l] shows a typical AMI structure.

Based on the data collected from smart meters, it is possible
to predict power load based on power consumption patterns.
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Fig. 1. A typical AMI structure: The smart meter collects the power
consumption of the electricity appliances and sends the control commands
to them if necessary. The data collected by the smart meters in different
buildings is transmitted to a data aggregator. This aggregator could be an
access point or gateway. This data can be further routed to the electric utility
or the distribution substation [20].

By knowing the consumption patterns, consumers’ demands
might be shifted to less expensive time-slots so as to reduce
the energy expenses of the consumer and to reduce the peak-
to-average ratio of the grid [1].

Clustering is the core technique of power consumption
profiling in SGs [5]. Several studies in the literature have
discussed the application of clustering algorithms in power
consumption profiling. It has been shown in [8] that clustering
of consumers’ power consumption patterns can be used to im-
prove load forecasting accuracy. Chicco, et al. [21] tested the
performance of five frequently applied clustering algorithms
(K-means, fuzzy K-means, hierarchical clustering, modified
follow-the-leader and SOM) for consumers power profiling.
The results show the superiority of the modified follow-the-
leader and hierarchical clustering as they can handle isolated
uncommon power patterns. Mutaneen, et al. [|22]] proposed an
Iterative Self-Organizing Data-Analysis Technique Algorithm
(ISODATA) for load profiling by considering the dependency
of the load patterns on temperature. Piano, et al. [23|] used
several subspace projection methods to capture subspaces of
load diagrams and get in the load profiling. Tsekouras, et al.
[24] developed a two-stage pattern-recognition methodology
for the classification of electricity customers.

Although centralized clustering approaches have been used
for power consumption profiling in SGs, they require that
data to be processed at a single sit (central processor at the
utility/supplier premises), which increases the communication
overhead and the computational complexity of the clustering
process, dramatically. This is because the complexity of the
clustering process is a function of the number of datapoints.
As the number of datapoints increases, the corresponding
complexity increases as well. In contrast, distributed data-
processing, fits well the concept of SG where the computa-
tions of the system could be distributed among the devices
connected to the grid. Rodrigues and Gama. [25] proposed a
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distributed clustering in SG. However, their approach requires
residential units’ participation in the clustering process. They
assume that smart meters have computational capabilities
to perform data clustering. However, this approach is not
preferable as it increases the communication overhead since
data should be communicated with all participated devices. In
addition, it poses further security challenge as the consumer’s
data is vulnerable to cyber-attacks (e.g., hijacking, eavesdrop-
ping) while communicating it with other devices in the grid.

Although the computational complexity and the scalability

of power profiling model are of great interest when dealing
with large-scale data, most of the existing studies in the
application of clustering algorithm in SGs focus mainly on
developing a more accurate centralized power profiling model.
On the other hand, the proposed model in this paper aims to
reduce the computational complexity of the power profiling
model, while maintaining comparable performance. In addi-
tion, the proposed model mitigates the previously mentioned
disadvantages of centralized data clustering by:

1) processing the collected data locally at the aggregation
level, which gives a better prediction model and reduces
the overall computation and communication costs;

2) enhancing the privacy of the consumers, only the local
power profiles are sent to the central processor.

III. PROPOSED MODEL

This section introduces the proposed multi-layered cluster-
ing model. Then, it provides a complexity analysis of the
proposed model.

A. Multi-Layered Clustering Model

Consumers’ power consumption profiling, which adopts
data clustering, plays a pivotal role in SGs as it is used for
load forecasting, bad data correction, determination of the
optimal energy resources scheduling, and power pricing [5].
Clustering algorithms discover patterns among the data based
on a similarity criterion/measure. For instance, the K-means
clustering algorithm partitions the data into mutually exclusive
clusters of similar datapoints, aiming to maximize the intra-
cluster similarity and minimize the inter-clusters similarity.

By knowing the derived profiles, normal consumers’ be-
haviors can be recognized, which allow consumers and power
suppliers to agree on consumption strategies that are more
economically beneficial for both of them [6].

The proposed model consists of two levels of data clus-
tering. The first level aims to make sense of data locality
by finding representative patterns and local power profiles at
data aggregation level (i.e., aggregator). In this context, we
define a layer [ as an instance of K-means algorithm that
process data of a certain region and collected by an aggregator
l. The collected power consumption data at each aggregator
is clustered into mutually exclusive clusters where a pattern
belongs to only one cluster. Based on the observation that
if patterns are located in the same cluster, they are likely
to belong to the same type or have the same behavior. Thus
power profiles/patterns within a cluster are represented by the
centroid, which is the mean of the patterns within the cluster,
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and the number of patterns in the cluster, which represents the
density of the cluster. Based on the observation that outliers
are minority, we assume that a cluster of high number of
patterns represents a normal power consumption behavior.
On the other hand, a cluster of low number of patterns, is
likely an outlier/abnormal power consumption behavior. This
enables us to define and localize outliers in the SG, which
enhances the reliability of the SG. Then, the representative
data (i.e., centroid and number of patterns) of the clusters
is communicated with the central processor of the SG, in
order to find global power profiles. This would reduce the
communication cost because only the representative data is
sent to the central processor. In addition, the overall efficiency
of the system will be improved as the central processor
analyzes the representative data only.

The second level of data clustering takes place at the central
processor where the centroids of the data clusters derived at
the first level constitute a new dataset. Then global power
profiles are derived by clustering the new dataset (i.e., dataset
of the centroids of the local power profiles). The global power
profiles are represented by the centroids of the clusters at
the second clustering level weighted by the number of power
patterns in each local power profile.

1) Local Power Profiles Generation (Level 1): The K-
Means is a well-known and widely used clustering algorithm
because of its simplicity and ease of implementation. In this
work, we use the K-means algorithm in both levels of data
clustering of the proposed model, because of its minimal com-
putational cost when compared to other models. In addition,
the complexity of the proposed model can easily be defined
with respect to the parameters of model, and thus different
setups can easily be compared.

Let x1,X2,...,Xy be a set of datapoints in d-dimensional
space, where d is the number of features, and K is a predefined
number of clusters. The K-means algorithm minimizes the
objective function given by :

K
F(X1, X9, XN) = 3 Y xi — %1%, (D

k=1x;€Ecg

where ¢, denotes the k** cluster,

1
() = iy 2
Xk - § X )

X;ECk

is the center of the k' cluster, and ns is the number of
datapoints in k" cluster. ||.|| denotes the Euclidean norm
used by the K-means algorithm. The algorithm starts with K
datapoints that represent the centroids of the clusters. Each
datapoint in the dataset is assigned to the centroid of the
closest cluster and the mean of the datapoints in the same
cluster is calculated. The procedure is repeated iteratively until
convergence or the exit condition is satisfied.

Let X; = {X(1,1),..,X(i,n,) } be the available dataset of layer
[, which includes the row data vectors of IV; residences. First,
X is clustered into K; mutually exclusive clusters. Let C; =
{€@,1), 1€k, } be the set of the centroids of the resultant
clusters in layer [, where ¢(; ;) denotes the centroid of the 4th
cluster in the [" layer and K is the number of clusters in
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layer [. Note that by using K-means, the number of clusters
K; must be predetermined. Here, we use the same value of K;
for all layers (i.e., K). Also, n; = {n(,1y, ..., (k) } denotes
the set of the number of users in each cluster, where n ;) is
the number of users in the j*" cluster of the I*" layer. Next,
C) and n; are transmitted to the centralized processor of the
SG in order to derive the global data profiles.

2) Local Power Profiles Generation (Level 2): Let X' =
{x{1), - X{1x i)} be the available dataset at the central pro-
cessor. X’ contains the centroids of the clusters of all layers
derived in the first clustering level where X/(1) = ¢(1,1),
x’(K) = ¢(1,k). and szxK) = ¢(1, k) Where L is the number
of layers. Then the K-means algorithm is used again to
partition the data X’ into K’ clusters. After the convergence
of this clustering process, the derived centroids in C’ do
not properly describe the global power profiles, since each
local centroid, which is derived at the first clustering level,
represents different number of residences (i.e., n( ;)). To this
end, the global energy consumption patterns are defined as:

Zl,i:c(l,”Eclusterj c(lvi) x n(l,z’)

c . = Vi=1,.,.K. (@3
@ Zl,i:c(l‘i)eclusterj n(l,i) ’ ( )

Note that the proposed multi-layered clustering model is
general and can easily be modified to adopt different clustering
algorithms in each level. Fig. [2] illustrates the proposed multi-
layered clustering model.

Implementation of the proposed model, by using the K-
means clustering algorithm, and discussion of its complexity
are described in the following subsection.

3) Complexity Analysis: Usually, distributed clustering is
used to reduce the communication demand. It is possible
to reduce the computational complexity of the system by
using the proposed multi-layered approach, which increases
profitability.

In general, the complexity of the K-means algorithm is
given by:

Complexity = O(N x K x P x I), 4

where N is the number of P—dimensional data-
points/vectors in the dataset, K is the number of clusters, and
I is the number of iterations until convergence. Let X; be
the dataset of the I*" layer and I; number of iterations at that
layer, the complexity of the K-means clustering at each layer
of the first level is given by:

Complexitygy = O(Ny x K x P x I). )

Since the first clustering level includes multiple layers, the
overall complexity of the first clustering level is given by:

L
Complezity(1+t Lever) = (’)(Z Ny x K xPx1I). (6)
=1

In the special case that all layers have the same number of
datapoints (i.e., residences), the overall complexity of the first
clustering level can be written as:

Complexitynspevery = O(L X Ny X K X P X Iiyaz), (7)
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where I,,,, denotes the maximum allowable number of iter-
ations.

Because the clustering process at each layer is independent
of other layers, they can be executed in parallel. Thus, the
worst case execution time of the first level can be given by:

E— Time(lsthel) = O(Nl x K x P x Imam)- (8)

The worst case computational complexity of the second
clustering level is given by:

Complexitygnarepery = O(L X K) X K" X P X Inag), (9)

which coincides with the execution time of the second level.
Therefore, the overall worst case complexity of both levels,
when all layers have the same N; and K, is given by

Complexityrotar) = O((Nix K)+(Lx K)xK")x(Px Inax)).

(10)

On the other hand, in the case that the centralized K-

means is used to find the clusters of users power profiles,
the corresponding computational complexity is given by:

Complexity(Centralized) = O(N X Kl x P x Imam)y (11)
which is higher than Complexityroiqr) When

NxK — N xK

L
< K x K’

(12)

Thus, the approach discussed in this section can also be used
for reducing the computational complexity if the condition
stated in (12) is satisfied.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the dataset used to evaluate the
performance of the proposed model and present the results of
the experiments.

A. Dataset

Building a consumer power profiling model requires a
dataset from which the model learns. The dataset shall also
represent real data that describes real-world scenario. In our
experiments, the proposed model is evaluated on the well-
referenced UMass Smart Microgrid Data Set [[10], [26].

The UMass Smart Microgrid Data Set was gathered by the
Smart project. This dataset contains average electricity usage
data from 400 anonymous homes in western Massachusettes,
USA at one minute granularity for an entire day. For privacy
reasons, the data source and the homes are kept anonymous.
This data is well-suited for emulating microgrids or examining
the grid-scale effects of various optimizations, such as the use
of energy storage [27]].

Excluding the inactive buildings, we focused on 395 res-
idential homes. For the needs of the simulation setup, the
dataset is separated into L datasets, where the Ith dataset is
processed by the ' layer at the first level of the proposed
model.
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Fig. 2. Proposed multi-layered clustering model.

TABLE I
SIMULATION SETUP
Variable Description  Value
Number of local patterns in each layer K 3
Maximum number of iterations Imax 100
Number of layers L 8
Number of global patterns K’ 5

B. Performance Evaluation and Results Analysis

To show the effectiveness of the proposed model, in this
subsection, we provide a detailed simulation of the proposed
model on the UMass Smart Microgrid Data Set. The param-
eters of the proposed model are given in Table [I} Following
[10], the number of global patterns (i.e., K'), has been set to
5, while K has been selected according to (1'1;2]) The selection
of the value of L is a trade-off between the effectiveness of
the clustering process and its computational complexity. This
is shown in the next subsection.

In order to have a better understanding of the significance
of the layered approach, we studied the local data patterns
at the different layers of the proposed model. Fig. 3| depicts
the derived local patterns (i.e., the centroids at each layer). In
each layer, the locally available power consumption dataset is
partitioned into three clusters: i) low consumption, ii) medium
consumption, and iii) high consumption cluster. As can be
seen in Fig. [3] the derived local data patterns at different
layers are distinct. For example, a power consumption that
is characterized as a high-consumption in layer 2 corresponds
to a low or medium consumption in layer 4. Of particular
interest, the peak period differs from a layer to another. For
example, the behavior of the per-residence power consumption
characterized as high in layer 1 reaches its peak in the period of
(200-800) minutes. On the other hand, the behavior of the per-
residence power consumption characterized as high in layer 2
reaches its minimum during the same period. This means that
the knowledge of local data patterns is important as it allows
us to develop an efficient and effective location-aware pricing
scheme as well as better scheduling algorithms.

As mentioned earlier, the derived local data patterns are

Smart Meters
Dataset 2, Xo

ffffff |

Smart Meters y
/
Dataset L, X, ;

partitioned into K’ homogeneous clusters, where each cluster
represents a global data pattern. The global data patterns are
characterized as: i) low, ii) low-medium , iii) medium, iv)
high, and v) very high consumption. Then the derived global
data patterns are compared to the derived patterns when the
centralized K-means approach is used (i.e., the whole power
consumption data set is collected and clustered in a single
location). As can be observed in Fig. [} the derived patterns
using both methods are similar. This motivates the use of
the proposed model as a promising alternative approach of
the centralized K-means clustering as it maintains the quality
and reduces the computational complexity of power profile
clustering. More specifically, the reduction of the overall
complexity, when this setup (number of instances=395, L = 8§,
K =3, and K’ = 5) is used, is:

(395 X 3 X +8 X 3 X 5X) X P X Imax
395 X 5 X P X Inae

R=1- = 33.92%
13)

More importantly, as it can be observed from Fig. [3] and
Fig. 4] the global patterns characterized as high consumption
and very high consumption are provoked by the power profiles
initially processed by layers 8 and 7, respectively. Thus, the
proposed model allows some type of power consumption
outliers localization, while preserving individual residences
privacy.

1) The Trade-Off between Complexity and Performance:
To show the effectiveness of the proposed multi-layered power
consumption profiling model, we compared its performance
with the performance of the fully centralized K-means. We ran
103 independent simulations for each setup (i.e., L value). This
is because the K-means is a local minimizer algorithm that
tries to find the global optima; however, it is not necessarily
find the global optimum. This is because the resultant clusters
of K-means algorithm depend heavily on the initialization
parameters (i.e., seed, centroids). Different simulation with
different initialization parameters might lead to different clus-
tering results.
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Fig. 3. Local patterns.

Several evaluation measures were used in the literature to
quantify the performance of clustering algorithms. Most of
these measures consider how well the clusters are separated.
However, a good clustering algorithm should consider the
density of the clusters. Thus we have selected silhouette
coefficient to compare the performance of the proposed
model and the centralized K-means. Silhouette coefficient is

defined as: .
> S()

S:N,

(14)

where

b(i) — a(i)
max{a(i),b(i)}’
where 7 is a datapoint in the dataset, a(i) is the average
distance of datapoint ¢ to the other datapoints in the same

S(i) = (15)

cluster as ¢, and b(i) is the minimum average distance of
datapoint ¢ to datapoints in other clusters. As a(i) measures
how dissimilar 4 is to its own cluster, the smaller a(i) value
is, the more compact the cluster is. The value of b(i) implies
the degree of difference between i and other clusters, thus
the larger b(¢) is, the more separated ¢ is from other clusters.
The value of the silhouette coefficient is between —1 and 1. A
positive silhouette coefficient value means the cluster including
1 is compact and ¢ is far from other clusters, while negative
silhouette coefficient value means i is closer to the datapoints
in another cluster than to the datapoints in its own cluster.
Normally, for silhouette coefficient value, the bigger, the better,
and value 1 is the extreme preferable condition [28]]. Note that
when the proposed model is used, we consider that ¢ follows
its local centroid to global clustering. Thus, two datapoints
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Fig. 4. Global patterns.

represented by the same local centroid, are placed in the same
global cluster.

Fig. [5] shows the performance of the proposed multi-layered
clustering model, while varying the number of layers (i.e., L),
compared to the fully centralized K-means clustering. As can
be seen in Fig. [3] the performance of the proposed multi-
layered model increases as the number of layers increases. The
reason for this is that for a small value of L (e.g., L = 4),
where the value of K and the number of datapoints are fixed,
the number of datapoints in each layer is high; thus the clusters
centroids might not adequately capture the spacial properties
of the data. In addition, as the number of the representative
centroids is a function of the number of layers and K, for a
small value of L, the number of representative centroids is also
small. Therefore, in general, increasing the number of layers
would increase the quality of data clustering.

In addition to the quality of clustering, complexity is another
important issue to consider especially when dealing with large-
scale data (e.g., smart grid data). Fig. [f] shows the reduction in
complexity of the proposed model when varying the number of
layers. In this context, we have studied the reduction of com-
plexity of three cases: 1) the worst-case overall computational
complexity, ii) the real overall computational complexity, and
iii) the communication complexity, which corresponds to the
power profiles transmission between the local aggregators and
the central processing unit of the SG. As can be seen in Fig.
the proposed model considerably reduces the computational
and communication complexity for the whole range of the
number of layers(ie., 4 < L < 20). Both of the worst-
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Fig. 5. Average silhouette value comparison.

case computational and communication complexity of the
proposed model also increases with the number of layers. This
is because as the value of L increases the number of the local
patterns that have to be sent to the central processing unit
of the SG also increases. However, it is remarkable that the
complexity reduction of the overall computational complexity
of the proposed model is higher than the one of the worst-
case computational complexity. This is because, as the number
of the power profiles clustered by each layer reduces, the
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number of iterations (i.e., I;) required for the local K-means to
converge reduces also. Similarly, as the number of layers (i.e.,
L) increases, the number of the power profiles clustered by
each layer reduces, which requires less number of iterations
for the local K-means to converge. Thus, the real increase of
the complexity of the proposed model is not necessarily linear
with respect to the number of layers.

Figs. [6] and [3] jointly show that the performance and the
complexity of the proposed model are highly related. For
example, when L = 20 both performance and complexity of
the proposed model present a local maxima. Interestingly, the
proposed model performs at least as well as the centralized
K-means for L. > 8, for which value the reduction in
computational complexity is about 52% and the reduction
in the communication complexity is about 95%. Finally, for
specific values of L, the proposed model seems to perform
slightly better than the centralized one. This might be because
of the independent processing of the power profiles among
different layers, which allows avoiding local optimal solutions.

V. CONCLUSION

This paper presents a multi-layered clustering model for
power consumption profiling of consumers in SGs. The pro-
posed model aims to reduce the communication and computa-
tional complexity of the power consumption profiling process,
which is essential for constructing an effective prediction,
pricing, and anomaly detection models in end-users level. The
proposed model consists of two levels of clustering. In the
first level, the concept of layers is introduced where a layer is
defined as an instance of K-means clustering that operates on
data aggregated from a certain region. The data of a layer is
portioned into mutually exclusive clusters. Customers power
consumption patterns in a cluster are represented by the cen-
troid (i.e., local power consumption patterns) and the number
of patterns within the cluster. The second level partitions the
data (i.e., local power consumption patterns of all layers)
generated in the first level into multiple clusters. The centroids
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of the clusters of the second level weighted by the number of
patterns in each cluster in the first level represent the global
power consumption patterns. Experiments results show that the
proposed model can significantly reduce the communication
and computation cost of the power consumption profiling
process while maintaining the performance, outperforming
the centralized power consumption profiling approach. This
makes the proposed model a preferable candidate for power
consumption profiling in SGs especially when dealing with
large-scale data.

Our future work includes investigating how to combine
the advantages of the proposed method with advanced fea-
tures selection/extraction methods [10], studying on how the
proposed model could be used to construct more accurate
power consumption prediction models considering customer
power consumption clustering both at the local and the global
levels [3]. For an example, the dataset concerns 400 residential
houses for one day. The current study has no verified ana-
lytic results on consumption behaviours based on day, month
or season. Furthermore, considering the proposed two-levels
clustering offers some type of outliers localization, it could
be used in the context of local marginal prices, where the
total power consumption can be smoothed by only altering
the local electricity prices. In terms of the clustering, it is also
worth to compare the partition quality with others clustering
algorithms. Finally, this work could be extended to meet the
requirements of real-time data processing applications, such as
clustering the power consumption of appliances and possibly
detecting of appliances with anomaly behavior such as faulty
or compromised appliances.
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