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Abstract

Most of the existing non-real-time applications utilize infrastructure based or semi-infrastructure

based network architectures. Such a network architecture demands a considerably high installment and

maintenance cost. To alleviate the cost, in this paper, we propose an efficient infrastructure-less network

architecture, named Crowd Associated Network (CrAN). In CrAN, a set of crowds plays significant roles

by completing the communication gaps among various associates in the network, and hence the name.

We show the usability of this proposed architecture to support non-real-time data transmission over

a Smart Garbage Management System (SGMS), where optimum solutions need to be discovered to

minimize the management cost. Due to the complexity of the optimization problem, we approximate

these optimum solutions using a Genetic Algorithm (GA). In the implementation of the GA, we apply new

fitness functions to discover a feasible tradeoff between distance and waste volume. We then compare

the performance of the proposed fitness functions with that of an existing fitness function. The results

favorably suggest the necessity of employing the proposed fitness functions to obtain near-optimum

solutions.
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I. INTRODUCTION

In general, all computer applications can be broadly classified into real-time and non-real-time

applications. In real-time applications, responses to certain events are constrained within a fixed

time interval, i.e., timeliness is a primary measure of performance. On the other hand, although

every non-real-time application has its own performance indicator, its required response time is

subjective. Consequently, unlike their counterparts, the demand of fixed network architectures

by non-real-time applications is not imperative. However, à la real-time applications, most of

the existing non-real-time applications utilize infrastructure based or semi-infrastructure based

network architectures. Hence, they charge for high expenditures for installation and maintenance.

To alleviate the cost of such applications, an inexpensive but efficient infrastructure-less network

architecture is considered in this paper. The usability of the proposed network architecture is

specifically demonstrated for an important non-real-time application, namely Smart Garbage

Management System (SGMS).

A number of frameworks have been proposed to satisfactorily manage the garbage problems

within the vision of smart cities. For instance, in [1], the authors designed an intelligent solid

waste bin to aid the existing waste management system. Their work focused only on the bin

design, but designing an appropriate network architecture and optimizing the cost for garbage col-

lection remain out of their scope. In [2], an Internet-of-Things (IoT )-based SGMS is proposed

to reduce the amount of food waste by imposing certain constraints. In that proposed SGMS,

the smart garbage bins (SGBs) communicate among themselves using a wireless mesh network,

and transmit data to a router, which then forwards them to a server. All the acquired data are

analyzed by the router, which decides service provisioning. Except SGBs, all other devices are

connected via the Internet. Moreover, a direct path between an SGB and the router is assumed.

Due to that assumption, the distances between the SGBs are kept notably short, which is again

impractical. Other solutions for SGMS have also been addressed in [3]– [5]. However, most of
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these solutions utilize infrastructure based or semi-infrastructure based network architectures.

Consequently, the installment and maintenance cost of these networks are considerably high.

On the other hand, our proposed infrastructure-less network architecture aims to support

the entire operation of the SGMS, and charges a minimum cost to deploy and maintain.

The proposed architecture is compatible for any non-real-time application, where frequent data

acquisition is not necessary for proper functioning of that application. In the proposed network,

a set of crowds is utilized with other network components to acquire data from a considerably

large area, e.g., a town or a city. The details of the proposed network architecture are discussed

in Section II with a compatible application in Section III. Data acquired from the network nodes

(SGBs) are further processed to assist in discovering optimum solutions (in terms of reducing

management cost) for the SGMS [6], [7]. In this paper, we employ a Genetic Algorithm (GA)

to discover such feasible solutions from the acquired data, alike [8], [9]. Within the GA, two

new fitness functions are applied and compared with a trivial fitness function. The results hint

the necessity of employing new fitness functions to find feasible solutions.

II. CROWD ASSOCIATED NETWORK

The key concept of the proposed infrastructure-less network architecture is the utilization of

the crowd to complete the communication gaps among the associates. Hence, it becomes an

inseparable part of the network; and thereby, it is named as Crowd Associated Network (CrAN).

In CrAN, two types of components are involved: i) dedicated agents, and ii) non-dedicated

agents.

The dedicated agents are those agents that are solely installed in the network to perform some

specific tasks. In general, these agents are static and exchange information with non-dedicated

agents to achieve the networking goal. On the other hand, the crowd is the latter type of agent

who is equipped with necessary devices and acts like an intermediate relay in the proposed

network architecture. The crowd completes the communication gaps among the dedicated agents
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and thereby enables them to function properly. It acquires data from one or multiple dedicated

agent(s), and delivers multiple copies to other dedicated agent(s). The members of the crowd

may also exchange data among themselves with a hope that the cooperating members will deliver

the data to one or multiple dedicated agent(s). This technique improves the performance of the

network in terms of data delivery and end-to-end delay. A notable point is that everyone in the

crowd is qualified to be a part of the network if he/she complies with the network requirements.

However, in reality, not everyone would be interested to contribute. Therefore, from now onward,

for the sake of distinguishing the non-contributors from the contributors, we will refer to the

latter as volunteers. They provide services without any expectation of compensation and without

any coercion. A volunteer will be given a network component, which he/she has to install in

his/her own vehicles (e.g., motorcycle, car, bus, etc.). This network component will be called as

a Volunteer Agent (VA) throughout the rest of the paper.

As mentioned earlier, this sort of network architecture is suitable for applications with non-

real-time data, such as SGMS, where acquisition can be satisfactorily fulfilled by one or few suc-

cessful transmission activities per day. There are manifold advantages of using this architecture,

such as: a) no required fixed infrastructure, i.e., infrastructure-less, b) no fixed boundary in terms

of deployment, c) a smaller number of dedicated agents, d) a lower expected deployment and

maintenance cost than any infrastructure based or semi-infrastructure based network. Volunteers

are the key actor in the proposed CrAN and their recruitment can be facilitated, e.g., through

the following provisions.

• Local community may provide incentive to the volunteers through revising or reducing tax

and/or other service charges.

• A social awareness campaign may also play a significant role in convincing people to

become volunteers.

• Other sources, which can be explored, are the employees from municipal corporation,

government offices or social organizations who live around the coverage area.
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• Public buses that travel around the cities can contribute to this task or even garbage collecting

containers can also be equipped with V As to acquire information.

III. CRAN FOR SGMS

In the following, Subsection III-A briefly introduces the components that are utilized to

install the CrAN. The proposed infrastructure-less network architecture is detailed in Subsec-

tion III-B. Subsection III-C discusses the communication protocols that are suitable for the

proposed network architecture. Subsection III-D presents the techniques related to data processing

and discovering optimum solutions.

A. Network Components

The CrAN consists of five distinct components, i.e., Smart Garbage Bin (SGB), Volunteer

Agent (VA), Sink, Control Center (CC) and Garbage Collecting Agent (GCA). All of them have

their unique identification numbers. Among them, except V A, all others are dedicated agents.

A collaborative effort of these components envisions to delivery necessary data and to discover

optimum or near-optimum solutions for the SGMS, which contribute significantly in reducing

waste management cost. The details of the components are briefly discussed below:

Smart Garbage Bin (SGB): Unlike other conventional garbage bins, an SGB is embedded with

a sensor that can measure the volume of garbage. The SGB periodically acquires this

information and transfers it along with other necessary information to the encountering

associates. The SGBs are battery powered, and have low computational abilities and

storage capacities. Hence, the following two initiatives are undertaken to enhance the

lifetime of an SGB: i) it can only transfer data whenever necessary without any relaying

capability and ii) instead of continuously delivering packets to all associates (within

the range), a priority based technique is employed to reduce energy dissipation.
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Volunteer Agent (VA): The objective of this component is to acquire data from the SGBs, and

exchange them with compatible associates when encountered. This is the only non-

dedicated component in the system and hence, its behavior is unpredictable. Therefore,

it is prescribed to assign multiple V As in an area with the idea that at least one of them

is able to deliver the data to the appropriate associate(s). In order to obtain a reasonable

performance, a V A is necessary to be supplied with an affluent energy source. In our

case, each V A is attached to a vehicle and draws energy from the battery of the vehicle.

Sink: The objective of this component is to exchange information with the V As when both

of them are within the communication range. The sinks are dedicated agents, which

connect to affluent energy sources through electrical wiring. The destination sink is a

special type of sink with direct connection to the control center. Unlike other sinks,

it only forwards data to the control center and never re-transmits any copies to other

associates.

Control Center (CC): The primary objective of the CC is to acquire data from the destination

sink and subsequently, utilize them to obtain optimum solutions for garbage collecting

agents with respect to one or multiple parameters, e.g., distance, number of containers,

etc. All the computed solutions are stored in a buffer and delivered on a demand basis.

Garbage Collecting Agent (GCA): This component is involved in unloading the SGBs by

following the optimum solutions provided by the CC. The GCA can also be utilized

to replace batteries when necessary. When a GCA completes unloading all assigned

SGBs, it moves to the dumping zone for releasing the garbage and then returns back

to the depot.

B. Network Architecture

The network architecture of the CrAN is depicted in Figure 1. It is a two-tier architecture

where the first tier is mostly involved in data acquisition, and the second tier is involved in data
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processing and discovering optimum solutions for the GCAs.

Generally, the SGBs are placed beside the roads to ease the garbage collection process. In

other words, the SGBs are spatially distributed components installed inside the network area.

They periodically acquire waste volume status and generate waste DATA packets and other relevant

information. The V As are the mobile agents in the network that provide voluntary services and

gather necessary DATA packets from the SGBs when they encounter the latter. Thereafter, the

V As exchange these packets opportunistically when they come into contact with nearby sinks or

other V As with a hope that these relaying nodes will deliver the packets to the destination (more

specifically, to the destination sink). The sinks also apply a similar opportunistic forwarding

technique to route the packets to the destination. Consequently, these components have a routing

capability to decide which packets to transmit, how many duplicate copies to spread, etc. Finally,

the destination sink receives packets from various sources and delivers them to the CC for further

processing.

As noted before, the second tier in the network architecture is involved in data processing,

discovering optimum solutions for the GCAs and acquiring feedback from the GCAs. After

receiving packets from the destination sink, the CC processes the required data and stores them

in a buffer after performing a simple freshness treatment, i.e., old data are overwritten with the

fresh data. Then, periodically it computes the optimum solutions with respect to one or multiple

parameters as mentioned before. At a later time, these solutions are delivered to the GCAs in

order to collect the garbage in the most efficient manner. A GCA unloads an SGB, updates the

system if required, and also changes energy source whenever necessary. It may also acquire data

from other SGBs, which are not unloaded, but encountered during the trip. At the end, when it

returns back to the depot, it delivers the feedback and the acquired packets to the CC.
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C. Data Transmission

In CrAN, only the SGBs can generate DATA packets, and all other associates act as intermediate

relays to deliver them to the destination sink. In a DATA packet, an SGB encloses the waste

volume status as well as the status of the energy source. The prior one indicates when to unload

it and the latter indicates when to change its energy source. A single copy of a DATA packet may

result in failure to reach at the destination since the nodes experience intermittent connectivity

due to a large network area. Therefore, duplication of packets may result in a high probability

of reliable delivery to the destination sink within a given time frame. Hence, an SGB injects L

copies of a DATA packet in the network through various associates (mainly V As).

As mentioned earlier in Subsection III-B, the network components in the CrAN have het-

erogeneous capabilities in terms of data transmission. An SGB and the destination sink do not

require routing capabilities. A simple MAC protocol can enable these components to transmit

or receive DATA packets from other associates. By contrast, the rest have to relay packets as

they are intermediate nodes, and hence, they need routing capabilities. In the following two

subsubsections, we discuss some direction in selecting the most relevant routing and MAC

protocols for the CrAN architecture.

1) Routing: Since the CrAN is an infrastructure-less network, and the operation area can be

considerably large, there is a small possibility that a complete end-to-end route can be discovered

for delivering a packet to the CC. Thereby, all the components in the network may experience

intermittent connectivity or lack of connectivity and time-varying hop-to-hop propagation delays.

Hence, the routing protocols that assume direct end-to-end routes before data transmission are

not applicable in the CrAN . Conversely, there exist opportunistic routing protocols [10]–[12],

which store the packets until an opportunity arises to forward them to another node(s) with a hope

that the receiving node is the destination or will at least forward the packets to the destination

directly or via other intermediate nodes. These protocols are known as store-and-forward based
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routing protocols.

Most store-and-forward based routing protocols can be broadly classified into replication-

based and forwarding-based routing protocols. As the name suggests for the preceding class

of protocols, they replicate the packets whenever necessary. A generalized practice, which

is observed among these protocols, is that they allow a considerable amount of replication

to increase the delivery probability of a DATA packet. By contrast, forwarding-based routing

protocols forward a packet until it reaches the destination without any duplication. Although, this

approach achieves a higher efficiency in terms of resource preservation and overhead reduction,

it experiences a lower packet delivery ratio and higher end-to-end delay. Hence, they are not

preferable for adoption in the CrAN.

There are various replication-based routing protocols proposed in the literature. In [10], an

epidemic routing protocol is proposed, which replicates every packet when it encounters a new

contact. Hence, its packet delivery ratio is considerably higher than other similar protocols.

However, since it is very similar to flooding technique, it experiences a considerably high

overhead in the network. Consequently, the epidemic routing protocol is neither preferable in this

network. On the other hand, there exist protocols, which limit the replication overhead through

specific techniques, e.g., in [11], [12]. These protocols are considerably easy to implement and

demand a relatively lower computing power. Therefore, these protocols are good candidates for

the proposed network architecture.

2) Media Access Control (MAC): Unlike routing protocols, a MAC protocol is obligatory

for all the network components in the CrAN. Among the existing MAC protocols, handshake-

based MAC protocols, such as IEEE802.11 [13] and IEEE802.15.4 [14], are suitable for those

networks where channel contentions are frequent phenomena and packet drop probability is

high due to collisions. In handshake-based MAC protocols, a node has to reserve a channel

before initiating any transmission attempt through the handshaking procedure. Conversely, a

network architecture, like CrAN, where contention and collision are seldom phenomena, these
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protocols are not applicable due to a considerable amount of overhead they impose before any

data transmission. On the other hand, most of the contention-based protocols, such as ALOHA

and CSMA, transmit a packet with an assumption that the next node exists within its vicinity.

Hence, this type of protocols is neither suitable for the CrAN. For this network architecture,

only those MAC protocols that trigger packets when the nodes come within a communication

range are preferred. A node must store the packets and transmit them opportunistically. Such a

mechanism is embedded within Store-and-Delivery based MAC (SD-MAC) protocol as proposed

in [15]. It is a light-weight MAC protocol, which is suitable for most sensor nodes.

D. Data processing and discovering optimum solutions

After acquiring necessary DATA packets through the CrAN architecture, the CC extracts all

the required data and then at a later time, processes these data to find optimum solutions. An

SGMS is incomplete if the acquired data are not processed, and optimum results (in terms of

minimizing the management cost of the system) are not calculated.

For simplicity of our forthcoming discussion, let us assume that the CC has adequate recent

data of the network. It then has to compute feasible solutions and deliver them to the GCAs

on a demand basis. In terms of cost optimization, let us assume that we aim to minimize the

requirements of the GCAs. Note that if a single GCA can unload all the bins, then this problem

can be casted into a simple and well-studied Traveling Salesman Problem (TSP). However, in

reality, this latter assumption is less realistic since all the GCAs have limits in terms of capacity.

It is therefore necessary to consider this constraint, and we shall refer to the more realistic context

as a Garbage Collection Problem (GCP).

The GCP resembles to the known Capacitated Vehicle Routing Problem (CVRP). In CV RP ,

a fixed fleet of delivery vehicles with identical capacity must be utilized to provide service to

known customer demands for a single commodity and from a single depot at minimum cost.

The objectives of the CV RP include: i) minimizing the vehicle fleet, and ii) minimizing the
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travel time while keeping the total demand of commodities for each route within the capacity of

the serving vehicle. However, in GCP , instead of minimizing the travel time, maximizing the

garbage collection is envisioned with an assumption that it will reduce the requirement of the

GCAs.

All the trivial and new ideas discussed before can be hypothesized as follows:

hypothesis I: minimizing the travel time will minimize the requirements of the number of

GCAs.

hypothesis II: maximizing the waste volume collection by a GCA will minimize the require-

ments of the number of GCAs.

hypothesis III: minimizing the coverage distance for collection per waste volume will mini-

mize the requirements of the number of GCAs.

Among the aforementioned hypotheses, we consider hypothesis I as a trivial (benchmark)

objective since it has been widely used in the evaluation of existing algorithms with a sim-

ilar objective (e.g., CVRP [9]), whereas hypotheses II and III represent the proposed new

objectives. Similar to its predecessor, the GCP is an NP -hard problem for a large number

of SGBs, i.e., N ≥ 100. It is infeasible to solve this type of problems in polynomial times.

Several metaheuristic methods that can produce near-optimum solutions have therefore been

proposed since the last decade. Among them, Genetic Algorithms [4] are widely applied due to

their reduced solving time and quality of solutions (if relevant parameters are selected properly).

In this paper, this technique is employed to obtain viable solutions.

A GA utilizes a set of populations and creates several generations to solve a particular

optimization problem. A population consists of a set of solutions, a.k.a., chromosomes with

each containing the solution in the form of genes. A crossover operation is performed for

the reproduction of new chromosomes whereas a mutation operation makes random changes

in the solutions or chromosomes. A selection procedure is invoked to select only the fittest

solutions as parents, which are then utilized by the crossover operation to create the other fit
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solutions, namely offsprings. At the end of each iteration, a new generation is produced from

the combination of the old generation and the new offsprings. Generally, the size of the new

generation is larger than the previous one. To keep the size fixed, the fitness values of all the

solutions are calculated. At the end, a filtering procedure is applied so that only the fittest nodes

survive and get themselves placed in the population. In our case, we need three corresponding

fitness functions for three hypotheses, such as:

F (i) =
1

1 + (δ0,j + Σm
j=1δj,j+1 + δm,0)

(1)

F (i) = Σm
j=1ϑ(j) (2)

F (i) =
1

1 +
δ0,j+Σm

j=1
δj,j+1+δm,0

Σm
j=1

ϑ(j)

(3)

where F (i) measures the fitness of a particular solution/chromosome i of a certain population,

which has m number of genes (i.e., m SGBs), δℓ,k denotes the Euclidean distance between SGBs

ℓ and k, ϑ(j) denotes the waste volume of a particular SGB j, j ∈ {1, . . . ,m}. Equations (1),

(2) and (3) are used to select solutions according to hypotheses I , II and III , respectively.

Since the volume of each SGB is considered random against a fixed capacity container, the

size of the chromosomes/solutions may vary, which makes the implementation of the GA more

challenging.

IV. EVALUATION

The proposed hypotheses are evaluated by conducting a comprehensive simulation campaign.

The details of this simulation campaign along with parameter optimization and results analysis

are discussed in the following.
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A. Simulation Scenario

To evaluate our hypotheses, we consider three Euclidean 2D areas of 500 m×500 m, 2000 m×

2000 m, and 5000 m×5000 m, where the SGBs are installed in a random fashion. We consider a

variable number of nodes N (ranging from 10 to 100) that are deployed within the area following

a uniform probability distribution. Every SGB has a unique identification number and in this

process, 0 is considered as the identification number of the depot. We assign a random waste

volume to every SGB, which is assumed to be less than the bin capacity βc, and the capacity,

ζc, of each container is assumed to be symmetric. To stress the simulation, all the nodes are

considered to have a waste volume, which is larger than the minimum considerable volume µ,

i.e., ϑi > µ. The distance of the two nodes is found using a Euclidean distance, δ. We assume

that the node that travels within the shortest distance would require minimal time to travel the

area. For simplicity, we also assume that the CC has adequate recent data to discover appropriate

solutions.

In order to discover feasible solutions using the GA, 1-opt crossover and 1-opt mutation

are utilized. The following parameters are considered throughout the simulation campaign: ζc =

1000 kg, βc = 200, µ = 0.5× βc, generation = 50, sizeof(population) = 2×N . The length

of the chromosomes/solutions varies from the minimum ⌊ζc/βc⌋ to the maximum ⌊ζc/µ⌋. Every

scenario runs with 100 different seeds which are then averaged before plotting on a graph.

Finally, the simulation program has been implemented in C++ and all the results are tabulated

in a plain text file.

B. Parameter Optimization

For finding appropriate solutions from a GA, it is obligatory to utilize optimum parameter

values, which are volatile and can change from one scenario to another. Generally, mutation rate

and crossover rate play important roles in discovering appropriate solutions in any evolutionary

algorithm like GA. Hence, a simulation campaign is carried out to discover optimum mutation
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rates and crossover rates for the three preferred scenarios. These values are later utilized in

subsequent simulations. In Figure 2, the impacts of various mutation rates and crossover rates

on utilization of containers—where Equation (3) is specifically selected for the fitness function—

are shown using contour graph for N = 30. In this figure, mild colors represent lower utilization

whereas intense colors represent higher utilization. It can be observed from the figure that

multiple mutation-crossover-rate pairs may offer similar types of solutions. Hence, for subsequent

simulations, the optimum parameter values in Table I are adopted.

C. Results and Discussion

For evaluating the performance of the three hypotheses and to discover their effectiveness

in finding optimal or near optimal solutions, we consider three metrics, namely the required

number of containers, utilization of the GCAs and travel distance per waste volume or in short,

distance per volume. The results are depicted in Figures 3a, 3b, and 3c. All the results are

normalized before plotting on graphs using a max-min normalization technique. Consequently,

for each metric, the performance resulting from each given hypothesis does not vary significantly

with the size of the area.

From Figure 3a, it can be observed that since hypothesis II endeavors to maximize the garbage

collection for a fixed capacity container, its utilization is considerably higher than the other two

hypotheses for any preferred area. It achieves the highest utilization of vehicle capacity, i.e., 1

at N = 100. Since hypothesis III attempts to minimize the distance per volume collection, it

achieves considerably higher utilization than hypothesis I, i.e., 0.74. These results of utilization

reflect on the requirement of the GCAs and are further illustrated in Figure 3b. Since hypothesis

II utilizes the GCAs in the most efficient manner, it requires a lower number of containers

than the other two hypotheses. Between hypotheses I and III, the latter one outperforms its

counterpart. For hypotheses II and III , the required number of containers increase linearly

with N . On the other hand, for hypothesis I , the required number of containers have a linear
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trend with N initially, but seem to have an exponential increase when N is sufficiently large.

Moreover, hypotheses II and III appear to have nearly the same performance in terms of the

required number of containers.

Although, from the aforementioned discussion, it may seem that hypothesis II yields a superior

performance, Figure 3c shows other important insights. Since hypothesis II attempts to maximize

the volume, a GCA has to travel a long distance, which is the longest among the three hypotheses,

i.e., 0.82 or more. By contrast, although hypothesis III requires a slightly higher number of

containers, its average travel distance is considerably lower than the preceding one. Again,

another interesting observation is that initially hypothesis I and III yield almost equal travel

distances, but as we increase N , hypothesis III will have a lower average travel distance per

volume than its counterpart. From the investigation, it is found that since hypothesis I tries to

minimize the distance, the distance for various containers increases chronologically. For instance,

the first container has to travel the shortest distance and the final one has to travel the longest

distance, which is even longer than the longest distance of hypothesis III. Consequently, longer

distances dominate when the average is calculated. Therefore, if fuel consumptions are taken into

account when calculating optimum solutions, hypothesis III might offer a better performance (in

terms of cost) than the other two hypotheses.

V. CONCLUSION

In this paper, we have proposed a low cost but efficient infrastructure-less network architecture,

which is exploited in the Smart Garbage Management System (SGMS). Since the crowd is

associated inseparably within the architecture, it is named as Crowd Associated Network (CrAN).

A set of crowds works like mobile agents (called Volunteer Agents (VA) in this paper) who acquire

data from various dedicated agents of the network. At a later time, it delivers the acquired data

to the other dedicated agent(s) or similar agent(s) with a hope that the other parties can deliver

the data to one or multiple dedicated agent(s). This combined effort is envisioned to deliver data
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to the destination sink, which is further connected to the control center. Thereby, these agents

complete the communication gaps among the dedicated agents of the network. After receiving all

the packets from various sources, at a later time, the control center computes optimum solutions

with respect to garbage collection in order to minimize the management cost of the SGMS.

We have employed the Genetic Algorithm to discover feasible solutions from the acquired data

utilizing three objectives, namely minimizing the travel distance, maximizing garbage collection

and minimizing the travel distance per volume. We have performed an extensive simulation

campaign with these objectives and discovered that the third objective seems to offer more

feasible solutions than its counterparts.
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Figure 1: The two-tier architecture of the CrAN .
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Figure 2: The impacts of various mutation rates and crossover rates on the utilization of the

containers for diverse areas. The optimized mutation rate and crossover rate are pointed out

using an x mark.
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Figure 3: Results of three hypotheses for various metrics vs number of nodes.
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Area Mutation Rate Crossover Rate

500 m × 500 m 0.4 0.1

2000 m × 2000 m 0.35 0.2

5000 m × 5000 m 0.3 0.15

Table I: Optimum mutation rates and crossover rates for the three preferred scenarios.
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