CRANFIELD UNIVERSITY

EFSTATHIOS SIAMPIS

OPTIMAL TORQUE VECTORING CONTROL
STRATEGIES FOR STABILISATION OF ELECTRIC
VEHICLES AT THE LIMITS OF HANDLING

SCHOOL OF AEROSPACE, TRANSPORT AND
MANUFACTURING
Advanced Vehicle Engineering Centre

PhD
Academic Year: 20162017

Supervisor: Dr E. Velenis and Dr S. Longo
October 2016






CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND
MANUFACTURING
Advanced Vehicle Engineering Centre

PhD
Academic Year: 20162017
EFSTATHIOS SIAMPIS

Optimal Torque Vectoring Control Strategies for Stabtisa
of Electric Vehicles at the Limits of Handling

Supervisor: Dr E. Velenis and Dr S. Longo
October 2016

This thesis is submitted in partial fulfilment of the
requirements for the degree of PhD.

(© Cranfield University 2016. All rights reserved. No part of
this publication may be reproduced without the written
permission of the copyright owner.






Abstract

The study of chassis control has been a major research atka automotive industry
and academia for more than fifty years now. Among the popuéhaus used to actively
control the dynamics of a vehicle, torque vectoring, thehoétof controlling both the
direction and the magnitude of the torque on the wheels, madicular interest. Such a
method can alter the vehicle’s behaviour in a positive wagenboth sub-limit and limit
handling conditions and has become even more relevant icetbeof an electric vehicle
equipped with multiple electric motors.

Torque vectoring has been so far employed mainly in latezhiole dynamics con-
trol applications, with the longitudinal dynamics of thehig@e remaining under the full
authority of the driver. Nevertheless, it has been alsogesed that active control of
the longitudinal dynamics of the vehicle can improve vehdability in limit handling
situations. A characteristic example of this is the caserwtiee driver misjudges the
entry speed into a corner and the vehicle starts to deviate its path, a situation com-
monly referred to as a ‘terminal understeer’ condition. Bseombined longitudinal and
lateral control in such scenarios have been already prdpostne literature, but these
solutions are mainly based on heuristic approaches thanaiglect the strong coupling
of longitudinal and lateral dynamics in limit handling sitions.

The main aim of this project is to develop a real-time implatable multivariable
control strategy to stabilise the vehicle at the limits ofdlieng in an optimal way using
torque vectoring via the two independently controlled gleenotors on the rear axle of
an electric vehicle. To this end, after reviewing the mogbantant contributions in the
control of lateral and/or longitudinal vehicle dynamicgtwa particular focus on the limit
handling solutions, a realistic vehicle reference behavi@ar the limit of lateral acceler-
ation is derived. An unconstrained optimal control stratisghen developed for terminal
understeer mitigation. The importance of constrainindnltbé vehicle state and the con-
trol inputs when the vehicle operates at the limits of harglis shown by developing
a constrained linear optimal control framework, while tlfile@ of using a constrained
nonlinear optimal control framework instead is subsedyemtamined next. Finally an
optimal estimation strategy for providing the necessalyiale state information to the
proposed optimal control strategies is constructed, asguthat only common vehicle
sensors are available. All the developed optimal contrakegies are assessed not only
in terms of performance but also execution time, so to makethiey are implementable
in real time on a typical Electronic Control Unit.
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Chapter 1

Introduction

1.1 Overview

The study of chassis control has been a major research arbatfothe automotive in-
dustry and academia for more than forty years now. Chassisaiacan be defined as
the control of the longitudinal, lateral and vertical vdaimotion to improve handling
and traction/braking performance along with active safég]. Although it is a rela-
tively new area of research, it has quickly grown into onehef iost intensive subjects
with a large volume of published literature [94]. This growias a direct connection
with the increased safety concerns due to the ever incigasimber of vehicles on the
road, combined with the higher performance found on vehitdday. At the same time,
the rapid development of the microprocessor has offerddrfasd cheaper platforms for
deployment of chassis control solutions.

After the introduction of the Anti-lock Braking System (AB# 1978 and the Trac-

1



2 CHAPTER 1. INTRODUCTION

tion Control System (TCS) five years later, chassis contystesns have expanded to
include the dynamics of the vehicle as a whole [84]. This waseved with systems

such as Four Wheel Steering (4WS) and semi-active/actsfgesision in the mid 1980s
and braking systems such as the Electronic Stability Pro@ESP) ten years later [131].
These systems offered greater control over the dynamidseofehicle in a closed-loop

fashion, differentiating themselves from systems suchhasABS and the TCS which

focus on the individual wheels.

From the application methods used so far for control of theicke dynamics one
method in particular is of great interest: torque vectarthg method of controlling both
the direction and magnitude of torque in order to influeneadynamics of the vehicle in
a positive way [145], has attracted increasing attentiaer twe past fifteen years. Torque
vectoring on a conventional driveline can be applied betwaedes or between wheels of
the same axle, or even in a front-rear and left-right openatiombining axle and cen-
tre differentials or couplings. But with the re-emergingheologies of Electric Vehicles
(EV) and Hybrid Electric Vehicles (HEV), torque vectoringshhbecome even more im-
portant, since these platforms offer greater authority @veonventional driveline when
it comes to effectively distributing torque. And while toig vectoring has been so far
seen as a system that improves steerability and vehiclemssgn sub-limit situations,
the new possibilities given from the EV and HEV platforms eattend its operation in
the limit handling region.

In the context of active chassis control, systems that obttie lateral dynamics of
the vehicle have been the main topic of research so far. Sygthras focus mainly on
improving the steerability of the vehicle under sub-liminhditions and preventing loss
of control in limit handling situations. Longitudinal veté control on the other hand
has remained mainly under the command of the driver, witkegys like Cruise Control

(CC) only recently incorporating safety functions sucheggitation of the vehicle’s speed



1.1. OVERVIEW 3

to keep a safe following distance from the vehicle in frontowdver, it has been also
recognised that active control of the longitudinal dynasyéan improve the stability of
the vehicle in terminal understeer situations.

Understeer along with oversteer and neutral steer are msmmonly used to explain
how a vehicle responds to steering inputs. Since the actualertion between the steer-
ing angle on the wheels and the response of the vehicle is gamplex, the concept of
understeer gradient has been introduced at this pointgussingle-track model under
steady-state cornering and also assuming that all tyrgsastheir linear region of oper-
ation, the understeer gradient can give an indication oh#taral behaviour of a vehicle
subjected to a constant steering input. It can be shown 148t L 33]

L
5: ﬁ—i—Kay,

whered is the steering angle on the front whedlshe wheelbase of the vehiclR,the
vehicle path radiusK the understeer gradient aagl= V,?/R the lateral acceleration of

the vehicle at its Centre of Mass (CM). Then a vehicle is:

1. neutral steer wheld = 0 and there is no need to adjust the steering angle when we

vary the vehicle’s speed on a constant radius path,

2. understeer wheK > 0 and the steering angle will have to increase with speed
according toKay in order to keep a constant radius path, with the charatiteris

speed/qhar defined as the speed at which that steering angle is doubfei@eman

angledacker = L/R[50],

3. oversteer wheilk < 0 and the steering angle has to decrease as the speed is in-

creased until it reaches a zero value at the critical spegd1R).

While the use of the understeer gradient as introduced atmveomehow quantify
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Steering angle

Critical speed

Characteristic speed :

: >
Vehicle speed

Figure 1.1: Change of steer angle with vehicle speed on daaradius path for a neutral
steer, an understeer and an oversteer vehicle.

the natural tendency of a car to follow a prescribed pathusadr not, it is based on many
simplifying assumptions. It is therefore important to natehis point that the behaviour
of the vehicle while cornering can change depending on thélesdrivetrain topology
and/or the use of the acceleration/brake pedal. This islyndire to the longitudinal and
lateral tyre force coupling effect which dictates that thtetal tyre force capacity of a tyre

reduces in the presence of a longitudinal tyre force. ThamgxXample:

e A Front-Wheel Drive (FWD) vehicle under acceleration whdernering has a

smaller lateral force potential on the front tyres and etbilncreased understeer.

¢ A Rear-Wheel Drive (RWD) vehicle under acceleration whdenering has a smaller

lateral force potential on the back tyres and exhibits iasegl oversteer.

Returning to the limit handling cases, terminal understieerefore refers to that kind
of vehicle operation in which the front tyres have reachesrtmaximum lateral force

potential due to excessive vehicle speed through a cornke nEcessity for velocity
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regulation in terminal understeer situations is alreadgtmaed by van Zanten et al. [139]
as part of the performance requirements for the future deweént of ESP system by
Bosch. Van Zanten [139] points out that especially in theeaafsJ-turns, where the
turning radius is continuously reduced along the trajgctarscenario typical on highway
exits), the ESP’s yaw moment correction on the lateral dyosalone is not sufficient. In

those cases the requirement of minimum speed change froESRantervention needs
to get reduced in its priority and thus, by appropriatelyuadg the vehicle’s speed the
radius of the turn can be decreased as well.

While the necessity to reduce the vehicle’s velocity in t@ahundersteer cases is
well documented [53,89, 106, 139], the method that thisargtweduction will take place
remains an open question: proposed solutions range fropleicontrol strategies that
superimpose individual braking of all four wheels on the ESBrvention on a standard
vehicle [89] to torque vectoring algorithms which combinleigh level supervisory con-
troller with a static control allocation scheme on an All-géh Drive (AWD) EV [74].
No matter the approach used, a recurring problem in the gexpeo far solutions is the
assumption that the longitudinal dynamics of the vehicke ggcoupled from its lateral
dynamics, while it is often the case that a similar assumpoalso made on the tyre
level by assuming decoupled longitudinal and lateral tpreds. While it is understood
that such assumptions can greatly simplify the controlgteand minimise computational
requirements, they are not valid anymore in limit handlinges.

Another point of interest in limit handling cases is the admsglrivetrain topology,
since disturbing the longitudinal dynamics of the vehicl# ghange its understeer char-
actersitics as already evidenced above. The drivetramagy used in this project is that
of an RWD EV with two electric motors on the rear axle of theie&h(refer to Appendix
A for details), where the stabilising controller is able tampulate the motor torques

to follow the given reference vehicle behaviour, while thievel reserves full authority
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of the steering angle input through which he commands thended path of the vehi-
cle. While such a drivetrain topology has the advantageitldates not interfere with the
lateral tyre forces on the front wheels and the steeringffeeh the driver, it can result
in induced oversteering behaviour on the vehicle, esdgdialthe terminal understeer
cases examined here where the desired velocity reductimarmt#s for brake actions on
the rear wheels. It is therefore important to carefully edasthe vehicle, tyre and motor

operation limits in limit handling cases as we are going ®isdhe chapters to follow.

1.2 Aim and Contribution

The aim of this project is to develop a real-time implemelgahultivariable control
strategy to stabilise an RWD EV using torque vectoring atlitinés of handling in an
optimal way. While the understeer mitigation capabilibéthe proposed control strategy
through the necessary reduction of the vehicle’s velocitybve the main focus in this
project, the final solution will be able to stabilise the \@@iunder any limit handling
condition including oversteer cases.

To meet this aim, this project has led to the following cdnitions:

e review the most important contributions in the control daékal and/or longitudinal
vehicle dynamics, with a particular focus on the limit hanglsolutions (chapter

2),

e based on an original idea from [40], develop a realistic elelstate reference near

the limit of lateral acceleration for the controller to f@mlN (chapter 3),

e based on an original idea from [40], develop an unconstdaamtimal solution for

terminal understeer mitigation (chapter 4),
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e show the importance of constraining both the vehicle statethe control inputs
when the vehicle operates at the limits of handling by deyielp a linear con-

strained optimal control framework (chapter 5),

e analyse the relative advantages and disadvantages ofaisioglinear constrained

optimal control framework (chapter 6),

e develop an optimal estimation strategy for providing theassary vehicle state
information to the proposed optimal control strategiesuasng that no additional

sensors than the ones found on a standard vehicle are dedidhhpter 7).

It is important to note at this point that all the developedtggies will be systemati-
cally assessed in terms of real-time feasibility, sincéedontext of active chassis control
strategies like the ones presented here it is important teereare that all solutions are
real-time implementable. To this end, computational tinngiag a standard desktop ma-
chine (i7-2600k at 3.40GHz with 16GB of memory) are repottedughout this report,
while the final solution is also deployed on a dSPACE DS10G5d@PowerPC 750GX at
1.00GHz with 128MB of memory), the goal being to understahdiare the processing

requirements if such a solution is to be tested on a real \ehic

1.3 Thesis Outline

Chapter 2 provides an overview of the most important coatidgns in the literature on the
subject of active chassis control, with a particular focaodtee limit handling solutions.
We start with solutions that apply only on the lateral vel@dynamics using conventional
drivelines, which consist a major part of the literatureeihafter a short introduction on
the distinct advantages and disadvantages of the HEV andl&opns, we list lateral

dynamics control solutions that have been successfullilexppn such vehicles. Finally,
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we examine more advanced solutions that use longitudinsmiycs control (usually in
combination with lateral dynamics control) for terminaldensteer mitigation.

Chapter 3 introduces the four-wheel vehicle model and timéimear tyre model used
in this project, along with the steady-state cornering ysialused to derive the neces-
sary reference for the derived controllers to follow. Thgéh generation is based on the
steady-state analysis presented in [40] and employs the amwheel vehicle model
and tyre model so that the nonlinear tyre characteristidscanpled longitudinal and lat-
eral vehicle dynamics and tyre forces are considered. snwthy the computed references
are specific to the chosen drivetrain topology and alwaysiliéa

In chapter 4 an unconstrained optimal control strategygisombined yaw, sideslip
and velocity regulation for terminal understeer mitigatis presented. To this end, a
Linear Quadratic Regulator (LQR) to stabilise the vehicdeng combined longitudinal
and lateral dynamics control is developed in a way similgd@], using the rear torque
vectoring capabilities of the RWD EV under considerationis Ishown that it can suc-
cessfully reduce off-tracking by appropriately regulgtine vehicle velocity when the car
enters a corner with excessive speed.

In chapter 5 two constrained optimal control strategiepaesented using combined
yaw, sideslip and velocity regulation in the Model PredietControl (MPC) framework,
a feedback implementation of constrained optimal conffdle two MPC strategies are
constructed using vehicle models or different levels of ptaxity: the first one linearises
the four-wheel model from chapter 3, while the second liiseara reduced system with
longitudinal slip inputs instead so that the fast wheel dgbaamics are neglected. After
setting the state and input constraints for the MPC strasegive analyse the relative
trade-off in closed-loop performance and computationsi tar both of them: it is shown
that inclusion of the fast wheel speed dynamics results nigtia a bigger optimization

problem but also requires faster sampling times. Two linandiing tests confirm the
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effectiveness of the two linear MPC strategies in corrgct@mminal understeer behaviour
and the importance of constraining the system state anahphues for improved stability
in an obstacle avoidance scenario.

Chapter 6 examines recent developments in the area ofriasir IMPC and Nonlinear
MPC (NMPC) solvers, by replacing the generic Quadratic Rnog(QP) solver used in
the previous chapter with a specialised one and by introdutero NMPC strategies using
different nonlinear solvers. Comparing the three straeggainst each other and against
the optimal solution in terms of closed-loop performancg @mputational cost indicates
that while the linear MPC remains the fastest strategysib abturns solutions that can
greatly deviate from the optimal one. The importance ofingtg the nonlinear four-
wheel vehicle model in an NMPC formulation is also confirmedwo limit handling
manoeuvres, which show that using such a solution resuligtiter state regulation and
much smoother torque commands.

In chapter 7 the NMPC strategy from the previous chapter iglsal with a nonlin-
ear optimal estimator for estimating the variables of iesér To this end, an Unscented
Kalman Filter (UKF) is constructed assuming that only commsensors usually found
on a standard vehicle are fitted. The proposed estimatiategiy is first tested on a track
before combining it the NMPC strategy from chapter 6 in a ljiglansient test scenario,
with results showing that the complete solution is stileetive in controlling the vehicle

in limit handling cases.
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Chapter 2

Active Chassis Control: A Literature

Review

2.1 Introduction

In this chapter we detail the most important vehicle chassigrol solutions in the au-
tomotive industry and academia, with a particular focustwsé solutions that seek to
stabilise the vehicle at the limits of handling. To this ene, first explore solutions that
act on the lateral vehicle dynamics only and how these haslvey in the past thirty
years before we divert our attention to more advanced soisitihat interfere with the
longitudinal dynamics of the vehicle in a controlled mamwien a limit handling case is

detected.

11
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2.2 Active Lateral Dynamics Control

In the early limited commercial applications of active chiascontrol throughout the
1980s, 4WS with or without a semi-active/active suspensias the solution of choice
[131]. However, the benefits of using such systems to imptiogenanoeuvrability and
stability of the vehicle were outweighed by their high protlon and maintenance costs,
making it difficult to justify them for mass production [84419 Active brake systems on
the other hand have remained under the full control of the AB8 the TCS for pre-
venting wheel lock and spin, although early investigationsheir use for active chassis

control can be found in the literature [57].

The first time that an increased number of papers appearedonfarence session
on the use of left-right tyre force distribution for contril the lateral dynamics of the
vehicle was in AVEC '92 [48]. One paper of particular intéress that from Shibahata et
al. [148], where thef3-method’ was first presented. While stability during comgthas
been analysed before [118] tBemethod demonstrated the importance of sideslip angle,
especially when acceleration or braking is applied on thecke while cornering. Results
from [148] showed that manoeuvrability of a vehicle is gheatfluenced by its sideslip
angle, with the possible yaw moment gain for different valaésteering angle decreas-
ing rapidly with increased sideslip angles. TBanethod also graphically showed the
‘shifting’ of this yaw moment gain to higher values duringcaleration creating under-
steer behaviour on a neutral base vehicle, while the oppbajipens during deceleration.
Shibahata et al. [148] also indicated that the yaw moment gader steady-state cor-
nering can be expressed as a function of longitudinal ardhtcceleration and thus,
through the use of a hypothetical external yaw moment, tfiegnce of acceleration and
deceleration on the manoeuvrability of a vehicle can beighted. This method, called

the Direct Yaw Control (DYC), was then applied on an AWD véhiehere this yaw mo-
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ment was expressed as a distribution of the traction andrigdérces on the rear wheels,
while the front-rear distribution was kept constant. Thawdation and experimental re-
sults showed the validity of the method and paved the roathéodomination of the brake
stability systems by the end of the 90s.

Three types of application of the DYC methodology on conweral vehicles have

been so far the most popular [96]:

1. The lateral braking control using independent brakingasto create a difference
in braking forces between the left and right side of the ethence generate a yaw

moment.

2. The lateral torque distribution control which splits #@gine torque to the left and
right wheels, resulting in a difference in the driving toeqoetween them hence a

yaw moment generation.

3. The lateral torque vectoring control which is able to sfen torque from the left
to the right wheel and vice versa, as to create a braking éooguone wheel while

transferring the same amount as a driving torque to the afgpokeel.

While lateral braking control dominated the market by thie 180s, lateral torque
distribution and torque vectoring systems quickly gaineguarity mainly due to their

less intrusive character in sub-limit conditions.

2.2.1 Lateral Braking Control

In this type of control, the use of the brakes for yaw momenmniegation means that con-
trol is effective across a wide range of vehicle operatingdtioons but can also create a

negative feeling on the driver due to the deceleration ofvéitacle [96]. Nevertheless,
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lateral braking control is very effective during limit hdimdy and is widely used in these
situations since stability is more important than comforsuch cases [139].

Under this category we find the most successful so far achiassis control system
in the automotive history: Bosch’s ESP [90]. As Manning et[®4] points out, while
many theoretical papers on tyre force distribution quickiypeared after AVEC '92, the
best practical application on yaw rate and sideslip contralate is the one presented by
Bosch in 1995 [140]. In their original paper, Shibahata e{48] analysed the effect
of a corrective moment on the dynamics of the vehicle acrosdull range of lateral
acceleration. Bosch, focusing only on the limit handlingess presented the concept of
ESP in [140] pointing out that since vehicle instability &t handling limit is caused by
the deteriorating effect of large sideslip angles on the yament gain, it is necessary
to control the sideslip angle along with the yaw motion of tedicle [140, 141]. The
ESP uses the existing hardware for ABS and TCS, but is distetg different from these
two systems: while both ABS and TCS operate at the tyre lim@dhesion having as
controlled plant the individual wheels, the ESP system haswhole vehicle as the con-
trolled plant and controls the wheels’ slip in order to keleg vehicle motion close to the
nominal one [141]. ESP achieves this using a hierarchiaatrobstructure: (i) the yaw
rate target is set using a bicycle model and then saturatexding to the tyre/road fric-
tion coefficient, while the sideslip angle target is set aditw to the3-method and then
saturated according to the vehicle’s speed [139, 141]thi$) hominal vehicle behaviour
is compared to the actual one, with the necessary yaw moraemifiimization of the
vehicle response error achieved through the distributfdoraking forces on the individ-
ual tyres [139]. In its most basic form the ESP brakes therdudat wheel if an oversteer
situation is detected and the inner rear wheel if an understtiation is detected [52], the
choice of the wheel accounting for the importance of latgna force in the yaw moment

generation.
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Similar systems to Bosch's ESP can be found elsewhere inutoenative industry,
with Ford [137], BMW [88] and Mando [80] being just a few of tkgamples. On the
other hand, academia has mainly focused on the integrat@differential braking strat-
egy with Active Front Steering (AFS) as to extend the operabf the system in the
whole range of lateral acceleration. For example, in [13fine aH. controller that uses
AFS and differential braking to achieve the yaw rate anddigangle targets, whereas
the driver wheel steering angle command and sideslip amgleyaw rate references are
modelled as disturbances. Other interesting exampleshardifferential braking strat-
egy presented in [136] which uses a Sliding Mode Control ($Mi€ategy for yaw and
sideslip control while taking into account variations ie tbngitudinal dynamics, and [71]
which uses differential braking and throttle control to npamate the slipping condition

of the rear tyres on an RWD vehicle according to the yaw ratgeta

2.2.2 Lateral Torque Distribution and Torque Vectoring Control

While ESP is still the preferred stability control solutidue to its quick and authoritative
action and examples of coupling the braking system with Alk@sthat it is possible to
extend its operation in the sub-limit region, placing thakimg system at the centre of an
integrated control system can have a deteriorating effethe performance aspect of the
vehicle as perceived by the driver [106,127]. Due to this $gstems with lateral torque
distribution have gained popularity in the late 90s andhalgh expensive to develop
and produce, are still used today. In this type of controlgbssibility to freely portion
the engine torque on the left and right wheels gives a way teigde a yaw moment to
correct both understeer and oversteer situations underapesating conditions but has
a clear disadvantage during cruising or deceleration witiher@ngine torque is not large

enough [96]. Under this category we mainly find active ddferals that can regulate
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the direction of torque to the left and right wheels undehldwhit and sub-limit condi-
tions but cannot generate a corrective yaw moment when thi@emput is zero [125].
The most successful example in this category is Honda'svAcIorque Transfer Sys-
tem (ATTS) [132] as implemented for the first time on the driyaxle of the FWD 1998
Honda Prelude Type SH, with the system showing improvedlgjedénd handling during

combined steering and acceleration/deceleration coms{@dd

In the case of torque vectoring control, torque can be tratstbetween the wheels
for yaw moment generation regardless of the engine inpgugr It therefore does not
conflict with the acceleration and braking commands fronditineer, although it can have
a negative effect on the steering action of the vehicle # applied on the front axle. The
most characteristic example in this category is Mitsutsshctive Yaw Control (AYC)
system originally installed on the 1996 Mitsubishi LanceoHtion IV along with its later
variant, the Super AYC [138]. According to its basic prifeipf operation, torque vector-
ing is achieved by engaging the right or the left clutch oftdrgue vectoring differential,
with the engagement of the clutches regulated by a feedfdrfegedback controller: the
feedforward path calculates the necessary yaw momentdingaio the wheel steering
angle and throttle opening while the feedback path corréussyaw moment request

based on the left-right wheel speed difference [126].

2.2.3 Front-Rear and AWD Torque Distribution

With the increased popularity of the Sport Utility VehiclBWV) segment in the turn of
the century, more research was conducted on the use of ar&andlistribution for active
chassis control purposes. Front-rear distribution cangéghe understeer characteristics
of the vehicle - Piyabongkarn [106,107] showed that if t@rgptransferred from the front

to the rear wheels of the vehicle, then oversteering is iaduelowever this method is not
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as effective as left-right distribution: an early analy@m Motoyama [98] shows that
front-rear has a lesser potential than left-right torquridiution in improving the turning
characteristics of a vehicle. A good example of front-raatridbution is the paper series
from Ricardo [144—-146] on the development of a novel cenifferéntial for use on an
SUV. Here, a small electric motor is added for torque moduteaih a centre differential
configuration which makes possible to force a torque diffeeebetween the front and
rear wheels. Experiments using the system on a BMW X5 showredmesults [144]
and Ricardo changed to a left-right differential devicehe last paper of the series [146].
In the case of an AWD platform, distribution of the torque tbfeur wheels gives
better traction when compared to an FWD or RWD solution atikftorque distribution
is appropriately controlled, cornering performance canniygroved without interfering
with the acceleration/deceleration commands from theed{27]. On the other hand,
AWD solutions result in increased system complexity andlpotion/maintenance costs
which cannot be possibly justified in low cost vehicles, t@sg in constraining such so-
lutions on the higher segment vehicles, motorsport carsoffrcbad applications. The
most characteristic example from this category is the Stiaedling AWD (SH-AWD)
system from Honda. SH-AWD was developed in the beginnindnefdentury and was
initially fitted on the 2004 LEGEND model, with later varignappearing in the 2006
RDX and MDX models amongst others [87]. The system combirse af electromag-
netic clutches (to vary the front-rear distribution) andiaproved variant of the ATTS
(to vary the left-right distribution) in a single unit at tiear axle. For the control unit a
feedforward-feedback scheme is employed, whereas théfeedd path sets the front-
rear and left-right torque distribution according to thevyate error and the driving con-
ditions while the feedback path is used for correction inetient of excessive sideslip
angle values [87]. Experimental results showed a less stetging behaviour from the

vehicle when the SH-AWD system is used, but also that offithe it is not possible
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anymore to transfer torque between the wheels.

2.2.4 The Electric Motor as a Chassis Control Device

While the refinement of the chassis control systems on cdioreai vehicles will con-
tinue in the foreseeable future, the parallel and rapid logweent of the EV and HEV
platforms already presents some exciting new possilslitie the active chassis control
front. The (H)EVs have attracted attention in the past tweades as a response to the
ever-increasing fuel prices and growing environmentakteoms [29]. For active chassis
control purposes, the (H)EVs can eliminate the distincietween the different method-
ologies as documented above: braking, torque distribwimhtorque vectoring can be
possibly achieved using only one type of actuator, the etectotor. In the sections to
follow, after a brief introduction on the distinct advanéag(and disadvantages) of the
electric motor as an actuator for active chassis contrgbgaes, we will focus on the
different lateral vehicle dynamics control strategiemggbrque vectoring that have been
investigated so far specifically on the EV and HEV platforms.

Most of the so far research on (H)EVs has concentrated onribee management
and powertrain technology challenges [29]. However, itleen also recognised that the
electric motor has some distinct advantages over conveltidrivelines as an actuator

[59, 65]:

1. it has an extremely quick and accurate response and cambelted according to

a speed or torque demand,

2. its operation is reversible so it can be used as either amoota generator with

almost equal efficiency, and

3. it can achieve high energy efficiency of up to 90%.
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Furthermore, in the case of in-wheel motors the powertrathitecture is greatly
simplified with less mechanical parts while new possil@titalso open for the design of
the passenger cell [120].

From the above we can conclude that when electric motors sed, lan improve-
ment on the vehicle handling characteristics can be actiigweughout the whole range
of vehicle operation, encompassing functionalities like ESP, ABS/TCS and torque
vectoring. Furthermore, the behaviour of a vehicle can Ibectly ‘designed’ through
the active control of the electric powertrain rather thadinectly tuned through changes
in the mass distribution or the suspension characteristhasd while energy manage-
ment for efficiency and vehicle dynamics management can b&kan as two conflicting
tasks, energy regeneration and consumption are directycaded with vehicle braking,
suspension damping and vehicle sideslip angle, hence hatrersg coupling with the
control of the dynamics of the vehicle [32].

Despite the clear advantages of using an electric powersidocumented above
there are still some open questions which, along with the@aors on the use of a battery
as the new energy storage device on a vehicle, can somehdairexpe slow transi-
tion to (H)EV architectures. While the ‘basic rules’ of velei dynamics do not need to be
re-invented [115], certain challenges arise when the pwaaris changed from a conven-
tional Internal Combustion Engine (ICE) setup to an elearie with the most important
being the increased sprung mass and packaging constnaiaisly related to the neces-
sary inclusion of the battery) and the increased unsprurssgmad suspension packaging
(in the case of in-wheel motors). In view of these challen@eslla and Cao [32] looked
into the impact of an EV architecture on the roll, pitch anevydynamics of a vehicle.
Their investigations reveal that the increase in the sproags due to the extra load from
the batteries can impact roll stability, ride vibration amnfort while the increase in the

unsprung mass in the case of in-wheel motors makes the alertfeeel motion control
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more challenging. Use of in-wheel motors may create funpneblems: (i) it can necessi-
tate rethinking of the steering system and/or the suspehsi@matics and packaging and
(i) it may yield a lower natural frequency for the unsprungss, bringing it undesirably
close to the frequency range that is most sensitive for theeimbody in the vertical direc-
tion (4-8Hz) [55]. On the other hand, in the case of HEVs Gralhd Cao [32] point out
that the integration of an electric powertrain can creabdlems on the transient handling
dynamics since these are strongly affected by the mas#bdistn and yaw moment of
inertia of the vehicle. Use of regenerative braking may aks@roved more limited than
originally thought, with Crolla and Cao [32] showing thatlpa relatively small part of
the total regeneration energy can be actually harvesteddaseto two limiting factors:
() the actual process of regeneration is rather complicageveral aspects ranging from
generator power to battery state of charge need to be coedigethe process and (ii) the
overall braking performance need to appropriately bleeddgenerative braking with the
existing hydraulic brake system, account for the brakeffeeh the driver and not disturb
the handling balance of the vehicle (for example regenegdiraking on the rear wheels
if the driver lifts off during cornering can induce overstee

It is obvious from the above that there are both clear adgastand distinct disadvan-
tages in the use of the electric motor as the main actuatoeladric powertrain. Both
the automotive academia and industry have been activelkyrigat appropriate solutions,
while government agencies have increased their initidtveesearch on the (H)EV ar-
chitectures. But as Chan [29] has already pointed out, itakk the coordinated effort of
not only government agencies and the automotive industralso the electric industry
to really establish the new platforms of HEVs and especiaWg as the primary choice

of transportation for the average consumer.
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2.2.5 Lateral Dynamics Control on EV and HEV Platforms

A large body of work exists on control of the lateral vehiclsmdmics using torque vec-
toring on (H)EVs. One of the earliest examples is from Charg).§31] where some of
the ideas introduced by Ackermann [3] for 4WS control are leygxd on an AWD EV,
and a feedforward-feedback control law is developed saligayaw rate and the sideslip
angle of the vehicle are controlled through lateral torgeetering on the front and rear

tracks.

Examples of torque vectoring on an EV using two electric meo#d the front or rear
can be found in [119] where an SMC strategy is used with theedsteering input mod-
elled as a disturbance, and in [149] where a Linear Quadaaicssian (LQG) controller
Is used to enhance steerability within a given yaw and sigeshtrol region or manoeu-
vrability outside it. Another example in [72] presents thedastigations of Mitsubishi on
the use of in-wheel motors for DYC. The authors attempt tocimétie characteristics of
lateral dynamics from a high performance car using two gtegtotors on the rear track
of the small test vehicle by employing classical controhtéques and, while a good
match is not achieved, the yaw rate and lateral acceleratigponse of the test vehicle

show a noticeable improvement over the baseline vehicle.

In the case of AWD EVs one of the earlier investigations waesented from the
Hori Laboratory in Tokyo University, where the previous wdrom the group on ABS
and TCS implementations on an EV [59] is extended to yaw ratking [49,56,99,122].
Other examples of torque vectoring on AWD EVs can be found B5] where a fuzzy
logic controller is used and [147] where a control allocastrategy is employed instead.
A very recent example from the industry is the 2013 MercedeszBAMG SLS Electric
Drive vehicle where four motors are mounted on the chassidiaal drives are used to

connect them to the wheels in order to avoid the increaseeofitisprung mass found in
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an in-wheel motor solution [45]. Although no details on tedfics of the control strat-
egy used are given, the authors claim that the vehicle camesslifferent behaviours
depending on the setting from the driver ranging from urtéersng to oversteering se-
tups. Regenerative braking is also coordinated with the ©S&hieve a good balance
between energy regeneration and stability requirements.

A number of other drivetrain topologies and control metHodms can also be found
in the literature, ranging from the integrated torque colndf an rear electric motor and
the electro-hydraulic brake system using a fuzzy logic ialetr in [79], to the use of an
adaptive controller on a system with independent rear ieeimotors and AFS [20, 99],
to the use of autonomous corner modules where each wheadrcdoas its own set of
steering and suspension actuators along with an in-whe®rn@8]. A rather unique
drivetrain topology can be found in ‘MUTE’, an EV concept d®ped by the Technical
University of Munich, where apart from the main electric oro& second smaller one is
superimposed in the rear differential to obtain torquemeaty capabilities [58].

Studies on lateral vehicle dynamics control on ThroughRlbad (TtR) HEVs can
be found in the investigations from MIRA [105] and in [69, 91 [105] two electric
motors are retrofitted at the back of the H4V test vehicle 8] a Proportional-Integral-
Derivative (PID) controller calculates the torque reqsest the two rear axle electric
motors for minimization of the yaw rate and sideslip angl®es from the target values
which are set using a bicycle model. These torque requesteaequal in magnitude and
opposite in sign so that no disturbance of the longitudiyalagnics is observed by the
driver and are saturated for large sideslip angle and ritege longitudinal slips on the
wheels and according to the maximum motor power. Result& shsignificant reduc-
tion in the understeer gradient of the vehicle under stestdie cornering and increased
manoeuvrability at the limit of adhesion, while relaxatiohthe maximum torque re-

guests results in what the authors call a ‘controlled dridse to the limit of adhesion a
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controlled oversteering was achieved using only steermmgrasands from the driver.

A characteristic example on the development of a (H)EV platfusing torque vec-
toring is the series of papers from the 7FP EU progéaiture [2]. The main goal of this
project was to investigate the use of (H)EV platforms thatimise energy consumption
but can also dynamically decide between energy efficiendysarfety. Focusing on the
vehicle dynamics aspect of the system, in [69] a feedforvieedback controller struc-
ture is used to find the necessary torques on the four whesdsding to the steering and
driving/braking commands from the driver. For the feedbpath, a PID controller with
an LQG are separately used to calculate the necessaryeétiial longitudinal force and
yaw moment respectively assuming decoupled longitudimdlliateral vehicle dynamics.
Then a torque distribution unit is used to set the individua¢el torques in a manner sim-
ilar to [105]: the ICE engine is responsible for deliverihg fongitudinal force command
while the two electric motors on the rear axle take care ofdvemoment request. In [91]
the previous control design is replaced by a polytopic Lifegaameter Varying (LPV)
controller with scheduling parameters as functions of gdmgitudinal velocity, while an
anti-windup scheme is employed in the feedback path to aaithtor saturation. Results
show much better reference tracking performance when caadpa the previous PID-
LQG design [69] and good disturbance rejection. The lastdamers [12, 70] continue on
the same control design, but this time using a pure EV arcthite instead (FWD with two
electric motors). In [70] the LPV controller presented i & modified by including yaw
rate in the scheduling parameters, while the anti-windingse is extended to a torque
and slip limiter. In [12], a further refinement is achievedusing parameter-dependent
Lyapunov functions and shaping filters in the controllertbesis. The outcome is slightly
better simulation results with smaller torque inputs whempared to [70] but at the ex-
pense of greater computational effort.

A more pragmatic approach can be found in the series of pdpmrsthe 7FP EU
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project E-VECTOORC [1], where a control allocation scheme is employed for terqu
vectoring of the four electric motors of a pure EV. Contrdbetion, a method widely
used in robotics, aerospace and marine applications fdralaf overactuated systems,
has lately become popular in the area of vehicle dynamicsr@onThis is especially
apparent in research related to (H)EVs, two architectutg@siwcan easily result in an
overactuated system when more than two electric motorssactar the electric drivetrain
is combined with other actuators like an AFS system. Corailocation has some very

attractive features for this type of applications becatisan [67]:
e meet fault tolerance and control reconfiguration requirgisie
e distribute effectors to different control systems to seatifferent objectives,
e separate fast actuators from slower ones,

o offer the opportunity to introduce secondary objectivks ninimization of power

consumption.

The main aim of thée-VECTOORC project was to develop a torque vectoring strat-
egy that enhances the fun-to-drive factor of the vehicldenimproving energy efficiency,
along with novel strategies on torque modulation for brakergy recuperation, ABS and
TCS functionality [1]. Based on these criteria, researcf6B] focuses on the deriva-
tion and evaluation of an appropriate cost function for calnf the vehicle dynamics,
while [33, 62] present initial results of the set controlgetis and the control allocation
strategy used to achieve them. The following requirememgset for the target vehicle
behaviour [33, 62]: (i) reduction of the understeer gratiarthe linear part of the un-
dersteer characteristic under constant velocity, (iilgegion of the area of linearity of
the understeer characteristic, (iii) increase of the maxmachievable lateral accelera-

tion and (iv) reduction of the variation of the understeearelcteristic with longitudinal
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acceleration. The resulting reference understeer claistot is therefore set as a func-
tion of both longitudinal and lateral accelerations [62pcEsing on the control alloca-
tion problem, Novellis et al. [33] use an off-line optimiiat algorithm for evaluation of
different control allocation cost functions employing aaqiistatic vehicle model and a
motor modelled as a simple first order delay. A range of dffércost functions based
on performance and power usage criteria is presented fduadi@n, for minimization
of the input power, the tyre force coefficient, the longinalislip loss or the slip stan-
dard deviation. Comparisons between the different cogtions showed amongst others
a strong correlation between the input power and the reteremdersteer characteris-
tic, emphasising the benefits of setting a less understegattaot only for stability but
also energy consumption reasons. The authors concludslipdiased cost functions
are highly recommended for control allocation of the wheedjaes in EV applications.
Finally, in [101] the yaw rate controller presented in theyious papers is extended by
an additional sideslip angle control strategy which atéisa sideslip-based yaw moment

contribution when the sideslip angle value exceeds a piiaatkthreshold.

2.3 Active Longitudinal Dynamics Control

Up to this day, the control of the longitudinal dynamics & tkehicle has largely remained
under the full authority of the driver, and active longitadi control of the vehicle has
been restricted in systems such as the CC for comfort reaswhis: autonomous vehicle
control applications. On the other hand, braking systemB¥C that can decelerate the
vehicle are still viewed as deteriorating on the drivingexgnce [96, 106, 126].

While it is true that the driver should remain at the centréheflongitudinal vehicle
dynamics control, it has been also recognised that actimgaoof the longitudinal dy-

namics can have a positive impact on stability in limit haugdsituations [53,89,106,139].



26 CHAPTER 2. ACTIVE CHASSIS CONTROL: A LITERATURE REVIEW

The key idea is that terminal understeer arising from owvedpg in a curve cannot be
corrected by means of lateral control only, since there msegral connection between the
velocity of a vehicle and the minimum radius it can achievedlgh its maximum feasi-
ble lateral acceleration. One of the earliest examplesetkiaibres this idea can be found
in [86], where the authors notice that the combined actianagrrective yaw moment and
deceleration through appropriate brake control of the foleels improves stability and
path tracking. In ICE vehicles, a stability system that\adii changes the longitudinal
dynamics to account for this fact is already mentioned by Zanten et al. [139]. This
early remark on the importance of longitudinal control waiel realised as one of the
ESP new functions [89]: the Enhanced Understeering Co(EdIC) function attempts
to correct terminal understeer by superimposing indivitwaking of all four wheels on
the standard ESP intervention. The target velocity is satfaaction of the intended path
radius, which in turn is set according to the steering inpanfthe driver. Experimental
results on a middle segment vehicle show an improvementad holding with reduced
curve radius of 12% when the EUC function is used so that, @atithors mention, the
driver is able to keep the intended vehicle path and posaN®id an accident [89].

The use of longitudinal control for terminal understeerreotion was also studied
in [53], where a direct comparison between a yaw controlesysand a simple velocity
controller using braking only was performed in both simiglatand experiment. The
authors conclude that for off-tracking minimisation ashis tase in terminal understeer,
an early reduction in vehicle’s speed is more efficient tmmndasing its yaw rate. More
recently, Rajamani and Piyabongkarn [114] came into smaibeclusions while looking
into the concept of speed reduction for rollover mitigatlmased on an earlier remark
from the same authors [106]: it was noticed that since tHewvel propensity of a vehicle
can be expressed by its dynamic Rollover Index (RI) whichfisnation of both the roll

angle and the lateral acceleration, appropriate reductidhe latter by decreasing the
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vehicle’s velocity can prevent rollover. Rajamani and Biyagkarn [114] conclude that
reducing the vehicle’s speed before entering a sharp cuoagtiprovides better cornering
performance compared to the typical yaw rate control.

An example that focuses on oversteer correction insteaud) Usngitudinal dynamics
control can be found in [82], which documents the invesiayet of Honda on this matter.
Assuming decoupled longitudinal and lateral dynamics tih@&s attempt to achieve
both the stability (i.e. correcting oversteer of the vesicind steerability (i.e. allow
faster yaw rate response to steering inputs) targets by useking of the appropriate
wheels. While oversteer correction is achieved using bgakif the front outside wheel
as per basic ESP functionality, the rear tyres are brakedeigawecover the front tyre
grip and improve steerability. Results comparing the sysigainst a yaw rate controller
in a slalom and a J-turn manoeuvre on a snow packed road shastea fracking of the
yaw rate target with lower sideslip angle values and smadateering angle inputs from
the driver.

For AWD EVs, in [81] regulation of vehicle’s velocity is a@vied as part of a DYC
method, whereas the torque request from the driver is rebduteen the lateral accel-
eration exceeds a specified threshold which is set as a éunafisteering input under
kinematic cornering conditions. Another implementaticaraple on an AWD EV can
be found in [85], where a velocity limit is set as a functiontioé desired yaw rate and
turning radius of the car, the latter calculated by the curestimates on velocity and yaw
rate of the vehicle. While both papers use simplificationhécontroller synthesis, like
assuming decoupled longitudinal and lateral dynamicdeeéigg the load transfer effects
and superimposing the torque requests for velocity redndt the torque distribution as
calculated by the yaw rate controller, they show that im@etation of the idea on an EV
can be straightforward since longitudinal control is areir@mt part of the vehicle control

problem in such architectures.
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A more interesting EV implementation of active longitudidgnamics control can
be found in [74]. Here, a torque vectoring control algorittumich utilises a static con-
trol allocation scheme on an AWD EV is presented. The systeequipped with a front
in-line motor and rear twin in-wheel motors with regenemtapabilities along with in-
dependent wheel braking control, and extends on the workéwame authors in [75],
where two in-line motors were used instead. The purposeeoptbposed system is to
minimise the vehicle’s path and yaw rate error using yawaatkvelocity control, and is
constructed in three layers, namely a supervisory coetr@h upper-level controller, and
an optimal torque vectoring algorithm. The supervisorytaodter is responsible for com-
puting the desired vehicle velocity and yaw rate, and foec@lg the appropriate control
mode: yaw rate control is enabled after a given thresholdss@d, whereas speed con-
trol is enabled if the path requested from the driver, exggddy its curvature, is too
tight. The latter is judged according to an admissible aingion found by superim-
posing curvature constraints according to the maximunrisgg@ngle, a sideslip angle
limit and the RI of the vehicle. Then, if the desired speed esndature combination as
requested by the driver falls outside the admissible conégion, the supervisory con-
troller enables the speed control mode and thus takes fottaloof the vehicle’s speed
over the driver. Having obtained the desired vehicle vé&yoand yaw rate from the su-
pervisory controller, the upper level controller then fitkds necessary traction force and
yaw moment to meet these requests using an SMC strategyllyRima distribution of
the driving/braking torques on the four wheels is found gsrstatic control allocation
scheme: the optimization problem is formulated as a wedylgast-squares problem
which seeks to minimise the control allocation error, magarthe energy dissipation of
the system, and minimise the slip control error (a slip calldr is activated when the slip
ratio of a wheel exceeds a given limit), subject to the motat gyre force limits. Simu-

lation results comparing the derived torque vectoring il against a baseline vehicle
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with no stability control and a vehicle equipped with a sanitontroller but using an
unconstrained optimization method instead show that tbpqeed controller can achieve
good path following with lower steering inputs from the d@nivin conclusion, the torque
vectoring control algorithm detailed in [74] exhibits somee features like the use of a
rollover constraint in the calculation of the desired véhieelocity and the inclusion of
regenerative braking in the optimization problem. Howgiteassumes decoupled longi-
tudinal and lateral vehicle dynamics and neglects the iabig tyre forces nonlinearities
in limit handling. Furthermore, while the modular struayresented encourages the use
of a linear model in the high-level controller which does need details of the specific
vehicle configuration, careful consideration is neededféasible control targets are to

be avoided.

2.4 Conclusions

From the above literature review we can conclude that ahalie problem of stabilising
the vehicle at the limits of handling has been addressedde#ftl the so far proposed
strategies rely on simplifying assumptions such as deealpingitudinal and lateral ve-
hicle dynamics and/or linear tyre models. While this appholaas been proven to be an
effective control design methodology in the sub-limit ;gsesulting in simpler control
strategies that can be easily tuned and deployed, it is neffestive when it is applied
to limit handling cases where the strong coupling effects thie nonlinear tyre charac-
teristics become important. Furthermore, the necessitgdalate the vehicle velocity
in terminal understeer behaviour cases results in an evea demmanding problem to be
solved, which asks for more tuning effort with questionatasults if such simplifying
assumptions are used.

Based on these observations, in this project we presentameaimplementable mul-
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tivariable control strategy to stabilise an RWD EV at theilgwf handling in an optimal
way using combined longitudinal and lateral dynamics aantVe show the importance
of accounting for the nonlinear tyre characteristics angpded longitudinal and lateral
vehicle dynamics and tyre forces under such cases. We atsotblat accounting for the
system and actuator limits results in better control astimd ultimately a better control
strategy with less tuning effort. Finally we show that, tkemo the huge leaps in com-
putational power and memory storage in the past 20 yearg alith the introduction of
new optimisation algorithms and the continuous improveroéexisting ones, advanced
optimal control strategies can be now successfully appliresuch complicated problems

in real-time.



Chapter 3

Vehicle Model and Reference

Generation

3.1 Introduction

In this chapter we introduce the vehicle and tyre models usége development of the
optimal control strategies in this project, along with thethodology for generating the

reference vehicle state for the controllers to follow.

The structure of this chapter is as follows: after introdgcthe four-wheel vehi-
cle model and the simplifying assumptions used in its déowathe basic principles of
the tyre force generation are explained along with the tyoelehused, followed by the
steady-state cornering analysis and the methodology odatttthe equilibrium state to

be used as the reference vehicle behaviour for the conttolfellow.

31
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3.2 The Vehicle Model

Figure 3.1: Vehicle coordinate frame.

A seven Degrees of Freedom (DOF) vehicle model is used imhik, with its Equa-
tions of Motion (EOM) expressed in a coordinate frame atddo its CM as in Fig. 3.1.
As itis usual in the modelling of the vehicle dynamics for tohdesign purposes, certain
assumptions are made at this point to reduce the model caitypl&€04]. We therefore

neglect:

e the Ackerman Principle (both front wheels will steer witle ftame angle),

the rolling resistance, aligning moment and camber anglkeeofyres,

the suspension dynamics,

the pitch and roll motion of the vehicle,

the characteristics of the transmission and brake systems,

the aerodynamic forces on the vehicle.
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Then the EOM for the four-wheel vehicle model can be derivedgiNewton’s 2nd

Law in the longitudinal and lateral direction on the vehideal frame:

whereay anday can be expressed in terms of the velocity vector compon&rasidVy

using the translational part of the Newton-Euler equat[66%

It follows that, by also including the rotational part of tNewton-Euler equations [66]
and the angular rate dynamics of the four wheels, the EOMHherfour-wheel vehicle

model are

mv = (fei,+ frr)cogd —B) — (frL, + frr,) SIN(8 — B)

+ (fru, + frr) COSB + (fr, + frR,) SING, (3.2a)
B = % [(fFLX + frr) SIN(O — B) + (frL, + frRr,) COSO — B)
~ (fr, + frry) SINB + (fry, + frr) cosﬁ] —y, (3.2b)

.y = ¢ [(fFLy+fFRy)COS5+(fFLX+fFRx)Sin5]
— ER( fRLy+ fRRy> +W|_(f|:|_y sind — f|:|_x coso — fRLx>
+ WR(fer, C0OSO — fFRy sind + frr,), (3.2¢)

IWQ] = T'J - finRW7 | = F7 R7 J - L7R7 (32d)
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wherel, is the vehicle’s moment of inertia about the vertical arighe vehicle’s mass,
V is the vehicle velocityyy the yaw rate ang8 the sideslip angle at the CM. The radius
of each wheel iRy, its moment of inertia about its axis of rotationljg and its angular
rate (or more commonly speed)ds; (i = F (front),R(rean, j = L (left),R(right)). The
steering angle for both the front wheelsdisand the driving/brake torques applied on the
wheelsTjj. The longitudinal and lateral tyre forces are denotediy(i = F,R, j = L,R
andk = x,y). Finally the distanceg:, /g, W andwg determine the location of the centre

of each wheel with respect to the CM (Fig. 3.2).

Figure 3.2: Four-wheel vehicle model [134].

3.2.1 Longitudinal and Lateral Tyre Forces and Velocities

The tyre forcedfjji in (3.2) are calculated as functions of tyre slip using RaxsjMagic

Formula (MF) [10]. Tyre slip refers to the non-dimensionalative velocity of the tyre
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with respect to the road. The theoretical slip quantitiesdafined as [10]:

Vism @R
wiRy Y @Ry’

Sijx= (3.3)

whereVijx (i = F,R j=L,R k=xyy) are the tyre frame components of the vehicle
velocity vector at the centres of the four wheels. Theseftarmae velocities are the result
of the combined effect of the translational motion of the iltaie toV plus its rotational
motion about the CM due tgy. For example, the tyre frame velocity compon¥aty at

the centre of the front-left wheel is

VeLx =V cogd — B) — YlgLsin(yeL — 9),

wherelr. = /I +W_ is the distance of the centre of the front-left wheel from @i
and y& = tan(w /¢¢) the corresponding angle with respect to the vehicle’s g-axi
(Fig. 3.2).

Similarly the remaining tyres’ velocity components can bewkd, with the complete set

being

VELx :VCOE(5—B) — (]JEFLsin(pr — 5), V|:|_y =-V sin(c‘S — B) — L;UfFL COS(M:L — 5),
VERx :VCOE<5 - B) + LMFRsin(pr + 5), VFRy =-V sin(c‘S - B) + L;UfFRCOE(M:L + 5),
VRix =V €SB — PlrLSINYRL, VRy =V sinB — YlrCOSIRL,

VRrrx = V €OSB + UIRRSINYRR, Vrry =V SinB — (J/RRCOSYRR.

3.2.2 Longitudinal and Lateral Tyre Slip

The longitudinal slip on a tyrejjx as given in (3.3) accounts for the fact that when a

moment is applied on a wheel, a difference appears betweesctnal speed of the tyre



36 CHAPTER 3. VEHICLE MODEL AND REFERENCE GENERATION

Wj
T
' \{ijx
X
—> o>
de \
da

Figure 3.3: No slip travel distana compared to actual travel distandg

Vijx and its equivalent speed;xR,. The appearance of longitudinal slip is the main factor

for the creation of a longitudinal forckjy on the tyre [66] and as we can see from Fig. 3.3,

the wheel will travel a larger distanak under longitudinal slip when compared to the

free-rolling caselr. While different approaches have been suggested for ticalasibn

of 5jx [10,39, 121] in this work we employ the above definition (&asgording to [10].
The lateral slips jy as given in (3.3) accounts for the fact that when a vehiclteisrsed,

a slip angleajj appears on the tyre which results in the development of ealdtarce fijy,

hence the vehicle turns towards its intended direction. tyreeslip angle and the lateral

force work as ‘action and reaction’ [66], with a negativg resulting in a positivefijy.

For example in the case of a single tyre steered by a posttegisg angle to the left

as seen in Fig. 3.4, a negative tyre slip angle appears arsg@guéntly a positive lateral

force is created to move the vehicle to the left. It followattthe resultant slip on a tyre

Sj=\/Six+ Sy (3.4)

is defined as:
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Yw

Figure 3.4: Angular orientation of a moving tyre at a slip lengj and a steer anglé.

3.2.3 Friction Coefficient

Assuming that the friction coefficient between the tyre and the road is independent of
the vertical force on the tyr&;,, it together with the vertical force gives the total force on
the tyre:

fij = pfijz. (3.5)

The friction generated between the tyre and the road is thdtref their very complex

interaction and arises due to following three main fact66[

1. The adhesion friction: results from the tyre ‘stickingy the road thus creating and
breaking molecular bonds with it continuously. It is the medntributor under dry

road conditions.

2. The deformation friction: results from the tyre’s treaehptration in the road’s
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irregularities. It is the main contributor under wet roachduions.

3. The wear friction: results from deformation of the tyresipids elastic limit due to

high localised stresses.

The combination of the above friction mechanisms givesyheforce as a function
of the tyre’s load and the road conditions according to (3uh the peak values for the

tyre/road friction coefficientinay set according to Table 3.1.

Road surface Urmax
Asphalt, dry 08—-1.0
Asphalt, wet ®B-0.7
Snow, packed Q
Ice 01

Table 3.1: Typical variation ofimax With road surface condition.

3.2.4 Tyre Modelling

One of the most important aspects in the study of vehicle ycsis the tyre model,
since it provides a way to calculate the tyre forces as fonstof the observed slip quan-
tities, while its accuracy is decisive in reliable vehicimslations. Although direct use
of tyre data in tables and graphs is possible these two metaaa difficult to imple-
ment in a theoretical study, hence different formulae haentsuggested throughout the
years [133]. As noticed by Pacejka and Besselink [104] egptal, arctangent, parabolic
hyperbolic tangent functions have been tried with more asd success, while higher or-
der polynomials have also been used but proved to be indecomgside the original tyre
measurement data.

Three of the most popular tyre models used in the study ofclekliynamics are the

Fiala, the Dugoff and the Pacejka model [113]. The elastimflation analytical tyre
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By stiffness factor Ewe curvature shift
Cu=  shape factor Sy horizontal shift
Dy  peakvalue S vertical shift

Table 3.2: MF’s parameters.

model developed by Fiala in 1954 focuses on the lateral fgeseeration only, assum-
ing that the contact patch can be divided into small elemerttsindividual foundation
stiffness springs that try to restore the elements to thegiral position. An alterna-
tive analytical model is Dugoff’'s model which was developedhe late 60s from force
balance calculations and takes into account the longitlkdiateral tyre force generation.
According to Rajamani [113] both Fiala’s and Dugoff's malale physically intuitive
but can give inaccurate results, especially at large ara/orbined longitudinal-lateral
slip. An alternative approach is to use an empirical expoesss the one found in Pace-
jka’s MF [10]. The MF is capable of describing the tyre longiinal and lateral force,
along with its self aligning torque with good accuracy anthaugh it is normally vali-
dated only under steady-state conditions during eithes puaiking or pure cornering, it
is widely used in dynamic simulations of vehicle models unmambined longitudinal-

lateral slip conditions.

According to the MF, in the case when only a lateral or a lardjital force is gener-
ated on the tyre the output variabfecan be expressed as a function of the input variable

X as follows [113]:
y =D, sin[C,- tan * (B, x— E, (Byex—tan *(B,:x)))] . (3.6)

with Y (X) = y(x) + S, andx = X — S,. The output variabl&' can be the longitudinal or
the lateral tyre force as a function of the input variakilevhich can be the longitudinal

slip or the slip angle respectively. The parame®ys, C,,-, Dy, E,r, S, and$, (Table

MF ?
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Figure 3.5: MF curve and parameters.

3.2) are identified experimentally and define the shape ofdineée as seen in Fig. 3.5.
A simplified version of the MF which neglects the shift fast&, andS, as well as

the curvature factog,,. is [10]:
y = D, Sin(C,, tan (B, X)). (3.7)

The omission of the shift factors as well as the curvaturéofadoes not change the
important features of the MM, is still the peak valueB,,. is still the stiffness factor,
C, still governs the shape of the curve, while the prodg|gtC,,. D, still corresponds
to the slope at the origirk(= y = 0) of the curve [133].

From (3.7) and Fig. 3.5 we can draw some useful conclusions.ekample, in the
case of pure acceleration or braking so that only a longitaldiorce exists on the tyre
we can analyse the longitudinal force and slip relationglyigplitting Fig. 3.5 into two

distinct regions:
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1. Linear region: the longitudinal force increases lingavith longitudinal slip for a
small range of values up tqy, close to the origin, with the slope of the curve at
this region estimated using the prod®}-C,,.D,,.. Shortly after this linear re-

gion, the longitudinal force reaches a peak which is equildonaximum possible

longitudinal force.

2. Nonlinear region: After the maximum peak, the longitudiforce drops to an al-
most constant value. Hence the peak represents not onlyakienmm longitudinal
force but also the point where the tyre starts locking in #secof braking or spin-

ning in the case of acceleration.

Similar conclusions can be drawn for the lateral tyre forcéhe case of pure cornering.

3.2.5 Friction Circle
A tyre under both longitudinal and lateral slip is under a bamed slip state, with the

resultant friction force on the tyreprint being [66]

The longitudinal and lateral tyre forces cannot exceed timeiximum valuesfjx,.,
and fijy,., as already indicated in section 3.2.4. Then the tip pointhef maximum

resultant forcefj; is always on the friction ellipse:

) ()
+ —1.
(fijxmax fi

Assuming also a homogeneous tyre with symmetric charattexin the longitudinal

and lateral directions the friction ellipse becomes a eircThe friction circle is an im-
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Vij

Figure 3.6: Friction circle.

portant concept that emphasises the connection betwedonti¢udinal and lateral tyre
force, especially as we approach the limit of adhesion. Hram3.6 we can see that for
a specific longitudinal force, the maximum resultant foraa only reach the peak value

specified by the friction circle so that the lateral forceruatrexceed a limiting value.

Using the friction circle we can finally findijx and fi;y when the tyre is under a
combined slip state. After calculating the total frictiomefficient as a function of total

slip using the simplified MF (3.7)
tij = MF(s) = D, sin(C,. tan *(B,,.S)), (3.8)
we can derive the longitudinal and lateral tyre friction gmments using [10]

Sijx Sijy
S L iy = — g 3.9
Hijx = s Hij Hijy s) Hij (3.9)
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and from these expressiofig, and fjj, can be found from

fijx = Hijxfijz, fijy = Htijyfijz, (3.10)

if fijz is known. Notice that the minus signs in (3.9) account for fém that friction

always resists the relative motion of the tyre on the road.

3.2.6 Vertical Tyre Forces

f9 ,+ fore fere+ fRae
4 fee Jm fore 4 feL, "“‘ fRL2
CM CM
A B C D
"m Y m
Lk lE . LW WR
- 14 - - W >

Figure 3.7: Static load distribution.

The total vertical force (or normal load) on a tyre of a mowegicle can be expressed
as a function of the static load on that tyre plus the dynaoads$ due to longitudinal and

lateral acceleration. It follows that:

feL, = TR — AfF— AT, fere = fop, — AfX+AFY,

friz = T, + A — AT, frre = fOr, + AfE+AFY,

where fi(j’Z are the static load components on each tyre A AfY account for the

dynamic loads due tay anday respectively. For the derivation dfj’z andAij, Afiy we
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(£Q,+ fO)+ o L0\ (0, + TRRo)+ 0 L0
(AFX +ATY) (feL+ frr) (AfY + At (feL + fre)
I\ (AfX+ATFY) i (AfLATY)
A A
CM CM
fex " L
i iy
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- ZR > KF > < WL WR >
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Figure 3.8: Dynamic loads due & anday.

can use a simple moment analysis, as seen in Figs. 3.7-3.8.

From Fig. 3.7 and taking moments about points A,B and C,D ure longitudinal

and lateral acceleration we can show that:

0 _ MY/RWR 0 _ Mg/RWL
FL2™ (g +tR) (WL +WR) PR Uk +LR) (WL +WR)
/FWR mglEw
L 19 = .
RLZ™ 0k +R) (WL +WR) RRZ (0 + fR) (WL +WR)

Similarly, from Fig. 3.8 and using the static load compoeefﬁg from above, we can

find Af} andAfY as functions oy anday:

thR thL
Aff = ay, AR = a
S (e +R) (WL +wR) R (e + tr) (WL +wWR)
mth thF
AfY = a AfY =
e+ R) (WL +wR) R

ay.
(U 4+ IR) (W +WR)

The analytical expressions derived above give a good matekgerimental data [78]

and will be used for the reminder of the text.
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3.3 Reference Generation

3.3.1 Steady-State Cornering Analysis

In order to obtain feasible targets for the controller tddel a steady-state cornering
analysis of the four-wheel vehicle model (3.2) is perforniedh way similar to [40].
We therefore consider the nonlinear tyre characteristidsthe coupled longitudinal and
lateral vehicle dynamics and tyre forces to derive realigtierence steady-state cornering

conditions specific to the given drivetrain topology.

Steady-state cornering is characterised by a trajectocpiétant radiu® = RS, ne-
gotiated at a constant spe¥d= V=5, constant yaw rat¢ = ¢/°°=V55/R** and constant
sideslip anglg8 = B35S Since, according to the chosen drivetrain topology, ontyation

of the rear wheels is used we set free rolling conditions erfribnt wheels,

SFjX207 fFjX:o7 j:L7R7

and also neglecting the wheel speed dynamics (3.2d), thexfbeel vehicle model (3.2)

can be written as

v - fl(V7B7 L;U7 675RLX7SRRX>7 (311a)
B = f2V.B, 8, Srx SRR0): (3.11b)
Lp - f3(V7B7 L;U7 675RLX7SRRX>7 (311C)

where the vehicle dynamics are expressed as functions oédueed statév, 8, ¢) and
the new inputd%s, s .. Skry), With the necessary rear axle lateral slips found as funstio

of the corresponding longitudinal and lateral tyre veliesialong with the corresponding
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longitudinal slip:

VRi .
SRjy = (1+ Sij)V J,y, |]=L,R
Rjx

Then enforcing the steady-state cornering conditions:

the above system (3.11) reduces to a set of three algebnaatienqs with six unknowns,
namely the equilibrium stat@/ss, B35 R =V3%/¢°) and the input(0°°, s ,, SEre-

This system can be therefore solved numerically using thdimear equation solver
fsolve in MATLAB by providing any of the three unknown variablesy fexample the
triplet (VS5 RS, 6%%). The remaining variables of interest can then be computed us
ing (3.2) and (3.3): the steady-state wheel speeds of threnteeelsw’y} and wj can

be found using the calculated values 8f, andsg, and (3.3), while the steady-state
drive/brake torques at the rear Whe€§ can be found using the wheel speed dynamics

from (3.2d) under steady-state conditions.

3.3.2 Feasibility of Requested Path Radius

We next examine the feasibility of the requested path rafilara the driver. Similar to
common practice in vehicle stability control [113] we olbtain estimate of the driver’s

intended path using a neutral steer linear bicycle modetusitady-state cornerihg

U+ LR
© tandss’

Rkin

INote that a understeer or oversteer characteristic candilg aaed instead if needed.
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In the above expression the desired path raBigsdepends only on the steering input
from the driver, so it may or may not be feasible dependinghanviehicle’s velocity.
Consider for example the steady-state conditions for agarigteering input$®® and
three different fixed velocitie¥*® in Fig. 3.9. Lets assume that the driver, through a
steering command a¥ = 10deg, requests a path radiRs= Ry, of around 14m. Then,
if the vehicle velocity is 1Bm/s the requesteBy;, is feasible, whereas if the vehicle
velocity is 126m/s theRyi, is smaller than the minimum achievali#€® and not feasible
anymore. In this case the controller will reduce the vehidmcity so that the desired
R«in becomes feasible again. Taking into consideration thesdsivntention this speed
reduction needs to be kept to a minimum. To this end, the gtstade velocity is selected
such thaR, coincides with the minimur®®S, which in the above example corresponds
to a maximum vehicle velocity Ofjax = 11.6m/s.

It follows that there is a limiting value for the steady-stabnditiongVVsS (355 (55,
Sy Sere for a specificd®> Fig. 3.10 shows the envelopes of the feasible steady-state
vehicle velocitied/SSand steady-state sideslip angEsfor a range of steady-state steer-
ing angle®®S. We notice that the value of the maxim\#° decreases exponentially with
higher S, while the corresponding limits ¢85S show a linear relationship with*s and

range from negative to positive values.
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kin 3 (2) V3 = 10.6m/s

(c) V*5 = 11.6m/s

(b) V*° = 12.6m/s |

85 (deg)

- I I ! I I I I I
‘.}ll 12 13 14 15 16 17 18 19 20

Figure 3.9: Selection of target steady-state accordinpeadtiver’s steering angle com-
mand ofd=10deg: (a)R«n Within range of feasiblé&®sif V = 10.6m/s; (b)Ryn outside
range of feasibl&®Sif V = 12.6m/s; (c)Ryin coincides with the minimum calculatéfs

if V=11.6m/s.

l355

max

B (deg)

Figure 3.10: Steady-state regions Y6 and 355 for a range o®° values.



Chapter 4

Unconstrained Optimal Control

Strategy

4.1 Introduction

In this chapter we examine the use of an unconstrained olptonérol strategy to stabilise
the vehicle in a terminal understeer situation using theagke electric torque vectoring
configuration of an RWD EV. The controller is designed to mmisie the error between the
actual and the reference vehicle state in order to meet theested path radius through
the steering wheel input from the driver according to thelyais of section 3.3 and is

constructed in two layers:

1. Aunconstrained optimal control strategy based on an L@Riges stabilising rear

wheel longitudinal slip inputs.

49
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2. A backstepping control strategy then calculates thegsarg drive/brake torques

to achieve the longitudinal slips as dictated by the LQR.

After a short review on the use of unconstrained optimalm@btiteory in active chas-
sis control applications, we detail the proposed contratsgy and compare it against a
baseline vehicle with no active control and a vehicle eqgedpwith a DYC strategy using
a PID controller in CarMaker environment, so that its effeatess in mitigating terminal

understeer can be analysed.

4.2 Review of LQR strategies for Active Chassis Control

Optimal control theory seeks to “determine the control alghat will cause a process
to satisfy the physical constraints and at the same timemisei (or maximise) a perfor-
mance criterion” [83]. Such control signal, when it exissscalled the optimal control.
Optimal control theory has been so far applied in a diverselrer of fields, from biology
and ecology, to engineering, management and economicise lautomotive engineering
sector it can be found in a variety of topics, ranging but noited to active and semi-
active suspension control [123], driver modelling [13@ts estimation [5], obstacle and
collision avoidance [47], spark-ignition engine air/fuatio control [51] and minimum
time manoeuvring [28].

In the case of an unconstrained optimal control probleml@®R in both its discrete
and continuous time forms is the most popular so far designnigue, with its basic
principle covered in many textbooks [7,83,102]: the cdngapplied on a linear system
and seeks to minimise a quadratic cost function, which @esitarms that represent both
system outputs and inputs, with weights used to specifydlaive importance of each
term. In the standard LQR formulation, the system is assutineetinvariant and the

optimisation extends over infinite time while it is also as&udl that the state of the plantis
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available for feedback, with the existence of the optimatoa depending on the system’s
detectability and stabilisability. This latter requirembés sometimes relaxed by using an
output-feedback control, with examples in the literaturevging that an optimal control
based on a restricted set of measurements can be as goodthataaéased on full-state
information [129].

Looking more specifically in the application of LQR for a&ichassis control, in
[122] we find a DYC strategy applied on an AWD prototype EV. Buoe optimal con-
trol problem, the bicycle model with the yaw moment and tleeghg angle as inputs
is augmented with the rate of yaw moment in order to elimirsiéady state yaw rate
tracking errors. A ‘skid detector’ is also constructed, rder to detect locking/spinning
of the wheels and reduce the requested yaw moment from ttietdenunder such cases.
Experimental results show that the proposed strategy issta@painst cornering stiffness
errors but results in loss of stability on lowsurfaces, despite the use of the skid detector
to identify large tyre slip values.

Another example of an LQR application for active chassistrabrtan be found in
[109] where a lateral dynamics control strategy constaistéwo levels is presented. On
the high level, a bicycle model is augmented with integraloacon the yaw rate and a
LQR finds the ‘control effects’ (as the authors call them)rsat the yaw rate and sideslip
angle errors are minimised. Then the low level control atmmn computes the necessary
steering angle and individual wheel braking to meet thesetfol effects’ by solving a QP
problem, which seeks to minimise a quadratic cost functidajexct to the allocation error
(equality constraint) and the actuator limits (inequatipnstraints). Simulations results
focusing on the reconfiguration abilities of the proposddtgm in the event of a front
brake or steering failure show that the controller sucetlys€ompletes a double-lane
change by redistributing the control effort to the avaksafttuators.

Use of an LQR strategy for stabilisation of a vehicle durimgg@me operating condi-
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tions using longitudinal control only can be found in [402)4Here steady-state corner-
ing conditions which include operation of the tyres in thaliwear region are calculated
considering a single-track vehicle model with independemit and rear wheel torque
inputs that also takes into consideration the normal loansfier effect during accelera-
tion/braking. The resulting steady-state trajectoriesdfore include cases of aggressive
sideslip angle, more commonly referred to as ‘drifting’ ddions. The stabilising control
architecture then consists of an LQR strategy with longitaldslip inputs, and an SMC
to provide the necessary drive/brake torques, the reasousfog longitudinal control
only motivated by techniques such as the ‘left-foot brakumged in race driving. Sim-
ulation studies show that the proposed strategy can saliltie vehicle under different
equilibrium conditions, including extreme vehicle opergtcases usually achieved only
by expert rally drivers.

Stabilization of high sideslip angle cornering equiliboiaan RWD vehicle using an
LQR is presented in [143]. Here, the single-track model ftbe previous papers [40,
142] is replaced by a four-wheel vehicle model — thus avgdimplifications associated
with the use of pure longitudinal control — and the compleiatml strategy consists
of: (i) a LQR which finds the front steering angle and the re&eel speeds in order
to stabilise the vehicle with respect to drifting equildr(ii) a backstepping controller
which calculates the rear differential drive torque neagst meet the rear wheel speeds
commands from the LQR. The steady-state cornering eqguaildre calculated using the
same four-wheel vehicle model, with the computed steaate sirifting conditions giving
a close match to experimental data for vehicle trajectosigls the same constant path
radius. Two simulation scenarios set to emulate the cargaonditions recorded during
experiments using a rally car reveal that the actions fraaptioposed controller shows a
close resemblance to the response of the actual vehicléeltspabsence of disturbances

in the simulation model.
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4.3 LQR with Backstepping Strategy

From section 4.2, we can see that unconstrained optimatatldhtory can be success-
fully applied on a active chassis control problem, both ib-Bmit and limit handling
conditions. Another recurring theme of interest from theebanalysis is the distinction
between the high level vehicle dynamics and the low leveledgnamics, with most of
the solutions using an optimal control strategy to follovaayet on the top vehicle level,
combined with a low level slip controller to provide the nesary torques on the wheels.
This distinction is not unusual in the active chassis cdtiterature and comes from the
fact that the high level vehicle dynamics are much slowen tha wheel dynamics, giv-
ing the opportunity to differentiate them by using a Muhiplut Multi-Output (MIMO)

control strategy for the first and a simpler low level conswategy for the second.

Based on the above observations, in this section we presemanstrained optimal
control strategy combined with a backstepping controhesrider to stabilise the vehicle
in a terminal understeer situation which is constructedwag similar to [143], with the

complete structure as seen in Fig. 4.1.

Reference | (VS B%,¢%)

Generation

> - TR
—o \V; O LQRwith TrRR
+ backstepping

.| Vehide ™y g )

\

Figure 4.1: LQR with backstepping control structure.
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4.3.1 Rear Wheel Longitudinal Slip Control

Neglecting the wheel speed dynamics (3.2d), enforcing kmrgitudinal tyre forces at
the front wheels according to the chosen drivetrain toppbogd considering the steering
angled = d%°as a constant parameter provided by the driver, the fouelwshicle model

(3.2) can be expressed as a system with andsgrx as control inputs:

v — hl(V7B7 L)ZI?SRLX? SRRX)7 (413.)
= hZ(V7B7 L)ZI?SRLX? SRRX)7 (41b)
L;[l = h3(V7B7 L)ZI?SRLX? SRRX) (410)

Linearising (4.1) about the equilibrium poin€g, u>S we obtain:

X = ASX+ B, (4.2)
where
V —Vss
~ - SRLx — %?_x
X=| B-—p>= |, U= )
by R

andASSandBs®S are the Jacobian matrices evaluated at the equilibriurnt,poin

" dhy Jdhy dhp T [ dh ohy 7
N B Y OSrx  OSrR
ASS_ dhy, oJhy, Jhy BsS_ ohy ohy
=|ov 9B oy |° BT | Osx Oseex | (4.3)
dhs oJdhz Jhs dhs dhs
N B Y OSrx  OSrRx
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Then the linear control law
u = KX (4.4)

where

K=-R*(B%)P, (4.5)

is the control gain matrix witlk the symmetric positive-definite solution to the associated

Algebraic Riccati Equation (ARE)
(ASSTP 4 PASS— PBSR;1(BS TP+ Q. =0, (4.6)
stabilises the equilibriure= [0 0 §7 and minimises the quadratic cost functional [102]
J= / (1)TQeX(t) + (t) TRAI(t)] dt. 4.7)
In the above expressidl. is the real, symmetric and positive semi-definite matrix,
ol (o) (o) (el o0
andR; is the real, symmetric and positive definite matrix [102],

o (enw)  (eme) 09

where both matrices are set as function of the given stegymd and, after normalization
with respect to the maximum expected state and input valces@ding to Bryson’s rule
[22], the only tuning parameter & . Then, higheqy values can result in faster tracking

of the set velocity reference, but at the expense of a moitatecy yaw rate and sideslip
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angle response in the case of the unconstrained optimabtéatimulation considered in

this chapter.

4.3.2 Motor Torque Control

A backstepping controller is designed next to calculatertheessary wheel drive/brake
torquesTr. and Tgr for the regulation of the longitudinal slips on the rear whkess
requested by the LQR.

The dynamic equations that govesfx andsg x can be derived by differentiating the

longitudinal slip equation (3.3) and using the wheel spegththics (3.2d):

SRx = fi+oTr, (4.10a)
SR = T2+ 02TrR, (4.10b)
where
f— VR n 1 Vrixfrux - 1 VruRw
Ry @ lw (@R Rw)?’
f,— Vrrx | 1 Verxfrex o — 1 VreRw
wrRRw  lw Whr lw (wRRRw)?

Incorporating the longitudinal slip dynamics into (4.2) aletain

X = AKX+ Bily -+ By, (4.11a)
U = f1(X01)+01(X 01)Tre, (4.11b)
U = f2(X02)+g2(X, U2) Trr, (4.11c)

whereB; andB, are the first and second columnsB5ffrom (4.3), andJ; andus the first



4.3. LOR WITH BACKSTEPPING STRATEGY 57

and second rows af from (4.4).

Recall that the control law; = @ (X) = KiX and U = @ (X) = KoX asymptotically
stabilises (4.2) with Lyapunov functioty = %)?T PX, whereK; andKy are the first and
second columns df from (4.5) andP is the solution of (4.6). Definingy = u; — @ (X)

andz = up — @(X) results in the equivalent system representation

X = (ASSY+ B1gr + Bz(Pz) + B1z1 4+ Bozy, (4.12a)

= Vi, (4.12b)

22 = Vo, (4.120)

with
_ OB \s
vi = fi+01Tr — e (ASX+B1gr + Bo@ + B1z1 + By2zp), (4.13a)
J
Vo = fo+QoTrr— 0—% (ASSXV-F Bo+Bo@+Bizg + 8222). (4.13b)

Then, considering the Lyapunov Function candidéte: 7o+ %(z%-i- z%), we obtain

dyv 2
e a—; (ASX+B1 + By + B121 + Bozp) + 21V + 2oV
2 0Y¢
< Z20Biz1+ 2Bozo+ Z1Vi + 2oV,
0X ox

hence the control

Vi = —%Bl — Rlzl, Rl > O, (4.148.)
Vo = —%Bz — kzZz, kz > 0, (4.14b)

asymptotically stabilises (4.12) [77]. Equivalently,\wab (4.13) forTr. and Trr and
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using (4.14), we obtain the rear wheel torque inputs whiginggotically stabilise (4.11).

4.4 Evaluation of the LQR strategy

In this section we compare the above derived LQR strategysigabaseline vehicle with
no active control and a vehicle equipped with a DYC strategfe( to Appendix B for
details on the DYC structure) in a terminal understeer stendhe purpose of this test
is to see the effect of the combined control of the longitatlend lateral dynamics of
the vehicle in the case of overspeeding through a cornenhencelative advantages and
disadvantages of employing an unconstrained optimal cbsifrategy in such cases.

For this simulation scenario the driver model available@anlaker is used to steer the
vehicle around a U-turn (details on the road geometry cambed in Appendix F). Itis
assumed that the road is dy{ax=1) and that no acceleration or deceleration commands
come from the driver for the duration of the manoeuvre, wtiike entry speed is set to
80km/h and the velocity error penalty in (4.8)d@ =150. Note also that, considering the
power limitations of the electric motors, the actual torgjapplied on the rear wheels are
always saturated according to the static torque map (FigirAAppendix A).

Fig. 4.2a shows the trajectories of the uncontrolled veh{ct green), the vehicle
with the DYC (in red) and the vehicle with the LQR (in blue). \&&n see that both the
uncontrolled vehicle and the vehicle using the DYC stratidipw a wider trajectory,
with almost identical response close to the apex of the cor@a the other hand, the
vehicle with the LQR strategy achieves a tighter trajectony stays at the inner part of
the corner for the duration of the manoeuvre.

In Figs. 4.2b-4.2e we find the steering wheel angle, velpsitleslip angle and yaw
rate time histories for the three vehicle configurations. wescan see from Fig. 4.2c,

the LQR strategy successfully regulates the velocity ofvittacle, but at the expense of
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Figure 4.2: Comparison of the uncontrolled vehicle (in gleéhe vehicle with the DYC
(in red) and the vehicle with the LQR (in blue).
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—— Reference

35F = = =Actual

Yaw rate (deg/s)

Time (s)

Figure 4.3: Yaw rate reference tracking from the DYC strateg

large sideslip angle (Fig. 4.2d) and yaw rate (Fig. 4.2edesl On the other hand, the
vehicle with the DY C strategy exhibits a velocity drop sianito the one observed for the
uncontrolled vehicle and a large sideslip angle (Fig. 4t a peak similar to the LQR

strategy. Finally, the uncontrolled vehicle shows an eeegdr sideslip angle (Fig. 4.2d)
which requires a counter-steering action from the drivestaserved in the steering wheel

angle time history of Fig. 4.2b so that the vehicle stays dh.pa

Looking at the torque commands from the two strategies is.EA®f-4.2g we observe
that the LQR strategy requests mainly braking torques frioentivo motors, while the
DYC uses a differential torque to achieve the reference ydeu nit is interesting to note
at this point the difference between the rear-left and riggat- torque commands from the
LQR which is an indication of the combined longitudinal amadetal regulation of the
vehicle from this strategy, and come in clear contrast todifferential torque from the

DYC strategy.

The inability of the DYC strategy to achieve a tighter turreagdenced above is not
a result of poor yaw rate tracking from the controller: as \wa see from Fig. 4.3 the

performance of the controller is, apart from a small undeoskat around 5s, excellent.
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It is therefore obvious that in a terminal understeer sdgeridwe the one examined here,
regulating the velocity of the vehicle through a strate@yg lihe LQR strategy presented

in this section is necessary.

4.5 Summary

In this chapter we presented an unconstrained optimal alosifrategy to stabilise the
vehicle under terminal understeer cases using the reaebedeic torque vectoring con-
figuration of an RWD EV. A test scenario involving a car emtigra U-turn with excessive
speed confirmed the importance of velocity regulation intdreninal understeer cases,
but also showed that using an unconstrained control siratag result in large sideslip
angle values. Such behaviour could be potentially avoidedhanging the relative pe-
nalisation on the velocity, yaw rate and sideslip anglersrfmom the given references
in (4.7). However, even after excessive tuning of the patangg in (4.8), there are no
guarantees that the final solution will perform as expectedku all possible scenarios.
On the other hand, a more direct and efficient way to avoicelgiyv rate and sideslip
angle values is through the use of a constrained optimat@sitategy, as we are going

to see in the chapters to follow.
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Chapter 5

Linear Constrained Optimal Control

Strategy

5.1 Introduction

In this chapter we investigate the use of MPC for stabil@aif the vehicle near the
limits of lateral acceleration using the same rear axletetetorque vectoring configu-
ration of an RWD EV as before. While the use of a constrainddrogation strategy
such as the MPC has obvious advantages over the LQR of chajitalso has distinct
disadvantages as we are going to see in the section to falloieh are mainly related to
the computational time needed to construct and solve thetirgg optimization problem.
Based on this observation, the goal of this chapter is not ntlevelop an appropriate
MPC strategy for the demanding task of stabilising the vemear the limits of handling

in the best possible way, but also one that can be implemémtedl time.

63



64 CHAPTER 5. LINEAR CONSTRAINED OPTIMAL CONTROL STRATEGY

The structure of this chapter is as follows: after a shottbhisal perspective on MPC
and its applications on active chassis control problemg linear MPC strategies of dif-
ferent complexity are constructed: (i) one using the fulirfavheel vehicle model 3.2 and
(i) a simpler one that neglects the wheel speed dynami@slY3n a way similar to the
LQR strategy of chapter 4. The effect of varying the samptinge and the horizon on
the performance and the computational load of each strategthen analysed. Finally,
the two strategies are compared against each other and tRestr@egy from chapter 4
under two limit handling manoeuvres in CarMaker environtnére first one examining
the terminal understeer correction capabilities of the BWRC strategies and the second
one checking the importance of constraining the state gmat iim the case of a highly

transient manoeuvre.

5.2 Review of MPC strategies for Active Chassis Control

MPC takes its name from the way the control law is computedt [97

1. Atcurrent timek a model of the plant, called hereafter ‘the internal modslused
to predict its responsgt[k)* to changes in the control inputalong the prediction

horizonNp.

2. The control input sequence along the control horikgr< Ny, is chosen so that
the response of the system meets specific requirementsstdjae imposed con-

straints.
3. Only the first control input calculated is applied.

4. Atthe nexttimgk+ 1) the procedure is repeated with tNg andNy, moved by one

time step.

1The notation(t|k) is used to show that the prediction depends on the systeniticonat timek.
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Figure 5.1: The basic MPC idea.

The requirements are usually set so that the output of thersy®llows a prescribed
trajectoryr (t|k) with as small control effort as possible in the form of a qadidrcost
function, the latter guaranteeing that the solution of tiesequent optimization problem
is unique [93]. The constraints on the other hand are includéhe problem formulation

to avoid exceeding specific thresholds, usually relatedegtysical limits of the system.

MPC traces its origins in the control of chemical processhere it has been exten-
sively used due to its distinctive features which fit nicelfghwthe problem of running
efficiently a chemical plant: it has slow dynamics with saimgpkimes measured in min-
utes or hours, a large number of inputs and outputs, whileptienum point of operation
is usually close to its physical limits. Furthermore, thatroller can be appropriately
tuned for a single plant and the cost for controller develeptibecomes irrelevant when
compared to the building and running costs of the plant [Z4f evolution of MPC can

be seen through the development of the different algorithoisished in the past fifty
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years: early examples used step and impulse response naodieél hoc treatments of
input and output constraints, which was changed in the 2ndrgéion by formulating the
problem as a QP problem, followed by the 3rd generation wigatured different levels
of constraints (hard, soft, ranked) and provided mechastsmecover from an infeasible
solution, and the 4th generation which looked closer to tMPE problem [110]. In a
rather independent way a similar methodology called GéisechPredictive Control was
developed in the adaptive control community. By the 90sgeitdme obvious that the
differences between the above mentioned formulationgeievant and the generic title
of MPC was used for “that mode of control in which the curremtcol action is deter-
mined by solving on-line an optimal control problem” [95]hd focus has now shifted
to the study of stability and robustness: the use of a ternsimst and/or a terminal con-
straint set was studied to address stability, while foritoites such as the min-max and
feedback MPC were suggested to address robustness. Irstiélgears both academia
and industry have tried to address the open challengesestitiining if the MPC is to be
applied in a wider range of systems. However, guarantedosgd-loop properties such
as stability and robustness while reducing the computalticost is definitely not an easy
task. Furthermore, a fast and systematic way to design aredMiPC controllers has yet
to be found. Despite these challenges, the benefits of usP@ fr construction of op-
timal controllers have attracted a lot of research, with ditade of solutions addressing
general or application specific systems.

The huge leaps in computational power and memory storagieipdst 20 years have
led to extensive research on potential application of MPQairge volume’ domains,
such as the aerospace, automotive and robotics indusdégs This technological ad-
vancement allowed for the expensive MPC formulation to tegpéetl by industries which
have different characteristics and requirements to thenateg process industry: here the

system dynamics are fast, exhibit highly nonlinear behayiand the controller needs to
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be applied to large volumes with reduced costs. On the otaed,hthe number of in-
puts and outputs is lower, while the system usually does petate close to its physical
limits [24].

From the automotive sector a variety of MPC solutions carobed in the literature,
ranging from steering [42] to active and semi-active susfmencontrol [27], engine man-
agement [51], emission regulation [112] and control of ehplatoons [111]. Looking
more specifically in the area of active chassis control, wedistinguish two main MPC
application areas: (i) on the control of autonomous and sartonomous vehicles and
(i) on active safety control systems. However, it is intigg to note at this point that the
distinction between autonomous vehicle control and astfety control is becoming less
clear nowadays, mainly due to the rapid development of seéesbnologies and sensor

fusion algorithms.

5.2.1 MPC in Autonomous Vehicle Applications

Autonomous vehicles pose a problem which fits the MPC fortrananicely: the idea of
following a predefined trajectory as close as possible wigipecting the road, vehicle
and actuator limits can be directly addressed by solvingatcained optimization prob-
lem. A recurring theme in the autonomous vehicle literatareow the controller will
handle an obstacle avoidance scenario. Such a scenasdaradl difficult problem to be
solved and advanced strategies are required in order tewachistable operation of the
vehicle in both the longitudinal and lateral direction vehrespecting the constraints of
the problem like the road geometry and the vehicle and tyysiphal limits. In this sec-
tion we will therefore list all solutions that assume roadymew information, including
solutions that allow the driver to interact with the vehiated take full control only under

emergency situations (commonly known as semi-autonomehishe applications).



68 CHAPTER 5. LINEAR CONSTRAINED OPTIMAL CONTROL STRATEGY

From the autonomous vehicle applications, a characteestample is the series of
papers from Borrelli, Falcone and Keviczky [21, 41-44, T@hjch explore the applica-
tion of MPC for trajectory tracking in an autonomous vehigfgplication using the AFS
system with/without differential braking and traction ¢ah. In the first two papers of
the series [21, 76] we find an NMPC strategy for tracking a efieéd trajectory using
the AFS of an autonomous vehicle that, according to the asittsets the ‘benchmark’
against which future sub-optimal strategies can be condpaggainst. The first paper [21]
presents the NMPC strategy which is based on a bicycle manlgiled with a MF as
the tyre model that does not take into account the load tearedfects due to accelera-
tion/deceleration of the vehicle and tries to track the yagla and the lateral displace-
ment references in the global frame while respecting therisig rate input constraints.
Using a double-lane change scenario under different epegds, the authors report the
necessary increase in both the prediction and control tilrath higher speeds to keep
the vehicle stable and the subsequent increase in congnaitime. From the simula-
tion results we can also see that higher entry speeds resuiljler deviations from the
reference trajectory, something that is expected accgitdithe analysis on terminal un-
dersteer presented in section 2.3. The authors also prastiort analysis of the impact
of constraint violations on the computational time. For skeeond paper [76], the effect
of a sidewind is modelled, with simulation results showingd disturbance rejection up
to 10m/s, but again high computational costs. Although tMPIC application presented
in [21, 76] gives the opportunity to check what is physicalbssible in a highly nonlinear
case, the use of a bicycle model as an internal model for th@€ @ ¥brmulation along
with the disregard of load transfer effects (therefore thelimearity in the model coming
from the tyre model only) negates somehow the benefits of farafulation used as a
benchmark solution.

Since the NMPC strategy proposed in [21,76] can not be impided online, a Linear
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Time Varying (LTV) MPC controller is presented in the nexppa[42]. For the LTV-
MPC formulation the NMPC problem from [21,76] is linearisdzbut the operating point
while an additional constraint is imposed on the front shgla, the main reason being
that the vehicle becomes unstable without it. Simulatioth @xperimental results show
that the LTV-MPC strategy shows no infeasibility problemigwhigher initial velocities
but poorer tracking when compared to the NMPC. Another cbstrategy that is based
on the same LTV-MPC but with a control horizon of only one tistep is also presented:
this simplifies the optimization problem even further anckesgpossible to compute the
maximum number of operations per time step, with only a skitggradation on tracking
performance reported from the authors.

In the next two papers the authority of the MPC controllexierded by including in-
dependent wheel braking [41] or independent wheel brakmuigegtive front and rear dif-
ferentials [44]. Another difference from the previous pajds the necessary replacement
of the bicycle model by a four-wheel vehicle model for apgflion of the braking/active
differential strategy, although load transfer effectsagain not taken into account. The
vehicle model is linearised again about the operating paidt assuming a separate slip
controller on each wheel, the MPC strategy is constructetyusFS and slip on the four
wheels as the control input. The goal is then to follow a piieed trajectory like be-
fore but also keep the longitudinal velocity of the vehictecéose as possible to a given
reference. Looking at the simulation tests from [44] usintpable lane change on a low-
u surface, a comparison between the three drivetrain topEqgesented so far can be
found: (i) one using AFS with braking and traction contr@), &nother one that neglects
the traction control and (iii) one that has AFS only. For tests, the reference velocity
is set equal to the initial vehicle velocity and thereforeravitable decrease in speed is
noticed due to the vehicle reaching a terminal understeedition. It is interesting to

note here that, although the authors report that the salthi@t combines AFS with brak-
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ing and traction control has the best overall performarieebest lateral position tracking
is achieved by the solution that uses AFS with braking cértndy. This observation
actually points to a different result from the one drawn by #luthors: in an autonomous
vehicle application under an obstacle avoidance scensititesauthors claim this study to
be, the lateral position tracking is more important thanntaning the initial speed, and
then maybe the best performance is achieved by the AFS wattiriy control solution.

In the final paper of the series [43] the authors constructMMPC strategies using
internal vehicle models of different levels of fidelity, otiat employs a four-wheel vehi-
cle model with wheel dynamics and control inputs the froeaeshg and individual wheel
brake torques and another one that uses a bicycle modehdhsii¢gh a direct yaw mo-
ment along with AFS as control inputs. While simulation $esh a double-lane change
show promising results, the main problem for both contrsltemains the high computa-
tional cost which makes it impossible to implement them &l teme. For this reason, a
third controller which uses a linearisation of the first, moomplex, controller about the
operating point is also developed and tested on a vehiclenather good path tracking
results. The three controllers presented in [43] show agame of the trade-offs that
are sometimes necessary when we setup an MPC problem witlteatoller exhibiting
certain advantages and disadvantages, although a regtwpit seems to be the impor-
tance of good tuning. An interesting point to note here isalthough velocity regulation
was included in the first controller, the authors set theregfee velocity simply equal
to the initial one and chose not to check the effect of setihgwer reference velocity.
This was done in an attempt to follow the original assumptiat velocity will remain
largely unchanged — indeed, the setting of the second dtantveas heavily based on this
assumption — something that was not the case as we can se¢hiaranstant velocity
reduction from all controllers in the performed tests.

An autonomous vehicle controller assuming decoupled todgial and lateral dy-
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namics can be found in [8], which presents an NMPC for latdyalamics control using
AFS combined with a simple CC for control of the longitudidgthamics to avoid over-
speeding through a curve. NHTSASs criterion on the maximuriryespeed based on
the curvature of the road and its camber angle, along withnamyc criterion based on
sideslip angle information are used to find the maximum alol entry speed so that
the necessary deceleration can be found. Simulation sessilhg a double-lane change
manoeuvre show that a good tracking is achieved when the gped is below the maxi-
mum allowable. The authors in [8] present a decoupled lodgial and lateral dynamics
control based on the observation that excessive entry spegrddes the path-following
abilities of a lateral dynamics only controller. The chdic&lesign a separate CC strategy
was most probably done on the basis that including the sgggdation in the optimiza-
tion problem (indeed, the vehicle model used allows for)twsuld result in higher com-
putational costs for the NMPC formulation. However, it wibbk interesting to check the
decoupled strategy presented here against such a fororulati

Two papers that explore the application of fast optimizatfgorithms in the context
of a real-time MPC in autonomous vehicle applications cafobad in [47,100]. In [47]
a real-time NMPC strategy that employs the Real Time Itera{RTI) scheme origi-
nally proposed in [35] on an autonomous vehicle applicaisopresented. The authors
use a four-wheel vehicle model and a nonlinear tyre modeétivel the track-dependent
spatial dynamics for the NMPC strategy. Results show thaptioposed solution is im-
plementable online and that it can successfully navigaterat two consecutive obstacles
in a simulation test but at a relative low vehicle speed. 0]la collision avoidance
method for an autonomous vehicle is presented, with the NMf&egy constructed
using a single-track vehicle model and a nonlinear tyre rhadeé solved using the con-
tinuation/GMRES algorithm [103]. Simulation results shinat a vehicle equipped with

the proposed controller can successfully avoid an obstholegever the time to compute a
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solution is still much greater than the sampling time andsthiation is not implementable
online.

A semi-autonomous vehicle application can be found in [4}icl presents a con-
troller that predicts and corrects road departure usingd ppaview information. The pro-
posed solution is constructed in two layers: (i) the ‘Thikasessment’ layer evaluating
the risk and choosing the most effective control policy wiité least intrusion to the driver
and (ii) the ‘Intervention’ layer that applies the corresgding control strategy. By control
policies the authors denote the level of intervention frowa c¢ontroller, whereas the first
policy corresponds to no control action, the second to bigakitervention and the third
to AFS with braking intervention. From the three policieslyahe third one uses a MPC
strategy to calculate the necessary steering input andgrédrques for minimization of
the yaw and lateral position error, subject to constraintthe inputs and the wheel slip
angle. Experimental and simulation results through a tararoicy road with a high entry
speed show that the controller brakes in anticipation ofuh® something that allows for
a smoother negotiation of the corner when compared to esafn a standard ESP inter-
vention which brakes later in the turn but much harder in ord&eep the vehicle stable.
The controller presented shows that using road previewnmdtion is more effective with
its early brake application than an ESP strategy in keefiaghicle stable while being
much less intrusive to the driver, with less counter-stegneeded from the driver and
less deceleration.

Another semi-autonomous vehicle application can be foari®&4], where an MPC
strategy for roadway departure prevention using AFS ankifgas presented. The MPC
is formulated so that only the control effort is minimisedbgct to the input constraints
and the soft safety constraints, the latter set so thathéilehicle stays within the lane
boundaries, expressed as constraints on the lateral gositiall four wheels from the

lane centreline, and (ii) the vehicle operates within igbkt operating region, expressed
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as constraints in the tyre slip angles. A series of simutagiperiments with a driver in
the loop is then used to assess the effectiveness of thetientin the first test the authors
check if the driver model correctly predicts the behavidithe driver, with moderate re-
sults. In the next test the scenario of a vehicle overspgeatinough a turn is investigated
with good results: the controller successfully keeps theaole within the lane boundaries
by using both the AFS and the braking capabilities of the alehiThe last test checks
what would happen if the driver is distracted, hence thecleldrifts towards the inside
(or outside) of the lane: although in this case the driveldaatill correct the problem
he would have to deviate from the ‘nominal behaviour ddsasxali by the driver model,
something that is correctly identified by the controller e¥hsteers the vehicle back in the

lane according to the safety constraints.

5.2.2 MPC in Active Safety Control Systems

In the scope of active safety systems, most solutions havardocused in the control
of the lateral dynamics of the vehicle using a linear or anliexgMPC formulation.
For example, in [11] a yaw stability controller based on anAMPC strategy using
independent braking of the four wheels is presented. FAIth€ formulation, the lateral
vehicle dynamics model with the braking longitudinal fagzaan all four wheels as the
control inputs is linearised about the current position hatd constraints are imposed
on states and inputs, whereas the braking longitudinakfoere constrained according
to the corresponding estimated lateral tyre forces. Thee'sind dwell’ test in Carsim
is then used on three different cars, where the tuning paemésampling time, control
horizon etc) are chosen according to the specific vehicl@gumation. Using NHTSA's
performance indices for yaw rate and lateral displacenieistshown that the controller

successfully completes the test within the performanceirements. The importance of
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correctly choosing the weighting Q and R matrices in the frosttion is also tested, with
simulation results showing that over-penalising the ya& earor over the sideslip angle
error can create an unstable vehicle behaviour. It is iatergto note here that although
the authors recognise that the problem of overspeedingdhra curve is the main reason
for failing to follow a reference yaw rate, they make no afgmo regulate the forward
speed of the vehicle in a controlled matter. From the sinmanatesults we can see that
the vehicle eventually slows down, but this is directly cected to the fact that a braking
strategy is used.

In [15], a linear MPC is used in a lateral stability contropépation using the steer-
by-wire system of a prototype EV with two independent eiecgtrotors on the rear axle.
For the control design a affine force-input model is tailai@the specific vehicle config-
uration: the bicycle model is set with the front lateral ®&s input, while the rear lateral
force is linearised about the current rear tyre slip anglee fiear tyre force coupling is
also accounted for by restricting the maximum availableridttyre force according to
the rear longitudinal tyre force demand. One of the disithedieatures of this work is the
use of the envelope boundary concept — originally found enabrospace industry — to
set the state constraints for the optimization problem:ytheg rate bounds are imposed
according to the maximum available lateral tyre force, wiidr the sideslip angle bound
the rear slip angle is used, the latter set in such a way beaaeording to the authors
the rear slip angle scales naturally with speed while alsowutts for higher yaw rates.
The optimization problem is then set to minimise the yaw eatd sideslip errors along
with the control effort subject to the input constraints #melsoft envelope boundary con-
straints. The sampling time is chosen at the low rate of 10ittsprediction and control
horizons at 15 steps while delay compensation is also useliing the optimization
problem for the next time step, with the final solution degldyn the prototype EV using

custom C-code. Simulation and experimental results usgiglam manoeuvre at a speed
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of 10m/s on a loose surface show that the controller can safidéy restrict the steering
command from the driver when the yaw rate and sideslip amgilisl are violated. The

study in [15] shows a very interesting solution that empdesthe importance of using
a ‘tailor made’ MPC formulation according to the specific i configuration so that

useful simplifications can be exploited without removingortant nonlinear aspects in
the model design. However, similarly to other limit-hamnglistudies, the vehicle veloc-
ity is not directly controlled and is only taken into accoumthe setup of the envelope
bounds, something that restricts the controller’s autihamisuch cases.

In [34] a hybrid MPC and a switched MPC formulation for a yaaislity controller
using an AFS system and differential wheel braking are pitese both formulations
based on previous work from the same authors [16, 25]. Stmulaesults using the
hybrid MPC formulation against a standard ESC strategy stheivthe first is faster to
converge to the target yaw rate and slip angle targets witlllsmovershoots. Since
the complexity of the above hMPC makes it unsuitable for matiive-grade ECUs, an
explicit switched MPC is presented next, which allows fom@aier sampling time of
50ms and online application. Experimental results on an R@4D vehicle under three
different scenarios on a low-road with high speeds — so that limit-handing conditions are
involved — show that the switched MPC controller can sudodgsstabilise the vehicle
while keeping the tyre slip angles within the given limits.

Another example of an explicit MPC law can be found in [26],endra yaw control
strategy using a rear active differential is presented etdesingle track model is used as
the internal model for formulating the MPC strategy, wheréee current on the differen-
tial valves (mapped to Mz through a simple model) and theisigangle are taken as the
inputs of the system, while yaw rate is taken as the outputh@®wther hand the yaw rate
reference is set according to the desired improvement oartlersteer characteristics of

the vehicle. The optimization problem is then construcsedthat to minimise the yaw
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rate error along with the control effort, subject to the inpad the sideslip angle con-
straints. An extra yaw rate constraint is also set expjiaitithe yaw rate reference static
map. The resulted NMPC problem is then solved using the @stgoint’ approach: a
number of optimal control sequences is computed offline thighonline approximate so-
lution picked by finding the nearest offline computed poindr §imulation, the authors
choose to constrain the sideslip angle to 5degs and theot@utrent to 1A, while the
prediction and control horizons are set to 100 and 5 stepecéisely with a sampling
time of 0.01s. The number of points computed offline isx8LB° for a rather limited
set of variables: yaw rate was varied between -28 and 28akzslp angle and steering
angle between -5.7 and 5.7degs and velocity between 79.2h8km/h. Simulation
results show a good agreement between the proposed ap@mdtche nominal NMPC,
but with some chattering. This could be potentially coreelotvith a higher number of of-
fline computed points, but at higher memory and computatioosts, which shows that

there is again a trade-off between performance and solatiorplexity.

5.3 Linear MPC Formulation

From the above section 5.2 it is obvious that while MPC is draeiive control strat-
egy especially when constraints are involved, it also hasaraus drawbacks. Careful

consideration is therefore needed when designing the MIR€atter in relation to:

e The internal model: choosing a larger, nonlinear modelgases the number of

optimisation variables and the problem complexity.

e The sampling time: longer time steps reduce the number aihggetion variables

for a fixed horizon but can result in slow, ineffective coh&aotions.

e The prediction and control horizons: shorter horizons cedtie number of optimi-



5.3. LINEAR MPC FORMULATION 77

sation variables for a fixed sampling time but can also resutteffective control

actions.

e The constraints: more constraints and nonlinear stateoangjut constraints in-
crease the problem complexity, but linear or linearisedtramts can fail to capture

the nature of the original limits.

e The weighting matrices: like any other optimal control desb which is based on
the minimisation of a standard quadratic cost function,ridative weights in the

cost function are tuning parameters to be chosen.

There is therefore a clear trade-off between performandecamputational effort
attached to both the choice of the internal model for the MRdCthe tuning of the related
parameters, which in the case of a vehicle control stratsggoasidered here with its
relatively fast dynamics need to be carefully chosen.

Based on these observations, in this chapter we constringta IMPC framework to
be used in the linear MPC strategies in the sections to fol&tarting from the nonlinear

continuous-time dynamical system

X= fC<X7 U), (51)

linearised about the equilibrium poi(®s, us)

X = A%+ B¥U — (ASSCS+ BSUSY), (5.2)

with associated cost function state and input weightingiceg Q. andR; respectively

and cross-weighting matriM, the discrete-time model using an exact discretisation [6]
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and sampling timds is

X1 = AXc+Bug +C, (5.3)

with
Ts Ss
c=— / &1 d) (ASKSS 4 BSUSS),
0

assuming that the inputand the disturbance ter(d>*5+ BSu®%) both remain constant

for the discretisation interval [46].

Then the MPC regulation problem with horizdh= N, = Ny is

rQLn (XN — r)TSj<XN —r)+ ZZ_: [(Xk_ r)T Qd (Xc—r)
+ (=D Ra(—D+206—N"My(w—D],  (54a)
subjectto Xg = Xin, (5.4b)
Xep1 = AX+Bug+c, k=0,1,...,N—1, (5.4c)
ul, < u < ul, k=0,1,...,N—1, (5.4d)
X, < X < X, k=1,2,....N, (5.4e)

where (5.4a) is the cost to minimise witlandl the state and input references respectively,
(5.4b) sets the initial state) equal to the current one, (5.4c) are the affine discretemsyste
dynamics and (5.4d)-(5.4e) are the state and input indguadnstraints. The positive
(semi-)definite matrixQq and positive definite matriRy are the weighting matrices on
the state error and control effort respectively, and thetpesdefinite matrixMy is the
cross-weighting matrix. A terminal penaltyy —r)T Sy(xy —r) is also included, with the

matrix § selected as the solution of the Discrete Algebraic RiccatidEion (DARE)

Si=ATSIA+ Qu(BTSIA+ M )T (Ry+BTSyB) H(BTSA+M] ).
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Based on the standard linear MPC problem (5.4) a dense MP@ufation using soft
constraints on the state is used in this chapter to avoiadsbdity problems (please refer
to Appendix C for details on the derivation of the dense sofistrained MPC formu-
lation), with the necessark andB matrices updated at each time step according to the
current steering command from the driver and the currentcleetielocity using the anal-
ysis of section 3.3. The resulting QP problem is then sohadgithe active-set method

as available through thgaadprog command in MATLAB.

5.4 Linear MPC Strategies

One of the main disadvantages of using an MPC strategy fdralbng a system is its
computational burden, which is directly related to the tithat is needed to construct
and solve the MPC problem (5.4). As already mentioned in te/@& sections, many
factors have a decisive role in this: the number of optinmratariables and the number
of constraints, along with the selected sampling time amizbo can result in a large
optimization problem that is too difficult to solve onlineo this end, in the following we

present and tune two MPC strategies using internal modelgfefent complexity:

1. The first MPC strategy, called hereafter ‘MPCt’ (wheresteinds for ‘torque’ input),
uses the full four-wheel vehicle model (3.2) hence both tsl@icte dynamics and
the much faster wheel speed dynamics are included in thenaltenodel. The input

is set as the two torques on the rear wheels.

2. The second MPC strategy, called hereafter ‘MPCs’ (wh&rstands for ‘slip’ in-
put), neglects the wheel speed dynamics (3.2d) from thenakenodel, while the
input is set as the longitudinal slip at the rear wheels. Ta&liding Mode Slip

Controller is used to calculate the necessary torques oretirevheels according
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to the requested longitudinal slips.
5.4.1 MPCt: MPC using Wheel Torque Inputs

(V= B%, 0=,
WRL ; WRR)

Reference

Generation
A
> ‘ - TrL
—_— TRR
V O
+

Vehicle V. B,
WRL, WRR)

\

Figure 5.2: MPCt control structure.

For the MPCt the full four-wheel model (3.2) is used, henceglecting the free-
rolling front wheels) we set = [V B (J wr. wrr]" , andu = [Tr. Trr]" (Fig. 5.2).

When defining the optimal control problem, the cross-werighmatrix M. is set to
zero (note that after discretisation of the probléng,in (5.4a) will usually not be zero),

while Qq andRy are the discrete equivalents of the continuous-time weighhatrices

@=toolo (i) () + (o)

(oiw) (@)} o

. 1 \? 1 \?
Rc:dlag{ (TRLmax) ’ (TRRmax) } (.0)

where, similarly to (4.8)-(4.9), th@. andR; matrices are normalised with respect to the

maximum expected state and input values, and the only typargmeter isp,. Note that
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the use of state constraints in the case of the MPCt (and M&2¢¢gy reduces somewhat
the importance of tuning thg, parameter: large oscillations in the yaw rate and sideslip

angle response are avoided as part of the constrained dpgtmzol problem.

5.4.1.1 State Constraints

In order to avoid large yaw rate values, a yaw rate constagobrding to the current
velocity Vi, is imposed at the beginning of the optimization and fixed ureut the
prediction horizon. This constraint is based on the latcaéleration limit for the current

velocity and is coupled to the tyre/road friction coeffidi@gax [113]:
|| < Hmax/Vin. (5.7)

Following [11, 78], a constraint on the maximum sidesliplarig also set for subjec-

tive feel according to the current velocity:

ke — ko ke — ko .
2 VS, 37 VR ke, i Vin < Venar

IB| = Vehar char (5.8)
ka, if Vin > Vehar

whereVgar 1S the characteristic speed of the vehicle [50] (refer to &mppx E for the
calculation oVggr Used in this work). The positive constakisandk, are tuning param-
eters, chosen at 1180 and 31/180 respectively. No constraints on the velocity or the
rear wheel speeds are imposed.

The yaw rate and sideslip angle constraints (5.7)-(5.83@ftened by introducing two
slack variablegy, £g € R™ in the cost function 5.4a. In this way the maximum violation
for the two states within the prediction horizon is penalised infeasibility problems in

the solution of 5.4 are avoided (please refer to Appendix ICd&gdails on how the soft
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constraints are implemented).

5.4.1.2 Input Constraints

For the MPCt the use of the two torques on the rear wheels as afiphe internal model
gives us the opportunity to set constraints on them baseteostatic torque map of the

motors used.
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Figure 5.3: The static torque map and its approximationgusiifine functions of the
wheel speedv.

The maximum torque achievable on each of the two rear whééte @ar is a nonlin-
ear function of the corresponding wheel speed. Since the ptieBlem (5.4) is formu-
lated as a convex optimization problem that allows only féina inequality constraints,
the static torque map is approximated by two affine functioing, as seen in Fig. 5.3.

Taking for example the liné(w) = a;w+ by, we want

TRj < agwrj + by,
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and expanding then to both the rear wheels’ torques we get

Vv
B
000 -a O TrL b1
1] + <
000 0 -a TrRr b1
RL
_(ARR_

A similar procedure can be followed for lirggw) = axw + bp. The resulting polyhe-
dron, as seenin Fig. 5.3, is convex and can be therefore astdibe the input inequality

constraints in (5.4).

In this work, the above piecewise linear approximation efgtatic torque map is cho-
sen in such way so that the error from the nonlinear constiminimised at a realistic
range of wheel speeds. To this end, we chapsandb;, so thatg(w) coincides with the
constant torque line (note that in this cdmse= 0), anda; andb; so thatf (w) is tangent

to the constant power curve and meets the longitudinal lirteeahigh wheel speed of

270rad/s.

5.4.1.3 Longitudinal Slip Constraints

Since, for stability reasons, it is deemed necessary tati@nghe longitudinal slips on
the rear wheels, another constraint on the state is alsdrooted for the MPCt to address

this. If, according to the simplified MF definition (3.7), theaximum longitudinal force

on the wheel is

fREX = fRjzDyeSin (CMFtanfl(BMFs'F?fXX)) , (5.9)
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then, assuming steady-state conditions
TR = fRx Rw, (5.10)
and the longitudinal slip based limit on the motor torque lbarcomputed as

TRr’rjlaX = fRjzDy SN (CMF tan_l(BMF ﬁﬁ)(()) Rw. (5.11)

5.4.2 MPCs: MPC Neglecting the Wheel Speed Dynamics

(V. B, 4%)

Ref erence
Generation

- e—em em o e e e— = = = = -

\/

<
»
E

Figure 5.4: MPCs control structure.

The second MPC strategy neglects the fast wheel speed dgsasoi that a simpler
internal model is used with= [V B (¢J]T andu = [sr x Srry] " . Then a Sliding Mode Slip
Controller computes the necessary torques on the rear svhaséd on the requested lon-
gitudinal slips (Fig. 5.4). When defining the optimal cohproblem, the cross-weighting
matrix M is set again to zero, whil®y andRy are found again from the continuous time

weighting matrice€). andR., in a way similar to the MPCt strategy (5.5)-(5.6):

ocanfo (i) (k) ()} o
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Rczdiag{(ﬁ)i (@)2}. 5.19

5.4.2.1 State, Input and Torque Constraints

For the MPCs we use the same yaw rate and sideslip angle amnsi{5.7)-(5.8) as with

the MPCt, while no constraint is set on the vehicle velocity.

Constraints are also set for the input [sg x SRRX]T so that the longitudinal slips
on the rear wheels never exceed the maximum allowable dlipdfe operation of the
vehicle. Using the tyre parameters as found in Table A.1Hersimplified MF (3.7) we
set the constraint (Appendix A)

|Rjx| < 0.15. (5.14)

For the MPCs we can not directly account for the motor limitghe form of its
static torque map as was the case with the MPCt. We thereforgtrtict an additional
constraint on the state and input in order to avoid excedsirggie requests from the
two motors. If the maximum torque that can be provided by aarnistTFQ?aX, then the

maximum longitudinal force on the wheel — assuming steddie £onditions — is
fRix = TRy /R, (5.15)

and using the reverse MF the torque based limit on the lodgitli slip on the tyre can be

computed as

STEX < itan(i sin 1 (ﬁ)) (5.16)
"< c : :
MF

MF Dy fRriz

Then, we can compare the two limits (5.14) and (5.16) ancheaiput constraints at
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the beginning of the prediction horizon as

|Srjx| < min(0.15, s77%). (5.17)

5.4.2.2 Sliding Mode Slip Controller

The torque demand on the two electric motors according téothgitudinal slip requests
are then calculated using a Sliding Mode Slip Controllenstaucted in a way similar
to [61,142].

From the longitudinal slip definition (3.3) the slip dynasare

d (ij—aAjR\N)_\Vijxij\N—\/ijxdlij_ Vijx  Vijx@
dt N

S'X: s - - )
: @R W;RE, @Ry wjRw
and using (3.3) and (3.2d),

\/IjX

Rw
Vi —— (Tij — fijxRw).

Six=(Sjx+1)— Vi

—(sjx+1)?

Setting the sliding surface as- ij—ﬁjj‘f and using? = (1/2)€? as a Lyapunov function

candidate witle = §jx (assuming thaﬂﬂ? remains constant), we have [77]

dy L Vijx > Rw )
—— = e=ejjx= +1 x+ 1 Tij — fij
T et = (8 D — (8 DTy = )

_ Vijx , Rw Rw

= ((ij+1)vl (ij‘i‘l) IWV”XT|1+(SJX‘|‘1) IWV”XflijW))

and taking
WM (o Vi Ru
Tj = (3jx+1)2Rw< (S]X+l>\/ijx (ij‘i‘l) IWV”XflijW ngr(e>)
IW\‘/in lwVijx
= + R fijx+ sgn(e),
(S]x+1)Rw Rw ijx ( x+1>2RWZ gr( )
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with ¢ a small positive number yields

dv
e —e¢sgne) = —(|e[ < 0.
Th - - IwVijx :
en definingk = m{ the control law is
jx

IwVijx

Tij = m +waijx—|- Ksgne),

or to reduce chattering we can use instead

IWVijx

e
Tij= ——F55 fijx+ Kksat( —
17 (sper 7R, T <A>’

where s&t ) the saturation function

saty) = Y, if ly|<1
sgnly), ifly|>1

andA a positive constant [77].

5.5 Sampling Time and Horizon Selection

After choosing the internal model for the MPC problem (5td)p of the most important
parameters affecting both the performance and computdtimmden for an MPC formu-
lation are the sampling tim& and the horizorN. These two parameters are directly
connected to the construction of the discrete-time findgzon cost function (5.4a) and

the discrete-time dynamics (5.4c), and their choice mustfgathe minimum require-
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ment for the MPCt and MPCs: both strategies should perfonmiasi to an unconstrained
continuous-time optimal strategy when no inequality Wiolas occur.
For the evaluation of the performance of the two MPC strategie use the closed-

loop cost, defined as the summation of the running cost

Tsim—Ts
Ts

Ji= 5 0%—=1"Qa0&—r)+(U—1)"Ra(uk—1)+20%—1)" Mg (u—1),
k=0

whereTgm is the chosen simulation time afd is the ceiling function, which maps a real
number to the smallest following integer. The above expoess the summation of the
weighted square of the state error and the control effottfeduration of the simulation,
hence the cost that the MPC tries to minimise at the first pkaoce can be therefore used
as a metric of the controller’s performance. For the evadaaif the computational effort,
the total computational tim&omp = Teonsr + Tsol Fequired to construct and solve the MPC
problem employing thquadprog solver in MATLAB is used.

First we investigate the effect of varying the sampling tifgdy comparing the two
MPC strategies with an unconstrained continuous-timenugdtstrategy for a range of
sampling times and a horizon equal to 8s. A set of simple s@tiarl scenarios is used,
whereas the vehicle is going straight and a step steer ispapplied after 2s for the
duration of 8s. For each simulation, the initial vehicleogity is chosen so that it is
1m/s higher from the maximum velocity allowable for the apglstep steering input
Vmax hence both the MPC strategies will regulate the velocitdgslip angle and yaw rate
of the vehicle according to the reference values, as disdusssection 3.3. It is assumed

at this point that there are no acceleration or braking reigueom the driver.
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5.5.1 Impact of Varying the Sampling Time in the MPCt

For the MPCt, using a sampling time above 0.035s results on&r@ler that cannot be

stabilising anymore. This is the direct result of includihg fast wheel speed dynamics
(3.2d) in the internal model, and reveals the main disadgnof this strategy: consider-
ation of the wheel speed dynamics in the MPC problem not ardseiases the number of

optimization variables but at the same time calls for faséenpling times.

Using the set of test scenarios described above, Fig. 5dasstie closed-loop cost
for a range of step steering inputs and sampling times betwe®-0.035s. No major
variations are noticed for this range of sampling times. @xndther hand, in Fig. 5.5b
we observe that for sampling times below 0.02s, the time etéol solve the QP prob-
lem increases exponentially. The pareto frontiers in Figc Show a similar trend, with

computational times increasing rapidly with only smallrgain the closed-loop cost.

Fig 5.6 shows the velocity and sideslip angle time histdoes step steering input of
6deg and sampling times of 0.01s and 0.035s. As we can seea enfall degradation in
performance can be seen for a sampling time of 0.035s. Bas#tk@above analysis we

therefore set the sampling time for the MPCt strategyste0.035s.
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(b)
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(©)

Figure 5.5: Variation of closed-loop cost and computatidinge with sampling time for
a range of step steering inputs in the MPCt strategy.
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Figure 5.6: Velocity and sideslip angle time histories fatep steering input of 6deg, a
horizon of 8s and different sampling times in the MPCt.

5.5.2 Impact of Varying the Sampling Time in the MPCs

Using the same set of test scenarios as in the case of the NHRCt5.7a shows the

variation of the closed-loop cost with sampling time for age of step steer inputs for

the MPCs. No considerable changes in performance for sagiptes below 0.1s can be

noticed. On the other hand, in Fig. 5.7b we observe that tlve $ione increases rapidly

for sampling times below 0.05s, so there is a clear tradeeaiffieen closed-loop cost and

[

0.16

0
- 8= 2deg . - 8= 2deg
9
o gl * 8=4deg N 01410 + 5= 4deg
- Al e 8= 6deg @ 0.12 ¢ 5=6deg
§ ol 5= 8deg '_E 01 + &=8deg
Q o 5=10deg ° g o 5=10deg
g [ — £ 0.08
g 4 . v 006
g 3 ta & 0.04
G 2 ’ : .
1199000900088 08888%. " 002
9000000000000000
8 0.04 0.08 0.12 0.16 0.2 8 0.04 008 012 0.16 0.2

Sampling time, TS (s)

(@)

Sampling time, TS (s)

(b)

sol

Solve time, T__ (s)

0.14

- 0=2deg

0.12 * §=4deg
01 ¢ O0=6deg

' + 3=8deg
0.08 ° 3= 10deg
0.06
0.04

L ]

0.02

Oio- o =, 0 PO S

01 2 3 456 7 8 9 10

Closed-loop cost, JcI

(©

Figure 5.7: Variation of closed-loop cost and computatidinge with sampling time for

a range of step steering inputs in the MPCs strategy.
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Figure 5.8: Velocity and sideslip angle histories for a Stisgring input of 6deg, a horizon
of 8s and different sampling times in the MPCs.

solve time with changes in the sampling time, while a simitarease in the solve time
can be noticed for small reductions in the closed-loop cekivib 1 (Fig. 5.7c).

The difference in the system response for a step steering afdeg and sampling
times of 0.05s and 0.15s can be seen in Fig. 5.8. It can be gmdithat for shorter
sampling times the response of the system using the MPQsgjres close to the one
with the LQR, while it differs considerably as we increase #ampling time to 0.15s.
Based on the above analysis we therefore set the sampliegainthe MPCs strategy to

5.5.3 Impact of Varying the Horizon

The long horizon length in combination with the short samgpliimes used in the above
sections resulted in long computational times, a largeigomf which was spend in
constructing the matrices for the dense MPC problem. Thease in construction time

with longer horizons in the MPCt and MPCs can be seen in F8y.\Bfe also note that the
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Figure 5.9: Construction time versus sampling time for the MPC strategies.

relevant increase in construction time for the MPCs is lotlian the one for the MPCt,
a result of the smaller number of optimization variablesdusethe MPCs. However, in
both strategies the construction time drops to values asofms for horizons less than
1s, so we set the horizon for both strategiedlte-1s. It is also interesting to note here
that the impact of a shorter horizon length on the closeg-lomst was observed to be

minimal for the simple step steering input scenario usetisgection.

5.5.4 Impact of Varying the Control Horizon

Having established the correct combination of samplingetend horizon for the two
MPC strategies, we next examine the effect of shorteningdmérol horizonN, while
keeping the prediction horizon fixed B =1s so that the computational time is always
below the sampling time in the presence of state and inpujuialdy constraints. For
this, we use a extreme manoeuvre in CarMaker, whereas thee/ehgoing straight and
a step steering input of -160deg is applied on the steeringeivitt =1s followed by a

countersteer input of 260deg tat=2s, with the initial velocity of which is 3m/s higher



5.5. SAMPLING TIME AND HORIZON SELECTION 93

60 T T T T T T T T T
50— ; ; ; ; ; ; —N,=N_=1s
45! | 55 - - =N, =0.14s, N =1s|]
40t
50[
35¢
<
30t E 45/
E 25 >
‘c
20} 240
>
15¢ a5l
101 N =N =15
u p
50 - -N =0.14s, N =1s ] 30y
u P
ols : ‘ ‘ ‘ ‘
-30 -20 -10 0 10 20 30 25 =
x (m) 0 05 1 15 2 25 3 35 4 45 5
Time (s)
(a) Trajectory (b) Velocity
80— = 0.1
60 N 0.09 —N=N=1s
= P "1 F0.08 ---gluzo.ll4s, Np:ls
— ing t
§ % 20 .fé: 0.07 ampling time
% S o = 0.06
5] £ 5005
2 e So04
i} . g 40 - 2003
7} 8 —N,=N_=1s -60 —N=N =1s So.02 e
-10 '-'Nu:0'14s’ Np:ls -80 "'Nu=0'14s’ Np=ls 0.0Lbrmenad SN e
—l% —10((‘) %
051 152 253 354 455 051 152 253 354 455 051 152 253 354 455
Time (s) Time (s) Time (s)
(c) Sideslip angle (d) Yaw rate (e) Comp. time

Figure 5.10: Impact of using a shorter control horizon inkHecCt.

thanVyax for the first steering input.

As we can see from Fig. 5.10, in order to drop the computatiima at levels below
the sampling time offs =0.035s the control horizon needs to be reducebl{e-0.14s
(Fig. 5.10e), however no difference can be noticed in theclelrajectory (Fig. 5.10a)
with the smaller control horizon. The small impact in penfi@ance can also be confirmed
by the velocity, sideslip angle and yaw rate time historigg.(5.10b-5.10d) which show
no major differences when the shorter control horizon islfsenstraints shown only for
the shorter horizon case).

In the case of the MPCs, the relatively higher sampling tifn&e= 0.05s allows for

a longer control horizon. Fig. 5.11e shows that reducing:tierol horizon ta\, = 0.5s
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reduces the computational time without affecting the ehi@jectory (Fig. 5.11a). No
impact in the controller performance with the shorter colniorizon can be noticed, as
also evidenced in the velocity, sideslip angle and yaw fate histories in Figs. 5.11b-
5.11d (constraints shown only for the shorter horizon casedm Fig. 5.11e it is also

interesting to note that, apart from two spikes at around,2fe computational time is

CHAPTER 5. LINEAR CONSTRAINED OPTIMAL CONTROL STRATEGY

already lower than the sampling time even without the showdatrol horizon.
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5.6 Evaluation of the two MPC strategies

In the following section we compare the two MPC strategiesiresg the LQR strategy
from chapter 4 and a baseline vehicle with no active contr@@arMaker environment.
The first scenario under consideration examines the tetmirtersteer mitigation capa-
bilities of the two MPC strategies and how these comparenagéie LQR intervention,
while the second scenario tests the three optimal contratiegfies in a fast double lane
change manoeuvre. The purpose of the two test scenarias&ahe to assess the relative
advantages of using a constrained optimal control straaggynst an unconstrained one
under two limit handling manoeuvres. Note that we assuntenthacceleration or decel-
eration commands come from the driver for the duration otwieemanoeuvres while the
actual torques applied on the rear wheels will be saturatedrding to the static torque

map (Fig. A.1).

5.6.1 U-turn scenario

For the first simulation scenario, we use the same U-turn ewarre as the one used for
the evaluation of the LQR strategy in section 4.4, whereadtiver model available in
CarMaker is used to steer the vehicle around a U-turn on aalg (Unax =1) and the
velocity error penalty in (4.8) and both (5.5) and (5.12)es ® gy =150 as before in
chapter 4.

Fig. 5.12a shows the trajectory of the vehicle using the MiPQslue, the vehicle
using the MPCt in purple, the vehicle using the LQR in red d&eduncontrolled vehicle in
green. The vehicles using the MPCt, MPCs and LQR strateglies\fa similar trajectory
in Fig. 5.12a, but looking at the state histories as seengn.f5.12b-5.12e reveals some
distinctive differences between the three controllers.ilgvthe velocity drop from the

MPCt, MPCs and LQR is similar (Fig. 5.12c), the two MPC stg&e manage to keep
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Figure 5.13: Torque (requested) and longitudinal slipy@gttime histories for the MPCt
and the MPCs in the U-turn scenatrio.

the yaw rate and especially the sideslip angle (Figs. 55.28e) of the vehicle at lower
levels by enforcing the inequality constraints (5.7)-]518is also important to note at this
point that these results have been achieved by the two MRggies while remaining

within the corresponding sampling times (Figs 5.12f-5)12¢g

Fig. 5.13 shows the rear wheel torque commands and the aetaraivheel longi-
tudinal slips from the MPCt and the MPCs strategy. From Fi$3& we can see that
for the MPCt strategy the rear wheels’ torque commands aweamain within the input
constraint for this strategy (5.11), however the rearidgfieel torque command is also
constrained to lower values according to (5.11) whenewelahgitudinal slip of the less
loaded rear-left wheel exceeds the linear region of theadjmer of the tyre (Fig. 5.13c).
For the MPCs strategy on the other hand (Figs. 5.13d-5.t3)the longitudinal slip of

the rear-right that is constrained to lower values (Fig38)laccording to (5.16) due to
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Figure 5.14: Torque (requested) and longitudinal slipy@gttime histories for the MPCt
and the MPCs in the absence of constraints (5.11) and (5e$pgctively in the U-turn
scenario.

the motor torque on this wheel reaching its limit (Fig. 5)12fnother interesting point to
note in Fig. 5.13 is the difference in the torque commandw&éen the two MPC strate-
gies, with the MPCt showing large oscillations for the rkdirtorque (Fig. 5.13a) when

compared to the smoother torque commands from the MPCegyréfig. 5.13f).

In Fig. 5.14 we see what the rear wheel torque commands aratthel rear wheel
longitudinal slips from the MPCt and the MPCs strategy wolkdin the absence of
constraints (5.11) and (5.16) respectively. We remind ithdhe case of the MPCt the
extra slip-based torque constraint is used for stabilinsoms, while in the case of the
MPCs the extra torque-based slip constraint is used to atdouthe motor limits as
imposed by its torque map. From Fig. 5.13 it is obvious thafewing the extra input

constraints would result in larger commands to the two gkeatotors from both MPC
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strategies. In the case of the MPCt (Figs. 5.14a-5.14c)dkerace of the slip-based torque
constraint (5.11) results in large torque commands on theleft wheel (Fig. 5.13a),
which also cause large longitudinal slip values on the kefatyre (Fig. 5.13c), while in
the case of the MPCs (Figs. 5.14d-5.14f) the absence of thedeébased longitudinal slip
constraint (5.16) results in large torque commands on taeright wheel (Fig. 5.13a)
which far exceed the motor torque limits. We can concludettieinclusion of the extra
constraints (5.11) and (5.16) allows for both the tyre aretteic motor limitations to
be taken into account by the two MPC strategies, thus giveiteb knowledge of the
complete system to the two controllers and resulting in neffiextive control actions.
From the U-turn scenario as analysed above, one could sayhihndPCs and the
MPCt strategies give a similar response to the simpler LQ&wvéver the yaw rate regu-
lation and most importantly the smaller sideslip angle galabserved in the case of the
MPCt and MPCs show that the same performance can be achiéeditthaving to com-
promise the stability of the vehicle, a point that becomegadrtant in a fast manoeuvre

as the double-lane change presented next.

5.6.2 Double-Lane Change scenario

For the double-lane change scenario we use again the drodzlravailable in CarMaker,
but this time to follow a predefined path corresponding to abdle-lane change manoeu-
vre as denoted by a dashed line in Fig. 5.15a. The road is &sbtiy (Umax =1) while the
entry speed is set to the high value of 140km/h and the vgledibr penalty in (4.8), (5.5)
and (5.12) togy =150 as before. Note that no acceleration or deceleratiomtrds
come from the driver for the duration of the manoeuvre whike actual torques applied

on the rear wheels are again saturated according to the steque map (Fig. A.1).

Fig. 5.15a shows the trajectory of the vehicle using the MiPQslue, the vehicle
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Figure 5.15: Comparison of the uncontrolled vehicle (iregie the vehicle with the LQR
(in red), the vehicle with the MPCt (in purple) and the veaiglith the MPCs (in blue) in
the double-lane change scenario.
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using the MPCt in purple, the vehicle using the LQR in red dr&uncontrolled vehicle
in green. Both the uncontrolled vehicle and the vehicle wWithLQR become unstable in
this scenario and spin out of control, while the two MPC sigats successfully complete
the test with minimal off-tracking from the predefined parhis is achieved by regulating
the vehicle velocity as seen in Fig. 5.15c, while succelsfidnstraining the sideslip
angle and yaw rate of the vehicle (Figs. 5.15d-5.15e). Birkay. 5.15f and Fig. 5.15¢g
show the computational times for the two MPC strategiesh lbeimaining within the
corresponding sampling times.

Fig. 5.16 shows the rear wheel torque commands and the aearaivheel longitudi-
nal slips from the MPCt and the MPCs strategy. Similarly & thturn scenario, for the
MPCt strategy (Figs. 5.16a-5.16c) the rear torque commaragsonstrained according

to (5.9), along with (5.11) and the changes in the maximunreaeble longitudinal force
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Figure 5.16: Torque (requested) and longitudinal slipy@gttime histories for the MPCt
and the MPCs in the double-lane change scenario.
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on the rear tyres due to lateral load transfers occurrirmuinout the double-lane change
manoeuvre. For the MPCs strategy (Figs. 5.16d-5.16f) bwthear wheel longitudinal
slips are constrained according to (5.17) which takes intmant violation of the motor
torque limits (Fig. 5.13f). Despite the spikes observed (bi13f) for the MPCs case, the
effectiveness of the two extra constraints can be againrooed.

From the double-lane change scenario as analysed abovegwiat both the MPCt
and the MPCs strategies can stabilise the vehicle undet ddable-lane change manoeu-
vre. The uncontrolled vehicle does not complete the testessfully while the use of the
LQR results in an equally unstable behaviour due to the exeegaw rate and sideslip

angle values.

5.7 Summary

Two MPC strategies of different complexity for combined yawdeslip and velocity regu-
lation have been presented in this chapter. The first siratafjed MPCt, uses an internal
model that includes both the vehicle dynamics and the mwsteifavheel speed dynamics
as the state and the torque on the rear wheels as the inputsetbead strategy, called
MPCs, neglects the wheel speed dynamics, hence uses ontghtde dynamics as the
state and the longitudinal slip on the rear wheels as thd iimpthe internal model, with
a Sliding Mode Slip Controller then calculating the necegsarques on the rear wheels.
An analysis of the relative trade-off in closed-loop pemfi@nce and computational cost
for the two MPC strategies shows that inclusion of the fastelispeed dynamics in the
MPC formulation results not only in a bigger optimizatiomplem but also requires faster
sampling times.

Simulations in a high fidelity environment confirmed the effeeness of the MPCt

and MPCs in correcting terminal understeer behaviour améhtiportance of constraining
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both the state and the input of the system for improved stybiVhile similar trajectories
were followed from both the MPC strategies and a simpler L@Reqgy in the case of
a U-turn scenario, the MPC strategies achieve this with nowler sideslip angle and
yaw rate values. Another point to notice here is that ineigdioth the longitudinal slip
constraints and the torque constraints in the MPC formaagsomething that was im-
plemented in one way or another in both MPC strategies) giletter knowledge of the
system to the controllers and results in more effectiverobattions. The importance of
accounting for the system constraints became crucial iedBe of a double-lane change
scenario, where the MPCt and MPCs kept the vehicle stablenfoyang the state and
input constraints, while the vehicle with the LQR becametaivie shortly after the be-
ginning of the manoeuvre. Finally, both scenarios showetl tthe MPC strategies are

real-time implementable even when a generic QP solver &.use
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Chapter 6

Nonlinear Constrained Optimal Control

Strategy

6.1 Introduction

In this chapter we explore recent developments in the aréssblinear MPC and NMPC
and their application on the problem of controlling an EVre timits of handling using
combined longitudinal and lateral dynamics control, aaldshed in chapters 4 and 5.
To this end, we employ the general structure of the more @BimiiIMPCs strategy from

chapter 5 and

1. replace the generiquadprog solver from MATLAB with a specialised QP solver

as available in FORCES Pro [36] as our preferred linear MR@s0

2. construct an NMPC strategy that employs the RTI schemie [35

105
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3. construct an NMPC strategy that employs the Primal-Dutadrior Point (PDIP)
method as available in FORCES Pro [36].

All three MPC strategies are based on simplified version@fseme nonlinear op-
timisation problem: the goal is again to minimise the stai@ @put error from a given
reference along the simulation time, subject to the ingaidition, the nonlinear system
dynamics and the nonlinear state and input constraintshéAsame time, by solving the
original nonlinear optimisation problem offline we can atdgiain the optimal solution
and use it as a ‘benchmark’ against which the three MPC gietean be compared.

The structure of this chapter is as follows: after detaitimg original nonlinear opti-
mization problem to solve and the assumptions used in thetieartion of the three MPC
strategies, we compare the MPC strategies against eaahantth@gainst the optimal so-
lution in a series of simple step steering case studies. ,Tdfear analysing the relative
trade-offs in terms of closed-loop performance and contfmunal cost we validate the
most promising solution in CarMaker environment under twotthandling manoeuvres,

similar to the ones used in chapter 5.

6.2 NonLinear Program Problem and MPC Strategies

In this section, we compare three MPC strategies of diffelevels of complexity in

a series of simple step steering case studies designed tsbatathe advantages and
disadvantages of each strategy can be observed. We firgt tieaptimal solution of the

associated NonLinear Program (NLP) problem for each cadaiga it as a benchmark
to compare the three solutions from two points of view: atbk®p performance and
computational complexity. The section is therefore coswgatiby two parts, the first one
presenting the optimal control problem under considemnatiod how this can be solved

offline, and the second one showing how the problem can bdifigdand solved online.
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6.2.1 NonLinear Program Problem: the Optimal Solution

For the nonlinear continuous-time system with state andtinpndu respectively

X= fC(X7 U), (61)

the discrete optimal control problem under consideratiothis chapter is

N—1
min Z}(xk—rfqn(xk—w+<uk—|>TRn(uk—l>, (6.2a)
X,u
) k:
S.t. Xg = Xin, (6.2b)
X1 = fd(xkauk)a k=0,..,N—1, (620)
h(x, k) <0, k=0,..,N—1 (6.2d)

The aim is to minimise the state and input error from a givatesteference and input
referencd respectively (6.2a) along the simulation tifig, = NTs, subject to the initial
condition (6.2b), the discretised system dynamics (6.2d}he state and input constraints
(6.2d). The resulting NLP problem can then be solved offlis@g one of the popular
optimization methods: we employ the Sequential Quadratbgim (SQP) algorithm
with an active set method to solve it, as available in the ACAolkit [60]. In this way,
given that the system stabilises to the steady state refemsithin the chosen simulation
time, the optimal solution is obtained which can then be wsethe benchmark against

which the three online MPC strategies will be compared.

Note in the above equations that we no longer need to includeva@nal penalty and
that the weighting matrice3,, andR, are not found anymore using an exact discretisation
of the original continuous time problem (4.7) as was the cashapter 5, where we were

directly comparing the two linear MPC strategies againstltR from chapter 4. Here
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we rather set:

Qn - TSQC7 Rn - TSRC7

which not only simplifies the calculation but was also fouadbé a good approximation

for the small sampling time dfs =0.05s used here.

6.2.2 MPC Strategies

For the MPC strategies, the problem to solve is

M-1

min zo(xk—r>TQn<xk—r>+<uk—l>TRn<uk—|>, (6.3)

X,u

) k:

S.t. Xg = Xin, (6.3b)
X1 = f(Xk,Uk), k=0,..,M—1, (630)
Ul < x < ull, k=0,...,M—1, (6.3d)
x'kgukgxﬂ, k=0,..,.M—1, (6.3e)

whereM < N is the prediction horizon and the nonlinear constraintstatesand input
(6.2d) are replaced by simpler box constraints (6.3d)eg)6f8r fairness of comparison
between the simpler linear MPC strategy and the two NMPGegjias.

Then, the three formulations investigated here are:

e A linear MPC strategy, where the nonlinear system dynantick) @re linearised
and discretised with the resulting QP problem solved udmegRDIP nethod as
available in FORCES Pro [36].

e An NMPC strategy that applies only the first SQP iteration ocobfem (6.3) ac-
cording to the RTI scheme [35] as available in the ACADO TadB0].
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e An NMPC strategy that applies the PDIP method as availadiORCES Pro [36]

to (6.3) until convergence to the optimal solution.

6.2.2.1 Linear MPC

From (6.3) and the short description of the MPC strategiesalwe can see that the main
difference in the problem definition between the linear MiP@ the rest of the strategies
is how the discrete system dynamics are defined. Similarbhapter 5, linearising the

continuous system dynamics (6.1) about the equilibriumtgof® u®s) gives
X = ASX+ B%u — (ASXS 4 B3U®9),
where(Ax*3+ Bu®9) is a constant. Then discretising the above affine system we ge

Xk+1 = Ax¢+ Bug +c,
where
Ts SS
c=— / N (ASKSS+ BSUSS),
0

like before. The resulting QP can then be solved using thé>Rbéthod as available in

FORCES Pro [36].

6.2.2.2 NMPC: RTI scheme and PDIP method

For the two NMPC strategies we use one step of the explicitg@tutta 4th order
method to derive the nonlinear discrete dynamics (6.3a) ftike continuous dynamics

(6.1): the specific method was found to give a good approxanatf the continuous dy-
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namics for our system at the chosen sampling tim&e£0.05s. The resulting NMPC

can then be solved using the RTI scheme or the PDIP method:

e NMPC-RTI
In the case of a real-time application like the one constl@eze, the RTI scheme
can be used for fast solutions of problem (6.3): this schemis simplest form,
has the benefit of producing fast but suboptimal solutiongregomputing the nec-
essary sensitivities and performing only one SQP iterd88n60]. This approach
can quickly lead to convergence if the solution does not gaanuch from one time

step to the next but can also diverge.

¢ NMPC-PDIP
We can also try to solve (6.3) using the PDIP method, as dtaila the Forces Pro
NLP solver [36], until convergence. This approach atteniptsolve the NMPC
problem in a relatively short time by employing the Broydéetcher-Goldfarb-
Shanno (BFGS) algorithm for the computation of the Hessiaih® Lagrangian

and can give solutions that are very close to the optimal.

6.3 Comparison of the Three MPC Strategies

In this section we compare the linear MPC, NMPC-RTI and NMPEQIP strategies as

presented in section 6.2.2 against the optimal solutiom fsection 6.2.1 for a range of
simple simulation studies. We will neglect the fast wheelexpdynamics (3.2d), so we set
for both the simulation model and the internal model for the@/strategies = [V B (]

andu = [Sr x SRRy |- The input constraints are set similarly to section 5.4t@.1
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while we also set a constraint on the product of the vehigia'g rate and velocity based

on the lateral acceleration limit

—Hmaxd < PV < Unmax, (6.4)

which for the MPC strategies is simplified to a constraintranytaw rate only as a function

of the velocity at the beginning of the prediction horizoriraéb.7):

|¢] < Umax@/Vin.

In the test scenarios considered here, the vehicle isligitreoving on a straight line
and at timet = Os we apply a step steering input for the duratiorTof 10s !, with
the initial speed chosen so that it is greater than the quoreingVyax for that steering
input. Each controller will then aim to stabilise the veRitb the steady-state reference
Xref = [VSS BSS ST, Urer =[S, 3% |7 by minimising (6.3a) subject to (6.3b)-(6.3e).
Following the analysis for the MPCs strategy in section $&,sampling time and the
horizon for the MPC strategies @ =0.05s andM =20steps respectively, while for the
evaluation of the performance of the MPC strategies we uaadpe closed-loop cost
(5.18).

Table 6.1 shows the average and maximum computational tfoeg with the min-
imum and maximum closed-loop costs (expressed as pereediffgrence from the op-
timal) for the three MPC strategies for a range of step stganputs from 2 to 10deg
and different initial velocities, ranging from 1m/s to 4rafsove thé/ax for that steering

input. Looking at the computational times in Table 6.1, we cansatthey scale accord-

the simulation time chosen long enough so that the states/alaonverge to the steady-state reference
before the end of each test.

2the range of initial velocities chosen so that the originaPNproblem (6.2) is always feasible for the
given drivetrain topology and actuator limits
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Avg comp. Max comp. Min per. Max per.

time (ms) time (ms) penalty (%) penalty (%)
Linear MPC 11 53 2808 10985
NMPC-RTI 30 149 201 591.-10°
NMPC-PDIP 36 295 0.79 2823

Table 6.1: Comp. times and performance results from the thifeC strategies

ing to the problem complexity, with the linear MPC being thsteést and the NMPC-PDIP
the slowest across all results. Another interesting peitiié maximum observed time for
the NMPC-PDIP which is much higher than the two other stiageghis happens when
the NMPC-PDIP reaches the maximum number of iterationsvaitb(which in our tests
is set to 200 iterations) without fully converging, at whipbint it gives the last com-
puted sub-optimal solution. Looking at the performanceaftgrfor the three strategies
on the last two columns of Table 6.1, we observe that thedilEC is consistently above
28.08% difference from the optimal, but does not go abovéd, Mahile the NMPC-PDIP
only reaches a maximum of 28.23%. The NMPC-RTI strategy erother hand reaches
high maximum closed-loop cost values due to infeasibiliyhtems, a result that shows
the main disadvantage of performing only one SQP iterati@aeh time step.

Fig. 6.1 shows the computational time versus performanoealfeplots for the set of
simulation tests from Table 6.1. It can be confirmed thatitieglr MPC strategy (in red,
with the red circle showing the average for each test) peréalmost the same across all
the tests and, apart from only a few occasions when mordidasaof the PDIP method
are used to find a solution, it returns a solution in less thar.50n the other hand, the
NMPC-PDIP strategy (in blue, with the blue asterisk showtimg average for each test)
performs closer to the optimal across all tests and mostlggin performance when the
initial velocity is further away from the reference velgCilyax. However this is done at

the expense of longer computational times since in quitevddsts the maximum number
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Figure 6.1: Computational times versus performance peffrain the optimal solution
for a range of step steering inputs from 2 to 10deg and diftargtial velocities.

of iterations is reached at least once, hence the much largeimum times observed in
some of the results. Finally, the NMPC-RTI strategy (in greeith the green x showing
the average for each test), shows excellent performandelet computational times
when the initial state is close to the target, but quickliytgitio higher closed-loop penalty

values for higher initial state errors, showing the mairadigantage of using this strategy
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as already observed in the analysis of Table 6.1 above.
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Figure 6.2: Velocity, sideslip angle, yaw rate and longiadi slip histories for a step
steering input of 8deg and an initial velocity differencenrVyay of 4m/s for the three
MPC strategies (note that for clarity reasons, the hightyliasory longitudinal slip re-
sults for the NMPC-RTI have been omitted).

An example of the difference in state regulation from theropt for the three MPC
strategies in one of the test scenarios presented in Figifale can be seen in Fig. 6.2
where we find the velocity, sideslip angle, yaw rate and haatynal slip time histories for
a step steering input of 8deg and an initial velocity whichng's higher thalWax for this
steering input. While the velocity time histories for thedar MPC and the NMPC-PDIP
strategies are similar and both close to the optimal trajgctFig. 6.2a), the yaw rate
and especially the sideslip angle time histories are quiterent. While the linear MPC
strategy exhibits large oscillations in both the sideshgla and yaw rate, the NMPC-
PDIP strategy remains close to the optimal solution (Figgb%®.2c), with only a small

overshot at the yaw rate, which is directly connected to thallations observed from
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the NMPC-PDIP strategy in the longitudinal slip time higtsr(Figs. 6.2d-6.2e) and is
the result of the NMPC-PDIP strategy finding it difficult topsowith the hard yaw rate
constraint. Despite this, the NMPC-PDIP strategy showeléxat response with results
very close to the optimal solution and demonstrates the rtapoe of accounting for
the nonlinear system dynamics in the form of the equalityst@mnt (6.3c) rather than
linearising the system dynamics as is the case with therliEC strategy. Finally, for

this test scenario the vehicle with the NMPC-RTI strategigkjy becomes unstable due

to the high initial state error from the reference.

While the NMPC-RTI convergence problems with higher inistate errors, as ex-
plained above, could be possibly addressed using a shartgplisig time and/or more
SQP iterations, the fact remains that the NMPC-PDIP styagégpws more promising
results, the main problem been the longer computationagimOne way to help the
PDIP solver achieve convergence faster while avoidingasifality problems is by soft
constraining the state, which can be done by introducingksiariables into the cost

function (6.3a) and relaxing the state constraints (6.3e):

min h:Z:(xk—r)TQn<xk—r>+<uk—l>TRn<uk—l>+psek, (6.5a)
S.t.  Xg = Xin, (6.5b)
X1 = (X, Uk), k=0,...M—1, (6.5¢)
ul, < u < ul, k=0,..,M—1, (6.5d)
X — <X <X0+&, k=0,..M-1, (6.5€)
g >0, k=0,...M—1, (6.5)

wherege € R™ (k=0,...,M — 1) andp; are the slack variables and their weight respec-

tively.
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Figure 6.3: Comparison of maximum (blue bars) and average(gbars) computational
times for the NMPC-PDIP (in dark blue and green) and the NMAEZP with soft con-
straints (in light blue and green) for the range of test saea@onsidered in this section,
starting from different initial velocities.

Fig. 6.3 shows the change in average and maximum compushtiones for the
NMPC-PDIP strategy after softening the yaw rate constr@&@rnt). The maximum time
has decreased to less than half in all cases, while the a/&rags show no major differ-
ences from the hard constrained NMPC-PDIP strategy defy@téact that the inclusion
of the slack variables has increased the number of optimorsa#riables. It is worth not-
ing here also that no infeasibility problems have been ofeseafter softening the yaw
rate constraint and that the maximum number of 200 iteratwas never reached across
all cases. These results confirm that soft constraining mgtremoves infeasibility prob-
lems in the solution of the optimisation problem at hand Hsb delps in reaching a

solution faster.

Returning to the example scenario examined in Fig. 6.2,dgn &4 we see the differ-
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ence in response from the vehicle with the NMPC-PDIP styaédtpr softening the yaw
rate constraint. While the velocity time histories are $am{Fig. 6.4a), the sideslip angle
for the soft constrained NMPC-PDIP is much closer to therogtisolution (Fig. 6.4b).

The main difference is however found in the yaw rate timedniss (Fig. 6.4c) where we
can see that the yaw rate overshot has disappeared in theosstrained NMPC-PDIP

case, a result also linked to the smoother longitudinalisiquts from this strategy, as

evidenced in Figs. 6.4d-6.4e.
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6.4 dSPACE Deployment

The soft constrained NMPC-PDIP strategy as presented albasehen deployed on a
dSPACE DS1005 board (PowerPC 750GX at 1.00GHz with 128MBalmain mem-
ory). The limited processing power of such platform meaas ithvas necessary to limit
the maximum number of iterations that the solver can perfoefore returning a (sub-
Joptimal solution to 25. However, since each iteration sakdixed time to run, this also
means that we can guarantee that the solver will alwaysretsolution within the given
sampling time.

In order to test the soft-constrained NMPC-PDIP strateggal-time, we connected
it as in the previous section 6.3 with a simulation model tiegjlects the fast wheel speed
dynamics (3.2d) and deployed the complete closed-loopalosystem on the dSPACE
DS1005 board. This involved deploying the source code ferstift constrained NMPC-
PDIP solver and the simulation model as one closed-loop mabbag with linking any
additional files needed by the solver. Then, to record thepedational times for the
solver the dSPACE Profiler was used: this application runtherhost machine and, by
receiving time-stamped events, can provide informatiorthentiming of a defined task

(such as the time to run the solver per call).

Fig. 6.5 shows the average and maximum computational tintesivhe same se-
ries of case studies as before is performed on the DS1005.0f&rihat the maximum
computational time across all case studies is around 43nthwbrresponds to the set
maximum number of 25 iterations per call of the solver, wthikerelative increase in com-
putational effort can also be seen in the average times. Wawihe loss in performance
due to the cap in the maximum number of iterations is less sisameone would expect:
as we can see from Fig. 6.6 for a characteristic example cfr@esio where the maximum

number of iterations is reached multiple times, the vejogiw rate and longitudinal slip
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Figure 6.5: Maximum (blue bars) and average (green barspuatational times for the
soft constrained NMPC-PDIP after deployment on the DS1005.

trajectories for the deployed controller remain close ttthjectories obtained from the

desktop machine (where the maximum number of iterationsvemreached).

From the above analysis it is obvious that NMPC solutionsimmgeneral very de-
manding in terms of required computational power. Howeafker careful consideration
of the required steps to obtain real-time feasibility lildtsig a limit on the maximum
number of iterations, it is possible to deploy such solwgion real-time hardware: as we
have seen here, the proposed soft constrained NMPC-PRifeggrcan be successfully
deployed on a rapid prototyping platform with minimal penfance loss, even for the

extreme step steering input cases considered so far.
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Figure 6.6: Velocity, sideslip angle, yaw rate and longmad slip histories for a step
steering input of 10deg and an initial velocity error of 4rfds the soft constrained
NMPC-PDIP strategy on the desktop machine and the DS1005.

6.5 Evaluation of the NMPC-PDIP strategy

In order to test the soft constrained NMPC-PDIP stratedy) (6. CarMaker environment,
we first cascade it with a Sliding Mode Slip Controller in a veayilar to the MPCs con-
trol structure from section 5.4.2, with the complete colndtoucture seen in Fig. 6.7. We
also reinstate the two extra inequality constraints (5m8) &.16) due to implementation
reasons, the first one restricting the sideslip angle of éécle for subjective feel and the
second one considering the electric motor limits in the fofrits static torque map.

We can then compare the complete solution in CarMaker emviemt against a base-
line vehicle with no active control and one that applies adinMPC controller instead on
problem (6.5) with the same input and state constraints mliwit-handling scenarios:

(i) the U-turn manoeuvre from sections 4.4 and 5.6.1, bgttime setting a higher initial



6.5. EVALUATION OF THE NMPC-PDIP STRATEGY 121

speed and (ii) an obstacle avoidance manoeuvre accordI8ft8888-2:2011 [23]. The
purpose of the two tests is to show how the velocity regutatiembined with the lateral
dynamics control — while respecting the system constraifitsm the two MPC strategies
manage to keep the vehicle stable and what are the advaatfagesg an NMPC strategy

against the faster but sub-optimal linear MPC strategyahwerld critical situations.

(VB %)

Reference

Generation NMPC — PDIP

Y

V.B.¢)

Figure 6.7: NMPC-PDIP control structure.

6.5.1 U-turn Scenario

For the U-turn scenario, we use the driver model in CarMaksteer the vehicle through
a turn of 40m radius like before in sections 4.4 and 5.6.1. Mael is assumed dry
(Umax =1) the entry speed is set at the higher velocity of 85km/h deoto better em-
phasise the difference in response from the three vehiglate we assume again that no
acceleration or braking commands come from the driver. Naethis time the velocity
error penalty is set higher tp, =500.

As we can see from Fig. 6.8a, this time the uncontrolled Vehases control due to
high entry speed and eventually leaves the road. The two Mi4kgies on the other
hand keep the vehicle on the road, but with a small differerieeking more closely

especially to the first half of the turn, we can see that the KMHDIP manages a much
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smoother trajectory compared to the linear MPC.

The above observation on the difference between the toajestof the vehicle with
the NMPC-PDIP strategy against the one with the linear MP@irisctly connected to
how the two strategies regulate the state as seen in Figi\bBe the velocity regulation
from the two strategies is, apart from the exit speed, mdbkt#ysame (Fig. 6.8c), the
sideslip angle and yaw rate time histories (Figs. 6.8d)&Bew oscillations for the linear
MPC strategy due to the simpler linear internal model useithig case which can not
predict as effectively the state violations.

The difference in response between the two strategiesasagisarent in the longi-
tudinal slip and torgue time histories as found in Fig. 6.9eve we observe excessive

oscillations in the longitudinal slip demands from the &n&PC (Figs. 6.9a-6.9b), es-
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Figure 6.9: Longitudinal slip (actual) and torque (reged}time histories for the linear
MPC and the NMPC-PDIP strategies in the U-turn scenario.
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pecially in the case of the less loaded rear left wheel, whisb translate into violent
torque commands (Fig. 6.9c). The NMPC-PDIP strategy on therdvand shows much
smoother torque commands and a more efficient longitudiipaiegyulation. Note that the
torque limit violations as seen in Figs. 6.9¢c-6.9f occur tlughe fact that the two MPC
strategies are constructed in a way similar to the MPCsesjtyalrom chapter 5, thus
do not directly control the torque on the wheels. Howeverlasady analysed in sec-
tion 5.6.1 for the MPCs stategy, removing them would resulhuch higher demanded
torques.

Finally, looking at the computational times for the two &tgies, the linear MPC
returned an average and a maximum time of 0.42ms and 0.9&mpeatevely, while for
the NMPC-PDIP the corresponding times were 1.9ms and 3.dinish are much lower

than the sampling time of 50ms for the two strategies.

6.5.2 Obstacle Avoidance Scenario

For the obstacle avoidance scenario we use again the drodelravailable in CarMaker,
but this time to navigate through a double-lane change, fasedigby three valleys of cones
according to the specifications of ISO 3888-2:2011 [23] &adgiven vehicle parameters
(more details on the test specifications can be found in Apipes). The road is assumed
again dry (imax = 1), the entry speed is set to 75km/h, while no acceleratidmraking
commands come from the driver. Note that the velocity eremafty is again set to
gv =500 as in the U-turn scenario of the previous section.

Fig. 6.10a shows the trajectories for the three vehicles.cévesee that the uncon-
trolled vehicle spins out of control towards the end of thenoguvre, while the two MPC
strategies manage to keep the vehicle stable. Howevertloalyehicle with the NMPC-

PDIP strategy manages to successfully complete the test #ie linear MPC fails to pass
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Figure 6.10: Comparison of the uncontrolled vehicle (iregiethe vehicle with the linear
MPC (in red) and the vehicle with the NMPC-PDIP (in blue) i thbstacle avoidance
scenario.
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through the last valley of cones without hitting them (FidLG&).

This slight difference between the trajectories of the twB®/strategies is again re-
lated, as in the U-turn scenario above, to the way they hahdlsystem constraints. As
observed in Fig. 6.10, while the velocity time histories alost identical between the
linear MPC and the NMPC-PDIP (Fig. 6.10c), the sideslip aragid yaw rate histories
are quite different, with the linear MPC showing higher eswand more oscillations in
Figs. 6.10d-6.10e caused again by the simpler linear iat@nodel used in this case.

Looking at Fig. 6.11, excessive oscillations are again ofeskin the longitudinal
slip time histories from the linear MPC (Figs. 6.11a-6.14bl violent torque commands
(Fig. 6.11c) which are in strong contrast to the subtle ragoh from the NMPC-PDIP
(Figs. 6.11d-6.11d). Note that the torque limit violatiqi$gs.6.11c and 6.11f) occur
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Figure 6.11: Longitudinal slip (actual) and torque (rededstime histories for the linear
MPC and the NMPC-PDIP strategies in the obstacle avoidasegasio.
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again due to the fact that the two MPC strategies do not dijreontrol the torque on the
wheels.

Finally, for the double-lane change scenario the averaderaximum computational
times for the linear MPC were 0.44ms and 0.75ms respectivdijie for the NMPC-
PDIP the corresponding times were 2.1ms and 3.3ms, timeasimthe ones found for

the U-turn scenario.

6.6 Conclusions

In this chapter we have presented three fast MPC strategiesdbilisation of the vehi-
cle at the limits of handling. The first strategy (simply edll'linear MPC’) is using a
linear MPC formulation and employs the PDIP method [36] tlvesthe subsequent QP
problem, the second strategy (called ‘NMPC-RTY’) is usifgMPC formulation and em-
ploys the RTI scheme [35], while the third strategy (calldfifPC-PDIP’) is using again
an NMPC formulation but employs the PDIP method instead {8&olve the resulting
NLP problem.

After comparing the three strategies against each othemlgaohst the optimal so-
lution in terms of closed-loop performance and computafi@ost using hard state and
input constraints in a series of case studies it was shovtmthiée a linear MPC remains
the fastest strategy, it also returns suboptimal solutibascan greatly deviate from the
optimal solution. The NMPC-RTI strategy on the other hartdrmreed excellent perfor-
mance and low computational times for small initial stateses; but quickly encountered
infeasibility issues for larger initial state errors duethe intrinsic methodology of the
RTI scheme, which applies only the first SQP iteration on th& groblem. The best
method was found to be the NMPC-PDIP which remained comglgtelose to the opti-

mal solution across the range of the case studies and, aftensg the state constraint,
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also showed a substantial decrease in the computatiortal cos

The importance of using a nonlinear system dynamics reptatsen in the MPC for-
mulation was also confirmed in two limit-handling manoewsvra U-turn scenario with
excessive entry speed and a double-lane change in accerttat®0 3888-2:2011 [23].
While both the NMPC-PDIP and the linear MPC kept the vehitdble contrary to the un-
controlled vehicle which became unstable in both test soesdhe NMPC-PDIP strategy
exhibited a better state regulation and much smoother ¢éocgmmands which resulted

in being the only strategy to successfully complete the 188832:2011 test.



Chapter 7

NMPC with State Estimation for

Output Feedback

7.1 Introduction

Up to this point it was assumed that exact measurements wvéthiele state were available
for control. In this chapter we investigate the use of anrpgliestimation strategy to
provide the variables of interest. In order to keep the ima@etation complexity to a
minimum, for the estimation we focus only on the higher vihdtynamics level, namely
the velocity, sideslip angle and yaw rate of the vehicle,leviie also assume that the
only measurements available come from inexpensive sensasly fitted on a standard
vehicle, namely an Inertial Measurement Unit (IMU), theestieg wheel angle sensor and
the four wheel speed sensors.

The structure of this chapter is as follows: after reviensogne of the most interesting

129
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solutions on the subject of vehicle dynamics estimatiorhin literature and analysing
the relative advantages (and disadvantages) of the diffenethods proposed so far, we
introduce the nonlinear optimal estimator used in this wamkl check its performance

under two simulation scenarios:

e The first test validates the derived estimator on a race i¢irsnereas the driver
model in CarMaker is used to drive the vehicle around a trilckactive control is

assumed to be in place for this test.

e The second test couples the derived estimator with the NFAP@R strategy from
chapter 6 and evaluates the complete solution in the olestatlidance scenario
of section 6.5.2 in accordance to ISO 3888-2:2011 [23]. dét¢fore checks how
the controller performance changes in the presence of tangges and noise in the

provided state information.

7.2 Review of KF Strategies for Vehicle Dynamics Esti-

mation

The reason for estimating arises from the fact that typraalla real system not all vari-
ables of interest are easily obtainable: in a vehicle dynarmontext for example, while
sensors to directly measure the sideslip angle of the \vekiglexist these are typically
expensive. For this reason, a number of optimal estimati@tegies can be found in
the literature ranging from simple Kalman Filters (KF) todeding Horizon Estimation
(RHE) strategies, with most of them based on the assumtadritie only available mea-
surements come from an IMU and/or a Global Positioning S3y(6PS), each of the

systems with its distinct advantages and disadvantages:
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- The GPS can be used to directly measure variables of intéde@she vehicles vector
velocity, but it is usually slow with frequencies rangingrin 1 to 10Hz and is sensitive to
surroundings blocking the GPS antenna signal.

- The IMU is usually faster with a frequency of around 100 t®Q8z and can be
used to indirectly find the variables of interest from theedemmeters measurements,
but these are contaminated with noise and bias.

For these reasons, despite the fact that the GPS and IMU nmeeasnts could be
potentially used directly, a large part of the literaturededicated into using the GPS
and/or IMU measurements in an estimation strategy in ei#hkinematic or a model-
based form, the term kinematic coming from the fact that ia thpe of estimation the
model used is based solely on the kinematic relationshifvedan the sensors.

A kinematic Extended KF (EKF) to estimate the vehicles digemngle is presented
in [17]. Here the vehicle heading along with the yaw rate ggope which is modelled as
a random walk are first found, with the yaw rate as measured fhe gyroscope set as
the input of the system. Then, during straight line drivihg bbservation matrix is set to
[1 0] so that the yaw rate gyroscope bias can be found from the GlrSeemeasurement,
while during turning the observation matrix is sef@®d0] in order to estimate the vehicle
heading through integration of the yaw rate gyroscope. Thersideslip angle can be
found as the difference between the GPS course angle andttheted vehicle heading.
The proposed solution gives a good match against experaingata but has drawbacks:
apart from the sensor drift and scale factors problems warehinherent to kinematic
methods, the slow GPS and the faster IMU signals need to becafsectly aligned. For
these reasons the authors in [17] also propose a secondlé&iony which uses a dual
GPS antenna arrangement to completely eliminate headohgyarthronization errors by
measuring the vehicle heading from the two GPS antennagamcdlfis directly estimate

the sideslip angle.
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In [19] we find another kinematic EKF strategy to estimatewbkicles sideslip an-
gle, this time using a kinematic model based on the latetaktity along with the lateral
accelerometer bias as states, the accelerometers as mptheaGPS velocity as mea-
surement. Then, in a similar fashion to [17], between GPSsoreanents the EKF simply
integrates the accelerometer measurements to find thellagdicle velocity and when
the GPS signal becomes available again the velocity measuts are used to estimate
the accelerometer bias. The vehicles sideslip angle canbiddéound as the inverse tan-
gent of the lateral to longitudinal velocity fraction. Ahet interesting pointin [19] is the
short study on the GPS latency due to the low sampling timetlaaextra time needed
to process and transmit the receiver data, and how this nedmts accounted for in the
estimator. Experimental results show that indeed the iatem of GPS with IMU mea-
surements gives a better estimation of the sideslip angile |@ss noise and no drifting.

The importance of pitch and roll compensation in the esiwnaif the vehicle dynam-
ics is investigated in [64], where the work presented in {B],is extended by including
the estimation of the longitudinal velocity of the vehiclerag with extra terms for the
effect of pitch and roll in the kinematic EKF formulation fro[19]. A separate estima-
tion strategy is then used to find the roll of the vehicle usangnematic EKF which is
similarly structured to the yaw angle EKF from [17]. Expeeintal results on a graded
road show that accounting for the road grade and the velalileas a positive impact in
both the longitudinal velocity and sideslip angle estimatunder such conditions. The
effect of the total roll angle (suspension movement plusl teenk angle) on the vehicle
is further examined in [18]. Here a kinematic EKF is condieddo estimate the lateral
and roll dynamics of the vehicle using a dual-antenna GP8gimation mounted later-
ally, along with IMU measurements like before. Experimérgaults against a kinematic
EKF using a single GPS antenna to estimate the lateral wethyclamics only show that,

while the effects of the roll of the vehicle are somewhat takd¢o account in the lateral
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accelerometer bias in the single GPS antenna case, thetagearof using the two GPS
antennas configuration to estimate the vehicle roll are r@opavith better sideslip angle
and tyre slip angles estimation.

One of the earliest examples of a model-based estimatoreciuhd in the two papers
from Ray [116,117], which present an Extended Kalman-Bultgi{ EKBF) to estimate
the tyre forces use a single and a two track vehicle modelrderao avoid reliance on
knowledge of the tyre/road road coefficient, the vehicle etaglaugmented by the tyre
forces in the state vector modelled as random walks. ThenkdFEs constructed to
estimate the tyre forces using the wheel steering angletenlorake torques as inputs and
the IMU measurements as output. A tyre/road friction coffitestimation strategy is
also presented in [117]: after constructing a nominal tyceleh from estimated vehicle
state datajmax is found recursively by statistically comparing the foresimated by the
EKBF to those that result from the tyre force model for a gaitr pmax. Experimental
results using field test data and a sampling time of 10 to 3@mt&hé EKBF show good
tyre forces estimation and that the effectiveness of tgealifriction coefficient estimation
depends on the magnitude of the estimated tyre forces sinak tyre forces are nearly
independent Ofimax.

A range of model-based KFs for estimation of the vehicle dyica is proposed in
[92]. Here a KF, an EKF and an adaptive EKF are presentedaakd on a modified
bicycle model that includes roll dynamics and has the wheelrsag angle and the wheel
speeds as inputs, with the adaptive EKF also including tteestyffness in the state vector.
The authors also assume that the measurement and process affect each other by
setting the cross-correlation matrix to non-zero. High liigesimulation results with
no longitudinal acceleration show that inclusion of thessroorrelation matrix improves
slightly the estimation in the higher frequencies and that adaptive EKF strategy is

the most promising. However, as the authors themselvesionetihe greater source of
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discrepancy is the oversimplification of the tyre behaviauhe estimator model.

A closer study on the choice of the tyre model in the perforceanf a model-based
estimator can be found in [9]. Here an EKF is constructedgiaisingle track vehicle
model which ignores the longitudinal vehicle (and tyre) aiyrics combined with either
a linear tyre model, the Burckhardt model, the MF or a linedapdive tyre model that
employs a local linearisation of the tyre curve on each titep.sFrom the high fidelity
simulation results we can see that the solution that emgleyfinear tyre model fails to
track both the sideslip angle and the lateral tyre forceshigher speeds on a slippery
road and that the best overall results are achieved wherdtdygiae tyre model is used.
However, all proposed solutions fail when the vehicle bsade applied: this is expected
since the zero longitudinal dynamics assumption is notdvatiymore. Experimental
results on the other hand are similar for all tyre models psetth only the solution that
employs the linear tyre model showing big deviations fromttione sideslip angle value.

A comparison of a model-based EKF and a model-based UKF tuckedynamics
estimation can be found in [38]. Both strategies use a fdueel vehicle model com-
bined with a Dugoff tyre model to estimate the lateral tyrecés and the sideslip angle
of the vehicle. An interesting point in the vehicle modelnedation is the use of the
vertical forces of the tyres as inputs: these are estimapdrately by an EKF employ-
ing suspension sensors that measure the distance betwertdiidual wheels and the
car body [37]. A comparison of the two estimation strategiesan experimental vehi-
cle equipped with suspension sensors and wheel transdwucersasure tyre forces and
wheel torques shows that the UKF shows superior performahes the vehicle is op-
erating close to the limits of handling which, accordingtie authors, is due to the large
linearisation errors in the EKF under such conditions.

Another example from the literature that examines the iffee between a model-

based EKF and a model-based UKF is presented in [5]. In catrtbd38], the necessary
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vertical tyre forces are not assumed known and a quascstaidel is used instead to
calculate them as functions of the vehicle states and thehgieering angle input. Then
the two optimal estimation strategies are constructedyustwo-track vehicle model with
a simplified MF, which is also augmented with the tyre/roactifon coefficient as one of
the states (modelled as a random walk), with the completielatnodel discretised using
a truncated Lie-Taylor series. Simulation results showtta UKF outperforms the EKF
when larger sampling times are used and at lower vehicledsphee again to linearisation
errors. Experimental results using the UKF only show thatphoposed solution can
successfully estimate the longitudinal and lateral behavof the vehicle under different
scenarios but also that estimation of the slow varying tgeal friction coefficient as part
of a model-based optimal estimation strategy can be pratiepespecially under steady-
state conditions.

In [150] we find a model-based MHE strategy for estimatiorhef¥ehicle dynamics
and the tyre/road friction coefficient. A spatial vehiclendynics model is combined with
with the MF to construct the estimation strategy assumirg tihe vehicle is equipped
with not only an IMU unit but also a GPS and vertical tyre fossmsors on the suspen-
sion. The resulting optimisation problem is then solvedgshe RTI scheme as already
introduced in chapter 6, and combined with the NMPC strateggn autonomous vehi-
cle application from [47]. Simulation results using an elot¢ avoidance show that the
proposed MHE strategy can successfully estimate the \eekiate and position while re-
maining real-time feasible but also that observabilityh# tyre/road friction coefficient
is lost when no tyre slip occurs, i.e. no torque and steesrapplied on the wheels.

From the above we can conclude that:

1. Kinematic-based estimation methods are robust agaatstie parameters uncer-

tainties and changes in the road condition. However, thegliysneed both IMU
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and GPS measurements, are sensitive to sensor bias ansl dueto exogenous

factors like road bank and inclination angles.

2. Model-based estimation methods are robust againstisensos and can rely on
readily available IMU and Controller Area Network (CAN) bsggnals only, but
are sensitive to vehicle and especially tyre modellingreremd are dependent on

good knowledge of the road condition.

For these reasons, estimation strategies that combinerbkentic and the model-
based methods have been also proposed in the literaturearAnegample of this can be
found in [139,141] which present the attempts of Bosch omthater, as part of the ESP’s
continuous development. Here a switching strategy betveekinematic and a model-
based sideslip angle estimator is employed: during fulkiigaor heavy cornering (where
the assumption of zero pitch and roll used in the kinematgeolker are not valid) the
model-based method is used whereas during free rollingrenthe lateral tyre forces are
hard to estimate) the kinematic observer is used insteadle\Wie reasoning behind the
switching strategy is sound, no results on the estimationracy are presented in [139].

An algorithm that instead of a switching strategy like in 91@mploys a combina-
tion of a model-based strategy with a kinematic strategystorate the sideslip angle
is presented in [108]. The model-based estimator is baseal simplified lateral dy-
namics equation which also includes roll dynamics to fineksligh angle directly from
the lateral accelerometer and wheel steering input measns, while the kinematic es-
timator uses an integrator to derive the sideslip angle ftoenkinematic equation for
lateral acceleration. Then the two estimations are conshirséng a low-high pass filter:
at low frequencies (which represent close to steady-stat@suvres) the model-based
estimation is mainly used while at higher frequencies (Whepresent transient manoeu-

vres) the kinematic estimation dominates instead. Expartal results on high and low
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friction surfaces showcase the distinct advantages amdidisitages of each method as
already analysed above, with the model-based method foltpthe general trend of the
true sideslip angle value well but exhibiting errors due todelling mismatch, while
the kinematic-based method showing significant drift duthéobias error. On the other
hand, the proposed algorithm seemed to correct these puslidg effectively combining

the two methods.

7.3 State Estimation Strategy

In this section, an UKF is formulated to estimate the vagaldf interest, namely the
velocity, sideslip angle and yaw rate of the vehicle. Lewiase we have the continuous-

time nonlinear system

x = fe(x,u)+w, (7.1a)

y - gC<X7u)+V7 (71b)

wherex € R" is the state vectory € R™ the input vectory € RP the output vector, and the
process and measurement noiges R", v € RP are white Gaussian uncorrelated noises

with covariance matrice®. andRe respectively. Then, the set (#n+ 1) sigma points is

X0 = ¢

x1) = f—i—[\/(n—i—)\) Li=1,..n,

X = f—[\/m} Li=n+l.n,

—
[ E—

whereé andL are the initial mean value and covariance,ofhich in matrix formis [124]

X = [E.. &+ n+/\[onx1f — VL.
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The associated mean and covariance weights are

wme ni—)\ )

WéCOV) T ntA+(1-a2+Be)’
wmean 2<n1+)\),i:1,...,2n,
W = z(niM,i:l,...,Zn,

whereA = a2(n+ ke) —nis a scaling parameter withe, e andke as tuning parameters.

Then, assuming also that the inputemains constant for the duration of the sampling

time T, the two steps for the UKF are [124]:

e Timeupdate: The predicted state and measurement mégnandé; are obtained

by propagating the sigma points through the process modat (7

Xee1 = [kt Eke1) FVNHA [0 Vi1 — \/Lk—l},

Xe = F(X1,U1),
& = Xowm,

Yo = 9(X Uk 1),
& = Y Wm,

Then the predicted covariance, along with the measurenmehtmss-covariance
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are

Le = XWX 1™ + Qe
L = YWY )T +R

LY = X WY T,
whereR, = Ro/Te [46] and the matriX\f is defined as

We = (I - [Wm...wm]) X diag(Wo(COV) ...W2(§°V)> X <I - [Wm...wm])T.

e Measurement update: The filter gain along with the updated state mean and covari-

ance are then

Ke = LI
& = & +Kayk—&)),

Lk = L — KKy

For constructing the UKF, a slightly modified version of tbefwheel vehicle model
(3.2) is used: in order to keep the model complexity to a murmwe set the state vector
according to the variables of interest, namely the vetsckelocity, sideslip angle and
yaw rate. Assuming that the only available measurementhar®ngitudinal and lateral
acceleration of the vehicle, along with the yaw rate from/M# unit 1, the wheel speeds
and the steering wheel angle from the respective sensotseontieels and the steering

column (measurements commonly found in a production ca¥)se&t the input vector to

positioned at a longitudinal and vertical distance of 1r8@Hd 0.015m respectively from the rear track
and with a zero lateral offset
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(& wj]" and the output vector tfay ay ¢]T. In summary, the continuous-time vehicle

model used in the UKF is

x = fe(x,u)+w,

y = gC(Xv U)—l—V,

ax

Note that by using the wheel speeds as inputs to the estimatoalel instead of the
wheel torques, not only we get a compact formulation for thineator that allows for
faster computations but one that also avoids the requirefoemccurate wheel torque
measurements. The measurement noise covariance ratvias set according to the
noise levels found on typical automotive grade sensordéTal) while the process noise
covariance matrixQe which represents parameter uncertainties and unmodefethdgs
was found through extensive simulation studies. Finalflg, $ampling time is chosen at
Te =5ms, while for the prediction step one step of the explicingerKutta 4th order
integration method is used, the latter giving an excellppraximation of the continuous

dynamics for our system at the chosen sampling time.

8x 8y 1] o wj
Mean 0 0 0 0 0
Variance 3103 6-10°% 5.106 2.10% 57.10°2

Table 7.1: Noise mean and variance values per signal.
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7.4 Evaluation of the Estimation Strategy

In this section, we test the above derived estimator in tvemaros, the first one evalu-
ating the UKF when the vehicle is driven around a track withaing active control and
the second one checking the performance of the completersysthere the UKF is com-
bined with the NMPC-PDIP strategy from chapter 6 in an ollstacoidance manoeuvre

according to ISO 3888-2:2011 [23].

7.4.1 Race Circuit Driving Scenario

In the first scenario the driver model in CarMaker is used teedthe vehicle around the
Motodrom section of the Hockenheim race circuit, as avélabCarMaker (more details
on the track can be found in Appendix F). It is assumed at thiistphat no active control
is in place: the acceleration commands from the driver amestated into a total torque
demand which is then split equally between the rear left @ad right electric motors,
while the deceleration commands are fulfilled using the taakes on the four wheels

through a standard hydraulic brake system.

Figs. 7.1a-7.1c show how the state estimation from the UKiRpaoes against the
true values as obtained by CarMaker. The results are erteligth only the sideslip
angle estimation (Fig. 7.1b) showing some small deviatiomfthe true value. Note that
the large spike in the beginning of the sideslip angle egtongFig. 7.1b) is the direct
result of initialising the estimator far away from the truedwe, with the initial estimated
velocity value set to 5m/s however the UKF quickly converggeghe true state values
which shows that it is also robust to initialization errdegally, from Fig. 7.2 we can see
that the computational time for the UKF remains around 0.fmmshe duration of this

scenario and never exceeds the 1ms.
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Figure 7.1: Comparison of the true value (in blue) and theneded one (in red) for the
velocity, sideslip angle and yaw rate of the vehicle in threeraircuit driving scenario.
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Figure 7.2: Computational time for the UKF in the race citclriving scenario.

7.4.2 Obstacle Avoidance Scenario

For the obstacle avoidance scenario we return to the ddabéeehange — as defined by
the ISO 3888-2:2011 [23] — of section 6.5.2 and test the ceta@olution by combining
the NMPC-PDIP strategy from the beginning of section 6.%uhe UKF as presented in
this chapter. In order to properly quantify the effect oingsan estimator in the controller
performance, we compare the response of the vehicle witbdhmlete solution against
a vehicle that uses the NMPC-PDIP strategy but assumeshdtue state values are
available instead. Note that the road is assumed againuggy € 1), the entry speed is
set to 75km/h, while no acceleration or braking commandsectrom the driver. Note

that the velocity error weight is set ty =500 as before in chapter 6.

Figs. 7.3a-7.3b show the trajectory of the vehicle usingNMPC-PDIP in blue and
the vehicle using the NMPC-PDIP with the UKF in red. Applioatof the UKF for
estimation of the vehicle states seems to have a small effiebie trajectory of the vehicle,
with only a slight deviation towards the end of the manoeuwviere the vehicle using the

UKF comes closer to the right-hand side cones. Looking a$ Fi§d-7.3f, we can see
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Figure 7.3: Comparison of the vehicle using the estimatate stom the UKF (in red)
and the vehicle using the true state values (in blue) in tistaabe avoidance scenario.



7.4. EVALUATION OF THE ESTIMATION STRATEGY 145

that the velocity, sideslip angle and yaw rate responseeoftlo vehicles is similar, with
only noticeable difference the larger velocity for the \@diwith the UKF. Finally, using
the UKF to provide the state information seems to have naefie the computational

time of the NMPC-PDIP strategy, as seen in Figs 7.3g-7.3h.

In Figs. 7.6a-7.4f we see the (actual) longitudinal slip tred(commanded) torque on
the two rear wheels for the two vehicles. The most noticediffierence from application
of the UKF is the introduction of high frequency noise inte 8ystem. This is particularly
apparent in the case of the commanded torques on the wheelghe low level Sliding
Mode Slip Controller (Fig. 7.4f), which in turn introducdset high frequency noise on

the longitudinal slip as evidenced in Figs. 7.4d-7.4e. limportant to note at this point
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Figure 7.4: Longitudinal slip (actual) and torque (regadytime histories for the vehicle
using the estimated state from the UKF and the vehicle uiedrue state values in the
obstacle avoidance scenario.



146 CHAPTER 7. NMPC WITH STATE ESTIMATION FOR OUTPUT FEEDBACK

that according to its definition (5.18) the Sliding Mode Slipntroller requires estimates
of the longitudinal slips and forces along with the longihal velocity rates on the rear
tyres: using the available measurements on the steering and wheel speeds along with
the estimated velocity, sideslip angle and yaw rate valuga the UKF, the longitudinal
slips and forces on the tyres can be found using definitior® ¢hd (3.10), while the
longitudinal velocity rated/ri and\'/RRx can be found by differentiating théy x and

VRRrx €xpressions from section 3.2.1:

VRix =V COSB — Pl Sinyr | Veix =V cosB —VBsinB — (lr Sinyk.
Virrx = V €0SB + PlrrSinyrr | Vire =V cosB —VB sinB + PlrrSINYRR

Looking past the noise contamination on Figs. 7.4d-7.4hgithe UKF does not af-
fect the general response of the vehicle on the tyre levetfantime histories look similar,
with the main difference found on the smaller negative tergaaks of Fig.7.4f. These
are directly related to the smaller rear-left and reartrighgitudinal slip peaks at 2-2.5s
and 1-1.5s respectively (Figs. 7.4d-7.4e) and consequezdillt to the smaller reduction

in the vehicle velocity throughout the manoeuvre as alreadiyenced in Fig. 7.3d.

The high frequency noise observed in the commanded torqomesthe Sliding Mode
Slip Controller in Figs. 7.4d-7.4f is not related to the \@tg, sideslip angle and yaw rate
estimation from the UKF: as we can see from Figs. 7.5a-7 &éctate estimation values
from the UKF remain close to the true values and show no highuency oscillations.
Looking at the longitudinal slip estimation on the rear whkee Figs 7.6a-7.6b however,
we can immediately observe that the estimated values éxhibigh frequency noise
similar to the one we first encountered in Figs. 7.4d-7.4uris out that setting the wheel
speeds as the input to the UKF internal model, passes theft@ghency wheel speed

sensor noise directly into the longitudinal slip calcwati(3.3), a problem that could
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be possibly reduced by separately filtering the wheel speadass’ signals using for
example a low-pass frequency filter but at the expense oftbdielay into the calculation.

The noisy longitudinal slip estimates result in noisy ldadinal force estimates (Figs.
7.6e-7.6f) and ultimately to noisy torque commands from $hiding Mode Slip Con-
troller, as originally seen in Fig. 7.4f. Note that the estiron errors observed at around
2-2.5s for the rear-left longitudinal force and 1-1.5s foe tear-right longitudinal force
are due to underestimation of the rear-left and rear-rightical forces at this point
(Figs. 7.6¢-7.6d), something that is connected to the faat we have not integrated
any suspension dynamics to the internal model for the UKRalBi the estimation of
longitudinal velocity rates as required by the Sliding Mdlg Controller and seen in
Figs. 7.69-7.6h is accurate but again noisy.

From the above analysis we can see that using an UKF in thadéstvoidance
scenario results in degradation of the overall performafickee vehicle, which is mostly
related to the low level Sliding Mode Slip Controller reqng accurate longitudinal force
estimates: the use of the unfiltered wheel speed sensoisignine longitudinal slip
calculation and the omission of the suspension dynamies the internal model for the
UKF had a negative effect on the longitudinal forces estiomatHowever, it is important
to note that the performance degradation is small and thielealsing the NMPC-PDIP

strategy with the UKF still manages to pass the obstacledanaie test successfully.

7.5 Summary

A nonlinear optimal estimator for estimating the vehicledsics was presented in this
chapter. The use of a small internal model for the UKF whidoassumed that the
only measurements available come from inexpensive sensasly fitted on a standard

vehicle resulted in a compact formulation that did not depen accurate wheel torque
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measurements.

Simulation tests on a track without any active control ircplahowed that the derived
UKF can estimate the velocity, sideslip angle and yaw ratidefvehicle fast and effec-
tively. A second simulation test coupling the UKF with the RE-PDIP strategy from
the previous chapter in the obstacle avoidance scenamo $extion 6.5.2 showed that
use of the UKF to provide the state information to the coigrakesulted in only a small
change in the overall performance, with the vehicle equdppith the complete solution

successfully completing the ISO 3888-2:2011 [23] test.



Chapter 8

Conclusions

8.1 Concluding Remarks

This project presented the application of optimal contiategies for stabilisation of an
RWD EV at the limits of handling using combined longitudiaald lateral dynamics con-
trol. While the necessity to regulate the vehicle velocgpexially in cases of terminal
understeer behaviour has been shown before, to the best¢ @iuthor’'s knowledge all

solutions so far presented do not consider nonlinear tyaeacheristics and coupled lon-
gitudinal and lateral vehicle dynamics and tyre forcess gimplifies the problem but

ultimately asks for more tuning effort. Furthermore, a#é thteveloped optimal controllers
are implementable in real-time. To this end, computatidimaés on a standard desk-
top machine (i7-2600k at 3.40GHz with 16GB of memory) wemréad throughout the

work presented, while the final solution was also deployed d$PACE DS1005 board
(PowerPC 750GX at 1.00GHz with 128MB of memory).
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After reviewing the most important contributions in theieagtcontrol of the vehicle
dynamics with a particular focus on the limit handling sados, the four-wheel vehicle
model and the nonlinear tyre model used in the control desigirthe reference generation
was presented. Use of the nonlinear vehicle model ensusethihcomputed references,
which are specific to the given drivetrain topology, are glsvieasible.

Use of an unconstrained optimal control strategy in the fofran LQR showed that
terminal understeer can be eliminated by appropriatelyrotimg both the longitudinal
and lateral vehicle dynamics so that the driver’s intendath s followed. However,
it also showed that accounting for the system constraints®rtant in limit handling
conditions.

The importance of constraining both the vehicle state aecctimtrol inputs in limit
handling cases has been demonstrated through the develbpnkeapplication of two
linear MPC strategies. The use of a smaller vehicle modeidnggarding the fast wheel
speed dynamics has been explored, with results showingxicaiding them results not
only in a smaller optimization problem that is easier to splwut also allows for relaxed
sampling times. A systematic way was then used to define tlingyarameters for the
two MPC strategies, with the prediction and control horizdaong with the sampling time
all chosen through an analysis of the relative trade-offlased-loop performance and
computational cost. Testing the two MPC strategies undedifferent test scenarios, one
using a U-turn and another one an obstacle avoidance marmoshuswed that the vehicle
can be successfully stabilised in critical conditions lyulating both the longitudinal and
lateral dynamics of the vehicle while respecting the statkiaput constraints in order to
follow the intended path from the driver.

The use of an NMPC formulation have been presented nextg alith the use of a
specialised solver to dramatically reduce the computatioost of the QP problem used

in the linear MPC case as presented before. Comparing titegiees against the optimal
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solution in terms of closed-loop performance and compuali cost in a series of case
studies has revealed that while the linear MPC remains #tedastrategy it also returns
suboptimal solutions that can greatly deviate from theroatisolution. Deployment of
the NMPC strategy on a dSPACE board has also showed that #Hies@itution can be
potentially tested on a real vehicle with minimal perforro@ampenalty. The importance
of using a nonlinear system dynamics representation agsifouan NMPC strategy was
also confirmed in two limit handling manoeuvres: using a bhgcenario with excessive
entry speed and a obstacle avoidance manoeuvre like befeas shown that the NMPC
strategy achieves a better state regulation while also amimg smoother torque inputs.
Lastly, the effect of noise and uncertainties in the statermation provided to the
NMPC strategy has been examined. For this, an UKF for estigpnéte dynamics of the
vehicle has been developed, assuming that the only measntemvailable come from
inexpensive sensors usually fitted on a standard vehicléer A&lidating the proposed
estimation strategy on a test track without any active @bimrplace, coupling it with the
NMPC strategy in the obstacle avoidance scenario showéthinaomplete solution can

still successfully stabilise the vehicle in an optimal way.

8.2 Future Work

The work presented in this thesis can be extended in the neaefto:

e Test the proposed strategies in Hardware-In-the-Loop YKlinulation and on a
test vehicle: when developing the optimal control straegieal-time applicability
was always one of the main concerns. For this reason congmahtimes were
always recorded as to make sure that the proposed solu@onbecimplemented
in real-time, while an estimation strategy was also usedhexrk how noise and

uncertainties in the provided state information can affieetcontroller’s response.
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However, it would be interesting to see how the most prorgisihthe proposed
optimal control strategies perform on a real system wheosblpms such as CAN

delays can have a deteriorating effect on the controlletégpmance.

e Explore different low level slip control solutions: the @hg Mode Slip Controller
used in the MPC and NMPC strategies has provided a goodgefgsbnse to chang-
ing longitudinal slip targets. However, it requires infaton about not only the
vehicle velocity, sideslip angle and yaw rate but also tingitudinal tyre forces and
the longitudinal velocity rates on the rear wheels, whiclkesats application on a
real vehicle rather difficult. Initial investigations on@al level slip control strategy
using the NMPC framework have revealed that indeed a singlelevel slip con-
trol strategy which requires only information on the vedictlocity, sideslip angle

and yaw rate along with the wheel speeds can be devised.

e Examine different drivetrain topologies: the developetiropl control strategies
applied an RWD EV can be easily compared against similatisolsion different
drivetrain topologies like the ones found on an FWD or an AVéhicle. Especially
in the case of an AWD vehicle which results in an inherentlgractuated system,
the inclusion of secondary objectives in the cost functi@uld also allow to take
into account other performance criteria like energy corgion or electric motor
degradation, with initial investigations on the subjedhgsa simple LQR strategy

showing promising results [73].

e Integrate with a brake-by-wire system: control of the indibnal wheel brake torques
through a brake-by-wire system would greatly enhance thieoaity of the pro-
posed strategies, which currently rely on the two electii¢ars on the rear axle of
the vehicle to control both its longitudinal and lateral dymcs. While that would

demand for a blending strategy between the friction brakgu and the electric
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motor torque on each of the rear wheels, initial investaation the subject using

the NMPC framework [14] have shown that this can be achieveahioptimal way.

¢ Introduce acceleration/deceleration commands from tiverdrthis project exam-
ined how the vehicle can be optimally stabilised in limiteitiling cases, assuming
that the driver provides the intended vehicle path throughsteering wheel but
does not use the acceleration or brake pedals. It would beftre interesting to
examine how the proposed solutions can be extended to tak&doount such com-
mands from the driver: the resulting solution would operatboth sub-limit and
limit handling conditions by continuously providing thecassary torques on the
wheels based on all the inputs from the driver while making shat the vehicle

always remains stable.

¢ Include estimation of the tyre/road friction coefficienthie an UKF was devel-
oped in this project to provide the variables of interest art pf the controller’'s
validation, information on the tyre/road friction coeféat was assumed known.
An initial analysis on this topic by incorporating estinwatiof umax to the devel-
oped UKF have produced results similar to the ones foundatitierature [5, 150],
with estimation ofumax quickly deviating from its true value when the system is not
excited. Possible solutions to this would be to use a switgkirategy that would
apply estimation ofumax only when the system is excited enough or use a con-
strained optimal estimator which would limit the valuegfax in the range of its
possible values. No matter the approach chosen, it is irapord address how the
necessary information of the road condition can be provitiady of the proposed

strategies is to be tested on a real vehicle.
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Appendix A

Vehicle and Tyre Parameters

The vehicle considered in this work is a small electric spogr with two independent
electric motors on the rear axle, each motor able to deliamginuous power of 75kW
and having a speed-torque characteristic curve as seeg.idHi. A list of the vehicle
and tyre parameters for both the CarMaker model and the HietpVehicle model found
in chapter 3 and used for the controllers’ synthesis in tlugkvean be found in Table A.1.
Note that in the case of the CarMaker model, a full MF5.2 tyoalei of a Bridgestone
Potenza RE50A 205/45R17 tyre has been used.

A comparison of the tyre curves under pure longitudinal aterhl slip at the nominal
tyre load of 5500N for the tyre model used in CarMaker and thgbkfied MF used
in this work is shown in Fig. A.2: it can been seen that the $fied MF is a good
approximation of the tyre’s force generation in the londitwal and lateral directions. In
the same Fig. A.2 we can also see that the maximum normalised fs achieved at a
slip value of around 0.15.

A comparison of the simplified vehicle model as introducedhapter 3 with the high
fidelity CarMaker model can be seen in Fig. A.3, where the alehs initially moving

straight with a velocity of 16m/s and a steering wheel inpu®@deg (corresponding
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Parameter Value Parameter  Value
m(kg) 1137 ke (N/m) 48300
lx (kgm?) 191 kg (N/m) 48300
ly (kgm?) 1058 ce (Ns/m) 3000
I, (kgn?) 1174 cr (Ns/m) 3000
lyen (M) 4.15 kKae (Nm/rad) 777
Wyeh (M) 1.623 Kar (Nm/rad) 0
hven (M) 1.226 my (kg) 14
Oatio  0.787 lw (kgn?) 1.04
wi (m) 2.5 Rw (m) 0.298
wg (m)  1.374 B, 11.24
(e (M) 1.187 Cur 1.45
(r(m) 1.313 Dy 1
h(m) 0.317 Caero 0.27

Table A.1: Vehicle and tyre parameters.

to around 5.6deg on the front wheels) is applied -aBs after a transitional time of 1s
(Fig. A.3a). Note that the initial vehicle velocity correspls to the maximum feasible
velocity for the chosen steering angle according to theyaisabf section 3.3. Fig. A.3b
shows the difference in the vehicle velocity between thepéifrad and the CarMaker
vehicle model (in the case of the CarMaker model the initedligle velocity is adjusted
so that it is approximately equal to the simplified vehicled®lovelocity att =3s): the

slower velocity drop in the case of the simplified vehicle mlochn be attributed to the
absence of resistive forces such as the aerodynamic foddg@rolling resistances from
this model. Figs. A.3c-A.3d show that the sideslip angle yad rate time histories for
the simplified and the Carmaker model. While the generakpafior both the sideslip
angle and the yaw rate is similar between the two models,ithplified vehicle model

exhibits slightly larger values (maximum difference frame CarMaker model of 0.44deg
and 3.17deg/s respectively), which can be connected tddihesvelocity drop for this

model. From the above analysis, the simplified vehicle mofi@hapter 3 is deemed

appropriate for designing the controllers presented s phoject.
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Appendix B

Direct Yaw Control Strategy

Reference
Generation

Vehicle

\

Figure B.1: DYC structure.

The Direct Yaw Control strategy used in the U-turn scenafieeation 4.4 is detailed
here. As we can see from Fig. B.1, the DYC takes the error leivtlee actual vehicle
yaw rate and the requested yaw rate from the driver througlstieering angle and tries
to correct it by applying a torque of equal magnitude and sgpaign on the two rear

wheels.

The yaw rate referenag e+ is set under steady state cornering conditions as a function
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of the current vehicle velocity and steering anglé:

b YOV
"t " Rin  lF IR

(B.1)

whereRy» has been replaced t@g—gR according to (3.12), assumirdgis small enough
so that the small angle approximation assumption is valid.
The reference yaw rate is saturated according to the alaitate/road friction coef-

ficient Lmax, in the same way to (5.7):

‘L;Uref‘ < Ilmaxg

o (B.2)

Combining Equations (B.1) and (B.2) it follows that the sated reference yaw rate

can be defined as:

~ Wref , it |gret| < I«lmax\g/
L»Uref = g . . . . g (BB)
Ilmax\—/5|gr(l.Uref), it |grer| > Ilmax\—/

where the multiplication with sigilief ) accounts for a negative steering input (right turn)
on the vehicle.

Having obtained the desired yaw rate reference, the negdglsaequest is then cal-
culated using a gain scheduled PID, where the proportiamntagral and derivative gains
are set as functions of the current velocity. Finally Mgrequest is converted into a
torque request of equal magnitude and opposite sign on thedsr wheels through the

simple relationship:

dT = "

— M. B.4
WR + WL z (B4)

The abovdT request is limited according to the motor map limits (Figl)A&o give the

saturated valudTg; to be applied on the two electric motors on the rear axle.
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Linear MPC In Dense Form

For the nonlinear continuous-time dynamical system
x = fe(x,u), (C.1)
we can linearise about the equilibrium poirts, u®®) to get
X = AX+ Bu — (AX®+ BUSS), (C.2)

with (Ax®3+ Bu®S) a constant which can be treated as a disturbance. Assunsiogheit

the input is modelled as a zero-order hold, discretisingathwve affine system gives [46]
X1 = AdXk + BgUk + ¢, (C.3)
with
Ts Ts
Ay =€ls, By = / ¢\dnB, c= —/ &*dn (AxSS+BuU).
0 0
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Then the general linear MPC problem with prediction horikbis

rQLn (n—r)T Syl —r) +zz: [(Xk— 1) Qq(X—Tr)
+ (=D Ra (=D +206=0)"Ma(w—D]|,  (C4a)
subjectto Xg = Xin, (C.4b)
Xkr1 = Ax¢+Buk+c, k=0,1,...N—1, (C.4c)
ul < u < ull, k=0,1,....N—1, (C.4d)
X < X <, k=12,...N, (C.4e)

where (C.4a) is the cost to minimise witrand| the state and input references respec-
tively, (C.4b) sets the initial state equal to the current one, (C.4c) are the affine discrete
system dynamics and (C.4d)-(C.4e) are the state and inpguality constraints. The
positive (semi-)definite matri®Qq and positive definite matriky are the weighting ma-
trices on the state error and control effort respectively, the positive definite matriky

is the cross-weighting matrix. A terminal penaltyy — )" Sy(xn —r) is also included,

with the matrixS; selected as the solution of the DARE

Si=ATSA+Qy(BTSIA+ M) T (Ry+ B SyB) 1 (BTSIA+ M.

For the dense MPC formulation the system dynamics (C.4a)sed to eliminate the state
from both the cost function (C.4a) and the inequality caists (C.4d)-(C.4e) [93, 128].
This results in an optimization problem with only the inpatjgence as the optimization
variable, but also one that involves computing powers ofstiagée matrixA, hence the

possibility of an ill-conditioned problem when a long pretibn horizon is used [93].
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Expressing the discrete system dynamics (C.4c) in termseahitial statex,:

X = ®xin +u+Kc, (C.5)
where
X=[x{ X3 ..x)",  u=[ujuf ...uf 4], (C.6)
and
A [ B 0 .. 0] [ | ]
A2 AB B .. 0 A+
b= . |, M= ) A K= . . (C.7)
_AN_ _AW% . .. B _M4+m+k

We can then use (C.5) to eliminate the state entries fromtbetbost function (C.4a)

and the inequality constraints (C.4d)-(C.4e), as detailéde subsequent sections.

C.1 Inequality Constraints

The state and input inequality constraints (C.4d)-(C.dehatrix form are

0 | uf
0 —I —ul
X + Ui < , i=01,..,N,
I 0 X
—1 0 —x!
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which can be also compactly written as
WX + Eju; < d;, i=0,1,....N.
Introducing the slack variablec R™ on the state inequality constraints gives
WX + Eiui +Weie < d, i=0,1,...,N,
with Wi = [0 0 — 10 —q2xm) T,

Then, using (C.6) and (C.4b) the above set of inequalitiesines

Wx+Eu+Wee <d, (C.8)
where
(0 0 .. 0| (E, 0 .. 0 | 0 ]
W, O 0 0 E; 0 W1

andd = [(do—Woxin) d1 ... dy]", and replacing according to (C.5) we get

(WF 4 E)U+Wse < d—Wdx, — WKC. (C.10)

Finally, since the slack variable needs to be always greater than or equal to zero, the

above matrix equality becomes
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u
G < g(Xin), (C.11)

£

where
WI+E W d —Wdx;, —WKc
- ) g(Xm) =
0 -1 0

C.2 Cost Function
Forr=Ir...r]T,I = ...1]7, andx; Gaccording to (C.6), the cost to minimise is equal to

JXU) = Xin' QaXin—Xin' (Qd— QY)r +r"Qqr +2(xin—r)"Mug

+ X OX—X (Q+ QN+ Qr+0u"Wa—a' (W+ W)l

+1TWI = 2(%in — )Mo+ 2X NT— 27 Ma—2X NI 427 1, (C.12)

wherexg has been replaced xy, according to (5.4b) and [128]

i ; i - 'OM O .. 0]
Q 0 .. 0 RO .. 0
00 M .. O
0 0 OR .. 0
Q= Q U N=
00 0 ..M
0o . .S 0. .. R
. . - - (00 0 .. 0|
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Then, using (C.5)-(C.7) we can rewrite (C.12) as functiothefinput sequenagonly
1 _
J(G):EJTHU—I-LTTDXin—I-b(Xin), (C.13)

where

H = 2W+r'Qr+2nm),
D = 2M(Xn—1)+[MM(Q+ Q") +2NT|dxn—[FT(Q+ Q") +2nT]r

— [(WHWhH+2rTi+[r'Q+Q") +2n"Ke,

with M = [M 0 ... 0] andb(xin) a constant term throughout the horizbnwhich is a
function of the given initial state only.
Dropping the constant terimx;,) and also introducing the necessary penalization of

the slack variable, the cost function to minimise is then

_ 1 _
J(U,€) = EJTHU—I— 0" DXin + b(Xin) + pe€. (C.14)

C.3 The QP Problem

From (C.11) and (C.14) the dense soft-constrained MPC enold

minimize J(u,¢€), (C.15a)
u

subjectto G < g(Xin)- (C.15b)
£

This is a standard QP problem that can be solved using anyegbdbular QP solvers

available in the literature.
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Linear MPC using a Specialised Solver

The use of a generic solver for the solution of the linear MP@fem (C.15) can result
in slow computational times which, even after the analysesented in chapter 5, can
make a real-time implementation of the resulting linear Méd@troller difficult. For
this reason, we investigate here the difference in perfoo@detween the generic QP
solver used in chapter 5 which employed the active set medsaVailable through the
quadprog solver in MATLAB and a specialised solver FORCES Pro sol&8&] which

employs the PDIP method.

For the comparison between the two solvers, we return to themscenario of sec-
tion 5.6.1 and solve a slightly modified QP problem, wherdastivo soft constraints
gy, €p € R* throughout the prediction horizon are replaced by one smfstraints; ¢
R* (i=1,...,N) on the sideslip angle and yaw rate constraint violationsspege. This
modification is necessary if we are to use the sparse FORC&SdRrer — which does
not allow for multi-stage optimization variables — but does¢ diminish the conclusions

of the comparison presented here in any way. Then, the QRegpndb solve is
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rylun (xN—r)TSd(xN—r)—i—’:Z:[(Xk—f)TQd(Xk—r)
+(uk—D TRy (=1 +2(x—1)" Mg (ux— 1)+ qe&i 41/ ,
subjectto Xxg = Xin,
Xer1 = Axe+Buk+c, k=0,1,...,N—1,
uLgukguE, k=0,1,...N—1,

XL_EKSXI(SXE'i_ska k:l727"'7N7

& >0, k=1,...

Fig. D.1 shows the velocity, sideslip angle and yaw rate timstories, along with
the computational times for the modified optimization pesblas presented above using
the quadprog and FORCES Pro solver in the U-turn scenario from sectiorl5&s we
can see from Fig. D.1 while the state time histories are asatgd identical (Figs. D.1a-
D.1c), the time to construct and solve the optimization fEobis very different for the
two solvers (Fig. D.1d), with the FORCES Pro managing torretusolution in less than
2ms in every call. This shows that the use of a specialiseddfrscan dramatically

reduce the computational time for the MPC problem.
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Appendix E

Characteristic Speed Calculation
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Figure E.1: Wheel steering input change with vehicle speedhie constant radius turn

test.

The characteristic speed of a vehidlg,, is defined under steady-state cornering con-

ditions as the speed at which a steering angle double therdkekeangle is required for

the vehicle to maintain the same turning radius [50]. Forw&lkicle considered here

the characteristic speed was found using a constant raesugtCarMaker, whereas the
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driver model in CarMaker was used to gradually increase pleed of the vehicle while
trying to stay on a circular path of 50m radius. Given thatvblkicle’s wheelbase is 2.5m

the Ackerman angle is

L

which, assuming a steering ratio of 16:1, corresponds tarar@5deg on the steering
wheel. As we can see from Fig. E.1, the driver needs to keepasmg the steering
wheel angle in order to keep the same turning radius as thelgslspeed increases and

reaches a wheel steering angle double the Ackerman anglg,at21.5m/s.
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Tracks Specifications
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APPENDIX F. TRACKS SPECIFICATIONS
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Figure F.1: Road profile for the U-turn scenario in chapteés #he road width is 6.5m.
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Figure F.3: Motodrom section of the Hockenheim track, antbin CarMaker and used
in chapter 7. The track width is 12m.
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