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Abstract

Concerns over fuel costs, along with the ever increasing requirement to reduce the impact

of emissions, means that the world’s airlines continue to introduce low-noise and more

fuel-efficient aircraft into their fleet. Increasing the engine bypass ratio is one way to

improve propulsive efficiency. However, historically an increase in the bypass ratio (BPR)

has usually been associated with an increase in the fan diameter. Consequently, there

can be a notable increase in the impact of the engine installation on the overall aircraft

performance. For example, although the typical increase in fan diameter is generally

beneficial to the uninstalled engine specific fuel consumption, the increase in the nacelle

drag and weight are detrimental to the aircraft performance. There is also likely to be a

stronger aerodynamic coupling between the engine and the airframe. Overall there is a risk

that the gains in uninstalled engine performance are wholly or partly lost due to adverse

engine-airframe installation and interference effects as well as additional nacelle weight.

It is clear that the quantification of the elements of installation drag is a key aspect in

the assessment of the likely developments in engine design as well as on the installation

requirements for future airframe architectures.

The overall aim of this research is to determine the effect of nacelle size, weight, geometry

and installation on flight efficiency. This aim has been addressed through the development

of a framework which combines the engine thermodynamic model, aircraft performance,

engine installation aspects and a flight trajectory approach. This framework has been
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developed to assess the relative importance of various engine installation aspects on the

overall flight fuel burn for a range of short-haul and long-haul configurations.

A framework (PSIMOD) to assess propulsion system integration has been developed based

on an aircraft performance tool, Hermes and an engine performance model, Turbomatch.

These are FORTRAN-based software which have been validated and used at Cranfield

University over many years. The initial focus of this work is on the integration of these

main modules to enable the overall flight characteristics and mission fuel burn to be evalu-

ated. The system determines the engine requirements and the main aircraft characteristics

at each point in a trajectory for a given mission in terms of range, cruise altitudes, payload

and engine limitations. At each point in the flight the engine operating point is adjusted to

ensure that the thrust requirements are met and the fuel burn is then integrated over the

mission. This analysis includes airframe aerodynamics, nacelle drag, installation quality

and engine performance at each point in the mission. Calculated nacelle drag is a function

of engine massflow capture ratio, Mach number, Reynolds number, nacelle geometry and

aircraft and engine angles of attack.

It is important to accurately model nacelle and engine weight in preliminary design as

its effects on mission fuel burn are of the same order of magnitude as nacelle drag. For

the short haul mission when weight increases were not modelled some engines showed an

uninstalled specific fuel consumption (SFC) improvement over the baseline engine. When

the additional weight of these larger engines was included in the modelling these uninstalled

SFC improvements were completely negated. For the long haul mission when engine and

nacelle weight increases were not modelled all engines showed an improvement in mission

fuel burn over the baseline engine. However when the weight increases were modelled only

the engines with a BPR=8.3 maintained a mission fuel burn improvement. This showed

that for the engine design approach adopted in this paper there is an optimum increase in

BPR after which further increases increase mission fuel burn.
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Nacelle total local upflow angle can have a significant effect on mission fuel burn with

increases in mission fuel burn of up to 2.2% seen for non-optimum nacelle offset angle.

Similarly engine installation quality can have a significant effect on mission fuel burn. For

a poor propulsion system integration which may have an installation drag penalty of 50%

of the isolated nacelle drag mission fuel burn can increase by up to 6%. The rate of change

of mission fuel burn with installation quality is a function of nacelle size.
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Chapter 1

Introduction

1.1 Need for accurate propulsion system drag prediction

Reducing aviation’s environmental impact is one of the most important challenges facing

the aerospace industry. This impact includes noise pollution, local air quality and climate

change.1 In 2001, the Advisory Council for Aeronautical Research in Europe (ACARE)2

was founded by government and industry with the aim of making Europe’s commercial

aviation more affordable, cleaner, safer and quieter. ACARE’s Strategic Research Agenda

(SRA) identified five major challenges.2 With respect to the environment the challenge

was to meet an ever increasing demand while at the same time lessening the impact of

the aviation industry on the environment at all levels.2 One of the key findings of the

SRA was that the objectives are not achievable without important breakthroughs, both

in technology and in concepts of operation.2 In 2010 ACARE developed a new vision

for European aviation, looking towards 2050.3 By 2050, taken relative to 2000, advances

in aviation technology and procedures should allow a 75% reduction in CO2 emissions

and a 90% reduction in NOx emissions per passenger km as well as a 65% reduction

in perceived noise.3 Low-noise requirements imposed by regulators, mean that engine

manufacturers must improve the propulsive efficiency and reduce the noise level of their

1
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engines.4 These environmental challenges need to be overcome by the development of new

aircraft configurations or by improvements to existing ones. An accurate understanding

of drag and its components its necessary for both approaches.5

Key aircraft design drivers include the need to reduce operating costs and the need to meet

industry regulations.5 A significant portion of an airlines direct operating costs consists of

fuel expenses6,7 (Figure 1.1(a)). In recent years there have been large fluctuations in the

price of aviation fuel (Figure 1.1(b)). In the short term kerosene will remain the primary

fuel for passenger aircraft. Over the next 20 years it is probable kerosene will be derived

from a range of sources including crude oil, biomass and waste products. However, in

all cases its is predicted that the cost of kerosene will substantially increase.7 Reducing

this cost has been a core focus of aviation technology development.6 One key approach to

improvements in fuel efficiency is to increase engine bypass ratio (BPR).8 Increases in BPR

can be achieved by decreases in core or increases in by-pass massflow. However generally

fan diameter has increased. Increasing the bypass ratio can lead to increased drag from

larger nacelle wetted and frontal areas as well as increased pre-entry streamtube drag. As

well as increased drag it can be expected that larger engine diameters will have stronger

effects on engine-airframe integration. There is then the risk that gains in fuel reduction

are partly lost due to these negative effects.9 It is clear then that the quantification of both

engine installation drag and the identification of its sources is crucial at the preliminary

design stage.

1.2 Novel aspects

1.2.1 Full mission analysis

Normally engine nacelles are designed at a single design point. This is usually at the end

of cruise condition where spillage drag is at its greatest. This design point is selected based

on experience with current nacelle designs. Some checks are then carried out to ensure
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(a) Typical traditional buildup of contributions to direct
operating cost of an aircraft. case for the mission of a
medium-range, 150-seat aircraft7.

(b) Cost of aviation fuel since the year 20007.

Figure 1.1: Aircraft operating costs

that nacelle performance is adequate in other flight stages. As engines become larger this

approach may not be sufficient. It may be possible to improve propulsion system perfor-

mance by taking into account nacelle performance throughout the full flight profile in the

preliminary design stage. This has been achieved by the creation of a novel Propulsion

System Integration Modelling (PSIMOD) framework. PSIMOD couples Cranfield Uni-

versity’s in house engine (Turbomatch10) and aircraft (Hermes11,12) performance codes

with a nacelle drag prediction model based on ESDU 8102413. The ESDU drag prediction

method is used to predict nacelle drag as a function of flight Reynolds number, Mach
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number, nacelle shape and intake MFCR. Corrections are then applied to this drag pre-

diction to take into account nacelle local upflow effects and nacelle and propulsion system

integration effects based on CFD simulations. Nacelle drag is integrated within PSIMOD

in a drag build up method at each point in the flight to allow overall mission performance

to be calculated.

1.2.2 CFD compatible thrust and drag book keeping approach

The most commonly adopted thrust and drag book keeping systems in the literature rely

the calculation of the force acting upon the engine pre-entry streamtube and the force

exerted on the nacelle by external flow. To do this the pre-entry streamtube stagnation

line on the nacelle must be extracted. This approach is not suited to automated Computa-

tional Fluid Dynamics (CFD) post-processing as this is often non-trivial. To address this

issue a thrust and drag accounting methodology compatible with CFD methods has been

developed known as the “modified nearfield method”. Thrust and drag book keeping in

the literature is normally only established for zero degrees engine incidence cases.14 The

modified nearfield method has been further developed to enable the extraction from CFD

of lift and drag for ducted bodies at non-zero degrees angle of attack.

1.2.3 Nacelle performance at incidence

Knowledge of nacelle performance at incidence and in installed configurations is lacking.

This project contributes to filling that knowledge gap through the building up of a database

of detailed CFD calculations and the extraction of correlations between angle of attack

and nacelle drag. These correlations are implemented in a propulsion system integration

framework. The impact of modelling nacelle incidence on overall mission performance is

assessed.
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1.3 Aims and objectives

1.3.1 Research aim

The overall research aim is to develop a preliminary design framework for the assessment

of powerplant aerodynamic installation effects. This framework will be used to assess the

impact of nacelle size, geometry and installation on aircraft mission performance.

1.3.2 Research objectives

To address this research aim a number of objectives have been set.

1. Develop methods for the estimation of nacelle external drag.

2. Develop methods for the estimation of the effects of angle of attack effects on nacelle

drag.

3. Develop methods to assess the impact of nacelle installation effects on overall aircraft

mission performance.

4. Generate a propulsion system integration model with defined aircraft and nacelle

geometry and flight information as an input and engine net propulsive force as an

output, encompassing Research Objectives 1, 2 and 3. This model will calculate

nacelle drag which will then be integrated in a drag build up method at each point

in a mission as part of an aircraft and engine performance model.

5. Use the model developed in Objective 4 to assess the sensitivity of mission fuel burn

to nacelle size, position and installation for both a long haul and short haul mission.
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1.4 Publications

• A paper entitled “Aero-engine installation modelling and the impact on overall flight

performance”15 based on this research was presented at the Royal Aeronautical So-

ciety Advanced Aero Concepts, Design and Operations Conference 2014 (see Ap-

pendix A for abstract).

• A paper entitled “Aerodynamics of aero-engine installation”.16 was co-authored. The

modified near-field drag extraction technique presented in this paper was developed

by the author as part of the research reported on in this thesis (§4.6.1).

1.5 Overall project strategy

This work can be separated into three distinct work packages. The initial work begins

with Work Package 1, (WP-1), which was the establishment of a method to estimate the

external drag of an uninstalled nacelle. The outcome from this work package was a series of

correlations for nacelle drag as a function of engine size, flight condition and engine angle

of attack. These correlations then formed the basis of WP-2 where these correlations were

used to create an uninstalled nacelle drag propulsion system integration (PSI) module.

Following on from WP-1 and WP-2, WP-3 was the assessment the effect of installation

on nacelle drag. This work package by extracted installation drag factors from complex

full aircraft CFD as a function of nacelle size and installation position for three flight

conditions which are representative of a typical mission. These factors were be extracted

from mid-climb, mid-cruise and mid-descent configurations.
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Literature review

A review of published work relating to propulsion system integration aerodynamics is

presented in this chapter. The first part of the review discusses relevant previous studies

and is split into experimental and numerical studies. Secondly a review of previous studies

which have investigated propulsion system integration by bringing together aircraft and

engine models. The review also includes an overview of methods used to extract drag from

CFD calculations or experimental measurements.

2.1 Previous studies

2.1.1 Experimental propulsion system integration studies

The simplest model of an engine for experimental or numerical studies is a representa-

tive through flow nacelle (TFN). Typically TFNs are designed to give the correct intake

massflow capture ratio. However when this approach is used, jet effects are not modelled

correctly. Jet effects can be more accurately simulated by using a cold air jet. Though

temperature effects are not modelled the expansion of the jet exhaust can be approximated

and its expansion effects assessed. One of the most widely employed tools for modelling

7
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real engine effects in the wind tunnel is the turbine powered simulator (TPS).17 The ad-

vantage of using a TPS over a cold air jet simulator or TFN is the ability to correctly

simulate intake and exhaust flow including the correct thrust division between fan and

turbine.17

These methods of modelling an engine are discussed in order of complexity starting with

TFNs, then cold air jet simulators and finally TPSs.

2.1.1.1 Though flow nacelles

Early propulsion system integration experiments were primarily focused on aircraft aero-

dynamic characteristics. A lack of understanding regarding high incidence aircraft perfor-

mance was highlighted in 1963 by the British Aircraft Corporation One-Eleven accident.18

This led to a study where measurements of aerodynamic forces and moments were made

for a range of aircraft configurations where nacelle size and position were varied indepen-

dently18. It was found that the aircraft aerodynamic characteristics were dependent on the

placement of the engines (Figure 2.1). The aircraft configuration consisted of aft-fuselage

mounted engines and a T-tail experienced severe problems with stall.18

It was shown theoretically that a lower installation drag may be obtained by placing the

nacelles in the underwing, rearward mounted location19 and a large amount of experi-

mental work was carried out to understand the aerodynamic trade-offs involved with the

positioning of underwing mounted nacelles. Possible advantages of underwing-aft nacelle

location were explored20. It was expected that such a position would disturb the flow over

the suction side of the wing less and enhance wing lift by having having more favourable

pressure distributions on the wing underside. It was also hoped that lower wave drag

and a higher drag-divergence Mach number could be achieved through variation of the na-

celle cross-sectional area20. These hypotheses were tested in the NASA-Langley Transonic
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Figure 2.1: The effect of vertical location of nacelles on the coefficient of pitching
moment.18

Wind Tunnel at Mach numbers ranging from 0.70 to 0.85 with aircraft incidence was var-

ied from −2.5o to 4.1o. Two types of underwing-aft mounted, flow-through nacelle models

were tested: one circular and one D-shaped (Figure 2.2). The D-nacelle configuration

experienced the lowest drag of all those tested. Positive interference drag was calculated

for every configuration, but the aft-mounted nacelles had significantly higher L/DMAX

than the conventional forward-mounted nacelles. At Mach number 0.80, the value for

the conventional forward-mounted nacelles was about 11 percent lower. The effect of the

aft-mounted nacelles on CL was to shift the lift curve upward relative to the wing-body
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only configuration, and to shift the zero-lift angle of attack to a more negative value. The

opposite effect was found for the conventionally mounted nacelles. The difference in lift

was mainly due to changes in pressure on the inboard wing pressure surface. Pressures in

this region were increased by the presence of aft-mounted nacelles when compared to the

wing-body only configuration. The conventionally mounted nacelles however caused the

flow in this region to accelerate and become supersonic with a corresponding reduction in

pressure20. These conclusions were backed up by later work21 which found installation of

nacelles in the aft under-wing position produced lift increases, as opposed to the loss in

lift typical of forward wing-mounted nacelle configurations. D-shaped inlet nacelles also

had the lowest nacelle installation drag.21

Figure 2.2: Underwing aft-mounted C-shape and D-shape nacelles.20

With supercritical wings care has to be taken over wing-pylon-nacelle integration.22 Through

careful integration design it may be possible to not only minimise adverse interference

effects but to achieve a favourable negative interference effect. Efforts were made to min-

imise installation drag by housing the pylon structure within an antishock body.23 It was

demonstrated that antishock bodies, proposed to house the structure which required the
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nacelles to be attached in the aft underwing position, could be installed on the wing with-

out a deterioration of the longitudinal aerodynamic cruise performance at a Mach number

of 0.80. At the highest test Mach number of 0.85, at which a higher shock loss occurs,

one of the antishock-body/pylon configurations reduced the nacelle installation drag by

approximately 80% at cruise lift.20 Other studies have also shown that pylon design can

have a major effect on installation drag.24,25 One way of reducing the interference drag

due to the pylon is to reduce local velocities and avoid separation curvature at the sides

of the pylon. This can be achieved by minimising curvature at the sides of the pylon, the

leading edges and along the wing lower surface.25

Toeing in the engine has been shown to lower installation drag.26 The effects of toe-in

angle of the under-wing, rearward-mounted nacelle and pylon were investigated across

a range Mach numbers (0.70 to 0.82) and an incidence range from −2.5o to 4.0o. For

the cruise condition minimum installed drag was achieved with a toe-in angle of 1.5o.

In agreement with previous studies20,21 for high-wing transport aircraft the aft mounted

nacelle configuration produced an increased lift when compared to wing-body model.26

In these studies only the effect of nacelle installation location was taken into account,

no consideration was made for the degradation of engine performance due to intake flow

distortion.

Low-wing aircraft, more typical of modern commercial jets have a ground clearance con-

straint on engine installation.27 This constraint coupled with the need to minimise en-

gine inflow distortion are two of the main factors which lead to underwing fore mounted

engines.27 Three aircraft and underwing fore-mounted engine layouts have been investi-

gated.27 These consisted of a three engine configuration (two on the wing and one simulated

“S” duct in the vertical tail, Figure 2.3), a four engine short pylon configuration (all wing

mounted) and a four engine long pylon configuration (all wing mounted). The results

of this investigation indicated that for the toe-in angles tested (0o, 2o, and 4o) and cant

angles tested (0o and 3o) there was no discernible drag difference.27 When underwing, fore
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mounted, long duct nacelles are added to a supercritical wing the magnitude and direc-

tion of flow velocities over the entire span can be changed significantly, reducing cruise

lift. Care needs to be taken to ensure adequate clearance between wing and nacelles to

minimise interference effects.25

Figure 2.3: Three-engine advanced transport technology configuration installed in Ames
11-foot windtunnel.27

Efforts have been made to reduce the propulsion system drag through nacelle cowl shaping.

A series of experiments were carried out at the Aircraft Research Association (ARA) Ltd,

Bedford between 1968 and 1973.28 The tests aimed to achieve favourable supercritical flow

development over the nacelle exterior as previous designs had only optimised for subcritical

flow. Mass flow, drag and surface pressure distributions were measured for six different

nacelle shapes. Tests were carried out at Mach numbers ranging from 0.4 to 0.95 to capture

both subsonic and transonic flow regimes. Some tests were carried out at an incidence of 3o

and 6o, however this data is not recorded in the report, all data presented results from tests

carried out at 0o incidence. The intake mass flow was varied using a mass flow control plug,

with the mass flow capture ratio varying from 0.2 to 1. The overall aim of the study, which

was to produce favourable supercritical pressure distributions, was fulfilled. Increasing the
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lip radius from that of a NACA-1 series forebody was successful in the reduction of peak

velocities near the lip. This restricted spillage drag to lower values of massflow ratio.28

Good aerodynamic performance could be achieved by the flattening of the cowl aero-line

aft of the lip and by an increase in curvature near the point of maximum nacelle diameter,

so long as the shock remained ahead of the region of increased curvature.28

Theoretically designing a nacelle to have laminar flow over much its length should result

in a large reduction in propulsion system integration drag.29 An isolated nacelle test has

shown that it is possible to design a nacelle such that laminar flow is maintained over a

significant length and that it is possible to install the nacelles onto a wing with a pylon

without altering the extent of the laminar flow region.29 The drag reduction for two nacelles

with 60% laminar flow was approximately 9 counts at the cruise CL of 0.45 (Figure 2.4).29

This difference was similar in magnitude to the difference in the calculated skin friction

drag. A reduction in drag of approximately 10 drag counts was achieved at the cruise

CL by the placement of the nacelles in a position foreward of the wing (Figure 2.5).29

This was caused by a reduction of the compressibility and nacelle interference effects on

the wing lower surface. Pylon design was found to have a significant effect on interference

drag. Contouring the pylon so as to diminish high velocity peaks on the wing lower surface

resulted in a decrease in drag of approximately 7.5 counts (Figure 2.5).29

2.1.1.2 DLR-F6

The DLR-F6 is a windtunnel model which was designed as a representation of a transonic

transport aircraft (Figure 2.6).30 The geometry was derived from the DLR-F4 configura-

tion.31 The model has been designed for a cruise Mach number of 0.75 with a lift coefficient

of 0.5.30 However this cruise Mach number is low for a modern transonic transport aircraft.

A large body of experimental data is publicly available for the DLR-F6 in wing-body and

wing-body-pylon-nacelle configurations (Figure 2.7). For this reason it was chosen as the
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Figure 2.4: Effect of nacelle position on interference drag for a Mach number of 0.80
for a transport aircraft with natural laminar flow nacelles.29

Figure 2.5: Installed drag for a Mach number of 0.80 and a CL of 0.45 for a transport
aircraft with natural laminar flow nacelles.29



Chapter 2 Literature review 15

test geometry for the second American Institute of Aeronautics and Astronautics Compu-

tational Fluid Dynamics Drag Prediction Workshops (AIAA CFD DPW 2).

Overall forces and moments were measured along with wing and nacelle surface distribu-

tions.30 The wing-body-pylon-nacelle configuration had an increase in total lift at constant

incidence and total drag increases at constant lift over the wing-body configuration.30 Drag

rise Mach number for the wing-body-pylon-nacelle also reduced. Analysis of the surface

pressure distributions on the wing showed that the supersonic region on the wing suction

surface was reduced with an upstream movement of the shock location. The presence of

the pylon accelerated flow over the inboard wing pressure surface which created a local

supersonic region.32

Figure 2.6: DLR-F6 Model in the ONERA S2MA Wind Tunnel.33

2.1.1.3 NASA Common Research Model (CRM)

A wide-body transport aircraft wind tunnel model known as the “Common research

Model” (CRM) has been created by NASA.34 The CRM is more representative of a mod-

ern transonic aircraft than the DLR-F6 as its supercritical wing was designed to cruise at

a Mach number of 0.85 as opposed to 0.75 for the DLR-F6. For this reason coupled with
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the wealth of available experimental data, the CRM replaced the DLR-F6 as the test case

for the AIAA CFD DPWs from DPW 4 onwards.35,36

Five different CRM configurations have been tested:

• wing-body (WB)

• wing-body-pylon-throuhg-flow-nacelle (WBPN)

• wing-body-tail at three tail incidences (WBT−2, WBT0 and WBT+2)

Forces, moments and surface pressures were measured in the NASA National Transonic

Facility and the NASA Ames 11-ft Transonic Wind Tunnel.37 Nacelle-pylon interference

effects were investigated. The presence of the nacelle-pylon led to an overall increase in

drag and a corresponding decrease in lift. At a lift coefficient of 0.5, which corresponded to

the design point of the model, the WBPN configuration had a reduced nose down pitching

moment in comparison to the WB configuration.37 Experimental data is available for three

Figure 2.7: DLR-F6 experimental data for Mach 0.75.30
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Reynolds numbers. The majority of the data was acquired at a wing-chord Reynolds

number of 5 million. However some data is also available at a Reynolds number of 30

million, which is typical of a full-scale transport aircraft.

Figure 2.8: The Common Research Model (CRM) in the Ames 11-ft Wind Tunnel.37
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2.1.1.4 Cold air jet simulators

One aspect of propulsion system integration that is not properly modelled by through-flow

nacelles is the interaction of the jet efflux with the other aircraft components. Compressed

air jets can be used to simulate the jet efflux.38

To determine whether jet effects would be significant for a low wing civil transport type

aircraft, a series wind tunnel experiments undertaken using a wing mounted cold-air jet

simulated high bypass ratio (HBPR) turbofan mounted close to a wing.38 The presence

of the through-flow nacelle and pylon led to a reduction in suction on the rear and an

increase in suction on the foreward wing lower surface. The point of minimum pressure

moved forward. There was little difference in data from the cold air jet nacelle at a pressure

ratio (PR) of 1 and the TFN. When PR was increased to 1.5 the the pressure distribution

shape remained the same. However there was an increase in the peak suction level when

compared with the through-flow nacelle (Figure 2.9).38 The increased suction due to the

cold air jet occurred at about 25% of the wing chord or 43% of the pylon length on either

side of the pylon. At a Mach number of 0.77 a strong shock wave was present on the

inner wing.38 However this effect was reduced with increases in incidence and there was

an indication that there was a Mach-number at which the suction level no longer continues

to increase. It was noted that wing interference on the inboard side of the pylon might be

reduced by careful pylon shape design.38

The influence of cold air jets on the installation effects with changes in relative nacelle

wing position has been studied.39 The presence of the jet in some configurations caused

the shock on the upper side of the wing to move upstream in agreement with previous

studies.38 Both wing drag and nacelle thrust were found to be increasing functions of the

relative wing-nacelle horizontal distance. The overall effect was however always favourable

with the best position being the closest coupled configuration. When the nacelle was moved

vertically away from the wing there was a slight decrease in both wing drag and nacelle
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Figure 2.9: The influence of exhaust flow on pressures in the vicinity of the wing pylon
juncture. M = 0.75 and α = 3.5o.38
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(a) Influence of relative horizontal position (b) Influence of relative vertical position

Figure 2.10: The influence of relative nacelle-wing position on the global interaction
balance using cold air jet nacelles.39

thrust (Figure 2.10).39 The overall effect was always favourable with increases in vertical

offset so that the configuration with the largest offset had the best performance. However

changes in overall performance when moving the nacelle vertically relative to the wing

were smaller than for horizontal movements.39

The effects of a cold jet on the boattail pressure drag of four isolated cylindrical ejector

nozzles has been studied.40 Over a range of Mach numbers extending from 0.60 to 1.47

nozzle pressure ratio was varied from approximately 1.0 (jet off) to 11 for four isolated

cylindrical ejector nozzles. Boattail angles of 10o and 15o were tested.

At subsonic speeds, the jet caused large reductions in drag of the 15o boattail config-

urations. For values of nozzle pressure ratio much less than the design value this drag

reduction was insensitive to changes in nozzle pressure ratio. However when the nozzle
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pressure ratio was further increased up to and beyond the design value a further drag

reduction occurred.40 At supersonic freestream conditions, boattail pressure drag was in-

sensitive to changes in nozzle pressure ratio until the jet approached full expansion. As

the jet became underexpanded, boattail drag was significantly reduced. The trends were

basically the same for both boattails except that configurations with a boattail angle of

10o drag was affected to a lesser degree by the jet.40

2.1.1.5 Turbine powered simulators

Turbine driven powered simulators were used to provide representation of the inlet and

exhaust flows for a four engine short-haul aircraft supercritical wing configuration.41 Wind

tunnel tests were carried out across a range of Mach numbers from 0.6 to 0.78. Both TPS

and flow-through nacelles were tested so that the effects of the jet could be assessed sepa-

rately from the effects of the nacelle installation. Presence of the jet can reduce interference

drag. For pressure ratios from 1 to 1.37 the effect of the jet is to decrease interference

drag. This was because viscous mixing of the jet flow and the external flow reduced af-

terbody separation. When the fan pressure ratio was further increased to 1.48, afterbody

separation increased due to jet pluming which resulted in an increase in interference drag

in comparison with the through flow configuration.41

A European cooperative research programme dealing with aerodynamic engine/airframe

integration ENIFAIR, ran from 1996 to March 2000. Wind tunnel tests at high speed were

carried out, the main objective of which was to determine installation and interference drag

levels for different engine installation types. These wind tunnel tests were carried out with

TPSs.42 Unanticipated variation of drag with changes in engine power setting and bypass

ratio was found.43 The root cause of these findings was identified through the application

of thrust and drag bookkeeping as inadequate TPS calibration. A wind tunnel correction

method which allowed the effects of the interaction between flow from the jet the external

flow to be corrected for was derived.
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Variations in drag behaviour caused by the jet effect were investigated (Figure 2.11). In

this study this was expressed as the difference in drag values calculated for the through

flow nacelle and for the engine at start of cruise with a maximum thrust setting. The in-

creases in CD resulting from the presence of the jet was approximately 2.3% for the engine

configuration in comparison to the wingbody configuration, for the ultra high bypass ratio

engine this offset rose to 3.9%.17 The wing-body-pylon-VHBR-engine configuration at the

maximum thrust setting had a CD = 0.034. Installation drag was calculated to be 30 air-

craft drag counts which was 8.6% of the total aircraft drag for this configuration. Of these

30 aircraft drag counts, 10 drag counts were attributed to the jet effect, approximately 3%

of the total aircraft drag.17

Figure 2.11: Variation of drag coefficient of the wing-body-pylon-engine configuration
at M = 0.75 with changes in engine bypass ratio.17
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2.1.2 Computational studies of propulsion system integration

A number of authors have applied RANS based CFD to the propulsions system prob-

lem.16,44–52 One RANS CFD study modelled nacelle drag for a range of geometries, both

2-D and 3-D.49 A comparison of nearfield and farfield drag extraction methodologies was

carried out in comparison to the empirical ESDU nacelle drag prediction method. The

farfield method was applied to the 2-D simulations but was found to be much more sen-

sitive to the presence of shocks than the nearfield method.49 It was concluded that this

approach, for 2-D simulations at least, could not be used to calculate absolute nacelle drag

values.49 However, it could perhaps be used in an optimisation process where only overall

trends were required.49

When simulating a powered on nacelle in conjunction with a pylon, care must be taken over

thrust and drag bookkeeping.51 A method derived from control volume theory to extract

nozzle CV from CFD calculations has been created. To illustrate this method a powered

nacelle-pylon-airframe configuration was simulated with RANS CFD. At a condition of

M = 0.785, Re = 2.4 × 107 and CL = 0.55 corresponding to a cruise condition good

agreement was found with experimental data.51 The CFD calculations overpredicted CD

by 6.1 engine drag counts.51

A nacelle has been modelled with RANS based CFD in order to assess its abilities to

match experimental data.52 The influence of grid refinement , near wall treatment and

turbulence models was assessed. Total drag was predicted within 5% of the experimental

data at zero degrees incidence.52 This discrepancy rose to 10% at 20o incidence.52 The

CFD method was able to capture the main flow features.52

A transonic civil aircraft has been modelled with RANS CFD with and without through

flow nacelles (TFN).16 A series of validation exercises were undertaken for an isolated

nacelle and for the airframe-TFN configuration. In the isolated nacelle case the critical

mass flow capture ratio and the drag rise Mach number (MDR) were identified as key
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aerodynamic performance parameters. The critical massflow capture ratio prediction was

found to have an accuracy of 1.5% while the drag rise Mach number had a quoted accuracy

of ±0.007MDR.16 For the airframe-TFN configuration, discrepancies for a range of CL from

0.1 to 0.4 of 21 aircraft drag counts between the CFD calculations and the experimental

data.16

Two extensive sources of information on the application of CFD to the propulsion system

integration problem are the Megaflow Project and the AIAA Drag Prediction Workshops.

These are discussed in detail in §2.1.2.1 and §2.1.2.2.

2.1.2.1 Megaflow project

A CFD project entitled “MegaFlow” was undertaken with a focus on full aircraft aerody-

namic simulations in various flight configurations including take-off, cruise and landing.46

The main aim was to develop a computational tool which could carry out these calculations

accurately and dependably while still being efficient.46

The DLR-F4 wing-body aircraft configuration was simulated with and without CFM-

56 like nacelles installed (Figure 2.12 and 2.13).48 Forces and moments were calculated

using a structured (FLOWer) and unstructured (TAU) CFD solver. Fully turbulent CFD

simulations carried out with FLOWer over predicted drag in comparison to experimentally

measured values by approximately 20 aircraft drag counts. When transition was modeled

this over prediction reduced to 6 aircraft drag counts.48 When the unstructured flow solver

TAU was used to carry out fully turbulent simulations instead good agreement between

calculated and experimentally measured drag coefficients was found.48

Variation of aircraft lift coefficient with changes in installation drag was calculated for the

CFM-56-like TFNs (Figure 2.13).47 Mach number and Reynolds number were fixed at 0.75

and 3× 106 respectively. Reasonable agreement was found with experimental results and

the report concluded that variations in propulsion system installation drag due to changes



Chapter 2 Literature review 25

(a) (b)

Figure 2.12: A comparison of viscous calculations using the FLOWer and TAU solvers
for the DLR-F4 wing-body configuration.48

in installation location and engine size can be adequately predicted with the DLR-TAU

CFD solver.47

Figure 2.13: Aircraft lift coefficient as a function of installation drag for three different
CFM56-like TFN installation positions. M = 0.75, Re = 3 × 106. Symbols represent
CFD calculated quantities while lines represent experimentally measured values. The

DLR-TAU code used as the CFD solver.47

The impact of the engine power setting was also studied computationally (Figure 2.14).45
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(a) TFN configuration (b) TPS configuration (c) CP distribution, η = 33%

Figure 2.14: CFD simulation of the DLR-F4 using FLOWer. M = 0.75, CL = 0.5. The
influence of engine power setting illustrated by comparing a TFN and TPS configuration,
(a) and (b) contours of Mach number, (c) distribution of pressure coefficient at η = 33%.45

The main consequence of employing a TPS instead of a TFN was the increase in the exhaust

jet velocity. The exhaust flow can in some cases accelerated to supersonic speeds. The

large velocity differential between the exhaust and nacelle external flow can result in large

shear layers (Figures 2.14(a) and 2.14(b)).45 This change in the velocity and pressure field

impacts upon the performance of the wing. Figure 2.14(c) shows the variation of pressure

coefficient at a wing cross-section inboard of the nacelle. The jet effect due to the TPS

resulted in a lower pressure coefficient on the lower side of the wing.45
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2.1.2.2 Drag prediction workshop series

The AIAA CFD Drag Prediction Workshop series was established to bring together parties

involved in aircraft aerodynamic performance prediction, both industrial and academic, so

that the state-of-the-art of computational fluid dynamics methods could be evaluated.44

Specific focus was on assessing the ability of different numerical codes to predict aerody-

namic forces and moments. Through this exercise areas which required further research

and development could be identified and efforts to address them coordinated.44

First AIAA CFD Drag Prediction Workshop

The subject of the first AIAA CFD Drag Prediction Workshop was the DLR-F4 aircraft

geometry.53 This wing-body model is typical of civil transport aircraft which has been

designed to cruise at a transonic Mach number. CFD test cases were set out for the

workshop participants so that different numerical schemes and approaches could be com-

pared.53 Participants were also given the option of carrying out additional simulations

to predict the aircraft drag rise Mach number. After the various CFD calculations were

completed they were compared to experimentally measured data.53

Most of the experimental data consisted of wing pressure profiles.44 With CL = 0.5 Mach

number was varied from 0.6 to 0.87. At a Mach number of 0.75, the model design Mach

number, measurements were taken at CL = 0.3, 0.4, 0.5 and 0.6.44 In all cases the Reynolds

number was fixed at 3× 106.44 Boundary layer trips were used to fix the boundary layer

transition point. However, the major drawback with the data however is the precision of

the measured drag which was given as 10 drag counts.44

Overall lift and minimum drag were over-predicted by the CFD methods.44 For config-

urations where separation was present, i.e. at high Mach numbers and higher angles of

attack, non-parabolic drag was slightly under predicted.44 A large amount of scatter was
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Figure 2.15: DLR-F4 wing-body geometry.53

present in the predictions. This was attributed to the various meshing codes, CFD solvers,

turbulence models, etc. that were used.44 No clear advantage was shown for any specific

grid type. Though there was a large amount of scatter it was concluded that using a

single code and consistent meshing and modelling techniques CFD is quite useful as an

engineering tool to evaluate relative performance.44

Second AIAA CFD Drag Prediction Workshop

The second AIAA CFD Drag Prediction Workshop used the DLR-F6 wind tunnel model.30

This is an A320-like wind tunnel model with two through flow nacelles (Figure 2.7). Its

design Mach number is 0.75 at a Reynolds number of 3 × 106 with a lift coefficient of

0.5. The DLR-F6 is a modification of DLR-F4. The wing of the DLR-F4 was redesigned

to achieve a more elliptic lift distribution and to reduce flow separation on the upper

wing surface.30 However these geometrical modifications increased the severity of flow
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separations where the wing meets both the fuselage and the pylon. These separations

undermined the CFD predictions and meant that conclusions could not be drawn regarding

grid independence and the accuracy of drag predictions.35

It was decided in the next drag prediction workshop to use blind test cases and a simplified

geometry which should experience less flow separation. The motivation behind using blind

test cases was to better assess the CFD community’s capability to predict drag, as opposed

trying to match the results afterwards. The use of simpler geometries was proposed to

allow the accuracy of the drag prediction with different levels of mesh independence.35

Third AIAA CFD Drag Prediction Workshop

A Third AIAA Drag Prediction Workshop took place to continue the work of previous

AIAA Drag Prediction Workshops with the same overall objectives.54 As was recom-

mended by the second AIAA CFD Drag Prediction Workshop,35 CFD studies were to be

carried out “blind”, with experimental data unavailable until after the CFD simulations

had been completed.54 Also the DLR-F6 model was modified by adding a wing-body fair-

ing. This fairing was created to try to eliminate flow separation in this region (Figure

2.16). The fairing is a retro fit to DLR-F6 Model.54

The workshop concluded, after a large set of CFD solutions were collated, that it was

obvious that several problematic issues with using CFD for accurate drag prediction still

existed.54 The level of grid-convergence was identified as an important metric. When this

metric was applied to the presented cases outliers could be identified. It was concluded that

the generation of consistent meshes for mesh independence studies remained a challenge,

particularly when unstructured meshes are used.54

The FX2B fairing was used because it was supposed to remove or minimise flow separation

in the wing-body junction.54 However a large variation was found in predicted separation

bubble sizes. One objective was to find out whether the pockets of flow separation found
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Figure 2.16: Surface streamlines at the wing-body junction of the DLR-F6, Mach =
0.75, CL = 0.50, RN = 5.0 million, Fully Turbulent, Spalart-Allmaras.34

in previous workshops was the cause of poor grid convergence seen. This hypothesis was

true for some submitted cases, however for others it did not seem to cause any issues.54

Fourth AIAA CFD Drag Prediction Workshop

The fourth AIAA DPW35 used the NASA Common Research Model (CRM) (§2.1.1.3) as

the test geometry (Figure 2.8) instead of the DLR-F6. Three test cases were proposed,

two of which were optional. The mandatory test case consisted of a mesh sensitivity study

at a single aerodynamic point, and an incidence sweep.35 These were to be carried out at

a fixed-lift condition. All test cases were required to be run with fully turbulent flow.35

Similar to the conclusions of the third DPW, it was found that there remained much

room for improvement. However it was observed that there existed a core set of numerical

approaches that led to similar results across all grid types. The generation of consistent

grids for mesh independence studies still remained a problem.35
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Fifth AIAA CFD Drag Prediction Workshop

The fifth AIAA DPW again used the NASA Common Research Model (CRM).36 It mainly

focused on mesh independence and the prediction of aerodynamic forces and moments

for the CRM wing-body configuration. Participants also had the option of carrying out

a buffet study.36 A more substantial mesh independence study was undertaken than in

previous drag prediction workshops. Improved mesh quality resulted in reduced scatter

and standard deviation in the CFD results.36

The median predicted drag was within approximately 4 drag counts of the wind tunnel

data.36 Differences in the wind tunnel test and CFD approach were identified. The CFD

approach did not take into account elastic deformation or regions of laminar flow and

transition. There is therefore some uncertainty on how well they should agree. The wind

tunnel results should only be used as a reference. The onset of buffet at M = 0.85 was

also investigated. In some cases a large separation bubble at the wing-body juncture was

observed. This flow phenomenon was not seen in the experimental results.36

2.2 Aircraft and engine modelling synthesis

A number of authors have investigated the effect of aero-engine installation on mission

performance by linking engine and aircraft models.50,55,56 However, there is a lack of

literature in the preliminary design context, as is the focus of the research reported upon

in this thesis. Most previous work sits more in a conceptual design context, with the focus

being on the evaluation of installation effects for future technologies.55,56

A substantial body of work was undertaken in a study managed by Boeing Phantom Works,

Seattle, through the NASA Glenn Revolutionary Aero Space Engine Research (RASER)

contract.55 This “Engine Diameter” study focused on finding the optimum BPR for a

future aircraft in terms of mission fuel burn. In this context overall aircraft drag, weight,
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emissions and noise were assessed. The reference aircraft was based on the 777-200ER

aircraft with a composite wing and a cruise Mach number of 0.85 (Figure 2.17).55 Two

engine manufacturers provided engine information for an advanced engine incorporating

future technology and three advanced “Ultra-Efficient Engine Technology” (UEET) engine

designs with different BPRs (Figure 2.17). The engines on the baseline configuration

were based on engine technology which was expected to be mature in 2015, i.e., ready

for design into the future production of powerplants. The three General Electric (GE)

UEET engine designs employed an advanced dual counter-rotating fan along with an

improved compressor and turbine.55 This allowed much larger BPR ratios to be achieved

for approximately the same fan diameter when compared to the baseline engine (Table 2.1).

Whereas for the Pratt and Whitney (PW) engines, increases in BPR ratio were achieved by

increasing fan diameter (Table 2.1). The three PW UEET engines (Table 2.1) consisted of

an advanced turbofan design (STF1171), a geared turbofan with a shortened intake and

reduced nacelle diameter (STF1173) and a geared turbofan with a variable area nozzle

(STF1174).55

GE engine: Baseline GE90-94B GE58-F2 B7 GE58-F2 B6 GE58-F2 B5

DFAN (in) 123 100.6 108.6 123.5
BPR 7.8 7.43 9.47 13.1

DesignFPR 1.46 1.80 1.65 1.45
NacelleL/D - 1.58 1.56 1.42

PW engine: Baseline PW4090 STF1171 STF1173 STF1174

DFAN (in) 112.9 118.5 127.9 148.7
BPR 6.2 11.5 14.3 21.5

DesignFPR 1.6 1.55 1.45 1.32
NacelleL/D - 1.25 1.25 1.10

Table 2.1: Engine design points.55

All engine installations were positioned based on industry best practices with the nacelle

top-line trailing edge location kept constant relative to the wing.55 For each installation

the wing design was re-optimised. Nacelle profile drag was calculated using “ESDU 81024

Drag of axisymmetric cowls at zero incidence for subsonic Mach numbers”.55 Industry
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Figure 2.17: Airframe-engine configurations under investigation.55

“Handbook” methods were used to estimate pylon and interference drag. When the aircraft

was resized to achieve the same mission performance, a reduction in fuel burn of 15% to

16% was estimated for the UEET engines. Optimal fan pressure ratios were found to be

in line with current technologies (1.46 ≤ FPR < 1.6).55 The optimal GE UEET engine

had a BPR of 11 while the BPR of the optimal PW UEET engine was 14.5. This optimal

PW UEET engines fan diameter increased by 13.4% with respect to the baseline engine.

However the fan diameter of the optimal GE engine was 6.5% smaller than the baseline.55

These different outcomes for the engine manufacturers were due to the employed engine

technology. The counter rotating fan used by the GE UEET engines resulted in higher

BPRs without increasing fan diameter. This highlights the fact that technology advances

in materials, airframe aerodynamics, engine architecture and cycle account for relatively

large gains in mission performance56
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Worked carried out at the Technical University of Munich in 201456 developed a method-

ology which integrates future engine design concepts into aircraft conceptual design. This

methodology was demonstrated with a parametric study of two aircraft-engine configu-

rations. Firstly a two-spool, direct-drive fan engine (Figure 2.18) was investigated in a

conventional under-wing installation position.56 Secondly an aft-fuselage mounted, two-

spool, geared open rotor engine (Figure 2.18) was studied. In both cases the engines

were mounted on an aircraft representative of a medium range civil transport aircraft

(Figure 2.19).56 This aircraft had characteristics similar to the Boeing 737-800 or Airbus

A320-200. The baseline cruise Mach number was 0.78.

Figure 2.18: Schematics of the investigated engine architectures.56

Figure 2.19: Airframe-engine configurations under investigation.56

This previous research56 computed engine performance and nacelle drag by the use of

the commercial codes GasTurb 1157 and Piano58, respectively. The effect of the engine

installation was computed by Piano56 , which simply assumes an increase of 10% on nacelle

drag for under-wing installations and of 50% for fuselage-mounted engines. A component
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build- up method based on parametric scaling of the turbo components was used for weight

estimation.56

The performance of the under-wing turbofan configuration was investigated under four

scenarios (Table 2.2).56 Scenario 1 considered the current state of the art. Scenario 4

represented technological advances in airframe and engine design implemented through

simple technology scaling parameters. While Scenario 2 and 3 consider technological

advancements solely in engine and airframe design respectively in order to separate their

effects.

In Scenario 1 an optimal BPR ratio of 7.1 was found.56 When the advanced technology

scaling factors were applied only to the engine (Scenario 2), the optimal BPR increased

to 9.5 (Table 2.2). These engine technology scaling factors increase the aerodynamic

efficiencies of the individual engine components.. It is noted that a further reduction in

these losses did not lead to an significant increase in the optimal BPR.56 In this Scenario

engine mission fuel burn was reduced by 9.6% when compared to the baseline (Table 2.2).

When technological advances in both engine and aircraft design were considered (Scenario

4) the reduction in mission fuel burn over the baseline scenario increases to 25.7% with

the contribution of the advanced airframe approximately 20%. Overall a reduction in

maximum take-off weight of 17.8% was found.56 In Scenario 4 the optimal engine BPR

increased from 7.1 to 7.2 (Table 2.2). Though this change is small it shows that to find

the optimum engine BPR ratio the engine-airframe configuration must be assessed as a

whole.

Scenario BPRdes,opt [-] ∆WF,block,des [%] ∆MTOW [%]

State of the art existing 7.1 Baseline Baseline
Advanced engine 9.5 -9.6 -5.6

Advanced airframe 7.2 -19.2 -14.5
Advanced airframe and engine 9.8 -25.7 -17.8

Table 2.2: Technology level study results at a cruise Mach number of 0.78.56
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(a) Long haul aircraft with a three-spool high
BPR engine incorporating an intercooler config-
uration.50

(b) Short haul aircraft with a two-shaft geared turbofan
configuration.50

Figure 2.20: Investigated airframe-engine configurations.50

In addition to these conceptual design stage evaluations, detailed CFD work has been

carried out to try to quantify propulsion system integration effects for a range of installa-

tion configurations.50 The aim of this research was the extraction of net propulsive force

as a function of engine installation location to allow mission block fuel burn to be cal-

culated. Two aircraft-engine configurations were parametrically investigated at a cruise

condition.50 Firstly a three-spool high BPR engine incorporating an intercooler mounted

under the wing of a long range aircraft was tested (Figure 2.20(a)). The second para-

metric study focussed on a two-shaft geared turbofan installed on a short range aircraft

(Figure 2.20(b)).

Both engines were simulated in 6 under-wing installation locations which varied both

horizontally and vertically.50 A substantial effort was made in the refinement of the pylon

design to improve its aerodynamic performance. In particular the junction between the

nacelle and pylon was carefully designed to remove a flow separation (Figure 2.21).50

To quantify the impact of pylon design on aerodynamic performance, aircraft drag was

calculated for the original and modified pylon configurations. A reduction of 37 drag

counts was achieved through the improvement of the pylon design.50

For both the long and short range aircraft configurations the effect of horizontal changes

in the installation location on NPF dominated that of vertical movement.50 The long

range aircraft showed a 4.2% difference in cruise fuel burn between the extreme horizontal
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(a) Initial pylon design with surface streamlines on
the inboard side highlighting a flow separation in the
wing-pylon junction50

(b) Modified pylon design with surface streamlines
on the inboard side demonstrating the removal of
the previous flow separation50

Figure 2.21: Pylon design iterations50

installation positions (Figure 2.22(a)). This difference was 6.4% for the short haul config-

uration (Figure 2.22(b)). This work concluded that future work was required, specifically

further CFD calculations on a more standard aircraft-engine configuration was necessary.

These CFD calculations should incorporate off design conditions such as take-off, climb

and descent.50

A number of authors have brought together aircraft and engine models as part of engine

performance analysis assessments.59–61 Previously it has been incorporated into “in-house”

codes and used to evaluate optimum engine bypass ratios59 and the impact of engine

aerodynamic losses on overall mission performance.60 One such study59 investigated the

differences in optimum bypass ratio for a business jet with aft-fuselage mounted engines

with differing technology levels. An aircraft modelled was linked with the GASTURB57 to

model the engine performance. Optimum bypass ratios were estimated for two freetream

Mach number conditions, M = 0.75 and M = 0.9. For the lower Mach number when a

technology level equivalent to that of the 1990s was used the optimum BPR was found to

range from 5 to 7.59 When the technology level was raised that predicted for the year 2030

the optimum BPR increased to a range of 6 to 8.59 In the case of the higher freestream

Mach number, 0.9, lower optimum bypass ratios were predicted. Estimated optimum BPR
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(a) Changes in cruise fuel burn as a function of horizontal installation location for the
long range aircraft.50

(b) Changes in cruise fuel burn as a function of horizontal installation location for the
short range aircraft.50

Figure 2.22: Changes in cruise fuel burn as a function of horizontal installation loca-
tion.50 X and c are the horizontal distance from the cowl edge to the wing trailing edge

and the mean aerodynamic wing chord respectively.

ranged from 4 to 5 for the lower technology level and 4 to 6 for the higher.59

Another aircraft-engine synthesis study60 simulated a direct drive two-spool turbofan aero

engine with PROOSIS62. This was linked to an aircraft model, an in house nacelle drag

prediction tool based on ESDU 8102413 and WEICO63 an engine weight model.

Similarly it has been used as a standalone tool in a study61 which evaluated the character-

istics of a general turbofan engine and its integration in a flying-wing aircraft conceptual

design. This study brought together TURBOMATCH64 as an engine performance model,
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ESDU 8102413 as a nacelle drag assessment tool and a spreadsheet based aircraft per-

formance model A comparison was made between a conventional engine and a geared

turbofan and it was found that the nacelle drags accounts for about 3% and 4% of net

thrust respectively.61
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2.3 Thrust and drag bookkeeping

To separate forces on an aircraft into thrust and drag a bookkeeping system must be

used.65 This may be necessary due to the compartmentalisation of an aircraft design,

where engine and airframe design are carried out quasi-independently. This segregation

can arise with separate airframe and engine manufacturers or with distinct design teams

within the same company. In both cases a robust thrust and drag bookkeeping is re-

quired. Interfaces between design team responsibilities must be explicit.14 The accounting

system must facilitate the comparison of different measurement and estimation techniques

allowing actual performance to be compared to estimated performance66 The fidelity and

practicalities of the estimation method, either numerical or experimental, influences the

choice of thrust drag interfaces. The bookkeeping process must also be consistent across

different aircraft-engine configurations so that interference drag can be calculated.51

The industry standard for thrust and drag bookkeeping has been set out in a number of

guides.4,14,66 The most comprehensive reference on this topic was the result of a study set

up in 1971 by Dr. J. Seddon.14 This document sets out a thrust and drag bookkeeping

system and different decompositions of net propulsive force (NPF) based on differing thrust

and drag interface choices.

2.4 Drag extraction methodology

To understand engine installation effects, it is necessary to be able to quantify the effects

on the parameters of interest. In conjunction with a clear and robust thrust and drag

accounting system a reliable method to extract lift and drag forces must be employed. A

brief review of drag extraction theory is presented in this section..

The “mid-field” drag extraction method was proposed by Van der Vooren and Slooff67 and

developed by Destarac and Tognaccini68. A summary of the method is given by Vos et
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al..69 This approach relies on the use of cut-off constants to define viscous and wave drag

components. There is no consensus in the literature on the exact value that these sensors

should take. A previous study50 investigating installation effects for a wing-body-nacelle

type configuration found that reasonable agreement could be found with experimental

data by tuning these cut-off sensors. However, for different configurations different cut-off

sensors were required for reasonable experimental agreement. For this reason this method

was deemed not robust or reliable enough for the current research.

Drag can be found by comparing the fluid momentum ahead of the body with the mo-

mentum downstream of the body.28 This approach is suited to experimental work where a

pitot-static rake can be used to measure local static and total pressures. This approach is

discussed in more detail in Appendix B. In CFD calculations two implementations of this

approach can be employed. The outer edge of the wake can be defined by a percentage of

total head loss. This is the approach commonly utilised in experimental programs.

Determination of the force on a body by the integration of pressure and shear forces which

act upon it is known as the “Near-Field Method”.70 However forces calculated with the

near-field method from a CFD calculated flow field can be inaccurate. This can be due to

numerical diffusion and discretisation error.70 16,49–52,55,56,59–61,71





Chapter 3

Performance modelling

The overall research aim is to develop a preliminary design framework for the assessment

of powerplant aerodynamic installation effects. This framework will be used to assess the

impact of nacelle size, geometry and installation on mission performance. A Propulsion

System Integration Modelling (PSIMOD) framework has been developed. PSIMOD cou-

ples Cranfield University’s in house engine (Turbomatch10) and aircraft (Hermes11,12) per-

formance codes with a nacelle drag prediction model based on ESDU 8102413. The ESDU

drag prediction method is used to predict nacelle drag as a function of flight Reynolds

number, Mach number, nacelle shape and intake MFCR. Corrections are then applied to

this drag prediction to take into account nacelle local upflow effects and nacelle and propul-

sion system integration effects based on CFD simulations. This nacelle drag is integrated

within PSIMOD in a drag build up method at each point in the flight. The development

and operation of this framework will now be discussed.

43
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3.1 Baseline method

HERMES V5B12 is used as the baseline code. This aircraft aerodynamic and perfor-

mance model can be used in conjunction with Turbomatch,10 an engine simulation code.

Typical inputs include aircraft and mission specifications as well as engine specifications

(Figure 3.1). The code then outputs predicted performance of the aircraft and engine

throughout the whole mission and in each segment of the mission. Hermes V5B can be

run in two modes, starting with fixed fuel to calculate the maximum range and fixed range

to calculate the fuel required. However neither of these are suited to the comparison of

aircraft performance when different nacelle drag calculations are implemented. Of the

two, the fixed range to calculate the fuel required is most suited to this task. This mode

starts with a guess for fuel required, flies the mission, calculates remaining fuel and uses

this as an iteration variable to converge on a flight solution where all fuel is consumed.

When different nacelle drag calculation methods are implemented the aircraft flies with

different drag and hence different fuel burn. This results in different take off weights for

different nacelle drag calculation methods which does not allow direct comparisons to be

made between methods. It was for this reason that a third mode was implemented. This

mode allows for both fixed fuel and range allowing a clearer comparison of nacelle drag

calculation methods and their effects to be made. This however is not a final solution

as the same aircraft model flying in this mode but with different nacelle drag calculation

methods will fly slightly different trajectories. For example the aircraft model with less

drag will climb and reach its cruise altitude quicker. This results in it spending less time

in climb and possibly, depending on the descent spending more time in cruise where the

required thrust will be different. This leads to a difference in overall fuel burn and as

such not all differences in fuel burn can be solely attributed to the different nacelle drag

calculation method used.

The solution for this is to set fixed trajectory (Mode 4). This fixed trajectory would define,

distance, altitude, velocity, acceleration, time and flight path angle at each point in the
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Figure 3.1: Overview of the baseline code12

mission. The point mass model outlined below, comprising six equations is commonly

used to model aircraft dynamic behaviour (Equation 3.1)72.
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T−D
m − g sin γair,ang


(3.1)

Where:

x, y and H are the coordinates of the aircraft centre of gravity in the Earth Axes (3.2),

φair,ang, χair,ang and γair,ang are the bank, heading and flight path angles respectively

defined with the same reference axes(3.2),



46 Chapter 3 Performance modelling

T and D are respectively the thrust and drag of the aircraft(3.2),

g is acceleration due to gravity,

V is the ground speed velocity (V =
√
ẋ2 + ẏ2 + ż2).

Figure 3.2: Point mass model angle definitions

HERMES V5B works in the cruise phase by calculating the required thrust then looking up

the engine performance data provided by Turbomatch10 and interpolating for the required

engine performance parameters.12 Taking the last equation from Equation set 3.1 and

rearranging for thrust results in Equation 3.2.

T = mV̇ +mg sin γ +D (3.2)

All terms in Equation 3.2 are provided by the fixed trajectory except for thrust and drag.

HERMES V5B12 can then calculate drag allowing to then calculate the required thrust.

If two identical aircraft models, with different engine installations, are then flown in this
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mode their trajectories will be identical in time and space (if it is physically possible for

them to do so). Effectively the thrust setting will be increased to overcome any increased

drag and vice versa. This mode allows the most direct comparison of different nacelle drag

calculation methods, however it is not the most realistic as it is not necessarily what a real

aircraft would do. For situations where more realism is required Mode 3 (fixed fuel and

range) is more appropriate.

3.1.1 Description of baseline code

3.1.1.1 Hermes-Turbomatch interaction

Hermes V5B12 requires engine performance data. In this case this data is generated

by Turbomatch.10 The user must prepare two files for Tmatch-CallsV3.12 The first file

is an engine design point file which contains the design point of the engine and some

off-design points if required (e.g. engine degradation). The second file required is the

geometry, mission and engine specification file. This file acts as the main input file for both

TMatchCallsV3 and HermesV5B. When all the input files are prepared TMatchCalls12

creates the final off-design input file which is passed to Turbomatch. The Turbomatch

results are then processed by TMatchCallsV3 and an engine performance data required for

Hermes V5B is extracted and formatted into an engine performance data file (Figure 3.3).

3.1.1.2 Hermes V5B input files

The main input file for Hermes V5B is GeomMissionEngineSpec.txt. Divided into several

parts this file defines the geometry and configuration of the aircraft and definitions for all

flight phases.

The first section in the specification file defines the aircraft geometry and high lift sys-

tems. This is followed by a section defining the mission and weight breakdown of the
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Figure 3.3: Operating procedure for TMatchCallsV312

aircraft. Then the flight profile is defined in three sections, the cruise climb and descent

phases (Figures 3.4, 3.5 and 3.6). Multiple cruise altitudes can be specified to create

a stepped cruise profile. Hermes V5B then automatically selects the altitude with the

highest aerodynamic efficiency.

The climb phase is split into segments. For each segment the user must specify the

altitude, temperature deviation from ISA, the equivalent airspeed and the power setting

of the engine.

The descent phase is defined identically to the climb phase except that the altitude of each

segment is calculated by the code. This is because the last cruise altitude is not known
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Figure 3.4: Cruise specifications in GeomMissionEngineSpec.txt

before the calculation if the user has specified multiple cruise altitudes.

Figure 3.5: Climb specifications in GeomMissionEngineSpec.txt

3.1.1.3 HERMES V5B output files

Hermes V5B12 outputs three files, a log file and aircraft and engine performance files.
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Figure 3.6: Descent specifications in GeomMissionEngineSpec.txt

Engine performance output file

The engine performance file contains engine performance data throughout mission. This

file contains the operating conditions of the engine (altitude, temperature deviation and

Mach number) as well as thrust and additional engine performance data. Specific fuel con-

sumption and temperature, pressure and mass flow at various engine stations are included

in this data.

Aircraft performance output file

The aircraft performance file contains performance information for the whole flight and

for each segment. It describes the performance of the integrated aircraft-engine. For each

segment parameters such as distance, time, aerodynamic performance and fuel consumed

are output. The complete mission is described in terms total fuel consumption, distance

covered and flight duration.
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3.1.1.4 Description of HERMES V5B nacelle drag calculation

The nacelle drag calculation utilised in HERMES V5B12 is a simple equivalent flat plate

skin friction estimate. Profile drag and interference drag are accounted for using a form

factor. Flat-plate skin friction depends on the type of flow over the surface, laminar or

turbulent. In HERMES V5B a turbulent flow assumption has been made. As such the

flat plate skin friction coefficient is:

Cfn =
0.455

log10ReLnac(1 + 0.14M2)0.65
(3.3)

Where:

Ren is the Reynolds number based on overall nacelle length as given in Equation 3.4

ReLnac =
ULnac
ν∞

(3.4)

Nacelle drag is then given by:

Dnac = CfnFn(Swet) (3.5)

Where:

Swet is the nacelle wetted area and

Fn is the form factor
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3.2 ESDU 810024 drag estimation method

As part of this research the skin friction drag estimate used by HERMES needed to

be updated. It was decided base the replacement module on an ESDU drag estimation

methodology13 which will now be discussed.

3.2.1 The ESDU drag calculation method

ESDU 81024 is a procedure for estimating the drag of axisymmetric cowls with sharp

trailing-edges at zero incidence and at subsonic free-stream Mach numbers13. The nacelle

geometry is separated into three sections a forebody, cylindrical midbody and afterbody,

however a midbody is not essential (Figure 3.7). The application procedure is outlined

in Figure 3.8. The method is based on series of nacelle windtunnel experiments28,73–85

using empirical form factors to estimate profile spillage and wave drag.

3.2.2 The limitations of the ESDU drag calculation method

ESDU 81024 is limited to axisymmetric nacelles at zero incidence. This situation however

is very rare49. The Reynolds number range is limited to 106 < ReDmax/Lnac < 3 × 106.

When the initial forebody radius is different to that of the equivalent NACA-1 series

forebody the method is restricted to a maximum Mach number of 0.6.



Chapter 3 Performance modelling 53

Figure 3.7: ESDU definition of nacelle geometry13

3.2.3 What does the ESDU method calculate?

The ESDU drag estimation method13 complies with the thrust and drag accounting sys-

tem used across this project. The method makes the assumption that the jet efflux is

pressure matched and as such the post-exit streamtube force is zero. Drag calculated us-

ing this method therefore comprises the pre-entry streamtube force and the profile drag on

the nacelle surface bounded the pre-entry streamtube and the nacelle trailing edge. This
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Figure 3.8: ESDU 81024 application procedure13

neglection of the post-exit streamtube force is common practice in experimental investiga-

tions due to the difficulty in its quantification caused by its entrainment by the external

flow. In practice the post-exit streamtube force is not usually equal to zero.
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3.2.4 Validation and accuracy of the ESDU drag calculation method

“ESDU 81024 Drag of axisymmetric cowls at zero incidence for subsonic Mach numbers”13

is the open literature standard for the calculation of nacelle drag at zero incidence.71

It has been used extensively as part of engine performance analysis assessments.59–61

Previously it has been incorporated into “in-house” codes and used to evaluate optimum

engine bypass ratios59 and the impact of engine aerodynamic losses on overall mission

performance.60 Similarly it has been used as a standalone tool in a study which evaluated

the characteristics of a general turbofan engine and its integration in a flying-wing aircraft

conceptual design.61 The ESDU 81024 method nacelle drag estimation approach has also

been used to calculate nacelle profile drag in a substantial aircraft-engine conceptual design

study.55 Another study used it as a tool against which to assess the accuracy of CFD

estimations of nacelle drag.49

There is no single figure for the accuracy of nacelle drag coefficients estimated using the

ESDU 81024 method because of the differing characteristics of the various drag compo-

nents. Profile drag predictions are estimated to be accurate to within approximately 8%.

Spillage drag estimations have an error figure of 25% while wave drag has an error figure

of 20%.13 To assess the accuracy of the ESDU nacelle drag prediction method as it is

applied within the PSIMOD frame a comparison has been made with experimental data

(Figure 3.9). As discussed in § 2.1.1.1 experiments have been carried out at which focus on

flow development over the nacelle exterior flow.28 Tests were carried out at Mach numbers

ranging from 0.4 to 0.95 to capture both subsonic and transonic flow regimes. To test

the ability of the ESDU method13 to capture the drag rise characteristics of a nacelle,

variation of drag calculated with Mach number, at a MFCR=0.7, has been compared to

experimental data.28 Data is presented in terms of aircraft drag counts calculated using

the CRM nacelle and wing areas to put the accuracy of the predicted drag in context.

The maximum difference occurred at MFCR=0.7 where nacelle drag was over-predicted
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by the ESDU method by 0.8 aircraft drag counts. On average the difference between the

empirical method and the experimental results was 0.5 aircraft drag counts.
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Figure 3.9: Variation of drag calculated by the ESDU method13 with Mach number
for the ARA Cowl 1 compared to experimental data28. Aircraft drag counts calculated
using the CRM nacelle and wing areas. Variation of CD,nacmax with Mach number at

MFCR=0.7

3.3 PSIMOD

3.3.1 Nacelle drag prediction

PSIMOD integrates the ESDU method13 into HERMES V5B’s architecture.12 This is

achieved by replacing the nacelle drag module in the baseline code (Figure 3.10) with a

modified nacelle drag module (Figure 3.11). This alteration means that nacelle drag is now

a function of engine geometry, flight conditions and mass flow capture ratio (MFCR). This

dependency of drag on MFCR introduces an added complexity. Nacelle drag is dependent
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on engine mass flow, which is dependent on thrust, but the assumption is that thrust is

equal to drag in the cruise condition. This complexity is overcome by an iteration carried

out on thrust. An initial guess is made for thrust. The MFCR associated with this thrust

and the current flight conditions is calculated. Drag is then calculated using this MFCR.

Thrust is then set equal to this new drag and used as the second guess. This iteration is

carried out until the thrust guess equals the new drag.

The ESDU method is only available in a compiled executable which is controlled with an

input file. The modified drag module prepares this input file and passes it to the ESDU

executable. The output from the ESDU executable (a text file) is then processed by a Perl

script. This script extracts the required drag coefficient from the text file and formats it

into a format readable by the modified drag module. The rest of the calculation is carried

out identically to the baseline code.

Figure 3.10: Overview of PSIMOD
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Figure 3.11: Overview of the modified nacelle drag module in PSIMOD

3.3.2 Modelling nacelle incidence

Up to this point all nacelle drag prediction methods have neglected the influence of angle

of attack. This section describes a method whereby these effects can be taken into account.

Firstly for clarity, aircraft and engine angle nomenclature will be defined.
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3.3.2.1 Angle definitions

Aircraft angles

The standard definitions of the primary aircraft angles are used. The pitch angle (θ) is

the angle of the thrust vector (and the aircraft longitudinal axis) to the horizontal while

the flight path angle (γ) is the angle of the velocity vector to the horizontal. The angle of

attack (α) is then the difference between these two angles (Figure 3.12).

Figure 3.12: Definition of aircraft angles

Engine angles

The definition of the engine angles used in this report are outlined in Figure 3.13. The

total upflow angle (A) is the angle from the direction of local relative velocity to the nacelle

centreline axis. αw is the wing angle of attack and in this study is assumed to be equal to

the aircraft angle of attack (α). ε denotes the angle of upwash measured from the direction

of local relative velocity. Finally nacelle inclination (γn) is the angle from the wing chord

line to the nacelle longitudinal axis.
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Figure 3.13: Definition of engine angles

3.3.3 Correction for incidence

The effects of nacelle incidence are taken into account through modifications made to the

nacelle drag module. These modifications are outlined in Figure 3.14.

PSIMOD V2 (Figure 3.14) works the same as PSIMOD where nacelle drag is calculated

using the ESDU method. The difference between the codes is that there is then a mod-

ification to this ESDU predicted drag in order to model the effects of angle of attack.

Firstly as HERMES never directly deals in angle of attack, a method had to be developed

to work this out. HERMES calculates aircraft CL so if the relationship between CL and

α can be quantified, α can be found. This relationship was modelled using DATCOM86

(further information can be found in Section 3.3.3.1). Now that α is known the next step

is to translate this into A the total engine upflow angle. As seen in Figure 3.13 this is

the sum of αw and γn. Both αw and γn are known so it is only left to quantify ε. The

relationship between α and ε was found using JAVAFOIL.87 Now the total engine upflow

angle is known. Isolated nacelle CFD studies then give correlations between A and CL

and between A and Cdi. This finally allows the nacelle drag coefficient taking into account

the effects of nacelle incidence to be calculated using Equation 3.6.
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CDeng = CD0eng + (CDieng)(CLeng)
2 (3.6)

Figure 3.14: Overview of PSIMOD V2

3.3.3.1 DATCOM

DATCOM86 is an aircraft design and performance tool based on semi-empirical meth-

ods. It can deal with subsonic, supersonic, hypersonic, transonic flight conditions. It

can model a variety of aircraft configurations including symmetric fuselage, wing, verti-

cal and horizontal tailbconfigurations. Twin vertical tails can also be modelled but for

subsonic speeds only. A large range oateral control surfaces can be modelled. However

no directional control surfaces can be simulated. Ground effect can also be taken into

consideration.
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Basic DATCOM outputs

An extract from a DATCOM86 output file is shown in Figure 3.16. Available parameters

can include aerodynamic force and moment coefficients as well as their derivatives.

Figure 3.15: Nacelle drag module modified to take into account nacelle angle of attack

Figure 3.16: Extract from DATCOM ouptut file
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3.3.3.2 Javafoil

JavaFoil87 is a potential flow solver. It is based on a linear varying vorticity distribution

panel method.87 The tool is limited by the fact that it cannot model flow separation or

laminar separation bubbles. Therefore results are inaccurate for flow-fields which contain

these phenomenon. The boundary layer model used by JAVAFOIL is uncoupled.

Wing section choice

The NASA Common Research Model (CRM34) was chosen as the aircraft from which

to extract a realistic wing section as it is based on a transonic transport configuration

and highly detailed geometry was freely available. The wing taken in-line with engine

centreline (Figure 3.17).

Figure 3.17: Wing section choice

Javafoil results

This wing section was then modelled in JavaFoil87 (example in Figure 3.18). These results

were then imported into Tecplot (example in Figure 3.19). This allowed the velocity vector

at the centre of the engine highlight area to be extracted. This point was defined from the

CRM geometry. This analysis was repeated for a series of αw allowing Upwash angle (ε)

and nacelle up flow angle (A) as a function of wing angle of attack to be found (Figure

3.20).
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Figure 3.18: Example JavaFoil87 flow field

Figure 3.19: Example JavaFoil flow field imported into Tecplot, showing interrogation
point
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Figure 3.20: Upwash angle (ε) and nacelle upflow angle (A) as a function of wing angle
of attack

3.3.4 Correction for installation effects

Increasing the by-pass ratio (BPR) of engines is key to improving their propulsive effi-

ciency. This leads to larger diameter nacelles which are expected to have a stronger effect

on engine-airframe integration. There is a risk that performance gains from increased

BPR could be lost due to this interference. It is therefore essential that these effects be

quantified. A module is integrated into the HERMES architecture to take these effects

into account. An overview of this architecture is provided in Figure 3.21. Nacelle drag is

now a function of engine geometry, flight conditions, MFCR, αw and installation location.

The installation drag module takes the form of a series of correlations extracted from CFD

work.
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Figure 3.21: The integration of a nacelle interference module into the HERMES archi-
tecture



Chapter 4

Numerical Methodology

A short description of the numerical methodologies employed in this research will now be

discussed. Section 4.2 to 4.4 discuss CFD related methodologies. Subsequently nacelle

geometry generation (4.5) and drag extraction (4.6.1) methodologies are described.

4.1 Meshing approach

All meshes used in this thesis were created with the commercial meshing software ICEM

CFD.88 The grid structure is of a multi-block structured type. The grids consist exclusively

of hexahedrons. For the isolated through ow nacelles an o-grid surrounds the nacelle.

When the nacelle is powered or is mounted on a sting a c-grid structure was used. The

first cell height was set to ensure a Y+ < 1. Further details of the gridding approach are

given for each configuration simulated in Chapters 5 and 7.

67
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4.2 Solver

CFX89 uses an unstructured finite-element-based volume method using shape functions

to describe a variable changes across each element. All solution variables are stored at the

nodes. A control volume is constructed around each mesh node. Mass and momentum

are conserved over each control volume.90 The rationale behind CFX as the flow solver

of choice and a summary of some problems encountered and their solutions is provided in

Appendix C.

4.3 Turbulence model

4.3.1 Shear-stress transport model

The shear-stress k − ω turbulence model (SST) was developed in 1994.91 The SST model

combines two other turbulence models: the k − ε model and the k − ω model. Flowfields

which feature regions of moderate adverse pressure gradients close to solid surfaces are

better modelled with the k−ω model as opposed to the k− ε. However of the two models,

the k − ε turbulence model better approximates the development of turbulent boundary

layers up to the point of separation. These two turbulence models are blended together

in the SST model. In the vicinity of solid surfaces k − ω is used while away from solid

surfaces the k − ε is employed.91 This ensures that the SST model is appropriate for a

wide range of flow problems including flowfields which feature pressure gradient induced

flow separations and full aircraft simulations.

4.4 Error and uncertainty in CFD calculations

In the context of CFD calculations uncertainty is defined as inadequacies in the calcula-

tion due to a lack of knowledge.92 All other calculation deficiencies are termed errors.92
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Common CFD uncertainties can include geometrical inaccuracies due either to simplifica-

tion or a lack of knowledge. Uncertainties in flow modelling can arise from simplifications

such as a steady flow assumption or turbulence modelling. Errors associated with CFD

calculations can include numerical errors and human error.92 The treatment of iterative

convergence and grid convergence, which are both sources of numerical error is discussed

in §4.4.1 and §4.4.2. For the CFD calculations carried out in this thesis all other errors

and uncertainties were considered to be negligible.

4.4.1 Iterative convergence

Levels of iterative convergence were assessed throughout this work by monitoring the

standard CFX89 residuals and the forces acting upon all walls throughout the calculation.

4.4.2 Grid convergence

For each CFD configuration mesh independence was assesed by a grid convergence study.

The methodology used in these studies is presented below. Grid convergence study results

are discussed in 5.2.5 and 7.4.

The normal and axial forces acting upon all surfaces (CZ and CX) were the parameters

selected for these studies. For every grid convergence study a grid refinement ratio (r,

Equation 4.1) of 2 was used.

r =
Ng=1

Ng=2
(4.1)

Where N is the number of cells in a mesh and g is the level of refinement.

pcon =
ln
(
CX,g=4−CX,g=2

CX,g=2−CX,g=1

)
ln r

(4.2)
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The magnitude of the force coefficients for a mesh with infinitesimal spacing (g=0) were

calculated using Richardsons Extrapolation.93

CX,g=0
∼= CX,g=1 +

CX,g=1 − CX,g=2

rpcon − 1
(4.3)

The Grid Convergence Index (GCI) could then be calculated for each force coefficient using

Equation 4.4.93 As the mesh was refined three times a factor of safety (Fs) was applied.93

GCIg=1,2 =
Fs

∣∣∣CX,g=1−CX,g=2

CX,g=1

∣∣∣
rpcon − 1

(4.4)

GCIg=2,4 =
Fs

∣∣∣CX,g=2−CX,g=4

CX,g=2

∣∣∣
rpcon − 1

(4.5)

If the calculated GCIs satisfy Equation 4.6 then the solutions can be deemed to lie in the

asymptotic range.

AR ∼=
GCIg=2,4

GCIg=1,2rpcon
∼= 1 (4.6)

4.5 Nacelle geometry generation

One of the main tasks of this research was the assessment of nacelle installation effects

with changes in nacelle size. To achieve this task it was essential to be able to generate

representative nacelle geometries. An Excel based tool was developed by the Author during

this research based on nacelle design rules from the open-source literature.94 Given some

basic information about the engine cycle and some engine hard-points, a representative

spinner, intake and fan cowl afterbody is constructed. This tool is discussed in § 4.5.1.

This Excel based tool was used as a proof of concept in the initial stages of this project.

The tool has been further developed by a fellow PhD student into Cranfield University’s

Geometric Engine Modeller (GEM)95. This update allows allows the generation of profiles



Chapter 4 Numerical Methodology 71

which are more representative of modern transonic nacelles using Class Shape Transfor-

mation (CST) curves. CST parameteristaion will be discussed in § 4.5.2. GEM has been

used to create the parametric nacelle geometries used in Chapters 5 and 7.

4.5.1 Excel based nacelle geometry definition tool

An engine conceptual design study was carried out on a blended wing body (BWB) cargo

freighter (Figure 4.1) by NASA96. Two configurations were designed, a podded design

(N2A) and an embedded design (N2B). The N2A was proposed for a 2020 timeframe as

its design was considered lower risk. This engine has been chosen for simulation as it is

representative of a realistic future design. The general cycle characteristics and internal

geometric design (Figure 4.2) has been completed96. However the nacelle shape has not

been fully designed. The following sections shows how the nacelle was designed.

Figure 4.1: The NASA N2A BWB aircraft with podded nacelles96

4.5.1.1 Nacelle geometry generation

Initial calculations were performed in Microsoft Excel. Parametric equations were used

to define the geometry completely to allow changes to be easily made. These parametric

equations were then used to model the engine in Pro Engineer97 (Figure 4.5). This model

was also completely defined by parametric equations so if a parameter such as nacelle

maximum diameter was changed the whole model would be automatically updated. This
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Figure 4.2: FPR 1.6 podded engine internal layout (dimensions in inches)96

Pro Engineer model was then exported as a parasolid to ICEM CFD88 were the geometry

could be meshed. This workflow pattern is illustrated in Figure 4.3. The nacelle geometry

is divided into sections as defined in Figure 4.4. The fan front face, bypass duct inlet,

core duct inlet and plug are constructed from straight lines and are completely defined

by Table 4.1. The methods by which the remaining nacelle geometry were defined are

described in the following sections.

Engine points Laxial Lradial Units

Fan Front Face Inner 1.3240 0.4200 m
Fan Front Face Outer 1.3240 1.3510 m

Highlight Radius 0.0000 1.3610 m
Nacelle Max Radius 1.7940 1.6680 m

Nacelle Trailing Edge 4.8607 1.3498 m
Fan Back Face Inner 3.6773 0.7678 m
Fan Back Face Outer 3.6773 1.3502 m

Hot Afterbody Trailing Edge 6.0369 0.6329 m
Core Duct Inlet Inner 5.3791 0.4584 m
Core Duct Inlet Outer 5.3791 0.7091 m

Engine length 7.3653 0.0000 m

Table 4.1: Engine geometrical constraints
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Figure 4.3: FPR 1.6 podded engine geometry generation workflow

Figure 4.4: Nacelle sections
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Figure 4.5: NASA 2A podded engine modeled in Pro Engineer97

4.5.1.2 Inlet diffuser, by-pass duct and core duct

The Inlet diffuser, by-pass duct and core duct are defined by a fifth order polynomial

(Equation 4.7). This equation is usually used to minimise total pressure losses in wind-

tunnel contraction sections.

h = (−10ψ3 + 15ψ4 − 6ψ6)(hi − ho) + hi

ψ = x/L

(4.7)

Where L is the total length of the converging section, h is the distance from the centerline

at position x and hi and hi are the distances from the centerline at the inlet and outlet

respectively98.
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4.5.1.3 Nacelle forebody

The nacelle forebody was modeled using a NACA-1 series forebody. Specifically the smooth

approximation to the profile was utilised99 as described in Equation 4.8.

z

Lf,max
= cnaca

(
x

Lf

)1/2

[
1

cnaca
−
[(

x

Lf
−
)

1

2cnaca

]
+

[(
1− 1.5

cnaca

)(
x

Lf
− 1

)1/2
]

]

+

[
7∑

n=0

(−1)n+1An

(
x

Lf

)n]
(
x
Lf

)3/2 (
1− x

Lf

)2

(
bnaca + x

Lf

)2


(4.8)

cnaca 1.044988
bnaca 0.05
An0 0.009466
An1 0.378874
An2 1.709298
An3 7.731339
An4 22.79108
An5 40.64622
An6 38.05716
An7 14.23322

Table 4.2: NACA 1-Series Smooth Approximation Coefficients

4.5.1.4 Nacelle and core afterbodies, spinner and inlet

The spinner and nacelle and core afterbodies were defined as circular arcs while the inlet

was defined as an ellipse with a 2:1 aspect ratio.
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4.5.2 CST approach

Class Shape Transformation (CST) parameterisation100 represents a geometry by the prod-

uct of a class function, C(ψ), and a shape function, S(ψ). The start and end points of all

curves constructed with a class and shape function have equal ordinates. An additional

term, (ψ∆ξte), is included to modify the end-point’s ordinate100:

ξ(ψ) = S(ψ)C(ψ) + ψ∆ξte ; ξ =
y

c
, ψ =

x

c
(4.9)

The basic profile is defined by the class function. One set of class functions which describes

basic external aerodynamic shapes through different exponent combinations takes the

form100:

CN1
N2

(ψ) = ψN1 [1− ψ]N2 for 0 ≤ ψ ≤ 1 (4.10)

Equation 4.10 can be used to describe bi-convex (C1.0
1.0 ), ellipitic (C0.5

0.5 ) and round-nosed

(C1.0
0.5 ) airfoil shapes as well as other common external aerodynamic shapes such as a Sears-

Haack body (C0.75
0.75 ) or a cone (C1.0

0.+). The class function is modified by the shape function.

Bernstein polynomials (Eqn. 4.11) are commonly employed as the shape function100–102.

BP (ψ) =
N∑
i=0

[
Ki,n ·

(
ψi · (1− ψ)n−1

)]
; Ki,n =

n!

i!(n− 1)!
(4.11)

They are stable, robust and importantly form a partition of unity, i.e., the n+ 1 Bernstein

polynomials of order n sum to one. The shape function can then be manipulated by the

variation of Bernstein polynomial coefficients (Eqn. 4.12) which in turn modifies the final

profile (Figures 4.6 and 4.7).

S(ψ) =
N∑
i=0

[
bpi ·Ki,n ·

(
ψi · (1− ψ)n−1

)]
(4.12)

The mathematically smooth behaviour of Bernstein polynomial shape functions and their

inherent curvature continuity make this system ideal for aerodynamic optimisation work.
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Figure 4.6: Perturbation of the shape function by variation of the Bernstein polynomial
weighting coefficients
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Figure 4.7: Geometry formed using a unit shape function and a shape function per-
turbed by bernstein polynomial weighting coefficients (Figure 4.6)

However the design relies on the manipulation of the Bernstein polynomial weighting

coefficients which are not aerodynamically intuitive. To allow a design engineer to explore

the design space and set up constraints for optimisation process the design parameters

need to be physically intuitive. The Bernstein polynomial coefficients can be analytically

calculated from intuitive variables through the construction of a transformation matrix.
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4.6 Drag extraction

The importance of a clear and robust thrust and drag bookkeeping methodology has been

highlighted in § 2.3. The forces acting on an uninstalled nacelle assuming 1-dimensional

flow are shown in Figure 4.8. Here rearwards forces on a streamtube or solid surface are

denoted by φ while gauge stream forces are represented by FG. The net propulsive fore

(NPF) is the sum of all forces acting upon it (Equation 4.13)14. A standard convention

for air breathing engines is that thrust is equal to the sum of the forces imparted by the

flow internal to the engine.66 The sum of forces imparted by the external forces can be

resolved into lift and drag. An equation for nacelle drag (Equation 4.14) be defined by

applying this convention to Figure 4.8.

Figure 4.8: Forces acting on a single stream nacelle14

NPF = FG9 − FG1 + φnac (4.13)

Dnac = φpre + φnac + φpost (4.14)

The calculation of the post exit streamtube force φpost is non-trivial due to mixing and

momentum transfer between the exhausted and external flow. If downstream infinity is

chosen as a bookkeeping interface φpost can be estimated using ideal flow assumptions.103
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Another approach is to employ a datum nozzle for which φpost = 0.13 In reality this

condition is impossible. For this condition to exist the nozzle environmental pressure

and freestream pressure would have to be equal. In CFD simulations this condition can

be approximated by minimising φpost. This is achieved by setting the nozzle exit total

conditions equal to the freestream values and the nozzle internal walls to free slip walls.

This approach is compatible with the ESDU nacelle drag estimation methodology.13

Initially the wake integral method was employed to calculate drag. In testing this approach

it was found that calculated drag values were highly dependent on the definition of the

wake outer boundary. To mitigate this CFD domain boundary was used as the integration

region extreme. However in assessing this approach it was found to be highly sensitive to

minor numerical fluctuations in the flowfield. This approach was deemed not robust or

reliable enough for the current research.

It was then decided that the near-field drag extraction method should be employed. But

this approach is not suited to CFD data as the calculation of the pre-entry force φpre can

also be non-trivial, especially at high angles of attack or with the presence of intake flow

separation. To ensure a robust and reliable drag calculation a new approach has been

developed as part of this PhD thesis. This method, known as the Modified Near-field

method is expounded upon in § 4.6.1.

4.6.1 Modified near-field drag extraction method

In line with the standard thrust and drag bookkeeping definition,14 nacelle drag is given

by the summation of the forces on the pre-entry and post-exit streamtubes and the nacelle

surface wetted by external flow (Equation 4.15 and Figure 4.9).

Dnacelle = φpre + φnac + φpost (4.15)
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Figure 4.9: Decomposition of the Nearfield Method forces acting upon the pre-entry
and post-exit streamtubes and the nacelle. Forces imparted by the external flow on the
streamtubes and the nacelle are denoted by Φ, while Θ represents forces imparted by the
internal flow. FG designates the stream force at a station within the streamtube. Station
1 is the highlight plane and Station 9 is the nacelle trailing edge plane. The upstream and
downstream planes are denoted by Station 0 and Station 00 respectively. The stagnation
point on the nacelle lip is marked by the point “sp” while the trailing edge is identified

by point “’te”.

The ESDU nacelle drag method assumes that post-exit forces are equal to zero.13 All CFD

calculation carried throughout this body of research set the engine nozzle boundary condi-

tions to minimise any post-exit force to be compatible with the ESDU method. To do this

the nozzle total temperature and total pressure were set to be equal to freestream values.

Therefore in the context of this work Equation 4.15 can be restated as Equation 4.16.

Dnacelle = φpre + φnac (4.16)

Directly evaluating φpre and φnac involves extracting the stagnation line on the nacelle and

separating surfaces into those inside and outside of the streamtube. While this method is

practical for simple axisymmetric cases, at zero-incidence it becomes non-trivial at more

complicated conditions. It is therefore desirable to find a method which allows drag to be

calculated easily for all conditions. The force which acts upon the nacelle from the fan

face (ff) to the trailing edge (te) can be calculated by integrating the pressure and viscous

forces that act upon it (Equation 4.17 and Figure 4.10).

θnac + Φnac =

∫ te

ff
(P − P∞) sin θsurf∂S +

∫ te

ff
τw cos θsurf∂S (4.17)
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The forces which act upon a surface in a real flow are illustrated in Figure 4.12. These

FG00

teffsp

92

-Φpre

Φpost

Φnac

-θpre

0 00

FG9FG0 FG2

θnac

Figure 4.10: Decomposition of the “Modified Nearfield Method” forces acting upon the
pre-entry and post-exit streamtubes and the nacelle. Forces imparted by the external
flow on the streamtubes and the nacelle are denoted by Φ, while Θ represents forces
imparted by the internal flow. FG designates the stream force at a station within the
streamtube. Station 2 is the fan face plane and Station 9 is the nacelle trailing edge
plane. The upstream and downstream planes are denoted by Station 0 and Station 00.
The juncture between the intake and the fan face, the stagnation point on the nacelle lip

and the trailing edge are identified by point “’ff”, “sp” and “te” respectively.

elemental forces can be resolved into the axial direction to give the rearwards force acting

upon it (Equation 4.18 and Figure 4.11).

∂Φ = (P sin θsurf + τw cos θsurf )∂A (4.18)

When Newton’s Second law of motion is applied to the volume of fluid within a streamtube

dS

P

τw

θsurf

dS
dAx

θsurf

dAz
x

z

Figure 4.11: The pressure (P ) and viscous (τw) forces acting upon a surface in a real flow
flow and the decomposition of the elemental surface area (∂S) into the axial (x-direction)

and normal (z-direction) projected areas (∂Ax and ∂Az).

it can be shown that the total force on the streamtube surface is equal to the time rate of

change of linear momentum.14 Applied to the volume of fluid within the intake streamtube

from upstream infinity (Station 0) to the fan face (Station 2) this results in Equation 4.19.

Addition of Equations 4.17 and 4.19 gives Dnac (Equation 4.20). This methodology is
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ideal for use with CFD data because all required data can be evaluated from the CFD

domain bounds. However one disadvantage is that the individual terms, φpre and φnac are

inextricable. This “Modified-Nearfield approach”has allowed the development of a robust

methodology to automatically extract nacelle drag from CFD calculations in a manner

compatible with standard thrust and drag accounting methodology.

F2,0 = F2 − F0

= (W2V2 + P2A2)− (W0V0 + P0A0)

= (−Φpre) + Φnacelle

(4.19)

Dnac = θnac + Φnac + F2,0 = Φnac + θpre (4.20)

Thrust and drag accounting methodology is usually only reported for zero degree angle of

attack cases. The modified nearfield method has been extended to allow the extraction

of lift and drag non-zero angles of attack. When an engine is at an incidence of αeng the

normal and axial forces which act upon the nacelle (Figure 4.12) can be resolved into the

lift and drag forces acting upon it with Equations 4.22 and 4.21.

Dnac = Nnac sinαeng +Anac cosαeng (4.21)

Lnac = Nnac cosαeng −Anac sinαeng (4.22)

Equation 4.20 showed that Dnac can be calculated by the addition of the forces acting on

the nacelle surface from the fan face to the trailing edge (θnac+Φnac) and the difference in

the gauge stream forces at Station 2 and Station 0 (F2,0). In the same way the axial force

(Anac) and the normal force (Nnac) which act upon a nacelle at incidence have a surface

force and stream force component (Equations 4.23 and 4.24)

Anac = Asurf +Astream (4.23)
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Figure 4.12: Schematic showing the definitions of nacelle lift, drag, normal and axial
forces for an engine at an incidence of αeng.

Nnac = Nsurf +Nstream (4.24)

The pressure and viscous forces acting upon the nacelle surface from the fan face and the

highlight in the axial and normal directions are given by Equation 4.25 and Equation 4.26

respectively.

Asurf =

∫ te

ff
(P − P∞) sin θsurf∂S +

∫ te

ff
τw cos θsurf∂S (4.25)

Nsurf =

∫ te

ff
(P − P∞) cos θsurf∂S +

∫ te

ff
τw sin θsurf∂S (4.26)

Equation 4.19 can be resolved into normal and axial forces when applied to a nacelle at

incidence (Equations 4.27 and 4.28).

Astream =

∫ rfan

0
[(VxρV − V∞) + (P − P∞)] ∂Ax (4.27)

Nstream =

∫ rfan

0
[(VzρV − V∞) + (P − P∞)] ∂Az (4.28)
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Equations 4.21 and 4.22 can then be expanded with Equations 4.25 to 4.28 to give the

“Modified Nearfield Method”definitions of nacelle drag and lift applied to a nacelle at

incidence (Equations 4.29 and 4.30).

Lnac =

[∫ te

ff
(P − P∞) cos θsurf∂S +

∫ te

ff
τw sin θsurf∂S

+

∫ rfan

0
[(VzρV − V∞) + (P − P∞)] ∂Az

]
cosαeng

−

[∫ te

ff
(P − P∞) sin θsurf∂S +

∫ te

ff
τw cos θsurf∂S

+

∫ rfan

0
[(VxρV − V∞) + (P − P∞)] ∂Ax

]
sinαeng

(4.29)

Dnac =

[∫ te

ff
(P − P∞) cos θsurf∂S +

∫ te

ff
τw sin θsurf∂S

+

∫ rfan

0
[(VzρV − V∞) + (P − P∞)] ∂Az

]
sinαeng

+

[∫ te

ff
(P − P∞) sin θsurf∂S +

∫ te

ff
τw cos θsurf∂S

+

∫ rfan

0
[(VxρV − V∞) + (P − P∞)] ∂Ax

]
cosαeng

(4.30)



Chapter 5

Isolated nacelles numerical

campaign

This chapter describes the isolated nacelle CFD calculations that were performed to gener-

ate correlations to correct the ESDU nacelle drag prediction method13 for incidence effects.

To validate the CFD method comparison cases were also performed. These validation cases

are discussed first.

5.1 Validation cases

The 1968-73 ARA nacelle test program28 has been chosen to assess the numerical method.

This allows comparison to measured external drag in terms of Mach number and MFCR.

5.1.1 Test matrices

The chosen simulations are shown in Table 5.1. ARA nacelle 128 has been chosen. Mach

0.4 and Mach 0.85 were chosen to simulate both fully subsonic and transonic flow regimes.

85
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Mach 0.85 is also a typical cruise Mach number. For each nacelle grid and domain sensi-

tivity studies were carried out at the MFCR extreme values.

M = 0.40 0.2 ≤MFCR ≤ 1
M = 0.85 0.2 ≤MFCR ≤ 1

MFCR = 0.70 0.7 ≤M ≤ 0.925

Table 5.1: Uninstalled nacelle validation test matrix

5.1.2 Grid and boundary conditions

The axisymmetric nature of the problem meant that it could be simulated by a 2-dimensional

grid with periodic faces. However CFX89 is solely a 3-dimensional solver. This necessi-

tated a quasi-2d approach where a thin, one element thick 3-d grid was used. For this

axisymmetric case a 2◦ wedge was used. The boundary conditions used are illustrated in

Figures 5.1.

Figure 5.1: ARA boundary conditions showing periodic faces

Freestream conditions were set by the upstream velocity inlet and the MFCR was con-

trolled by the massflow outlet. Values applied at these boundaries are given in Tables D.1,

D.2, D.3 and D.4. An example grid created in ICEM CFD88 is shown in Figure 5.2, which

shows close-up of the airfoil nose.

5.1.3 Solver settings

Simulations were performed as Reynolds-Averaged Navier-Stokes Simulations (RANS)

with the commercial code ANSYS CFX 12.1SP1.89 The Shear Stress Transport model
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Figure 5.2: Close-up of mesh around nacelle nose

with transitional correlations (SST k − ω model) and automatic wall function was im-

plemented. The fluid domain was modeled as a continuous ideal gas. Heat transfer was

simulated by the “Total Energy” model with the viscous work term included. CFX’s “high

resolution” numerical schemes were used for both the turbulence numerics and the advec-

tion scheme. The standard momentum and mass, heat transfer, turbulence and wall scale

residuals were monitored during the calculation. In addition, mass-flow through all inlets

and outlets and forces on all surfaces were monitored to ensure adequate convergence was

reached.

5.1.4 Grid independence study

The initial “coarse” grid consisted of 107,897 elements. This grid was the refined three

times with an approximate refinement factor of two. This resulted in four grids a coarse,

a medium, a fine and an extra-fine grid as outlined in Table 5.2.

Grid # # Elements Description

1 44,359 Coarse
2 89,769 Medium
3 180,328 Fine
4 360,849 Extra-fine

Table 5.2: Grid sizes for ARA nacelles calculations
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As both the viscous and pressure forces are non-monotonic when plotted for Grids 2-4

Richardson’s extrapolation104 could not be used to generate a higher order estimate. In-

stead the level of grid independence was ascertained by looking at the percentage difference

between forces calculated with the extra-fine grid (4) and the fine grid (3). This difference

was 5.6 × 10−4% and 2.5 × 10−2% for the pressure and viscous forces respectively. This

was deemed to be an adequate level of grid independence.
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Figure 5.3: Variation of axial force with grid size for ARA cowl 1

5.1.5 Results

External drag has been calculated by extracting local flow values at the experimental

measurement points and using the same method that would have been used in the exper-

imental tests to calculate drag from these local values. This method is outlined in § 2.4.

The results of this drag extraction are presented in Figure 5.4 and Figure 5.5. Here the ex-

tracted drag is compared to the experimentally measured drag. Good agreement between
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the CFD calculation and experimental values was found. Typical differences between the

experimental and numerical data were of the order of 2 drag counts.
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Figure 5.4: Variation of drag with Mach number and MFCR for the ARA Cowl 1
compared to experimental data28. Aircraft drag counts calculated using the CRM nacelle

and wing areas. Variation of CD,nacmax with MFCR at constant Mach numbers
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Figure 5.5: Variation of drag with Mach number and MFCR for the ARA Cowl 1
compared to experimental data28. Aircraft drag counts calculated using the CRM nacelle

and wing areas. Variation of CD,nacmax with Mach number at MFCR=0.7
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5.2 CRMfit test cases

The simulation of an isolated nacelle at a range of Mach numbers, MFCRs and angles of

attack was motivated by the need to apply corrections to the ESDU 810024 drag estimation

method13 to take into account angle of attack effects. Further CFD studies were then

carried out with this nacelle installed on an aircraft so that installation effects could

be accounted by a further correction to ESDU method. Of the available open source

geometries the NASA Common Research Model (CRM, see §2.1.1.3 for more details) is

the most representative of modern transonic transport aircraft. The CRM nacelle is similar

to that of the GE CF6-80E1 A3 (Table 5.3).

CRM TFN34

subscale full scale Trent 700105 PW 4000105 GE CF6-80E1 A3105

Dfan [m] 0.78 2.878 2.474 2.718 2.896
Leng [m] - - 3.912 4.143 4.267
Ltot [m] 0.154 5.719 7.32 6.17 7.95

Table 5.3: A comparison of the CRM through flow nacelle with nacelles of a similar size

The ESDU method is only applicable to axisymmetric nacelles,13 however the CRM nacelle

is a non-axisymmetric through-flow nacelle. The exhaust diameter of the CRM through

flow nacelle is sized to give the a representative intake MFCR at its design point. This

means that the exhaust diameter is relatively smaller than for a real nacelle. Using NACA

guidelines and the afterbody length, forebody curvature radius and boattail angle the

exhaust diameter was set. These properties and Cranfield University’s GEM tool95 were

then used to create an axisymmetric nacelle based on the CRM nacelle known as the

CRMfit nacelle. The non-dimensional nacelle properties of the CRMfit required by the

ESDU method are provided in Table 5.4.
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5.2.1 Test matrices

To investigate Mach number, MFCR and angle of attack effects on uninstalled engine drag

a series of simulations have been carried out. Mach number was varied from 0.1 to 0.85 to

capture both the incompressible regime and a typical maximum cruise Mach number for

a modern transonic transport aircraft. MFCR capture ratio was varied from 0.25 to 1.5

and the angles of attack varied from 0o to 10o (Table 5.5). This range covers most MFCRs

and aircraft angle of attacks normally seen throughout a flight.

M = 0.10 M = 0.40 M = 0.60 M = 0.85

MFCR
α

0o 5o 10o 0o 5o 10o 0o 5o 10o 0o 5o 10o

0.25 1.1.1 1.1.2 1.1.3 2.1.1 2.1.2 2.1.3 3.1.1 3.1.2 3.1.3 4.1.1 4.1.2 4.1.3
0.50 1.2.1 1.2.2 1.2.3 2.2.1 2.2.2 2.2.3 3.2.1 3.2.2 3.2.3 4.2.1 4.2.2 4.2.3
0.75 1.3.1 1.3.2 1.3.3 2.3.1 2.3.2 2.3.3 3.3.1 3.3.2 3.3.3 4.3.1 4.3.2 4.3.3
1.00 1.4.1 1.4.2 1.4.3 2.4.1 2.4.2 2.4.3 x.x.x x.x.x x.x.x x.x.x x.x.x x.x.x
1.50 1.5.1 1.5.2 1.5.3 x.x.x x.x.x x.x.x x.x.x x.x.x x.x.x x.x.x x.x.x x.x.x

Table 5.5: CRMfit test case matrix

5.2.2 Grid and boundary conditions

At the domain farfield velocity, static temperature and static pressure were specified (Fig-

ure 5.7). The intake MFCR was controlled by the massflow outlet. Exhaust total condi-

tions were set equal to freestream to form a pressure matched nozzle and minimise post

Lf/Lt 0.300
La/Lt 0.600
Lf/Dmax 0.708
La/Dmax 1.417
Di/Dmax 0.723
De/Dmax 0.656
Ai/Ath 1.244

Table 5.4: CRMfit na-
celle non-dimensional pa-

rameters (Figure 5.6)

Figure 5.6: Non-dimensional CRMfit
nacelle parameters (Figure 5.6)
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exit streamtube drag. A grid and domain independence study were carried out which re-

sulted in a fully structured mesh with 4.8× 106 cells (Figure 5.8). To ensure mesh quality

a cell minimum 2x2x2 determinant of 0.62 and maximum cell expansion rate of 1.2 were

maintained.

Figure 5.7: Domain and boundary conditions for the isolated nacelle CFD cases (not
to scale)

Figure 5.8: Mesh for the isolated nacelle CFD cases
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5.2.3 Solver settings

The CFD calculations have been performed using a steady RANS approach and an im-

plicit, nominally second-order compressible flow solver. The calculations were performed

following detailed studies of domain size, grid independence and iterative convergence.

5.2.4 Domain independence study

The CFD domain sensitivity study was carried out using four different domain sizes while

the inner mesh topology was kept constant. The domain diameter (DD) was modified

as a function of the nacelle maximum diameter (Dmax) over a range of 60Dmax ≤ DD ≤

90Dmax. Distances from the nacelle to the far-field were changed by adding external layers

to the smaller domain, with the internal topology unaltered. A domain with DD = 80Dmax

was chosen. For this mesh the absolute difference in calculated CD,nac from a mesh with

DD = 90Dmax was below 0.01%.

5.2.5 Grid independence study

Once the domain size was defined, grid convergence analysis was performed using Richard-

sons extrapolation and Grid Convergence Index (GCI), as suggested by Roache.93 A coarse,

medium and fine grid were produced (Table 5.6). The GCI for nacelle drag for the coarse

and fine meshes are 0.73% and 0.05%, respectively. This meant that the medium grid was

within a band of error, with regards to nacelle drag, greater than 0.05% and below 0.73%

and resulted in a mesh size of 4.8 million elements.

Grid # Elements

Coarse 2.4× 106

Medium 4.8× 106

Fine 9.6× 106

Table 5.6: The size of grids created during the isolated nacelle mesh independence study
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The impact of mesh refinement was seen primarily in subtle changes in the flow physics over

the nacelle forebody. An example of this is given in Figure 5.9 for an isolated nacelle with a

freestream Mach number of 0.8 and a MFCR of 1.0. As the mesh is refined the supersonic

region over the forebody is altered. The intake flow, stagnation point and the shape

of the pre-entry streamline were insensitive to mesh refinement across the investigated

meshes. Prediction of the supersonic region as the flow accelerates around the forebody is

sensitive to the mesh refinement in this region. These changes in velocity distribution and

the corresponding changes in the pressure distribution alter the forebody suction force.

As the stagnation point remained in the same location and the shape of the pre-entry

streamline was unchanged it can be seen that the changes in the calculated nacelle drag

were primarily caused by changes in the forebody suction force.
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(a) Mach number on the symmetry
plane around the intake and forebody
of the coarse, isolated nacelle mesh
(M∞ = 0.8, MFCR = 1.0).

(b) Detail of the coarse, isolated na-
celle mesh (2.4× 106 cells) around the
nacelle intake and forebody.

(c) Mach number on the symmetry
plane around the intake and forebody
of the medium, isolated nacelle mesh
(M∞ = 0.8, MFCR = 1.0).

(d) Detail of the medium, isolated na-
celle mesh (4.8× 106 cells) around the
nacelle intake and forebody.

(e) Mach number on the symmetry
plane around the intake and fore-
body of the fine, isolated nacelle mesh
(M∞ = 0.8, MFCR = 1.0).

(f) Detail of the fine, isolated nacelle
mesh (9.6 × 106 cells) around the na-
celle intake and forebody.

Figure 5.9: The impact of mesh refinement on the Mach number distribution around
the intake and forebody of an isolated nacelle (M∞ = 0.8, MFCR = 1.0).
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5.3 Results and discussion

Changes in CD,nacmax with changes in nacelle total upflow angle were investigated (Figure

5.10). As Mach number was increased the choking MFCR ratio of the nacelle reduced.

This meant that the maximum MFCR investigated for the M=0.4 configurations was 1

while for the M=0.6 and M=0.85 cases the maximum MFCR=0.75. The coefficient of

nacelle drag based on nacelle cross-sectional area.
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Figure 5.10: Variation of nacelle drag with Mach number & MFCR for the CRMfit

The influence of Mach number on the flowfield is illustrated by Figures 5.11 and 5.12.

Between the two lowest Mach numbers, (0.1 and 0.4), at all angle of attacks, (0o, 5o and

10o), little change in the shape of the Mach number and pressure coefficient distributions

occurred. This was to be expected as the M = 0.4 cases are only just into the compressible

regime.
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Figure 5.11: Changes in the distribution of Mach number on the symmetry plane for
an isolated nacelle with changes in freestream Mach number (M) and angle of attack (α).

In all cases the MFCR was set to 0.75.
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AtM = 0.6 and α = 10o, (Config. 2.3.3), flow acceleration around the forebody is sufficient

to generate a small shock with a pre-shock Mach number of 1.33. This can also be seen

in the altered CP distribution in Figure 5.12(c). When the freestream Mach number was

further increased to M = 0.85 supersonic flow around the forebody was present at all

angles of attack with MFCR = 0.75 (Figure 5.11). However for the α = 0o case, (Config.

4.3.1), though a peak Mach number of 1.4 was reached no shock was predicted. This can

be seen in the smooth decay of CP from its maximum value of -0.98 to -0.28 before a small

re-acceleration takes place just forward of the nacelle maximum diameter (Figure 5.12(d)).

When the angle of attack is increased to 5o, (Config. 4.3.2), the peak Mach number

increases to 1.7. The flow the decelerates to a Mach number of 1.2 before a shock is

formed. The additional wave drag caused by this shock increases CD,nacmax by 0.006

(from 0.028 for Config. 4.3.1 to 0.034 for Config. 4.3.2). At 10o, (Config. 4.3.3), flow

acceleration around the forebody results in a stronger shock much closer to the highlight

(pre-shock Mach number of 1.7). As this shock occurs in a region with greater local

curvature the flow is unable to reattach. This strong shock induces a large separation

which extends along the full length of the fan cowl. CD,nacmax increases from 0.034 for

Config. 4.3.2 to 0.060 for Config. 4.3.3 as a result.
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(a) Differences in the distribution of pressure coefficient

(CP ) on the fan cowl centreline for an isolated nacelle

with changes in α, (M=0.1, MFCR=0.75).
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(b) Differences in the distribution of pressure coefficient

(CP ) on the fan cowl centreline for an isolated nacelle

with changes in α, (M=0.4, MFCR=0.75).
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(c) Differences in the distribution of pressure coefficient

(CP ) on the fan cowl centreline for an isolated nacelle

with changes in α, (M=0.6, MFCR=0.75).
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(CP ) on the fan cowl centreline for an isolated nacelle

with changes in α, (M=0.85, MFCR=0.75).

Figure 5.12: Changes in the distribution of pressure coefficient (CP ) on the fan cowl
centreline for an isolated nacelle with changes in freestream Mach number (M) and angle

of attack (α). In all cases the MFCR was set to 0.75.

As expected there was an increase in CD,nacmax as MFCR was reduced. For the M =

0.1 case the ∆CD,nacmax between the MFCR = 0.25 and MFCR = 0.75 cases was

approximately constant at 0.015 for all angles of attack. This is equivalent to 4.4 aircraft

drag counts when non-dimensionalised by the CRM wing reference area. This sensitivity



Chapter 5 Isolated nacelles numerical campaign 101

increased when the freestream Mach number was increased. At M = 0.4, for the MFCR =

0.25 and α = 10o case the combination of flow acceleration due to the low MFCR, angle

of attack and the freestream Mach number led to a shock on the nacelle forebody and a

corresponding increase in nacelle drag. The ∆CD,nacmax between the MFCR = 0.25 and

MFCR = 0.75 cases was 1 aircraft drag counts for α = 0o and α = 5o but rose to to 23

aircraft drag counts for α = 10o.

For larger MFCRs at M=0.4 flow over the forebody lip stayed subsonic. As MFCR de-

creases the projected area of the pre-entry streamtube along the engine axis increases.

This leads to an increase in the rearwards force on the pre-entry streamtube. However as

MFCR and the projected area decreases, flow acceleration around the forebody increases.

This flow acceleration is associated with a reduction in the local static pressure which

manifests itself as an increase in the forebody suction force and a decrease in nacelle drag.

In potential flow changes in the pre-entry force would balance with changes in the nacelle

rearwards force and nacelle drag would be unchanged. However as this is viscous flow this

is not the case due to losses caused by viscous effects such as skin friction and at higher

Mach numbers shock losses. Losses due to viscous effects increase with increases in Mach

number, hence sensitivity to MFCR is increases with increases in Mach number.

Further increases in freestream Mach number continued the trend of decreased MFCR and

increased nacelle total upflow angles to result in increased nacelle drag. At M = 0.85 and

α = 10o (Figure 5.13(a)) a strong shock was present on the forebody. When MFCR=0.75

(Figure 5.13(b)). This shock was present at about 1/4 of the nacelle length and it caused

caused a small region of separation on the nacelle crown. A small shock was also present

on the lower intake lip. This shock induced a large area of separation (Figure 5.13(c)).
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(a) Mach = 0.85, α = 10o & MFCR = 0.75, Pressure co-

efficient on surface, Mach contours clipped to those above

Mach = 1

(b) Mach = 0.85, α = 10o & MFCR = 0.50, Pres-

sure coefficient on surface, Mach contours on the

plane of symmetry

(c) Mach = 0.85, α = 10o & MFCR = 0.75. Contours

of skin friction coefficient overlaid with streamlines on the

nacelle surface. Axial velocity clipped to negative values

on the plane of symmetry.

(d) Mach = 0.85, α = 10o & MFCR = 0.50. Contours

of skin friction coefficient overlaid with streamlines on the

nacelle surface. Axial velocity clipped to negative values

on the plane of symmetry. Contours of velocity curl in

the nacelle trailing edge plane.

Figure 5.13: Local flowfield for configurations 4.2.3 and 4.3.3
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However when the MFCR was reduced to 0.5 a flow separation the full length of the nacelle

topside occurred. This separation resulted in a loss of lift and increase in drag which is

apparent in the nacelle drag polars (Figure 5.14). Nacelle drag increased by 41 aircraft

drag counts over the MFCR=0.75 case (Figure 5.10). The intake separation was however

removed (Figure 5.13(d)). This was caused by a reduction in the local flow angle on the

bottom lip due to the decrease in MFCR. The flow did not accelerate around the lip as

much with a resultant decrease in the local maximum Mach number eliminating the shock

which was causing the separation.

0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.055 0.060 0.065

CD,nac max

0.00

0.05

0.10

0.15

0.20

0.25

C
L
,n
a
c
m
a
x

Mach=0.1

MFCR=0.25
MFCR=0.50
MFCR=0.75
MFCR=1.00
MFCR=1.50

0.02 0.04 0.06 0.08 0.10 0.12 0.14

CD,nac max

0.00

0.05

0.10

0.15

0.20

0.25
C
L
,n
a
c
m
a
x

Mach=0.4

MFCR=0.25
MFCR=0.50
MFCR=0.75
MFCR=1.00

0.00 0.05 0.10 0.15 0.20 0.25

CD,nac max

0.00

0.05

0.10

0.15

0.20

0.25

C
L
,n
a
c
m
a
x

Mach=0.6

MFCR=0.25
MFCR=0.50
MFCR=0.75

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

CD,nac max

0.00

0.05

0.10

0.15

0.20

0.25

C
L
,n
a
c
m
a
x

Mach=0.85

MFCR=0.25
MFCR=0.50
MFCR=0.75

Figure 5.14: Variation in drag polar with Mach number & MFCR for the CRMfit
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5.4 Correction for incidence extraction

A simple scaling factor is used to correct for incidence effects (CD/CD=0). A Barycentric

interpolation routine has been added to PSIMOD to interpolate between data points. The

extracted corrections for 5o and 10o angles of attack are provided in Figure 5.15. Here

the data points are represented by the triangular grid and the contour fill is created from

interpolated values.
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Figure 5.15: Extracted uninstalled correlations



Chapter 6

Mission performance sensitivity

studies

An initial assessment of nacelle drag prediction methods using the BADA tool106 is dis-

cussed in §6.3. PSIMOD is then used to assess the effects of nacelle size, weight, local

upflow angle and installation quality. To assess these effects separately the effects of local

upflow angle and installation quality were initially neglected (§6.4, §6.5 & §6.6). Subse-

quently these effects were modelled and are discussed in §6.7 and §6.8 respectively. These

assessments necessitated the development of two aircraft models for a short haul and a

long haul mission. In conjunction with these a series of engine models were developed to

enable mission performance sensitivity to nacelle size to be assessed. The development of

these models is discussed in the following sections.

105
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6.1 Engine models

The engine thermodynamics were simulated with Turbomatch, which is the gas-turbine

performance simulation program developed by Cranfield University64,107. The baseline en-

gine simulations for the CFM56-7B27 and Trent 892 were validated with publicly available

information about their cycles. Engine models are based on the known engine cycle char-

acteristics and were refined so that the main parameters of thrust, massflow and specific

fuel consumption agreed with the published data to typically within 1× 10− 2%.

Additional engines with larger BPRs were computed to take into account the impact of

the nacelle size on the mission performance (Table 6.2). The bypass ratio increase leads

to larger fan diameters and consequently to larger nacelle diameters (Table 6.2). All the

nacelles studied had the same non-dimensional geometry (Table 6.1) and were scaled by

the Di required to match the baseline engine MFCR at design point. For the cycles based

on these larger engines the core was unaltered from the baseline engines and the BPR was

increased to 7.6 and 8.5 on the CFM like engine and 8.3 and 11 for the larger versions of

the Trent 892 type engine (Table 6.2).

Lf/Lt 0.3
La/Lt 0.6

Lf/Dmax 0.708
La/Dmax 1.417
Di/Dmax 0.723
De/Dmax 0.656
Ai/Ath 1.244

Table 6.1: Non-dimensional nacelle parameters

Two different philosophies were followed to create the thermodynamic model of the bigger

engines; matching the baseline thrust and matching the baseline TET, while the core

was kept the same (Table 6.2). In general, matching TET and increasing BPR led to an

increase engine thrust, which implies that the climb phase could be completed in less time

and that the engines would operate derated during cruise or for a stretch development of
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the same aircraft. For the other design philosophy, matching thrust and increasing BPR

decreased TET. This meant that climb to cruise altitude took longer because the increase

in nacelle drag was not accompanied by an increase in thrust. However, lower TET could

result in a lower life cycle cost for the engines.

T-O
Engine Model BPR Thrust Dmax Description

[kN] [m]
Short haul mission engines

CUTF-BPR5.1-120K 5.1 121.43 2.222 Baseline similar to CFM56-7B27
CUTF-BPR7.6-120K 7.6 121.43 2.689 Larger versions, thrust matched
CUTF-BPR8.5-120K 8.5 121.43 2.826 ”
CUTF-BPR7.6-140K 7.6 144.37 2.683 Larger versions, TET matched
CUTF-BPR8.5-150K 8.5 150.63 2.822 ”

Long haul mission engines
CUTF-BPR5.8-410K 5.8 407.52 3.907 Baseline similar to Trent 892
CUTF-BPR8.3-410K 8.3 407.49 4.407 Larger versions, thrust matched
CUTF-BPR11-410K 11 407.49 5.011 ”
CUTF-BPR8.3-430K 8.3 428.04 4.407 Larger versions, TET matched
CUTF-BPR11-450K 11 451.09 5.011 ”

Table 6.2: Engine models used to evaluate the engine size effect on the aircraft mission
performance

The changes of dry weight on bigger engines, caused by the modifications of the cycles

were accounted with a correlation extracted from the NASA WATE++ model108. This

statistical method computes engine weight as a function of overall pressure ratio, bypass

ratio and core massflow. Evaluating this method for known engine configurations an

uncertainty of approximately 20% on the estimation of the baseline engine weight was

found. This is a relatively modest uncertainty given that the model is based on just three

required variables.109 Nacelle weight changes were computed with a database correlation

method110. This statistical method is established on a range of engines and the main

independent variable is the maximum engine thrust at take-off. Predicted nacelle weight

for a range of known nacelles was found to be within an uncertainty band of 10%.

The main focus of this research is the development of a methodology for use in preliminary
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aircraft-engine design. This methodology has been demonstrated using aircraft and engine

information based on current technology levels and can be viewed as a re-engining feasibil-

ity exercise. This application differs somewhat from other aircraft-engine synthesis studies

in the literature.50,55,56 Previous studies have tended to focus on future conceptual design

with assumptions on future engine technologies built in. This has previously been achieved

by basing engine performance on future engine technologies.55 For example a study car-

ried out in 2003 assumed that engine technologies such as advanced contra-rotating fans,

geared turbofans and variable area nozzles would be mature in 2015.55 Another study used

a more conventional engine layout (two-spool, direct drive fan engine).56 However future

advances in engine technology were approximated by increasing the aerodynamic efficien-

cies of individual engine components. It is important to note these differences in approach

when considering the results presented in this Chapter. This is especially true regarding

predicted optimum BPRs as these will likely be higher for future engine technology levels.

6.2 Aircraft models

Two baseline aircraft models were utilised for the analysis using PSIMOD of the engine

integration effect on the mission performance. A short haul (Table 6.3) flight was consid-

ered based on an aircraft based on the Boeing 737-800, with two engines similar to the

CFM56-7B27 over a mission distance of 1,000 km and with a payload of 10,660 kg. The

long haul (Table 6.3)) mission was assessed using an aircraft based on a Boeing 777-300

configuration, whose engines were similar to the Trent 892 over a range of 6,000 km and

with a payload weight of 33,370 kg. Both flights were computed at a cruise altitude of

10,668m and cruise Mach numbers of 0.81 for the short haul and 0.84 for the long haul

(Table 6.3)). PSIMOD also requires a model of the CL−α curve of the aircraft to compute

the mission performance. For the Boeing 777-300 type aircraft this was obtained111, a vor-

tex lattice method112 with compressibility corrections for high subsonic Mach numbers.
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This same method was used to compute the lift coefficient curve of the Boeing 737-800

type aircraft.

Short haul mission Long haul mission

Aircraft based on Boeing 737-800 Boeing 777-300
Altitude [m] 10,668 10,668

Cruise Mach number [-] 0.81 0.84
Range [km] 1,000 6,000

Weights
Maximum T-O [kg] 79,016 299,370

Maximum landing [kg] 66,361 237,680
Usable fuel [kg] 20,894 135,880

Maximum payload [kg] 21,319 66,740
Mission payload [kg] 10,660 33,370

Mission fuel [kg] 4,080 69,600
Baseline engine [kg] 2,763 10,108

Airframe [kg] 35,887 137,585
Mission T-O [kg] 56,153 260,770

Table 6.3: Mission specification for the aircraft and engine performance model

Wing circulation affects the velocity field in its close proximity, which modifies the di-

rection of the engine inlet flow. It was envisioned that intake incidence angle may have

an important effect on nacelle drag. Therefore, the local flow angle at the engine intake

was computed. The upwash at the centreline of the engines inlet was estimated from the

2D velocity field calculated using a potential flow solver based on a higher order panel

method87. The Kármán-Tsien approximation was used to correct local surface pressure

to account for compressibility effects. This method required the definition of the wing

airfoil coordinates, which were extracted from an open source database113 for the Boeing

737 and from the NASA Common Research Model (CRM)114 for the Boeing 777 class of

aircraft. The CRM airfoil was chosen because it is aerodynamically similar to the Boeing

777,114 whose coordinates are not publicly available. Here only the upwash effect of the

wing was taken into account. Disturbances to the flowfield in front of and around the

nacelle due to the presence of the fuselage were not accounted for. Validation exercises

were carried out to compare the payload range diagram to published data (Appendix E).



110 Chapter 6 Mission performance sensitivity studies

The aircraft models were created to be representative of existing transonic civil transport

aircraft not to model them exactly. A closer match with the real aircraft could be achieved

by manual iteration of the aircraft model inputs in PSIMOD. To show that the created

aircraft models are representative of real aircraft the payload range diagram calculated

for the long haul aircraft is compared to that of a Boeing 777-300.115 For the long haul

case when no nacelle drag was modelled the maximum range was over-predicted by 1.1%.

However when the skin-friction estimate (SFE) and ESDU methods were used to calculate

nacelle drag the maximum range was underpredicted by 3.1% and 5.7% respectively. For

the short haul aircraft, in this case when no nacelle drag was modelled the maximum range

was over-predicted by 2.2%. The SFE and ESDU nacelle drag methods underpredicted

nacelle drag by 3.4% and 7.6% respectively. Based on this comparison the aircraft models

were deemed to be representative enough to be used as PSIMOD models to assess the

impact of engine integration effects on overall mission performance.

The low order methodology for the estimation of wing upwash at the intake centreline

was evaluated with computational studies. Three dimensional computations with the

full-scale CRM with clean wing were used to estimate the wing effect on the flow angle.

The potential flow solution mostly overpredicted the value of the local flow angle when

compared to CFD results. For the operational envelope, the difference went from 0.75o at

an angle of attack of 0o to −0.05o at an angle of attack of 3o.

In a similar way to the approach to engine modelling, aircraft modelling has been based

on current aircraft and can be viewed as a re-engining exercise. Previous studies have

made assumptions about future airframe performance particularly regarding wing perfor-

mance.55,56 For example, one airframe-engine synthesis study55 used a composite wing

and it assumed that this wing geometry would be re-optimised for every engine installa-

tion position so as to regain any aerodynamic performance lost due to the presence of the

engine. Engine installation position was based on input from industrial partners and was

based on best practice.55 Another study applied technology scaling factors to the wing to
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account for assumed future aerodynamic improvements.55 Detailed wing geometry appro-

priate to this research is not commonly available in the open literature. This was the main

motivation behind the use of the NASA CRM geometry in the CFD study in Chapter 7,

as it features a transonic wing. It is also beyond the scope of this research to carry out an

aerodynamic re-optimisation of the wing for each engine installation configuration. The

exposition of PSIMOD in this Chapter can be viewed from the point of view of an engine

manufacturer where detailed wing geometry may not be available.

6.3 Comparison of nacelle drag prediction methods

The difference in nacelle drag predicted by the ESDU drag prediction method13 and the

simple equivalent flat plate skin friction approach which is used in HERMES12 was quan-

tified by comparing the methods at discrete points throughout a flight profile. The BADA

Eurocontrol model106 was used to generate a flight profile. A Boeing 737-800 with an

initial weight of 65,300kg116 was modelled. Climb, cruise and descent segments were

calculated using the BADA model. The climb profile (Figure 6.1) was calculated using

BADA nominal values of a constant airspeed of 300kts to an altitude of 35,000ft and a

cruise Mach number of 0.81. Similarly the descent profile (Figure 6.1) was calculated by

descending from cruise conditions with the BADA nominal constant airspeed of 290kts106.

Cruise length was iterated until the total mission length equalled 1,000km. Due to the

limitations of the ESDU drag prediction method, the engines are assumed to be at 0o angle

of attack. For this initial calculation, the engine massflow rate was not known as it is not

calculated by the BADA model so the engine massflow capture ratio (MFCR) could not

be calculated. A typical cruise MFCR of 0.73 was selected for the whole flight.

Results from this preliminary evaluation using the ESDU drag prediction method are

presented in Figure 6.2. Throughout the climb phase the contribution of nacelle drag

increases from 1.9% at take-off to approximately 4.8% in cruise (Figure 6.2). Nacelle
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Figure 6.1: BADA calculated flight trajectory for a Boeing 737-800 with an initial
weight of 65,300kg

drag makes its biggest contribution at top of climb. Throughout the descent phase this

contribution reduces from a maximum of 4.9% to 0.9% of total aircraft drag (Figure 6.2).

To see how these contributions change as engine sizes increase in relation to aircraft size

this calculation was repeated with engine size scaled to a factor of 1.5 in factor increments

of 0.1. Only the nacelle drag calculation was recalculated. Total aircraft drag for these

aircraft with larger diameter engines was calculated using Equation (6.1):

Da,tot = [DBADA −Dnac,baseline] +Dnac (6.1)

where DBADA is the BADA predicted aircraft drag, Dnac,basline is the predicted nacelle

drag for the baseline engine and Dnac is predicted nacelle drag.
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Figure 6.2: Percentage contribution of nacelle drag to overall aircraft drag throughout
a flight profile (Figure 6.1) calculated using the ESDU drag prediction method

The percentage contribution of ESDU predicted nacelle drag to overall aircraft drag re-

mained almost constant throughout the trajectory. For this level of modelling using the

ESDU drag prediction method nacelle drag contribution does not significantly change

throughout the mission. This is a due to the fact that this method does not account

for nacelle local flow incidence and highlights a shortcoming in using the ESDU method

throughout a flight. The effects of nacelle local flow incidence are quantified in §6.7.

The percentage contribution of nacelle drag increases almost with the square of engine

scale from 4.4% for the baseline engine up to 9.5% for an engine scaled up by a factor of

1.5 (Figure 8). This is because the nacelles have the same non-dimensional geometry and

hence the same drag coefficient and their reference area scales with the square of their

diameter with a slight reduction in drag due to increases in nacelle Reynolds number.
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Up until this point in the discussion nacelle drag was calculated using the ESDU drag

prediction method as implemented in PSIMOD. This method was compared to the skin

friction estimation (SFE) in HERMES12 as engine size increases relative to aircraft size

(Figure 8). The SFE method under predicts nacelle drag in comparison with the ESDU

method by approximately 54%. As the engine scale factor increased from 1 to 1.5 the

disparity between the methods increases. This difference is the justification for the imple-

mentation of the ESDU nacelle drag method into PSIMOD method instead of the simple

skin friction estimate. However as the ESDU method does not take into account nacelle

local flow angle and installation effects corrections need to be applied to take these aspects

into account. In §6.7 and §6.8 these aspects will be discussed and developed further.

Figure 6.3: The effect of increasing nacelle size relative to aircraft size on nacelle drag
averaged over a flight profile (Figure 6.1) calculated using the ESDU and SFE drag predic-
tion methods. Engine scale factor is the engine maximum diameter non-dimensionalised

by the baseline engine maximum diameter

To see how the nacelle drag calculated using the ESDU drag prediction method as imple-

mented in PSIMOD compares to the skin friction estimation (SFE) in HERMES as engine

sizes increase relative to aircraft size this analysis was repeated using SFE nacelle drag
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(Figure 6.3). The SFE method under predicts in comparison to the ESDU method by

approximately 40%. As the nacelle maximum diameter increased from 3.389m to 5.084m

the disparity between the methods increases. This difference is the justification for the

implementation of the ESDU nacelle drag method into the revised HERMES method in-

stead of the simple skin friction estimate. However as the ESDU method does not take

into account nacelle local flow angle and installation effects it on its own is not sufficient.

In § 6.7 and § 6.8 these aspects will be discussed and developed further.

6.4 The importance of modelling nacelle drag

The contribution of nacelle drag to fuel burn was investigated by comparing the skin fric-

tion estimation (SFE) and ESDU models to the case where the effect of nacelle drag is

neglected (NND). PSIMOD links the calculation of the trajectory with the engine ther-

modynamics, aircraft performance and nacelle uninstalled drag models. Results using the

PSIMOD framework have been calculated for short haul and long haul missions (Table

6.3) with the reference baseline engines (Table 6.2).

The reduction in overall drag on both missions due to the omission of nacelle drag means

that the aircraft climb and reach their cruise altitude quicker as the aircraft are climbing at

maximum available thrust (Figure 6.4). Overall, when the nacelle drag is modelled by the

ESDU method, relative to the zero-drag nacelle, there is an increase in fuel burn of 6.5%

on the long haul and 9.3% on the short haul (Table 6.4) and the nacelle drag contributes

significantly to the overall fuel burn.

Relative to this ESDU estimate, the impact of the simpler SFE method predicts a lower

nacelle drag penalty across the missions of 5.3% and 3.9% (Table 6.4). For these partic-

ular configurations and flights, the difference between these two methods for nacelle drag

estimation is shown to have an important impact on the overall fuel burn. The ESDU

method is more accurate when compared to experimental data28 because it takes into
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account nacelle geometry and MFCR, which are key influences on nacelle drag generated

from the nacelle.

Figure 6.4: Comparison of nacelle drag estimation methods for baseline engines through-
out the short haul mission (Table 6.4)

It was found that nacelle drag had a greater relative impact on the performance of the

aircraft for the short haul mission. The main reason for this is the lower contribution of

the engines to the overall aircraft drag on the long haul mission. While 6.4% of the mid

cruise drag on the Boeing 777 type aircraft on a long haul mission is due to the presence

of the nacelle, it is about 8.6% on the short haul flight. This is because the maximum

nacelle cross-sectional area on the CUTF-BPR5.1-120K is about 4% of the aircraft wing

area, whereas the nacelle on the CUTF-BPR5.8-410K is just 2.8%. The contribution of

nacelle drag to overall aircraft drag will therefore be larger for the short haul aircraft and

its mission fuel burn will be more sensitive to changes in nacelle drag.

In the previous section the effects of modelling nacelle drag on overall mission fuel burn

have been quantified. To ascertain how these effects are translated into changes in the
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Short haul Long haul

NND ESDU SFE NND ESDU SFE
Value ∆ ∆ Value ∆ ∆

Distance [km] 186 14.60% 8.30% 259 12.00% 6.70%
Climb Fuel burn [kg] 1,124 12.60% 7.20% 4,917 10.40% 5.70%

Time taken [hr] 0.24 13.60% 7.80% 0.33 11.20% 6.20%

Distance [km] 663 -2.30% -1.20% 5,563 -0.30% -0.20%
Cruise Fuel burn [kg] 1,595 7.60% 4.30% 43,159 6.10% 3.80%

Time taken [hr] 0.77 -2.30% -1.20% 6.2 -0.30% -0.20%

Distance [km] 151 -7.90% -5.10% 178 -7.20% -4.40%
Descent Fuel burn [kg] 59 -7.10% -4.50% 185 -6.70% -4.00%

Time taken [hr] 0.22 -7.60% -4.80% 0.26 -7.00% -4.20%

Distance [km] 1,000 0.00% 0.00% 6,000 0.00% 0.00%
Total Fuel burn [kg] 2,778 9.30% 5.30% 48,260 6.50% 3.90%

Time taken [hr] 1.23 -0.10% -0.10% 6.79 0.00% 0.00%

Table 6.4: Comparison of nacelle drag estimation methods for baseline engines through-
out short haul and long haul. NND indicates no nacelle drag. ESDU evaluates the drag
using ESDU 81024 and SFE evaluates nacelle drag using the baseline skin friction estimate

Short haul Long haul

Maximum payload capacity [kg] 21,319 66,739
Maximum fuel capacity [kg] 20,894 135,880
Max. break release weight, baseline engine 78,751 299,300
(WMAX,BR,baseline) [kg]
Operating empty weight, baseline 41,145 157,801
(OEWbase) [kg]
Max. combined payload & fuel capacity 37,603 141,499
(WMAX,BR,baseline−OEWbase) [kg]

Table 6.5: Mission settings used for the comparison of the payload-range diagrams for
different methods of nacelle drag estimation

extents of the payload range diagram both the short haul and long haul aircraft with

baseline engines (Table 6.5) have been modelled for a series of missions.

To construct a payload range diagram (example in Figure 10) three bounding numbers are

required. For low ranges the payload range diagram is typically bounded by the maximum

payload capacity of the aircraft. Longer ranges are then achieved by increasing the mission

fuel. This can continue until the maximum break release weight of the aircraft is reached
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(Point A, Figure 10). To further increase the range of the aircraft payload must be traded

for fuel. Range can continue to be increased using this method until the maximum fuel

capacity of the aircraft is reached (Point B, Figure 10). Range can continue to be increased

by reducing the aircraft payload until maximum range of the aircraft is achieved with no

payload and maximum fuel (Point C, Figure 10).

Figure 6.5: Comparison of the payload-range diagrams for different methods of nacelle
drag estimation

6.5 Influence of nacelle size on short haul mission perfor-

mance

The impact of the installation of larger diameter engines on a Boeing 737 like mission was

undertaken to assess the relationship between improvements in uninstalled engine SFC

and overall fuel burn. New engines were modelled (Table 6.2) with the same core as the
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baseline engines but with an increase in BPR which leads to larger nacelle diameters with

maximum increases of approximately 28% relative to the baseline (Table 6.2, Table 6.6).

The missions were also modelled for the configurations where the increase in engine weight

was neglected to allow the effects of drag and weight to be separately identified. The effect

of the changes in fan and nacelle weight was evaluated by considering the cases where the

weight increase was not modelled (WINM) as well as models using Jenkinsons110 and

WATE++108 correlations for nacelle and engine weight, respectively.

Mission calculations were carried out by linking the Turbomatch simulations for baseline

and larger BPRs with the aircraft models through the PSIMOD framework. Hermes

computations for flight performance included the nacelle drag estimated by ESDU method.

The WATE + + method was evaluated using known engine configurations and an uncer-

tainty of approximately 20% on the estimation of the baseline engine weight was found.

To understand how this uncertainty translated into uncertainty on fuel burn a study was

carried out using the CUTF-BPR8.5-150K (Table 6.2) engine model. Combined engine

and nacelle weight was varied from that of the baseline engine (2763 kg) to 10% greater

than that predicted by the WATE + + method (4543kg). This variation was carried out

across a set of mission ranges and the fuel required to fly the exact same trajectory with

no fuel remaining was calculated. To put this in context a 10% variation in combined en-

gine and nacelle weight was equivalent to 0.7% change in aircraft weight which affects the

aircraft lift and drag characteristics through the flight. The ±10% variation in combined

engine and nacelle weight resulted in a variation of ±0.8% in mission fuel. Although there

is a significant change in magnitude of the predicted fuel burn with changes in combined

engine and nacelle weight the overall changes were linear with aircraft weight and range

and as such the weight prediction method was found to be adequate to predict trends in

mission fuel burn.

The improvements in the cruise SFC for the uninstalled engines from baseline BPR to

the cycles with larger BPR ranged from 6% to 7% (Figure 6.6). Within the assumptions
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used in this model, although there are clear benefits in the cruise part of the flight, this

does not always translate into improved installed fuel burn across the full mission. When

the drag increase due to the larger nacelle diameter was modelled and the weight increase

neglected, the cycle benefits of the increased BPRs was offset (Figure 6.6).

Lf/Lt 0.3
La/Lt 0.6
Lf/Dm 0.708
La/Dm 1.417
Di/Dm 0.723
De/Dm 0.656
Ai/At 1.244

Table 6.6: Non-dimensional nacelle parameters

Figure 6.6: The influence of nacelle size and weight on mission fuel burn for the short
haul trajectory

When the increase in weight is neglected (WINM), the fuel burn results are different for

both cycle matching processes. The larger BPR engines with matched TET generated

improvements in fuel consumption up to a maximum of 1.2% (Figure 6.6). However, when
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the thrust matched engines are simulated, the fuel burn increases for BPRs of 7.6 and

8.5. The difference in results between the two matching philosophies comes mainly from

the time spent on cruise in both trajectories (Table 6.7). As the TET matched engine

has more thrust available it can reach cruise altitude about 18% faster than the baseline

(Table 6.7) and then fly at its design point for longer. Whereas the thrust matched engine

has the same available thrust as the baseline, but the overall aircraft drag is greater due

to the increase in the engine size. This impacts the climb time and increases it by 14%

compared to the baseline trajectory (Table 6.7). Therefore, the thrust matched engines

on the short haul mission fly a relatively shorter period of time at their design point and

hence have an increased overall fuel burn during the studied mission.

Baseline BPR 7.6 TETM BPR 7.6 ThM
CUTF-BPR7.6-140K CUTF-BPR7.6-120K

Value Value ∆ from BL Value ∆ from BL

Distance [km] 213 173 -18.80% 244 14.50%
Climb Fuel burn [kg] 1,266 1,095 -13.50% 1,333 5.30%

Time taken [hr] 0.27 0.22 -17.90% 0.31 14.20%

Distance [km] 648 694 7.00% 622 -4.00%
Cruise Fuel burn [kg] 1,716 1,852 7.90% 1,670 -2.70%

Time taken [hr] 0.75 0.8 7.00% 0.72 -4.00%

Distance [km] 139 133 -4.10% 134 -3.70%
Descent Fuel burn [kg] 55 53 -3.10% 62 13.20%

Time taken [hr] 0.2 0.2 -3.90% 0.2 -3.50%

Distance [km] 1,000 1,000 0.00% 1,000 0.00%
Total Fuel burn [kg] 3,038 3,000 -1.20% 3,065 0.90%

Time taken [hr] 1.22 1.22 -0.30% 1.23 0.10%

Table 6.7: Comparison between the mission fuel burn on the short haul aircraft for
engines obtained with TET matching and Thrust matching philosophies. The Baseline

engine is CUTF-BPR5.1-120K.

When the increased nacelle and engine weight were also accounted for the fuel burn in-

creased by up to 2% (Figure 6.6), relative to the case where no weight increase was

modelled. It resulted in the loss of the potential gains found on the TET matched engines

when the combined effect of nacelle drag and weight are taken into account.
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For both engine modelling approaches (TETM and THM) and when both weight and

drag were modelled, in all cases mission fuel burn was greater than that of the baseline

configuration. This indicates that the optimum BPR for these engines is less than 7.6 with

further engine models required to find the exact value. A previous study56 carried out

on an aircraft similar to a Boeing 737-800 with a two-spool direct drive turbofan engine

found an optimal BPR of 7.1. Though there are differences between the exact aircraft and

engine models as well as the methods used these results are consistent.

As discussed in §6.4, the influence of the nacelle drag was evaluated on the limits of

the payload range diagram (Figure 6.5). The assessment was made for missions with and

without the engine and nacelle weight increase modelled (Figure 6.7). The baseline engines

and the larger engines with TET matched philosophy were used for the mission analyses

(Table 6.2). The relative change in range from that achieved by the baseline engine with

the same fuel and payload (Equation 6.2) was defined to study installation impact on the

payload range diagram. With ∆RBL it is possible to evaluate the change in the boundaries

of the payload range diagram due to the installation of larger engines.

∆RBL =
R−RBL
RBL

100% (6.2)

An increase in range between 1.1% and 0.6% over the baseline mission was found for

the largest engines (BPR=8.5) at maximum Wbreakrelease (Point A to B, Figure 6.7) with

baseline weight. This increase rose to 1.8% at Point A and 1.4% at Point B for the engines

with a BPR=7.6. For short flights (Points A and B Figure 6.7) the increase in BPR has

a positive effect if the weight penalty is not taken into account. However, for missions

with maximum range (point C Figure 6.7) the sensitivity to nacelle drag increases. This

is partly due to the relative participation of the nacelle drag on the overall drag of the

aircraft. As the mission with no payload is flown with less weight it requires a lower CL,

which implies a lower overall CD. In the short haul aircraft the nacelle drag is 11% of
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Figure 6.7: Influence of the nacelle size and weight on the limits of the payload range
for the short haul mission

total CD at mid-cruise for the short range (point A Figure 6.7) and approximately 12%

for long range (point C Figure 6.7). The change in the range sensitivity is also explained

by relatively smaller climb and descent phases on longer flights. As discussed previously,

the gains obtained due to excess of thrust in these phases become relatively smaller for

longer missions.

Even though the largest engine has the lowest uninstalled SFC (Figure 6.7) it does not

produce the best mission performance (Figure 6.7). This is due to the fast increase in drag

compared to the decrease in uninstalled SFC between the BPRs of 7.6 and 8.5. The SFC

decrease due to this increase of BPR is approximately 0.7% (Figure 6.7) while the drag

increase scales with D2
max. Nacelle drag increased by 8.8% when the BPR was increased

from 7.6 and 8.5.
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When the combined effect of weight and drag penalties is modelled, the gains from unin-

stalled SFC are negated on the B737 like mission (Figure 6.7). The effect of increased

drag and weight for the larger engines overcome the benefits of the lower uninstalled SFC.

6.6 Influence of nacelle size on long haul mission perfor-

mance

Similar trends to those discussed in §6.5 were found for the engines on the long haul aircraft

(Figure 6.8). Increased BPR on the B777 like aircraft resulted in gains on uninstalled cruise

SFC of approximately 3% to 5% (Figure 6.8). These gains in uninstalled SFC resulted in

approximately 1.5% lower installed fuel consumption if the weight increase is not taken

into account (Figure 6.8).

Figure 6.8: The influence of nacelle size and weight on mission fuel burn for the long
haul trajectory
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When the penalties of increased nacelle and engine weight was also taken into account the

fuel burn increased by up to 1%, relative to the WINM case (Figure 6.8). Improvements

in fuel consumption were achieved by increasing the BPR up to a maximum decrease of

1% in fuel burn (Figure 6.8). From that maximum a further increase in BPR starts to

increase mission fuel burn due to the combined action of the increased nacelle drag and

weight. As it was found on the short haul case (§6.5), the nacelle drag increased by a

higher rate than the uninstalled SFC gains for a BPR change from 8.3 to 11.

For the engines with a BPR=8.3 there was reduction in overall mission fuel burn when

compared to the baseline engine. However when the BPR was increased to 11 the influence

of weight and drag eroded any gains. Therefore the optimal BPR for these engines is

between that of the baseline, 5.8 and 11. A similar study55 of optimum BPRs for a a long

haul civil transport aircraft (based on a Boeing 777-200 with technology improvements)

found optimal BPRs of 11 and 14.5 depending on the engine manufacturer and the assumed

engine technologies. These results are not inconsistent however with the results presented

here. This is due to the differences in assumptions on technology levels particularly with

respect to engine technology. The modelling within this research is based on current

technology levels while the similar study55 assumed the use of future engine technologies

such as advanced contra-rotating fans, geared turbofans and variable area nozzles.

When the impact on the payload range is studied (Figure 6.9), the long haul mission

produced approximately the same trends found for the short haul aircraft (§6.5). The

baseline mission range was increased by 2% when only drag penalty was taken into account.

If the combined effect of increased weight and drag is modelled, the gains in range compared

to the baseline are reduced to 0.5% to 1% (Figure 6.9). The engine with a BPR of 11

generates smaller gains in range at Points B and C than the engine with a BPR of 8.3

(Figure 6.9). This was also the case for the short haul mission. As discussed for the

short haul case (§6.5), this effect is due to the faster increase in drag compared to the

SFC improvement. However for Point A (Figure 6.9), the maximum break release weight
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point CUTF-BRR-11-450K has a larger increase in range over the baseline engine than

CUTF-BPR8.3-430K (2.16% as opposed to 1.9%). This result is an outlier and is the only

case in which the largest BPR engines had the largest increase in range over the baseline

mission. This was due to the fact that CUTF-BRR-11-450K has a larger thrust CUTF-

BPR8.3-430K. This means that it can climb quicker and hence spend less time than in

this high drag configuration. However CUTF-BRR-11-450K has more drag in cruise than

CUTF-BPR8.3-430K. It is the balancing of these two effects which causes a crossover point

in Figure 6.9. At higher take-off weights and lower ranges CUTF-BRR-11-450K wins out

due to its larger thrust and less time spent in climb. At lower take-off weights and higher

ranges CUTF-BPR8.3-430K gives a larger increase in range over the baseline due to the

fact that it has less drag in cruise than CUTF-BRR-11-450K. This crossover point occurs

at a range of 12,505km.

When only drag is modelled the potential increase in range due to larger engines are of

similar order for both types of aircraft on payload limits from A and B (Figure 6.7 and

Figure 6.9). However, when the weight is taken into account the short haul aircraft is

notably more sensitive. Engine weight increase has a stronger impact on the B737 type

mission because it represents a relatively higher portion of the maximum take-off weight.

The weight increase on the short haul aircraft due to larger engines goes from 2.6% to

3.5% of the maximum take-off weight, while it increases from 0.9% to 2.2% on the long

haul mission.

Overall, results show that potential gains in uninstalled efficiency can easily be lost due to

the combined effect of drag and weight. Therefore, these results highlight the importance of

the nacelle drag and weight considerations at different parts of the flight and underline the

need for accurate nacelle and engine weight estimates within the context of the expected

notable increases in fan diameters.
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Figure 6.9: Influence of the nacelle size and weight on the limits of the payload range
for the long haul mission

6.7 The influence of nacelle local flow angle

Nacelle total upflow angle (A) is the result of nacelle incidence, upwash angle and nacelle

offset angle (Figure 3.13). As described in 6.3, a correction has been made to the ESDU

estimated drag to take into account the effects of local incidence, with correlations which

relate the local nacelle flow incidence with the nacelle CL and CD. These correlations were

extracted from CFD which was carried out with Mach number varied from 0.1 to 0.85,

MFCR from 0.25 to 1.5 and nacelle total upflow angle (A, Figure 3.13) varied from −10o

to 10o. The calculations were performed with ReFAN = 16.4 × 106. These correlations

are applied as a correction to the ESDU drag prediction method within PSIMOD. For

this analysis PSIMOD used these correlations and calculated nacelle drag at each point

in the mission as a function of engine geometry, nacelle shape, flight conditions, Reynolds
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number, MFCR and local nacelle incidence.

The effect of nacelle incidence has been quantified by evaluating the percentage change in

mission fuel burn from the baseline mission (Figure 6.10). The engine inclination relative

to the local chord line (γ, Figure 3.13) for the baseline mission was defined such that

the nacelle total upflow angle at mid-cruise was equal to zero. Variations to the nacelle

inclination angle were applied to evaluate the fuel burn sensitivity to changes in γ from

the baseline value. Both baseline engines and the two largest engines with TET matched

philosophy (Table 6.2) were assessed for the short and long haul missions described in

Table 6.3.

Figure 6.10: Influence of modelling nacelle total upflow angle on the flight performance
calculation

It was found that the correction for local flow angle applied to PSIMOD increased the

calculated fuel burn on both the short and long haul missions (Figure 6.10). In all cases
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the modelling of A led to an increase in overall mission fuel burn, whose sensitivity to

nacelle offset angle was different for the range of scenarios studied. As expected from

previous results (§ 6.4, § 6.5 and § 6.6), the short haul aircraft was more sensitive to

∆γ. The percentage increase in fuel burn on the B737 type aircraft with baseline engines

reached a maximum of 1.6% for the range studied, while the maximum increase on the

B777 type aircraft with baseline engines was around 1.2% (Figure 6.10). This difference

is mainly an effect of relative engine size, as discussed in § 6.4.

The effect of modelling A becomes stronger when larger engines are taken into account.

For the study of short haul mission with CUTF-BPR8.5-150K engines (Table 6.2), it was

found that the increase in mission fuel burn had a maximum value of 2.2% within the

range studied. A similar result was found for the long haul mission with CUTF-BPR11-

450K engines, whose maximum increase was 1.7% for a change in nacelle inclination of 5o

(Figure 6.10). Results show that the increase in fuel burn due to variations of the engine

inclination angle is not linear. Fuel burn sensitivity varies differently depending on the

type of mission and relative size of the engine on the aircraft. All the cases showed a small

increase when ∆γ = 0, which ranged from 0.12% to 0.31% (Figure 6.10). However, as γ

was changed to the maximum extents analysed, the results on mission fuel increase ranged

from 1.2% to 2.2% (Figure 6.10).

As mission range is increased the same trends and sensitivities were found (Figure 6.11).

The only notable change is the increase in ∆γ at which minimum fuel burn occurs with

increases in range. This is because the engine inclination relative to the local chord line (γ,

3.13) was defined such that the nacelle total upflow angle at mid-cruise was equal to zero

for the baseline missions (1000km for the short haul and 6000km for the long haul). As

mission range is increased from these distances the mission distance at which the mission

mid-cruise occurs. As all flights were modelled with the same take-off payload and fuel,

aircraft weight at the mid-cruise point decreases with mission range. This decrease in mid-

cruise weight results in a decrease in aircraft angle of attack at this point. This decrease
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in conjunction with a reduction in upwash angle due to a decrease in the lift generated by

the wing leads to a decrease in A at mid-cruise.

Figure 6.11: Influence of modelling nacelle total upflow angle on the flight performance
calculation over a series of ranges

These results highlight the importance of an adequate modelling of nacelle upflow angle

especially for modern and future installations, which will tend to integrate engines with

larger fan diameters and lower specific thrust to the airframe. It is shown that the ESDU

drag prediction method on its own is not adequate and corrections need to be made to

account for nacelle total upflow angle in preliminary design.
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6.8 The effect of propulsion system installation quality on

overall flight performance

To investigate mission fuel burn sensitivity to the quality of propulsion system integration a

correction has been made to the ESDU estimated drag to take into account the installation

drag effect. The nacelle drag increment due to nacelle installation can range from 1 to 1.5

times the drag of the isolated nacelle117. This factor allows the comparison of fuel burn

between two missions with different types of installations. This factor was varied from 1

to 1.5 and the effect of propulsion system installation quality on overall flight performance

was quantified. Mission fuel burn was non-dimensionalised by baseline mission fuel burn

(Figure 11). The CUTF-BPR5.1-120K and CUTF-BPR8.5-150K engines on the short haul

and the CUTF-BPR5.8-410K and CUTF-BPR11-450K engines on the long haul (Table 6.2)

were flown for the missions described in Table 6.3. In all cases there was a linear increase

in mission fuel burn with increases in installation drag factor (Figure 6.12). The results

showed that the rate of change of mission in fuel burn with the quality of installation is a

function of the engine size. With a larger engine, the fuel burnt in the short haul mission

increased from 4.4% to 6% on the worst installation quality modelled, whereas it increased

from 3.1% to 4.6% on the long haul mission (Figure 6.12). As discussed in §6.4, the short

haul aircraft is more sensitive to the installation effects, because its engines are bigger

relative to the airframe than in the long haul case.

With an installation factor of 1.5, the combined effect of nacelle drag and installation

quality increased the calculated mid cruise CD of the aircraft by 8 drag counts (dc) on

the B777 type aircraft and by 12 on the B737 type aircraft, whose missions were studied

with their respective baseline engines (Table 6.2). When the effect of the same installation

factor on the mid cruise CD was analysed with larger engines the computed drag increase

was relatively greater. The calculated mid cruise CD of the long haul aircraft with the

CUTF-BPR11-450K engine increased by 13 dc compared to the case of installation factor
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Figure 6.12: The influence of installation quality on mission fuel burn. Results are
shown for two different engine sizes in each mission

equal to 1. The same comparison resulted in an increase of 19 dc for the short haul

aircraft with the CUTF-BPR8.5-150K engine. These are important quantities if they are

compared to van Dams118 statement that one drag count could decrease the payload of

a twin engine subsonic aircraft on a long-range mission by approximately one passenger.

The greater sensitivity of larger engines to installation factor is expected due to their larger

uninstalled drag.

This analysis assumes that the installation drag factor is constant throughout the mission.

This is a simplification and is not true in reality. However, this analysis is enough to show

that installation drag effects are significant and need to be taken into account. Correlations

should be extracted from CFD to account for the variation in installation drag factor at

different flight conditions (for example typical climb, cruise and descent conditions) and
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these correlations should then be implemented as a correction to the ESDU drag prediction

within the installation drag module of PSIMOD.





Chapter 7

Underwing installed nacelles

numerical campaign

In the previous Chapter, (Section 6.8), the sensitivity of mission fuel burn to installation

quality was assessed through the use of an installation drag factor. This drag factor was

kept constant throughout a mission. In reality installation drag will vary throughout

a mission and this variation will lead to different optimum powerplant installations for

missions which spend relatively shorter or longer times in certain flight segments. Also

the installation drag factor used in the previous Chapter was not a function of known

installation parameters like nacelle size or installation location. The aim of this Chapter

is to address these issues by extracting installation drag factors from complex full aircraft

CFD as a function of nacelle size and installation position for three flight conditions which

are representative of a typical mission. These factors will be extracted from mid-climb,

mid-cruise and mid-descent configurations.

135
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7.1 Test matrices

The NASA Common Research Model (CRM34) was chosen as a suitable airframe. As

described in § 2.1.1.3, the CRM airframe has a supercritical wing and a fuselage that is

typical of a civil transport aircraft. It is designed to cruise at a Mach number of 0.85

with a lift coefficient of 0.5. These properties makes it representative of modern transonic

aircraft. For this reason, and the wealth of available experimental data for both installed

and clean-wing configurations, it was chosen as the airframe upon which to study nacelle

installation effects.

The CRM aircraft is most similar to an Airbus A330. To have the correct airframe to en-

gine ratio the datum installed engine was based on the Trent 700. Due to computational

constraints it was decided that only two nacelle sizes could be investigated which will be

referred to as the datum installed nacelle and larger installed nacelle. The aim of the

underwing installed nacelle CFD exercise was to extract installation drag factors to im-

prove PSIMOD’s installation drag modelling capability. In the long-haul aircraft PSIMOD

modelling, detailed in Chapter 6, the largest engine (CUTF-BPR11-450K ) modelled had

a maximum diameter 1.28 times that of the smallest engine (CUTF-BPR5.8-410K). The

larger installed nacelle was therefore scaled from the datum installed nacelle by the same

factor. This resulted in two nacelles with a maximum diameter of 3.133m and 4.018m.

The CRMfit, described in § 5.2, has been scaled to these sizes.

To put the choice of installation positions in context a review was carried out. Data

has been extracted from published papers55 and aircraft manufacturer’s ground handling

manuals105,115,119–127 with assistance from a fellow PhD student.128 Industrial powerplant

installation trends have been assessed based on the vertical offset from wing trailing edge

and the horizontal offset from wing leading edge (Figure 7.1). These offsets are non-

dimensionalised by the local wing chord in the engine installation plane, c. Positive values

of x/c indicate overlap between the wing and nacelle trailing edge. The accuracy of this
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study was limited by the quality and resolution of publicly available aircraft sketches,

however the exercise is still useful in that it allows the the overall industrial trends and

differing approaches by different aircraft manufacturers to be observed. Also annotated

on Figure 7.1 is an interference drag “keep out” boundary45,117,129 based on Boeing wind-

tunnel data.

Early Pratt and Whitney low bypass ratio turbofans on Boeing aircraft (Points 11 to 12

in Figure 7.1) were positioned close to the wing with significant wing-nacelle horizontal

overlap. As BPR increased with the PW JT9D on the Boeing 747 (Point 15 in Figure 7.1)

the engine was moved further forwards and vertically down from the wing. In general

engines on Boeing aircraft seem to be installed vertically closer than those installed on

Airbus aircraft with some installations crossing the interference drag “keep out” boundary.

The trend is more dependent on aircraft manufacturer than engine manufacturer. The

Trent 1000 and GE90-94, both high by-pass ratio turbofan engines fitted on the Boeing

787-9 and Boeing 777-200 respectively cross this notional boundary.

Key Airframe Engine Key Airframe Engine

1 NASA CRM NASA CRM 15 B747 PW JT9D
2 A300B CF6-50 16 B777-200 PW STF 1173
3 A321 CF56-5B1 17 B777-200 PW STF 1174
4 A330-300 CF6-80E1 18 DC10-30 CF6-50
5 A340-500 Trent500 (IB) 19 C5A TF39
6 A340-500 Trent500 (OB) 20 B747 CF6-50
7 A350-900 TrentXWB 21 B777-200 GE90-94
8 A380-800 Trent900 (IB) 22 B777-300ER GE90-115B
9 A380-800 Trent900 (OB) 23 B737-800 CFM56-7
10 A320neo PW1000 24 B737max CFM LEAP-1B
11 DC8-10 JT3C-6 25 B777 Trent800
12 DC8-60 JT3D 26 B787-9 Trent1000 / GE NX
13 B707-320 JT4-3 27 Bombardier CS100 PW 1500G
14 B720 PW JT3C-7 28 Bombardier CS300 PW 1500G

Table 7.1: The key for Figure 7.1, a summary of engine installation locations for existing
aircraft.

The datum installation location (Position 1, Table 7.2) was chosen to be equal to that of

the Boeing 777 with Trent 800 engines. Traditionally larger engines are accommodated
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Figure 7.1: A summary of engine installation locations for existing aircraft. The vertical
offest from the wing trailing edge and the horizontal offset from the leading edge are
denoted H and x respectively. Distance is non-dimensionalised by the wing chord, c.
Positive values of x/c indicate overlap between the wing and nacelle trailing edge. The

key for aircraft and engine manufacturers is provided in Table 7.1

by a decrease in the vertical offset between the wing and engine, this often necessitates an

increase in the horizontal offset.130 Nacelle installation Position 2 and 3 have been chosen

in line with this design thought process. Position 2 is a solely horizontal displacement

from Position 1, while, Position 3 is a vertical displacement from Position 2. The nacelle

inclination and toe-in angles, (Figure 7.2), have been set to 1.5o and 2.7o respectively.

These angles correspond those of the CRM TFN and have been kept constant for each

nacelle size and position studied.

To have representative climb, cruise and descent conditions and to ensure compatibility

with PSIMOD a mission profile for a Boeing 777-300 generated with PSIMOD. Mid-climb,

mid-cruise and mid-descent conditions have been extracted (Table 7.4).



Chapter 7 Underwing installed nacelles numerical campaign 139

Position 1 2 3

Delta x/c -0.074 -0.200 -0.200
Delta H/c -0.116 -0.116 -0.050

Table 7.2: The three engine installation locations selected for the CFD study

Condition Altitude Mach α

Climb 10,000ft 0.46 2.7o

Cruise 35,000ft 0.84 1.2o

Descent 17,500ft 0.57 0.7o

Table 7.3: Installed CFD flight configurations

Flight Installation Nacelle
Config. # Config. Position Size

1 Cruise 1 Datum
2 Cruise 1 Large
3 Cruise 2 Datum
4 Cruise 2 Large
5 Cruise 3 Datum
6 Cruise 3 Large

7 Climb 1 Datum
8 Climb 1 Large
9 Climb 2 Datum
10 Climb 2 Large
11 Climb 3 Datum
12 Climb 3 Large

13 Descent 1 Datum
14 Descent 1 Large
15 Descent 2 Datum
16 Descent 2 Large
17 Descent 3 Datum
18 Descent 3 Large

Table 7.4: Installed CFD cases test matrix
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Figure 7.2: Nacelle installation angle definitions

7.2 Grid and boundary conditions

A fully structured multi-block grid was created using ANSYS ICEM 1488 (Figure 7.3). To

ensure mesh quality a cell minimum 2x2x2 determinant of 0.2 and maximum cell expansion

rate of 1.5 were maintained. The boundary layer block had 35 cells normal to the wall

with a constant cell expansion rate of 1.2. The first cell height was set such that y+ ≈ 1.

The maximum cell size on the fan cowl was set to 0.9% of nacelle length while the cell

size at the nacelle trailing edge was set to 0.15% of nacelle length. To ensure adequate

refinement around the nacelle leading edge, 30 nodes were employed. The domain size was

defined by a radius of 100cref in line with the fourth Drag Prediction Workshop (DPW

IV)131 meshing guidelines. The final mesh composed 30.5× 106 cells. This figure resulted

from a mesh sensitivity study outlined in § 7.4.

In the same way that was implemented for the isolated cases to allow a back to back

comparison “datum” nozzle exit conditions were imposed. The nozzle outlet boundary

condition sets the total pressure and total temperature equal to that of the freestreeam.

The nozzle walls are modelled with inviscid slip walls. In the isolated engines cases this is
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to ensure that the nozzle efflux streamlines area approximately parallel to the nacelle axis

and post-exit forces are minimised. At the domain farfield velocity, static temperature and

static pressure were specified. The intake MFCR was controlled by the massflow outlet.
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Figure 7.3: Mesh for a 3D fuselage, wing, tail and installed nacelle configuration

7.3 Solver settings

All simulations were run in double precision. ANSYS CFX89 was used as the flow solver

as described in Section 4.2. Air was modelled as a calorically, perfect, ideal gas with a

constant specific heat capacity at constant pressure of 1.0044 × 103 [J kg−1K−1] and a

molar mass of 28.96 [kg kmol−1]. Viscosity was modelled with Sutherlands’s Law.
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The flowfield was initialised with the cartesian velocity components, static pressure and

static temperature which correspond to freestream conditions. Turbulence levels were

initialised with an eddy viscosity ratio of 3 and fractional intensity of 0.02. To ensure

convergence the following strategy was employed. Initially the solution was run with a

first order scheme for turbulence numerics and a first order upwind scheme for advection

terms for 1000 iterations with a timescale factor of 0.02. Subsequently the timescale

factor was increased to 1 and the solution progressed for a further 1000 iterations. Then

CFX’s high resolution schemes89 were employed for both the turbulence numerics and the

advection terms for 3000 iterations with a timescale factor of 0.02.

7.4 Grid independence study

The initial mesh consisted of 7.5 × 106 cells. This grid was then refined twice with an

approximate refinement factor of two. This resulted in three meshes (Table 7.5). The

symmetric nature of the domain meant that the airframe was not subjected to any net

side force. The coefficient of lift and drag were therefore chosen as the criteria used to

assess mesh independence as outlined in Section 4.4.2. The grid convergence index for

these meshes is given in Table 7.6. For the fine mesh the drag coefficient is converged

within an acceptable limit.

Coarse 7.5× 106

Medium 1.5× 107

Fine 3.0× 107

Table 7.5: The number of elements in the installed nacelle meshes

The grid convergence index or Richardson’s extrapolation could not be calculated for this

metric as the solutions for the lift coefficient from the three grids were non-monotonic.

Further mesh refinement, which would have resulted in a mesh of 6 × 107 elements, was

deemed computationally too expensive. The percentage difference in lift coefficient be-

tween the fine mesh and a Richardson’s extrapolated lift coefficient or a lift coefficient
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calculated from a further refined mesh. However, there was a difference of 0.155% for

the lift coefficient between the fine and medium mesh. Assuming that CL continues to

converge as mesh resolution increases in line with CD the difference between the CL cal-

culated by the fine mesh and the mesh independent CL is less than 0.155%. As a result

of the mesh independence assessment the fine mesh (3× 107 cells) was chosen.

Coarse Medium Fine
(g=4) (g=2) (g=1) (g=0) GCI1,2 GCI2,4 AR Pcon %dif1,2 %dif0,1

CD 0.0345 0.0335 0.0330 0.0326 0.015 0.032 0.99 1.1 -1.37 -1.21
CL 0.6058 0.6128 0.6118 NM NM NM NM NM -0.155 NM

Table 7.6: Grid Convergence Indices calculated as part of the installed CFD mesh
sensitivity analysis study. NM stands for non-monotonic.

7.5 Results and discussion

As described in § 7.1 a series of complex 3D CFD calculations have been carried out

to assess the impact of nacelle size, installation location relative to the wing on nacelle

drag for three flight configurations; mid-climb, mid-cruise and mid-descent. This activity

is motivated by the desire to improve the installation drag modelling methodology in

PSIMOD.

7.5.1 Installed nacelle drag

This section describes the evaluation of installed nacelle drag and its variation with nacelle

size, installation location and flight condition. Eighteen wing-body-engine CFD calcula-

tions have been carried out. These comprise a datum engine (Dfan = 3.133) and a larger

engine (Dfan = 4.018) installed in three underwing positions (Table 7.2) in climb, cruise

and descent flight configurations (Table 7.4). For each configuration the engine drag coef-

ficient (CD,eng) has been calculated using the modified nearfield method (§ 4.6.1).
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The variation of nacelle drag with flight condition, installation position and engine size is

shown in Figure 7.4. Changes in nacelle drag between installation position, flight condition

and nacelle size are determined primarily by the balance of two wing induced phenomenon.

An increase in wing CL modifies the local static pressure field which increases the pressure

force on the nacelle afterbody which reduces nacelle drag. An increase in wing CL also

induces an increase in upwash angle ahead of the wing which can significantly impact

upon the forebody suction force and nacelle shock formation, especially on the nacelle

topline. For example, in Position 1, the position closest horizontally to the wing, the

larger engine (Dmax = 4.015m) experiences higher drag at all tested flight conditions than

the datum size nacelle (Dmax = 4.015m) as expected. However, this increase is noteworthy

for the mid-cruise condition where drag increased by a factor of 2.1. The highlight plane

of the datum nacelle is closer to the wing than the larger nacelle and experiences a higher

local incidence due to wing upwash effects. This higher local incidence for the datum

nacelle increases flow acceleration around the nacelle forebody. For the datum size nacelle

the flow reaches a maximum Mach number 1.2 compared to 1.02 for the larger nacelle

(Figures 7.5(a) and 7.5(b)). This results in a lower surface static pressure peak and a

higher forebody suction force for datum nacelle (Figure 7.5(c)).

The wing influence on the static pressure distribution on the nacelle afterbody can be

seen when nacelle drag in the climb configuration is compared to the cruise and descent

configurations (Figure 7.6). For all but one configuration nacelle drag was lowest in the

climb configuration. On the surface this may be a surprising result as in the case of the

isolated nacelle, drag increases with increases in angle of attack. However once installed,

wing flowfield effects dominate and increased pressure on the nacelle after body as the

wing CL increases overcomes this effect. When nacelle drag is decomposed into momentum

flux, stream pressure, skin friction and pressure force it can be seen that this is primarily

caused by an increase in pressure force. The wing modifies the local static pressure field

and increases the pressure force on the nacelle afterbody (Figure 7.6).
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(a) Variation of nacelle drag calculated using the modified
nearfield method with flight condition and engine size for
installation position 3.

(b) Comparison of engine sizes and installation posi-
tions relative to the local wing cross-section.
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(c) Variation of nacelle drag calculated using the modified
nearfield method with flight condition and engine size for
installation position 2.
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(d) Variation of nacelle drag calculated using the modi-
fied nearfield method with flight condition and engine size
for installation position 1.

Figure 7.4: Variation of nacelle drag calculated using the the modified nearfield method
with flight condition, installation position and engine size.
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(a) Contours of Mach number on the symmetry for installed Config. 1, datum size
nacelle, installed in Position 1, at cruise conditions (Altitude=35,000ft, M=0.84,
α = 2.7o).

(b) Contours of Mach number on the symmetry for installed Config. 2, large
nacelle, installed in Position 1, at cruise conditions (Altitude=35,000ft, M=0.84,
α = 2.7o).
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(c) A comparison of fan cowl and wing pressure coefficient, (CP ), distributions,
for the datum and large nacelles installed in Position 1, at cruise conditions
(Altitude=35,000ft, M=0.84, α = 2.7o).

Figure 7.5: A flowfield comparison, for the datum and large nacelles installed in Position
1, at cruise conditions (Altitude=35,000ft, M=0.84, α = 2.7o).
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Figure 7.6: A comparison of fan cowl and wing pressure coefficient, (CP ), distributions,
for the datum engine installed in Position 1, at cruise climb and descent conditions, Config.

1, 7 and 13 respectively (Table 7.4).

When the nacelle is moved from Position 1 to Position 2, a forwards movement of x/c =

0.126 parallel to the fuselage axis, nacelle drag decreases for both engine sizes in all flight

configurations except for the climb configuration for which nacelle drag increases by 108%

and 76% for the datum and larger nacelles respectively. Wing influence on the nacelle

is highest in the mid-climb configuration and the forward movement of the nacelle from

Position 1 to 2 reduces this beneficial drag reduction. An example of the CP distribution

on the nacelle surface is given in Figure 7.7(a). For both the datum and large nacelles

installed in position 1 and 2 (Table 7.2) this distribution remains almost constant (a full

comparison is provided in Appendix F, Figure F.2). Changes in nacelle drag are a result

of a subtle change in CP on the upper surface of the aft-nacelle. This change can more

clearly be seen when the pressure coefficient distribution on the topline of the fan cowl

(θ = 0o) is plotted (Figure 7.7(b)). This CP difference is on average approximately 0.05

over the aft-nacelle between position 1 and 2. The equivalent figure which also shows the
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wing CP distribution is provided in Appendix F (Figure F.1).

Detailed flow field analysis is outside the scope of this work and the primary aim was to

generate a set of results from which nacelle drag installation drag factors as a function of

engine size, position and flight condition could be extracted to improve the installation

drag modelling within PSIMOD. This is dealt with in the subsequent section.

7.5.2 Installed nacelle drag factors

The aim of this section was to extract nacelle drag installation drag factors as a function

of engine size, position and flight condition. These factors could then be applied to the

nacelle drag calculated by PSIMOD. The calculation of nacelle drag installation factors for

each configuration required the simulation of an isolated nacelle at the same conditions.

To make a fair comparison nacelles should be compared at the same local flow incidence.

A clean wing CFD calculation was performed for the mid-climb, mid-cruise and mid-

descent configurations. The upflow angle at a point equivalent to the center of the nacelle

highlight was extracted to estimate the upwash effects of the wing. This point in space and

the extracted upflow angle change with both installation location and nacelle size. When

nacelle size is increased it is scaled around the trailing edge point of the nacelle topline and

as such the highlight plane of the nacelle moves forward away from the wing. The variance

of upflow angle with nacelle size and position was assessed (Table 7.7). This variance was

small when the upflow angle for each configuration was compared to the upflow angle for

the datum size nacelle in installation position 1. The maximum discrepancy (∆0.16o) was

found for the larger nacelle in the climb configuration at installation position 1. These

variances were deemed to be small enough that three isolated nacelle CFD simulations,

one for each flight configuration, were sufficient to allow a back to back comparison with

the eighteen different installed configurations.
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(a) The CP distribution on the surface of the datum nacelle installed in position 1 in the
climb configuration (Config. 7). The axial coordinate (x) is non-dimensionalised by the
nacelle length Lnac is the nacelle length such that x/Lnac is the nacelle trailing edge. θ is
the nacelle azimuthal angle from the nacelle topline.
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(b) The CP distribution along the fan cowl topline for datum nacelle and large nacelle
installed in positions 1 and 2, Configurations 7, 8, 9 and 10 respectively (Table 7.4).

Figure 7.7: Fan cowl pressure coefficient distributions in the climb configuration.
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Flight Installation Nacelle Upwash ∆ε from Datum
Config. # Config. Position Size Angle (ε) size nacelle in pos. 2

1 Cruise 1 Datum 1.44 0.05
2 Cruise 1 Large 1.41 0.08
3 Cruise 2 Datum 1.48 0.00
4 Cruise 2 Large 1.43 0.05
5 Cruise 3 Datum 1.54 0.06
6 Cruise 3 Large 1.50 0.02

7 Climb 1 Datum 3.83 0.09
8 Climb 1 Large 3.58 0.16
9 Climb 2 Datum 3.74 0.00
10 Climb 2 Large 3.52 0.22
11 Climb 3 Datum 3.81 0.08
12 Climb 3 Large 3.61 0.13

13 Descent 1 Datum 1.03 0.01
14 Descent 1 Large 0.95 0.09
15 Descent 2 Datum 1.04 0.00
16 Descent 2 Large 0.95 0.08
17 Descent 3 Datum 1.10 0.06
18 Descent 3 Large 1.02 0.02

Table 7.7: The variance of upflow angle extracted from clean wing CFD cases with
changes in nacelle size and installation position for different flight configurations. The
difference between the upflow angle for each configuration and the upflow angle for the

datum size nacelle in installation Position 2 is also shown.

The nacelle total upflow angle was then calculated from the nacelle inclination angle

and the upwash angle derived from the clean wing CFD cases. The calculated nacelle

drag (Figure 7.4) was then expressed as a factor of the calculated isolated nacelle drag

(Figure 7.8).

Generally scaling the installed drag coefficients by isolated nacelle drag did not change

the overall trends with respect to changes in position and flight configuration. However in

all cases the installation drag factors are less than one, which indicates that in all cases

the presence of the airframe acts to reduce nacelle drag. The greatest influence, an 87%

reduction, is seen by the datum size nacelle installed in Position 1 in the climb configura-

tion. This indicates that changes in nacelle drag are not the dominant installation drag

component and that the application of nacelle drag installation factors alone in PSIMOD



Chapter 7 Underwing installed nacelles numerical campaign 151

Dmax=3.133 [m] Dmax=4.018 [m]
0.0

0.2

0.4

0.6

0.8

1.0

C
D

en
g
in
st
/
C
D

en
g
u
n
in
st

Position 3

Climb
Cruise
Descent

(a) Variation of installed nacelle drag expressed as a frac-
tion of isolated nacelle drag at the same conditions with
flight condition and engine size for installation position 3.

(b) Comparison of engine sizes and installation posi-
tions relative to the local wing cross-section.
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(c) Variation of installed nacelle drag expressed as a frac-
tion of isolated nacelle drag at the same conditions with
flight condition and engine size for installation position 2.
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(d) Variation of installed nacelle drag expressed as a frac-
tion of isolated nacelle drag at the same conditions with
flight condition and engine size for installation position 1.

Figure 7.8: Variation of installed nacelle drag expressed as a fraction of isolated nacelle
drag at the same conditions with flight condition, installation position and engine size.

Drag is calculated with the modified nearfield method.

to model installation effects is not adequate. The complimentary effect of the nacelle on

the airframe must also be considered. Including these effects in PSIMOD is outside the

scope of the current work but possible approaches are discussed in Chapter 8 (Future

Work).
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7.5.3 Breakdown of installed drag components

The preceding section concluded that the assessment of installation effects by solely looking

at changes in nacelle drag was inadequate. To fully evaluate a power plant installation

the complementary effects of the nacelle on the airframe must be considered. To this end,

drag was decomposed into installation drag (Eq. 7.1) and airframe and nacelle interference

drag (Eq. 7.2 and Eq. 7.3) and expressed as a percentage of overall aircraft drag.

∆Dinst = Da/c − (Da/f,iso +Deng,isoNeng) (7.1)

∆Da/f = Da/f,inst −Da/f,iso (7.2)

∆Deng = Deng,inst −Deng,iso (7.3)

In the majority of cases installation drag was found to be negative. However in two

cases for the larger size installed nacelle a large increase in airframe drag was calculated.

In Position 1, for the cruise configuration an increase in airframe drag when compared

to isolated airframe drag (∆Da/f ) resulted in a large positive installation drag (37% of

Da/c). Similarly in Position 3, for the climb configuration a large increase in airframe drag

(36% of Da/c) resulted in a similarly large installation drag (30% of Da/c). In both cases

the presence of the nacelle significantly altered the shock pattern on the inboard section

of the wing. An example of this is shown in Figure 7.9. Acceleration over the wing in

the vicinity of the engine is reduced and the shock structures have been altered with the

inboard shocks moving forwards. This has the effect of reducing the suction force on the

wing leading edge, particularly in the inboard section (Figure 7.9(b)) which in turn leads

to an increase in airframe drag over the clean-wing configuration.
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In conjunction with this the jet is exhausted at approximately freestream static pressure

which is higher than the nozzle environmental static pressure in the installed case. This

is especially pronounced in the climb configurations. The jet efflux therefore increases

wing drag. These jet efflux effects would be markedly different when realistic nozzle exit

boundary conditions are simulated. The need for this approach is discussed in Chapter 8

(Future Work).

For the datum size nacelle installation drag was, on average, -13%, -9% and -6% of Da/c

for the mid-climb, mid-cruise and mid-descent configurations respectively In the climb

configuration ∆Da/f was of the same order of magnitude as ∆Deng for the datum size

nacelle but of opposite sign.

It is obvious from these results that the presence of the nacelle is having a significant

impact upon wing performance. As this is the case it is not enough to look at changes in

drag alone, lift installation effects must also be considered to fully evaluate a powerplant

installation. An assessment of the impact on aircraft lift will now be made in the following

section along the same lines as the drag breakdown discussed here.

7.5.4 Breakdown of installed lift components

Section 7.5.3 concluded that to properly evaluate a powerplant installation the effects

on total lift must be evaluated. In this section changes in lift will be decomposed into

installation lift and changes in airframe and nacelle lift (Eq. 7.4, Eq. 7.5 and Eq. 7.6).

∆Linst = La/c − (La/f,iso + Leng,isoNeng) (7.4)

∆La/f = La/f,inst − La/f,iso (7.5)



154 Chapter 7 Underwing installed nacelles numerical campaign

(a) The clean wing geometry in the cruise condition.

(b) Config 1 (datum sized nacelle installed in position 1) in the cruise
condition

Figure 7.9: A comparison of the flowfield over the wing in Config. 1 (datum sized
nacelle installed in position 1) with the clean-wing configuration in the cruise condition
(M = 0.84, α = 1.2o). Contours of pressure coefficient (CP ) on the wing upper surface
and a series of planes parallel to the symmetry plane coloured by Mach number and

limited to 1.0 ≤M ≤ 1.4. η is the non-dimensional wing span.
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(a) Variation of drag components expressed as a fraction
of overall aircraft drag with flight condition and engine
size for installation position 3.

(b) Comparison of engine sizes and installation posi-
tions relative to the local wing cross-section.
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(c) Variation of drag components expressed as a fraction
of overall aircraft drag with flight condition and engine
size for installation position 2.
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(d) Variation of drag components expressed as a fraction
of overall aircraft drag with flight condition and engine
size for installation position 1.

Figure 7.10: Variation of drag components expressed as a fraction of overall aircraft
drag with flight condition, installation position and engine size. Nacelle drag is calculated

with the modified nearfield method.
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∆Leng = Leng,inst − Leng,iso (7.6)

The presence of the nacelle changes the pressure distribution of the wing. Primarily the

suction side of the wing is affected through the change shock positions at inboard sections

(Figure 7.11). Further outboard the presence of the nacelle shields which results in a local

flow angle reduction. The higher jet efflux of the larger engine effects a greater area of the

wing pressure side that that of the datum engine. The pressure matched nozzle condition

is matched to freestream conditions but the nozzle environmental static pressure had been

accelerated by the presence of the fuselage. The jet efflux reduces flow velocity under the

wing directly behind it (Figure 7.11(b)).

In all cases the effect of the presence of the nacelle was to reduce overall lift. To regain this

lost lift either an increase in aircraft angle of attack is required or the wing needs to be

redesigned. An increase in aircraft angle attack would lead to an increase in drag. So to

properly evaluate a powerplant installation changes in total aircraft drag need to assessed

at a constant lift coefficient. The increase in drag associated with a percentage increase

in wing CL can be estimated with the CRM experimentally measured drag polar. For

the cases simulated the typical cruise CL calculated was 0.24. To recover the average loss

of lift for the datum nacelle installation (-2.9%) CDa/c increases by 1.5%. This increase

is less than the negative installation drags calculated (Figures 7.10) for the datum sized

nacelle. The equivalent calculation for the larger installed nacelle, which suffers an average

loss of lift of 3.9% in the cruise configurations results in a CDa/c increases of 1.9% which

is typically less than the negative installation drags calculated. These figures are only

estimations based on an experimental drag polar. Ideally the installed CFD cases would

be re-run to enable a drag breakdown comparison at equal CL.
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(a) The clean wing geometry in the cruise condition

(b) Config 1 (datum sized nacelle installed in position 1) in the cruise condition

Figure 7.11: A comparison of pressure coefficient distribution on the wing in Config.
1 (datum sized nacelle installed in position 1) with the clean-wing configuration in the
cruise condition (M = 0.84, α = 1.2o). Contours of pressure coefficient (CP on the suction

and pressure sides of the wing.
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(a) Variation of lift components expressed as a fraction
of overall aircraft lift with flight condition and engine size
for installation position 3.

(b) Comparison of engine sizes and installation posi-
tions relative to the local wing cross-section.
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(c) Variation of lift components expressed as a fraction
of overall aircraft lift with flight condition and engine size
for installation position 2.
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(d) Variation of lift components expressed as a fraction
of overall aircraft lift with flight condition and engine size
for installation position 1.

Figure 7.12: Variation of lift components expressed as a fraction of overall aircraft lift
with flight condition, installation position and engine size. Nacelle lift is calculated with

the modified nearfield method.
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Future Work

A framework to assess propulsion system integration has been developed Based on this

research it is possible to identify some ways by which this framework could be further

developed.

1. It was found that the impact of an installed nacelle on an airframe forces can be of

the same order as the impact of the presence of the airframe on nacelle drag. The

framework should be extended so that forces on the whole system are calculated as

a function of nacelle size and installation location.

2. In the assessment of individual powerplant installations or the establishment of cor-

relations for installation drag, force comparisons should be carried out at equal total

lift. This may be due to a loss of lift caused by installation effects or in an increase

in weight and hence required lift.

3. It was noted in this research that the jet efflux can have a significant impact on wing

performance. However unrealistic datum efflux was adopted to ensure compatibility

with the ESDU 81024 drag prediction method.13 The effect of realistic jet effluxes

should be investigated. This will necessitate the definition of a robust post-exit force
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lift and drag accounting methodology. Both mixed and split stream nozzles should

be investigated as a function of nozzle pressure ratio.

4. A series of nacelle drag sensitivity studies carried out with PSIMOD showed that

when engine size is increased the impact on mission fuel of weight can be of the same

order of magnitude as nacelle drag effects. An improved engine, nacelle and pylon

weight estimation method is required to account for this.

5. The airframe, wing, nacelle calculations carried out within this research investigated

the influence of nacelle size, position and flight condition on installation drag. No

effort was made to reduce any negative effects by the alteration of the geometry.

There are multiple routes which could be investigated including the following. Can

any negative installation effects be reduced by modifying nacelle inclination angle or

toe angle? Can they be reduced by designing thinner nacelles with shorter intakes?

Can they be reduced by non-axisymmetric nacelles?

6. For each new powerplant installation a new pylon design is required. So that instal-

lation drag results were not a function of the quality of the pylon design, pylons were

omitted from the study. However pylon drag will vary with nacelle size and instal-

lation position. It should be investigated whether pylon drag just be superimposed.

A pylon drag estimation model should also be investigated.

7. The installation of an engine under a wing will influence its performance. The

sensitivity of engine performance and mission fuel burn to these effects should be

investigated. The impact of the flowfield generated by the airframe and wing on

engine cycle performance and intake performance could be investigated

8. The experimental dataset upon which ESDU 81024 drag prediction method13 is

based comprises nacelle shapes which are not representative of future high and ultra

bypass ratio engine nacelles. This dataset could be expanded and the tool updated

through an isolated nacelle CFD study.
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Summary and conclusions

9.1 Main accomplishments

9.1.1 Modified nearfield method

For CFD post-processing a robust, reliable and repeatable method is required. Standard

thrust and drag accounting methodology rely on the extraction of stagnation lines. The au-

tomatic extraction of stagnation lines and the splitting of surfaces is difficult to implement

especially for complex stagnation lines that may occur when the nacelle is at incidence

or at extremes of mass flow capture ratio. To address this issue the modified nearfield

method (§4.6.1), a thrust and drag accounting methodology compatible with CFD meth-

ods has been developed. This method eliminates the need to extract a stagnation line.and

all properties that are required by the method can be acquired by the interrogation of the

CFD domain boundaries. This has allowed the development of scripts to automatically

extract nacelle drag in a manner compatible with standard thrust and drag accounting

methodology. The modified nearfield method has been adopted and used in multiple MSc

and PhD projects as in projects with industrial partners as well as in this work. Thrust

and drag accounting methodology is usually only reported for zero degree angle of attack
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cases. The modified nearfield method has been extended to allow the extraction of lift and

drag non-zero angles of attack.

9.1.2 Nacelle geometry generation

One of the main tasks of this research was the assessment of nacelle installation effects

with changes in nacelle size. In order to achieve this it was necessary to be able to generate

representative nacelle geometries. An Excel based tool was developed during this research

based on nacelle design rules from the open-source literature. Given some basic information

about the engine cycle and some engine hard-points, a representative spinner, intake and

fan cowl afterbody is constructed. This Excel based tool has been further developed by a

fellow PhD student into Cranfields Geometric Engine Modeller (GEM).95

9.1.3 PSIMOD

A Propulsion System Integration Modelling (PSIMOD) framework has been developed.

PSIMOD couples Cranfield University’s in house engine (Turbomatch10) and aircraft (Her-

mes12) performance codes with a nacelle drag prediction model based on ESDU 81024.13

The ESDU drag prediction method is used to predict nacelle drag as a function of flight

Reynolds number, Mach number, nacelle shape and intake MFCR. Corrections are then

applied to this drag prediction to take into account nacelle local upflow effects and nacelle

and propulsion system integration effects based on CFD simulations. This nacelle drag is

integrated within PSIMOD in a drag build up method at each point in the flight.
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9.2 Conclusions

Methods for the estimation of nacelle external drag have been developed. ESDU method

81024,13 a method for the estimation of nacelle drag has been incorporated into a Propul-

sion System Integration Modelling (PSIMOD) framework. This has replaced a simple skin

friction drag estimation methodology for nacelles which was part of Cranfield Universitys

aircraft modelling tool HERMES.12 The simple skin friction based estimate of nacelle drag

was found to under predict nacelle drag by approximately 40% with respect to the ESDU

method which takes into account nacelle geometry, Mach number, Reynolds number and

MFCR effects

It is important to accurately model nacelle and engine weight in preliminary design as

its effects on mission fuel burn are of the same order of magnitude as nacelle drag. For

the short haul mission when weight increases were not modelled some engines showed an

uninstalled SFC improvement over the baseline engine. When the additional weight of

these larger engines was included in the modelling these uninstalled SFC improvements

were completely negated. For the long haul mission when engine and nacelle weight

increases were not modelled all engines showed an improvement in mission fuel burn over

the baseline engine. However when the weight increases were modelled only the engines

with a BPR=8.3 maintained a mission fuel burn improvement. This showed that for the

engine design approach adopted in this paper there is an optimum increase in BPR after

which further increases increase mission fuel burn. In preliminary design it is important

to take into account both nacelle total upflow angle and installation drag. This has been

achieved with the PSIMOD framework which uses the ESDU drag prediction method13

to predict nacelle drag as a function of flight Reynolds number, Mach number, nacelle

shape and intake MFCR. Corrections are then applied to this drag prediction to take into

account nacelle local upflow effects and nacelle and propulsion system integration effects.

This nacelle drag is integrated within PSIMOD in a drag build up method at each point in
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the flight as part of an aircraft and engine performance model. PSIMOD and its sensitivity

to propulsion system drag components has been demonstrated.

A large number of isolated nacelle CFD calculations at a range of Mach numbers, MFCRs

and angles of attack were carried out. Corrections to nacelle drag due to incidence ef-

fects were extracted from the CFD data. The CFD method has been validated against

experimental data with typical discrepancies being of the order of two drag counts.

Methods for the estimation of angle of attack effects on nacelle drag have been developed.

Corrections to nacelle drag due to incidence effects which were extracted from CFD have

been applied to PSIMOD.

Nacelle total local upflow angle can have a significant effect on mission fuel burn with

increases in mission fuel burn of up to 2.2% seen for non-optimum nacelle offset angle.

This showed that the ESDU method which does not take nacelle total local upflow angle

into account is inadequate for calculating nacelle drag throughout a mission in preliminary

design.

A method to assess the impact of nacelle installation effects has been developed. An instal-

lation drag factor has been added to PSIMOD in order to assess the impact of installation

quality on overall mission performance. A sensitivity study to nacelle installation quality

was undertaken across a range of installation drag factors from the literature. Engine in-

stallation quality can have a significant effect on mission fuel burn. For a poor propulsion

system integration which may have an installation drag penalty of 50% of the isolated

nacelle drag mission fuel burn can increase by up to 6%. The rate of change of mission

fuel burn with installation quality is a function of nacelle size. Installation effects are not

taken into account by the ESDU method.13

An airframe, wing, nacelle CFD campaign was carried out with the aim of extracting

installation drag factors as installation drag factors as a function of nacelle size and in-

stallation position for three flight conditions which are representative of a typical mission.
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The extracted installation drag factors were all less than one indicating that influence of

the airframe and the wing in particular act to reduce nacelle drag at equal angle of attack.

The primary mechanism by which this occurs is imposition of an increased pressure field

on the aft of the nacelle. The assessment of installation effects by solely looking at the

effect of the airframe on nacelle drag is inadequate. The effect of presence of the airframe

on nacelle drag is of the same order of magnitude as the effect the nacelle on airframe

drag. In addition the presence of a nacelle alters the lift generated by the airframe. In all

cases investigated the effect was to reduce lift, by up to 4% in some cases. The increase in

aircraft angle of attack to recover this loss in lift will lead to a corresponding increase in

drag. This demonstrates that assessments of nacelle integration effects should be carried

out at equal lift and not at equal angles of attack.
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111López, R., Validation of software for the calculation of aerodynamic coefficients: with a focus on the

software package Tornado, Ph.D. thesis, Department of Management and Engineering, Linkopings

Universitet Tekniska Hogskolan, 2010.

112Melin, T., A vortex lattice MATLAB implementation for linear aerodynamic wing applications,

Master’s thesis, Department of Aeronautics, Royal Institute of Technology (KTH), Stockholm, Sweden,

2000.

113UIUC Applied Aerodynamics Group, “UIUC Applied aerodynamics group. UIUC airfoil coordinates

database, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 2014,”

UUIC, http://aerospace.illinois.edu/m-selig/ads/coord database.html, (Last accessed: 01 July 2014), 2014.

114Vassberg, J. C., DeHaan, M. A., Rivers, S. M., and Wahls, R. A., “Development of a Common

Research Model for Applied CFD Validation Studies,” 26th AIAA Applied Aerodynamics Conference,

AIAA Paper 2008-6919, August 2008.

115Boeing, “777-200/300 Characteristics for airport planning,” Boeing Commercial Airplanes, Seattle,

Washington, USA, July 1998.

116Boeing, “747-400 Airplane characteristics for airport planning,” Boeing Commercial Airplanes,

Seattle, Washington, USA, 2002.

117Federici, F., Group design project - Section 5 - Aerodynamics Specialist Report , Master’s thesis,

University of Bristol, 2009.



176 References

118Van Dam, C., “Recent experience with different methods of drag prediction,” Progress in Aerospace

Sciences, Vol. 35, No. 8, 1999, pp. 751–798.

119Airbus, “A350-900 Aircraft characteristics airport and maintainance planning,” Airbus S.A.S.,

Customer Services, Technical Data Support and Services, 31707 Blagnac Cedex, France, April 2015.

120Airbus, “A320 Aircraft characteristics airport and maintainance planning,” Airbus S.A.S., Customer

Services, Technical Data Support and Services, 31707 Blagnac Cedex, France, April 2012.

121Airbus, “A321 Aircraft characteristics airport and maintainance planning,” Airbus S.A.S., Customer

Services, Technical Data Support and Services, 31707 Blagnac Cedex, France, April 2015.

122Airbus, “A340-200/-300 Aircraft characteristics airport and maintainance planning,” Airbus S.A.S.,

Customer Services, Technical Data Support and Services, 31707 Blagnac Cedex, France, January 2014.

123Airbus, “A340-500/-600 Aircraft characteristics airport and maintainance planning,” Airbus S.A.S.,

Customer Services, Technical Data Support and Services, 31707 Blagnac Cedex, France, January 2014.

124Boeing, “747 Characteristics for airport planning,” Boeing Commercial Airplanes, Seattle,

Washington, USA, January 1984.

125Boeing, “757-200/300 Characteristics for airport planning,” Boeing Commercial Airplanes, Seattle,

Washington, USA, August 2002.

126Boeing, “767 Characteristics for airport planning,” Boeing Commercial Airplanes, Seattle,

Washington, USA, September 2005.

127Boeing, “787 Characteristics for airport planning,” Boeing Commercial Airplanes, Seattle,

Washington, USA, November 2014.
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Abstract

The paper describes the development of a preliminary design tool which can assess the

effect of nacelle size, geometry, angle of attack and installation on flight efficiency. Various

methods of predicting nacelle drag were compared. The importance of including the effect

of weight, nacelle local upflow angle and installation effects in the nacelle drag calculation

has been shown. A preliminary design tool (PSIMOD) has been developed which uses

the ESDU drag prediction method to predict nacelle drag as a function of flight Reynolds

1
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number, Mach number, nacelle shape and intake MFCR. Corrections are then applied

to this drag prediction to take into account nacelle local upflow effects and nacelle and

propulsion system integration effects. This nacelle drag is integrated within PSIMOD

in a drag build up method at each point in the flight as part of an aircraft and engine

performance model.
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Wake integral method drag

extraction theory

Drag can be found by comparing the fluid momentum ahead of the body with the momen-

tum downstream of the body. This equates to profile drag and is given by Equation B.1.

D =

∫ ∫
ρV (V0 − V ) dA (B.1)

Applying Equation B.1 to a body of revolution as shown in Figure B.1 leads to Equa-

tion B.2

D =

∫ θ

0

∫ R

r
ρV (V0 − V ) rdrdθ

=

∫ θ

0

1

2
ρV
(
r2 −R2

)
(V − V0) dθ

= πρV
(
r2 −R2

)
(V − V0)

(B.2)

This is the experimental approach taken in the ARA 1968-73 nacelle tests.28 The pitot-

static rake used in these tests is shown in Figure B.2. Local P and P0, tunnel T0 and P0

were known. The outer edge of wake was found by scanning rake measurements from the

3
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outermost rake inwards until a total head loss of 0.013% was found (Figure B.2. Local mach

number can be calculated using Equation B.3 which enables the local static temperature

to be calculated from Equation B.4. The local velocity and density can be found using

Equations B.5 and B.6 respectively. Now all the variables in Equation B.2 are known

and drag can be calculated. In later numerical work this method is followed with local

values extracted from the numerical solution at the measurement points. This process was

automated using a Tecplot macro. This macro wrote the local values at the measurement

points to a text file which then was processed by a MATLAB script.

M =

√√√√[(P0

P

) γ
(γ−1)

− 1

]
2

γ − 1
(B.3)

T =
T0

1 + γ−1
2 M2

(B.4)

V = M ·
√
γRT (B.5)

ρ =
P

RT
(B.6)

Then Equation B.2 can be used to calculate the drag with V0 being is the average of all

good readings outside the wake.
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Figure B.1: Nomenclature for a wake integral around an axisymmetric body
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Figure B.2: ARA experimental pitot-staic rake28



Appendix C

CFD rationale

This Appendix discusses the main reasons for the use of CFX as the CFD solver, the

problems encountered in running the simulations and the solutions found. Low order

models, such as Euler codes do not have the required fidelity to predict the complex

flowfield phenomena present in full aircraft-engine simulations. It has been shown in

the literature that a steady RANS based approach is appropriate. CFX was chosen as

the RANS CFD solver as it was available to the Author and has been used in the open

literature for aircraft engine CFD calculations.34,50,54,132

The following problems encountered during the set up of robust CFD calculations were

encountered:

1. Initially a rectangular cuboid domain was employed. However this lead to divergence

of the solution where velocity vectors were imposed parallel to boundaries. This was

solved by changing to a hemi-spherical domain.

7
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2. CFX does not have a built in “farfield” boundary condition. The “’Opening’ bound-

ary condition was used at the farfield. Freestream conditions were imposed by set-

ting the Cartesian components of velocity, static temperature and turbulence values.

Static pressure was also imposed indirectly through global initialisation.

3. The “’Opening’ boundary condition which was used at the farfield does not allow

static pressure to be specified. In initial simulations of clean-wing aircraft the static

pressure set correctly at the farfield to be equal to the user imposed reference pres-

sure. However when an engine-aircraft configuration was simulated the code imposed

the total pressure at the nozzle outlet as the freestream static pressure. It was found

that the static pressure was automatically imposed at the farfield from other bound-

ary conditions in the following order:

(a) Total pressure boundary condition

(b) Static boundary condition

(c) User imposed reference static pressure

Theses difficulties were overcome by carrying out a global initialisation with the

relative static pressure equal to zero.

4. Difficulties were found in setting up a robust convergence strategy. This was espe-

cially different for the isolated engines simulations at incidence and the aircraft calcu-

lations in which flow separation was present. In all cases the “Automatic Timescale”

was set. This was modified by adjusting the “Timescale Factor”. For the wing-

nacelle CFD calculations (Chapter 7) this was modified through a step function

based on the “Accumulated Timestep” and the “Accumulated Iteration Number”.

This allowed the “Timescale Factor” to be set to 0.02 for the first 1000 iterations,

then increased to 0.1 for a further 1000 iterations. It was then set to 1.0 for 3000 it-

erations. Next it was increased by 1 starting from 1 each iteration for 100 iterations.

Finally it was increased by 100 each iteration for 10 iterations. For the clean wing
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cases (Chapter 7) the “Timescale Factor” was set to 0.02, 1.0 and back to 0.02 for

1000, 1000 and 3000 iterations respectively. The isolated nacelle CFD calculations

(Chapter 5) featured a large range of angles of attack (0o ≤ α ≤ 10o) and MFCRs

(0.25 ≤ MFCR ≤ 1.5). It therefore proved difficult to have a robust convergence

scheme which also minimised the number of iterations required in each case. For

this reason in all cases the “Timescale Factor” was set to 0.01 for all 4000 iterations.





Appendix D

ARA cowl 1 CFD boundary

conditions

D.1 Boundary conditions for M=0.4 MFCR sweep

M V (m/s) Turbulence T (K)

0.40 135.54 10% 285.75

Table D.1: Inlet boundary conditions

M P (Pa) Turbulence T (K)

0.40 90748.13 zero gradient 285.75

Table D.2: Opening (entrainment & pressure) boundary conditions

M P (Pa) Turbulence T (K)

0.40 90748.13 10% 285.75

Table D.3: Opening (pressure & direction) boundary conditions

11
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M MFCR W (kg/m2) Mass flow update

0.40 1.0 0.0149 constant flux
0.40 0.9 0.0135 constant flux
0.40 0.8 0.0120 constant flux
0.40 0.7 0.0105 constant flux
0.40 0.6 0.0090 constant flux
0.40 0.5 0.0075 constant flux
0.40 0.4 0.0060 constant flux
0.40 0.3 0.0045 constant flux
0.40 0.2 0.0030 constant flux
0.40 0.1 0.0015 constant flux
0.40 0.0 0.0000 constant flux

Table D.4: Outlet (mass flow) boundary conditions



Appendix E

Payload range diagram comparison

Two baseline aircraft models were created to be representative of a short haul and long

haul aircraft to be used by PSIMOD to assess the impact of engine integration effects

on overall mission performance. A short haul flight was considered based on an aircraft

based on the Boeing 737-800, with two engines similar to the CFM56-7B27 over a mission

distance of 1,000 km and with a payload of 10,660 kg. The long haul mission was assessed

using an aircraft based on a Boeing 777-300 configuration, whose engines were similar to

the Trent 892 over a range of 6,000 km and with a payload weight of 33,370 kg. The cruise

altitude for both aircraft was set to 10,668m with cruise Mach numbers of 0.81 and 0.84 for

the short and long haul aircraft respectively. The CL−α curve of each aircraft is required

by PSIMOD. This was calculated using a vortex lattice method112 with compressibility

corrections for high subsonic Mach numbers.

The aircraft models were created to be representative of existing transonic civil transport

aircraft not to model them exactly. A closer match with the real aircraft could be achieved

by manual iteration of the aircraft model inputs in PSIMOD. To show that the created

aircraft models are representative of real aircraft the payload range diagram calculated for

the long haul aircraft is compared to that of a Boeing 777-300.115 Three payload range

13
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diagrams calculated with PSIMOD are shown (Figure E.1). These show the impact of

changing the the nacelle drag prediction method upon the payload range diagram. When

no nacelle drag was modelled the maximum range was over-predicted by 1.1%. However

when the skin-friction estimate (SFE) and ESDU methods were used to calculate nacelle

drag the maximum range was underpredicted by 3.1% and 5.7% respectively. A similar

exercise was carried out for the short haul aircraft. In this case when no nacelle drag

was modelled the maximum range was over-predicted by 2.2%. The SFE and ESDU

nacelle drag methods underpredicted nacelle drag by 3.4% and 7.6% respectively. Based

on this comparison the aircraft models were deemed to be representative enough to be used

as PSIMOD models to assess the impact of engine integration effects on overall mission

performance.
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Figure E.1: Comparison of the payload range diagram calculated for the long haul
aircraft and that of a Boeing 777115
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Additional figures
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Figure F.1: The CP distribution along the fan cowl topline and the wing suction and
pressure surfaces for Configurations 7, 8, 9 and 10 respectively (Table 7.4).
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(a) Configuration 7 (b) Configuration 8

(c) Configuration 9 (d) Configuration 10

Figure F.2: [The CP distribution on the unwrapped fan cowl for the datum nacelle and
the large nacelle installed in positions 1 and 2, Configurations 7, 8, 9 and 10 respectively

(Table 7.4).
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(a) Clean wing configuration (b) Configuration 12

Figure F.3: Contours of CP on the wing suction surface for the clean wing configuration
and the large nacelle installed in Position 3, Configuration 12 in the climb condition

(Table 7.4).
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