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SUMMARY

This report concerns mainly the computation of inviscid
steady hypersonic flow on the nonoverlapped composite grid with

implicit schemes.

Chapter 1 is about the post=-shock oscillations of slow moving
shocks in one dimension. The objective is to =zreduce the
cscillations and increase the convergence speed for later work in
two dimension; however, We find that other problems are more
influential in term of reaching steady sfate in two dimension.
Nevertherless the result is still useful for unsteady

calculations.

Chapter 2 studies the interaction of the shock and grid size
change in one dimensional wunsteady and two dimensional steady
flows by the explicit scheme. Some interesting results are

presented.

Chapter 3 discusses the implicit scheme for two dimensional
steady state solutions. Various solvers are tried and special

problems associated with hypersonic calculations are emphasised.

Chapter 4 concerns the main theme of our research on implicit
zonal method. A simple treatment on the zonal boundary conditions

is presented with results from different implicit solvers.

Since each chapter is quite independent the concluding

remarks are given at the end of each chapters.
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CHAPTER 1 : NUMERICAL EXPERIMENTS OF

RIEMANN SOLVERS ON SLOWLY MOVING SHOCKS

1.1 Introduction : Post-Shock Oscillation Problem

It has been observed for some +time that when a shock is
moving slowly some upwind schemes may producé wiggles at the
higher density (post=-shock) region, even when those schemes

satisfy TVD conditions in the scalar case.

This problem only can happen in coupled systems, it does not
occur in the scalar equation or in systems of egquations that can

be decouplable.

The non-monotone behavoour is certainly unwanted in unsteady
flow calculations. Also it may cause convergence difficulty when
one is using an unsteady approach to find the steady state

solution.

Later in this chapter, we first review some previous works.
In section 1.3 some results of extensive tests on Roe’s scheme,
which is known to have post-shock oscillations, are presented. In
section 1.4 we give a brief review of schemes. We investiget the
P variant of Osher’s and introduce Bell’s method in section 1.5.
In section 1.6 we show some results from Roe’s scheme with
dissipation. Section 1.7 shows how to reduce the post-shock
oscillations of second order schemes. Concluding remarks are

given in section 1.8.
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1.2 Previous Works

The first detailed account of this problem is by Colella and
Woodward [1l] in their paper about PPM method. They observe that
low amplitude post-shock oscillations occur when the
characteristic speed associated with a strong shock, measured
relatived to the grid, wvanished. &And the dissipation introduced
by Godunov’s method vanishes as the shock speed goes to zero and
therefore dissipation present in a slowly moving shock wusing
Godunov’s method 1is not sufficient to guarantee correct entropy

production across the shock.

They show an example for an extremely strong shock moving
slowly from zright to left (see Fig. 1). There are substantial
oscillations on both entropy and u=-2a/(¥-1l), but the quantity
ut2a/(¥~-1) the Riemann invariant transported along the (u+a)
characteristic is well behaved. Their explanation is that in
(u+a) wave any errors generated in that variable are immediately
driven back to the shock transition layer while in the u and u+a
waves the errors are carried away from the shock (see Fig. 2},
therefore post-shock oscillations only appear in nonlinear system
of equations. They propose to add some dissipations to decrease

the oscillations.

Robexrts [2] compares Godunov’s [3], Roe’s [4,5], and
Osher’s [6] schemes on a Mach 3 shock which takes 50 steps to
cross a cell for Courant number 0.95. He shows Osher’s scheme
behaves guite well while Godunov’s and Roe’s schemes exhibit
obvious post-shock oscillations not only for extremely strong
shocks but even for weak shocks. He also shows that the results

from Roe’s scheme with minmod limiter are worse than those from
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the £first order Roe’s scheme. The reason is because 2nd order
scheme i1s less dissipative to suppress the oscillations. One more
interesting result obtained from Osher’s scheme with natural
ordering of wave paths shows that it is not as good as the
original scheme which uses reversed ordering of wave paths. He
also shows the oscillations will occur for schemes with flux
functions that give "exact"™ shock regolution such as Godunov’s and

Roe’s schemes.

1.3 Numerical Experiments and Results on Roe’s Scheme

Our purposes in doing the numerical experiments are first to
reproduce Roberts’ results and then test the schemes more
systematically to find the parameters associated with the

post=-shock phenomena.

The dinitial data for thess tests are obtained by
superimposing a velocity on a zero velocity shock, this velocity
can be either positive or negative (see Fig. 3). The shock
condition is labeled by ’"Mach Number X’'. Here the "Mach number X"
shock means the shock data, such as pressure Jump, are obtained
from the steady normal shock relations for Mach number X and ratio
of specific heats 1.4. The grid is uniform. The results shown
later in some graphs are for the denstiy, u-2a/(y-1l), entropy, and
u+2a/(¥-1). The last three gquantities are the Riemann invariants
of wu-a, u, and u+a waves, and they will be denoted as R1l, R2,and
R3 thereon. It should be noted that the scales change from graph

to graph.

There are three main conclusions from this experiment.
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Firstly, we stress again that the post-shock oscillstions
occur even when the shock strength is very weak. Fig. 4 and 5 are
for Roe’s and Osher’s schemes with Mach no. 1.2. The oscillations
in density, R2, R3 are obvious while R2 behaves quite well.
Because of the graph scale the oscillations seem quite large,
actually they are wvery small. We can also observe from the
pictures that Osher’s scheme performs better than Roe’s. Fig. 6
and 7 are for Roe’s and Osher’s schemes with Mach no. 20 for SR
0.035 (SR to be_defined later). The pictures speak for themselves
for results from Osher’s scheme, therefore we will concentrate on

Roe’ s scheme.

Secondly, the Courant number is not Aimportant. In other
words how many time steps the shock takes to cross a cell is not

important. We have even tried with Courant no. 0.05.

Thirdly, the relative shock speed is important. If the shock
moves slowly or fast enough then the oscillations are very small.
The amplitude of oscillations first increases then decreases when
the shock speed 1is increasing or decreasing from zero. The
maximum amplitude of density oscillations for shocks moving from
low density to high density region is bigger than for shocks
moving in another direction, but for entropy oscillations the
situation «reverses. To nondimensionalise the shock velocity the
shock speed is divided by the (u+a) of the right side state. The
nondimensionalised shock speed is called SR. The reason to use
(u+a) of right state instead of the associated characteristic
speed 1s to avoid the SR value becoming too small. Fig. 8 gives
the maximum amplitude of density oscillation versus SR. The SR
value which produces maximum oscillation is around +0.035. SR

~0.035 with Courant number 0.95 is very close to Roberts’ test.
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1.4 Brief Review of Schemes

Here we only point out some important differences betweens
various schemes. The reader is assumed to be familar with them.
For more complete comparisons we recommend the papre by Van Leer
[7] for the scalar equation and the lecture notes by Pandolfi [8]

for nonlinear systems.

We first start with the scalar equation
W+ [£(W)],=0

The lst order conservative scheme can be written as
Wn+1 Wn At ) ]__O
- +:}'(‘ [HHI/Z (Wl’ wi-H) - Hi~1/2(wi—1’ W) =

For the Godunov’s scheme H%W,,Wz) is equal to the exact flux
value of the Riemann problem at x=0.5(x.+Xg) and T=at with W,

and Wy as left and right states. For Roe’s we have

f(We)—£(W.)

R -1 _ 1
H (WL:WR) - 2 (fR+fL) 2 WR__WL

(WR _WL )

For Enquist-Osher’s [9] we have

50 _1 _ 4 pWepdf
H® (W, W)= (fH) szL | aw

For (WL,WR) does not contains the sonic point, these three
fluxes are the same. However for the interval contains the sonic
point (now we only consider the sonic point in the compression

¢ R EO . EO
wave) we have H = H"% H. Analytically H®® is smooth but not

H® or H¢
For the one dimension Euler equation

WL +F(W)x =O

The 1lst order conservative scheme is

Wt W 4 % [Hivrzz (W, , Wity ) —Hi1e (Wi-1, W, )]=0
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Godunov’s scheme uses exact Riemann solution for fﬂ+vg, In the
approximate Riemann solver of Roe three linearlised waves replace
two nonlinear waves and one linear wave, therefore the expansion
wave 1is replace by a single wave. For Osher’s three simple waves
replace the real wave system, therefore shock wave is replaced by
compression wave. On each simple wave the E-O method is applied.
In the original Osher’s paper (O variant) the left to right state
is connected by u+a, u, and u-a waves in a physically reversed
order. This can be considered as a solution of backward Riemann
problem. Another possibility is to use P (physical) variant. The
only difference to O variant is that the left to right state is
connected by u=-a, u, u+a simple waves in physically correct order.

This has been used by Hemker [10] for transonic calculation.
Fig. 9 gives a graphical picture of these Riemann solvers.

1.5 Results of P Variant and Bell’s

Although Roberts have pointed out that Osher’s P variant do
not produce as good results as O variant. We still try to look it
again. From our experiment we confirm Roberts’ results. We also
observe one strange behaviour that when the Mach number is high
and SR is more negative P variant tends to produce a very large
overshoot, see Fig. 10. I+t will <cause porgram to stop. The
result seems to tell the E-0 flux formulation is not the main or

the only recipe for success.

We try further to implement E-O flux in Roe’s Scheme. Bell
et al [11] propose an approximate Riemann solver to general
systems of hyperbolic conservation laws. Their higher ordex
scheme is basically a PPM approach. It 1is also extended to
problems that are not strictly hyperbolic and exhibit local linear

degeneracies in the wave fields. However no result for Euler
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eguations is given.
Here we give an outline of their first order scheme.

Their scheme can be thought as a simplification of Osher’s
scheme or an enhancement of Roe’s scheme. In stead of evaluating
the intermediate points Wy, and Wiiz/a, which separate different
waves, and possible sonic points Wy and W, , see Fig. 11, by
equations of Riemann invariants in Osher’s scheme, they are
evaluated by elgenvector decomposition and interpolation, and
natual ordering of wave paths is assumed. Or to start with Roe’s
linear wave decompostion, the u-a or u+a waves are not considered
as a single wave each and then Engquist-Osher flux formula is used

in stead of Roe flux formula.

Assume we have a subroutine of Osher’s solver. That is, the
flux Hisype will Dbe computed from intermediate states W,+1/3,
w,+2/3, and any sonic states that are met with. We only need to
change few lines to become a subroutine of Bell’s solver. First

we replace the equations for Wy, , and W4 by

— 1ol
Wiira = W+ a'e

2
WHz/a = w1+1/3 + e

which involve no expansive exponent calculations. X and ek are
simply in term of 0.5(Wi+Wy4;). Roe’s averaging is not required.
Since natural ordering of wave paths is used, +the eigenvalue or
wave speed assoclated with wave path 1 must be change back to u-a
and ut+a for wave path 3. Finally to replace the equations for
sonic points, W, and Vs, at wave path 1 and 3, the wave speeds
Al and X are assumed to vary linearly from Wi to W, and

wu.g/g to Wui. For example, to find Ws“ we solve equations
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CA +C= W,
CI>\11+1/3 +C2 =Wis1/3

to obtain C,. And at sonic point AN is zero, so W;,=C,. Again in
evaluating the sonic points no exponent calculation is needed.

Note that in [1l]) Hermite cubic interpolation is used.

In general the post shock oscillations are reduced but it
does have another problem. For large Mach no. and negative SR it
produces a very big overshoot simliar to that by Osher’s P

variant, although it is not as large as Osher’s P variant.

The results simply tell that E-0 flux fomulation is not the

sole reason of the success of Osher’s O variant.

1.6 Roe’s Scheme with Harten’s Dissipation

From the above results it is obvious that Osher’s scheme 1is
better than Roe’s for solving slowly moving shocks. However
Osher’s is quite expensive to compute and difficult to use on more
complicated problems, such as real , reacting gas , etc because of

the evaluation of the flux integral.

In contrast Roe’s is much cheaper to run and easier to use on
complicated problems. Therefore we are trying to modify Roe’s to
cure its post-shock oscillations. Follow Colella and Woodward’'s

approach we add some dissipations in Roe’s scheme explicitly.
In Roe’s approach, the interface flux is
R 1 1$
H (WL,WR)=‘5 (Fe +F,) "E‘;JAklakek

In order to break the unphysical solution from +this formula,

Harten [12,13] uses
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1 13 ax
H'(We, We )=~ (R+F) = 5 2 Quower

where
Qy = [ it Jul >o Y = KKEL
1, u24e? ’ 24X
E;(~JE—_ if |ul <6

at the expense of some deterioration in resolution, especially at

the shock.

The post-shock oscillations can be suppressed by this
dissipation with well-tuned % and the solution can match that

from Osher’s.

One main disadvantage is that 0 needs to adjusted for each
case and it is CFL number dependent. We modified this formula by
consider Q, as function of Y, &Y and atmex, where Y, is
the difference of Courant number in the same type of wave and

Afmax

is the local maximum allowed time steps, see Fig. 12. The

modified Qk is given by

ISV Ly Al =KVk)R (e )L%

1 V2+62 _ A
Qk =7 ( ) s dk—_ almax
2 Oy

where 6, is taken as 0.5 from numerical experiments. This is only

implemented in the interval which contains the shock point.

Fig. 13 shows side by side comparison of several schemes on

the Mach 3 shock.

1.7 Second Order Schemes

Second order scheme is less dissipative than the first oxrder
scheme. One can expect it will produce larger oscillations.
Roberts givess a demonstration of 2nd order zresult with Roe’s
Riemann solver and minmod limiter. Here we attempt to decrease

the oscillations from the second order or higher order schemes.
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Lax-wendroff scheme with TVD limiter is used, see Roe and
Pike [14]. To use Lax~wendroff scheme we need to have the average
wave speed for each wave family. Roe’s scheme provides average
speeds but not Osher’s. We can take the average wave speed as the
average of the wave speed at the start and end of each simple wave
for Osher’s. This approach is verified by checking the shock tube
solution. The oscillations for the slow moving shock are now

visible for second order schemes using Osher’s.

The cure we propcse is to check if the interval between left
and right states contains any sonic point then we switch off

limiter. Therefore it reduces to first order scheme in the shock

layer. This proves to work well. The global solution is not
degraded and the postshock oscillations are decreased
significantly. The method is very easy to implement into Osher’s

solver.

Note that sonic points include not only the sonic point in
the compression wave but also the sonic point in the exapnsion
wave. It is well known that the numerical sonic flux for the
expansion wave 1is not appropriate to simulate the physical
expansion. Using limiter for the sonic flux will produce worse
results. Therefore 1t is reasonable to switch off limiter when
evaluating the sonic flux. For the 2nd scheme using Roe’s same
technique can be applied plus dissipation. The result is much
improved. Fig. 14 give comparisons of results from 2nd order

schemes.
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1.8 Conclcuding Remarks

We do not have real success in the quest of why Osher’s 0
variant has the Dbest performance on slow moving shocks. The
dissipation approach for Roe’s scheme is not a very good solution.
Nevertherless some porgresses are made to understand this problem.
To switch off limiter inside the shock layer will reduce the
noises generation. This should be guite useful for the unsteady
calculations; however, as we find out later, this approach is not
suitable for implicit schemes on the steady state calculations

because it introduces unsmothness.
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CHAPTER 2 : EFFECTS OF MESH SIZE CHANGE ON SHOCKS

2.1 Introduction

For the multiblock method, it allows local grid refinement to
obtain Dbetter local flow resolution. Here we investigate two

possible problems due to the mesh size change.

Firstly, we apply lst order flux difference splitting schemes
(Roe’s and Osher’s) for the moving shock problem on nonuniform
grid in one dimension. For simplicity, the grid consists of two

nonoverlapped uniform zones with different mesh sizes.

The main purpose is to investigate how the mesh size change
influences the solutions when shocks passing the zone boundary and
hopefully to gain some insight for explaning similar problems on

two dimensions.

Pike [15] shows that lst order schemes will degrade to =zero
order schemes and 2nd order schemes will become lst order accurate
on irregular grids. First and 2nd order schemes on irregular
grids are developed, however no extension to multidimension is
proposed in [15]. 1In this work, we only consider the original

first order schemes.

Osher’s scheme is used for most tests because it has least
post-shock oscillations. If Roe scheme 1s used we might have
difficulty to separate the post-shock oscillations and noises
generated at zone Dboundary. We will also show that with
additional dissipations in Roe’s scheme it will produce same

results as Osher’s.
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The other problem we investigate here is the case that the
steady shock lies on two different uniform grids in two dimension.
The motivation of this work is from Berger and Colella’s
paper [16]. They report considerable degradation at interfaces
where the shocks are not aligned with the mesh. Again first order
scheme 1s used. To save the CPU time mainly Roe’s scheme is used
instead of Osher’s since in the obligue shock case two schemes

perform quite similarly due to the shock smearing.

In section 2.2 we discuss the test cases for the moving shock
in one dimension. The results are discussed in section 2.3.
Section 2.4 is for oblique shock results. Concluding remarks are

given in Section 2.5.

2.2 Test Cases for the Moving Shock in One Dimension

By exchanging the mesh sizes of 1left and right zones and
letting the shock move in either positive or negative directions
four tests, A, B, C and D, can be done for a certain Mach number

and shock speed (see Fig. 15).

In the graph for each test case, six shock positions, P1l, P2,
P3 ,P4 ,P5 and P6, are monitored, see Fig. 16. Because the
initial data, which has no intermediate shock point, does not
satisfy the numerical scheme, starting error appears immediately
after one time step. Pl is where the shock Jjust travels across
one cell. The starting error is clearly present. P2 is where the
shock postion is Jjust one or two cells from the zone boundary. It
is for checking if the starting error has nearly vanished. 1In
most graphs, P3 is approximately where the noises generated by
shock crossing zone boundary reaches its maximun and P4 is IJust
little away from P3. P3 and P4 are for observing the mesh size

change effect. P5 1is where the shock position is a little away
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from the zone boundary and P6 is further away from the =zone
boundary. From P5 and P6 we can see how the noises are dissipated

and propagated.

2.3 Results and Discussion of the Moving Shock

Fig. 17 to 20 are for Mach no. 20 shock and mesh ratio 5:1
with SR +0.035, and Fig. 21 to 24 are for SR=+0.28, for all four
cases. We can observe that in cases A and D for which shocks move
from coarse to fine zone bumps in density are created, and in case
B and C for which shocks move from fine to coarse zone depressions
in density are generated, especially for SR 0.28. It is also
obvious that these noise magnitudes increase when SR increases.

Some tests on intermediate SR values support this observation.

As conceivable the noises increase when the mesh size

difference and Mach number increase.

Fig. 25 1s for case A, Mach no. 20, SR 0.035 and mesh ratio
5:1 for Roe’s scheme. The post-shock oscillation effect is mixed
with the effect of noises induced by mesh size change. Fig. 26 is
also for Roe’s scheme but with Harten’s dissipation. It is nearly
as good as Fig. 17 since the post~-shock oscillation 1s supressed
once the dissipation is added appropriately. Fig. 27 is for Roe’s
scheme with SR 0.28. The result is quite the same as Fig. 21 from
Osher’s scheme Dbecause the post-shock oscillation is nearly

removed at such SR.

Now we present a explanation for some computed results. It
is simply based on the shock resolution characteristics of 1st

order FDS scheme.
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The number of mesh points needed by FDS schemes to resolve
shocks depends mainly on the shock speed. Therefore if the shock
is resolved on coarse grid by N points it will also be resolved by
N points on fine grid. But the shock transition lengths are

different.

For shock move from zone 1 with mesh spacing DX1 to =zone 2
with mesh spacing DX2, the shock transition length change is equal
to N(DX1-DX2). The length change increases when DX1-DX2 or N
increase. In other words, it increases when mesh ratio or shock
speed increases (because 1lst order FDS scheme is quite dissipative
the N value increases with shock speed). This explain the results
that relative noise magnitude increases when mesh ratio and shock

speed increase.

Second order schmes will be less sensitive to shock speed
‘change since they are less dissipative, but they will still suffer

from mesh size change.

The bump or depression feature is not easy to explain. It is
perhaps because in the case for shock move from coarse to fine
grid part of the shock profile is suddenly forced to steepen and
in the case for shock move from fine to coarse grid it is suddenly

flattened.

2.4 Test Cases and Finite Volume Scheme

for the Steady Obligque Shock

The test case is a two dimensional steady obligque shock. One
can imagine it is the flow past a wedge and the computational
domain is rotated with respect to the free stream flow direction.
Therefore we can have arbitrary shock to grid angle but keep the

shock strength unchanged, see Fig. 28.
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First order finite vloume upwind scheme (not operator
splitting) 4is used. The initial condition can be either the free
stream or postshock condition. The initial shock will appear at
the bottom/left boundary if the initial condition is the
freestream/postshock condition then it will move to its steady
state position. We choose the flow conditions and computational
domain such that we have always supersonic flow Dboundaries. At
inflow Dboundaries the exact boundaries are prescribed and at the

outflow boundaries zero order extraploation is used.

Fig. 29 is for a Mach number 20 oblique shock in single
uniform grid. The flow properties are slightly below the right
values at post-shock position. The computed shock is slightly
curved. These problems are due to boundary conditions and narrow

computation domain.

By changing the grid spacing we can do some tests on two
zones by using the programme for one zone. Fig. 30 to 31 are for
the shock to grid angle 70 degree. Because the shock has more
inclination towards the Y direction mesh refinement in Y direction
has nearly no effect on the solution. Mesh refinement in X

direction improves the shock resolution but induces overshoot.

For the more general grid boundary, a simple treatment on the
interface fluxes 1s adopted. For example, see Fig. 32, the
interface flux at 1-2 is H;,(W,,W ) and at 2-3 is Has (W, Wy ) . To
update the coarse cell we need H;3 H,; is simply taken as the sum

of H,, and Hg,.

Coarse zone and fine zone perform one iteration each to count

for one iteration for whole domain.
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If the fine zone is on the top, we can observe big overshoot
at post shock position; however, if the coarse zone is on the top
there is no overshoot , see Fig. 33 and 34. The explanation for
this is that the coarse zone on the bottom provides a bad boundary
condition for the fine zone on the top. One can see quite clearly
from the cross section density plot in Fig. 34 the shock
transition in the first row of fine zone is staircaselike. On the
contrary 1f the fine =zone i1s on the bottom the transition is

smooth.

We try futher two types of interface flux evalution based on
one dimensional interpolation, see Fig. 35. For method 3 we can
obtain smooth transition at the first row; however, the overshoot

is still produced, see Fig. 36.

While the above results are from girds with integer spacing.
For grid with noninterger spacing 1t does not seem to produce
extra problem. Fig. 37 is for same grid ratio but discontinuous
grid lines and Fig. 38 for different grid ratic. The results are

very similar to the interger spacing cases.

The process of shock evolution is gquite smooth for freestream
as initial condition, but much harder for post shock condition as
initial condition and for local time stepping. We can see from
the Fig. 39 and 40 that very big noises are generated during the
evolution process., Fortunately they porpogate out the

computational domain very quickly.

2.5 Concluding Remarks

We now understand that for shock moving across two different
grids, large disturbances can be generated. Fortunately this

phomemona does not hamper the convergence if they propogate out of
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the boundary gquickly. We do not know what will happen if the
noises is trap in a computational domain. It might take time to
dissipate.

From the obligque shock results we suggest that where shocks
is likely to be present large mesh ratio should be avoided even

for steady state calculation.
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CHAPTER 3. THE IMPLICIT SCHEME

3.1 Introduction

The explicit scheme, especilly the TVD scheme, needs
thousands of iterations to reach convergence due to the CFL rule
restriction. Implicit schemes escape the CFL rule in theory.
Although most implicit schemes cannot converge as fast as theory
suggests, they still converge faster than explicit schemes in

terms of iteration number and CPU time.

To prepare for the next chapter on the implicit zonal method,
we i1nvestigate the implicit scheme here with emphasis on inviscid

hypersonic flow.

Section 3.2 introduces the explicit operator and blunt nose
instability problem. The implicit operator is discussed in
section 3.3. Several methods for solving the matrix equation
generated by the implicit scheme are briefly described in section
3.4. Explicit and implicit boundary conditions are explained in
section 3.5. Section 3.6 ©presents the results from various
solvers. The experience on linear and nolinear GMRES is describes
in section 3.7. Finally concluding remarks are given in section

3.8.

3.2 The Explicit Operator

The scheme we use is a 2nd order accurate finite volume
scheme with TVD flux limiter and Roe’s Riemann solver is adopted.

There are several reasons behind this choice.

The finite volume approach is most naturally in preserving
the conservation in the nonoverlapped composite grid. As we will

demonstrate in next chapter that it is easier to implement than
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the finite difference approach.

The order of accuracy is another issue. First order 1is not
accurate enough. The so called 3rd order schemes are only true in
one dimension; besides, in the zonal calculation we need to store
more data of the neighbourhood of the interface due to the wider
stencils of 3rd order schemes. Thus the 2nd order schemes are
preferred. In the 2nd order scheme category we can have at least
three choices, fully upwind, Lax-Wendroff and central difference.
However fully upwind and Lax-wendroff are not 2nd order accurate
in two/three dimensions without resorting to operator splitting or
predictor-corrector method. The only choice left is the central

difference scheme with TVD limiter.

Th explicit operator is first proposed by Osher and
Chakravarthy [17] and later wuses by Rai [18]; however, its
© property was not well understood. Roe [19] gave a clearer insight
of this operator with emphasis on Navier-Stoke equations. We will

only give a brief description here.

The Euler equations in two dimension i1s given by

ow , oF 3G _

ottt gty
where p pu pv
uu+ vu
W= pu 3 F= p p s G= p
pv puv pVV+p
e u(e+p) v(e+p)

The semidiscrete finite volume form for a guadrilateral cell i,

is, see Fig. 41,

aw., -
Ay at L Hiv1/2; —Hi-1/2, +H 134172 —Hyj-12 = 0
where A 1s the cell area and H is the interface flux. For the

later use we define

R(Wiy) = ( Hirryey —Hisjzg +Higsrz ~Hygo1ze )
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For first order scheme we have, for example,
Hl+1/2,j= 0.5 (F 1y Fu) Sxt+1/z,1 + 0.5 (GHLJ’ + Gy ) Syi“/zd

4
- 05 :Zil )\kl Oy €y Siv1/2j = hl+l/2.j

where A oy e, are obtained from one dimensional wave decomposition
along the normal of the segment ab. The normal is given by

> - >
Sir1/e) =Stereyl + sleryzy]

Stt1/2) =Ya =Y

Slt1/2) =X, — X,
We further define the interface flux Jacobian as

Jl+1/2.j(wi+1.j—wl,]) = (F1+1.j“ Fl,j ) SX1+1/2.j + (G1+1.1_ Gl,j) syi+1/2.j

J1+1/2.5 = (RDL)1+ 1/2

J, R, D and L are 4x4 matrices. R is the matrix of right
eigenvector €k. D is a diagonal matrix with Ay, wave speed, as
diagonal entry. L is the matrix of left eigenvector {,. The

formula for R,D,L and be found in [20] for 2D case and [21] for 3D

case. The wave strength o, is given by
O =Ly (Wiary—Wiy)

Therefore we have

4 _ ¥
2 MO e Siptjzy = (Frgy— Fiy) Sietyzg T (Guiy= Gy) Suve
k=1

For second order scheme the interface f£lux is

k+ k—
— k —_
Hiviey = Ripyjay+ o.5kz=)“¢ (T o)) A5 es o.5k§

- k-
14¢(r:(+1/2,j ) Afi+1/2.‘|

where

K+
A 12y = Ak Ok €xSipy 2y for Ay > 0O

-
Afl+l/2,] = >\k O €y si+1/g'] for >\k <0
k+ ke
k. VY e M 14a/2y
1+1/2§ Afk+ — rl+1/2‘] -—-———k‘
i+1/2,} AfH_ 1/24

ﬂ is the limiter function. In our work minmod and van Albada’s
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limiter are used. For more detail about the flux-limiter see
Sweby [22]. The mimmod and van Albada limiter is given by
0 if r<o
. r+r?
minmod : g(r)z r if OSI‘S 19 van Albada: ¢(I‘)= 1+1"2
1 ifr>1

One can see immediately that if the flow is smooth ¢ is about 1

then this scheme becomes central difference.

The semidiscrete form can be approximated to high order
accuracy in time by Runge-Kutta scheme. To preserve the TVD
property in time nbt all classes of Runge-Kutta scheme can be

used, see Shu [23] for more details.

The above scheme does not satisfied entropy condition. In
[24]) Yee proposes a modification from Harten’s dissipation of
Roe’s Riemann solver for breaking nonphysical expansion shocks.
Here Yee’s formula is adpoted. The Q(Xk), which replaces Ay, is
given by
A it | A >6,
Qr) = 1 Xt 8 .
k 5 ( sign(Ax) —E—B—k +A) I[N <8,
k

where
6, =6, (V.| +|V| +c)
V, is the normal velocity and V, the tangential velocity with

respect to the intexrface boundary and ¢ the interface sound speed.

The dissipation is not necessary for u waves for breaking
expansion shocks; however, in the hypersonic blunt body calcuation
we do need it for the u waves. It has been observed by some
people (but not seen in any literature) that Roe’s and Osher’s
Riemann solvers produce instability when they are used to compute
supersonic flow over blunt bodies, see Fig 42. The cause is not
clear. For the 2nd order scheme, we have to set the dissipation

coefficient for u waves to a gquite large value to overcome the
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blunt nose instability. The convergence rate is gquite dependent
on the maginitude of the dissipation. With Van Leer’s flux vector
splitting, we find that no extra dissipation is required. As it
is known flux vector splitting is very dissipative for the u
waves, this explains why it works. We need larger number for 32
and 33 then that for the symmetric TVD used by Yee. The

symmetric TVD is also quite dissipative in the u waves.

The other problem associated with hypersonic calculations 1is
the evaluation of r. The equation we mentioned previously is
appropriate for transonic calculation. To have monotone shock
transition in  Thypersonic cases we have to scale it by square of

sound speed, as suggested by Yee [24]. Thus it becomes

- 2
of¥t . c? of 13724 Ciea/a
” i-1/24 C i-1/2) e
by = i+1/2.} k- 2
i+1/24 k+ 2 IS@ . 0f
1725 Clisize; i1/2] Tie1/2)

3.3 The Implicit Operatoxr

Since we are only interested in steady state calculations we

only consider first order Euler implicit equation,

aT
n n ntly _ where S
WJA'WJ+’kﬂ«WU ) =0 Ha Ay
After lineraisation it becomes
GR(W
(1+ “—Ei—Y(V_)—) Wiy = — My R(Wyy) where sy, = Wﬁ“—Wﬁ

Follow Yee’s work [24], two approximations for dR/dWcan be made,
nonconservative and conservative forms. The "conservation" here
is for the time conservation which is not important for steady

state calculation.

The nonconservative form is
— g JTeg0 Wity —Has Jigm1/20Wimt +Hy Ty n 0Wieyy +H ds/e 6 Wy
[T+ Fay (Tjay = Tiamat Simra= Jgaae ) OW,; = = My R(Wy)
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where J|++1/2'] = (RD+L)1+1/24 1_+1/2,J = (RD_L )H-l/z.j
+ . . - .
D contain the positive entry of D while D the negative entrzry.

The conservative form is
—0.5/11.} (Jf:~l.]+l J[...l/g',') GWH_, "‘0.5”‘1.1 (Jis_j_l 'i’l Ji,f—1/2 |) 6Wi.‘_1
+0.5k (3] Tiay 1) 6Wepr; +0.5M (B =] Tijaye ) 6Wii0

T+ 058 ([T yyag] + | Tierjeg |+ [yore |+ e 1) W, = —HuR(Wy)
= ' Y= x + H - + -
where JEJ =& S:+1/2.] + Jssru/z-i 3 h ItSie1/24 J“SH/Z" 3 1= R(D -D )L
N __ S — x y
JL] - J( q‘,jﬂ/a + Jgsiy.ju/a g Jl.] J'Sl.]—l/z + Jgsu-l/z 5 J'=g—f‘\‘f B Js:%

Initially our experience was on the nonconservative form,
later we switch to conservative form. The convergence speed, as
stated by Yee, is much improved especially in the high Mach number

case.

Both forms can be casted as

Mi—l,j 6Wi—1.i + Mi,j—l 6Wi.i—l + Mi+l.j 5Wi+1,j + Mi,j-&-l 6Wi,j+1+ Dl,] 6Wl,j = - M.]R(Wu)

Using this form we solve the matrix equation once then update the
solutions. With small modifications one can choose to do several
suiterations inside every time step to obtain time accuracy.
Since we only want steady state solutions, we do not consider the

subiteration approach here.

The pentadiagonal matrix egs 1is too expensive to solve
directly. One have some options to solve it approximately.

Several methods are tested.

3.4 Different Sclvers

The backward and forward line Gauss-Siedel 1line relaxation
can be expressed as

Backward sweep

My, 5W;.;—1 +Dy, 6Wi:| + My 5Wit1+1 = — My R(Wiy) — Misyy Wi
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Forward sweep

Mi.j-i 5Wu—1 +Di.j 6Wl.j + ML]H 5W1.j+1 = - M,jR(Wu) '“Mi+1-5 5W;+1.i - Ml—l_j 6Wi—1,j

LU scheme is a symmentric Gauss~-Siedel relaxation. It can be

expressed as

®

Dy, 6W;’ = — My R(Wyy) — My, SWiliy — My Wiy

D

L 6Wi.] = — M R(Wj'j) — Ml—l.j 6W1.:1J — Ml,j—l 5W1'1_1 - Mi+l.j vdwi*’l-i_ Mi-i+1 6W1.3+‘

The sweep is along I+J=constant.

The most widely used i1s perhaps the approximate factorisation
scheme (AF) or ADI scheme:
I sweep
& [ * *
Ml-l,j (SWri..U + DU 5W1J + Mi+1,j (SWH.L, = - u’l.j R(Wi.j)
J sweep

Ml.i—l 5Wi.j—1 + Dl{l 5W1.3 + Mi.j+1 6W1,3+1 = oW

*

Lj
where D'/D’ contains only the M in the I/J direction.

The other AF scheme by Lombard [25] called DDADI (diagonal
dominant ADI) is:
I sweep

My, SWilry + Dy OWy, + Muyy6Wiyy = —HyR(Wy)

J sweep
Mi.j-—l 5W1.J-1 + Dl,j ‘5Wx,1 + M1,1+1 ‘5Wu+1 = D 6W

-

Unlike AF there is no three dimension extension of DDADI.

The last scheme we will explain immediately latexr does not
belong to the approximate solver category. It is essentially

gquite different from the above four methods.

For the all the above schemes the values of W are not updated
until the sweeps complete. We can also choose to update the W
immediately, One of these approach by Bardina and Lombard [26] and

Chakravarthy [21] is
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back/forward marching:
Mi—l,j 6W‘_1J + Di.l GWM + Ml+1,j (SWH.[J = —/ul.J R(Wl,j)

for/backward marching: i
Mi_y; 6Wiegs + Dyj 6W,, + Mty 6Wiryy = —HyR(Wy)

The marching direction is wusually chosen as the streamwise
direction. Here we call one single sweep as one iteration. The
matrix equation is only tridiagonal, which can be solved exactly.
This method 4is wusually used with AF or DDADI in three dimension
calculation. AF and DDADI are used on the cross plane and this
method is used on the streamwise direction. The advantage is that
one can work with three/five planes at one time for 1st/2nd
scheme. The core memory is easier to manage, see Bardina and
Lombard [26] and Chakravarthy [21] for more details. We will call

it as method 5 for later reference.

3.5 Boundary Conditions

For the supersonic inflow we put halo cells in the inflow.
The values of halo cells are fixed for explicit part, therefore
the change §W for the implicit part is zero. For the supersonic
outflow we set the £flow wvalues in the halo cell equal to the
values upstream, thus the Jacobian M is zero. MOW is therefore
zero. For subsonic inflow and outflow farfield we can set the
values of halo cells to the free stream, since the interface -
fluxes obtain from upwind scheme are automatically characteristics

based. Because we fix the halo cell the change 6W is zero.

For the solid wall we wuse simple reflected boundary
condition, the halo <cell is assigned to have same but negative
normal momentum to the boundary cell. The change §W in +the halo

cell is
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op 8p
~0pV, _ | 6pV,
5pvt B 6th
de |halo d0e |inside

From the above relation we can work out dpu and dpv. This is only
first order accurate which is consistent with the implicit
operator. . Without this boundary condition the implicit scheme
converges much slower. For the explicit part we need a better
interface flux, we simply extrapolate the pressure <from the

interior to the boundary. This can be further refined.

3.6 Results from Different Solvers

Te residual is defined as

[kim%u‘R(Pi,j ) /Ay 1/(imax jmax)

i=1 j=1

Residual

This i1s better than

imaxjmax

Residual = [ ?_:1 :Lj'l |6py, |/4T,;1/(imax jmax)
The residual defined by the second equation could be misleading if
large CFL number 1is used. Although we advance sloution by a
certain time, the flow does not evolve so fast due to the errors
from linearisation and approximate solver. The residual evaluated
from the first equation is normally smaller than that £from the
second equation. The residual from the frist equation reflects
the state of the flow and it is independent with the time step

size.

Throught out this work 1local time step is used for
convergence acceleration. The optimun CFL number is about 10-20,
which is quite modest. The initial conditions are always the free

stream conditions.

For 1lst order scheme all solvers works reasonable well, we

will not discuss the lst order result here.
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For the GAMM bump, the line Gauss-Siedel and LU schemes have
difficulty to drive residual down for the second order scheme.
For blunt body it is worse. We will not disscuss these scheme

anymore.

In general method 5 and DDADI perform quite well, but for AF

we have problem at high Mach number flow.

The CPU time required for Method 5 dependson the grid size
and marching direction. If the grid has more cells in I direction
than in J direction then marching in I direction implies solving
the matrix equation in J direction. In this case CPU time
reguired is smaller than DDADI. If it marchs in J direction then
the CPU time reguired will Dbe much longer. Our codes are not
optimised, especially for the method 5, therefore no exact
comparison of CPU time will be given. The data management method
mentioned in section 3.4 is not used since we can afford to store

all data in small calculations.

DDADI is able to converge with nonconservative implicit
operator but not with conservative implicit operator. To be able
to converge with conservative operator the sweep directions need
to be changed alternatively. More precisely for odd iterations we
use I sweep then J sweep and for even iterations we wuse J sweep

then I sweep.

At low Mach number AF works quite well. But for higher Mach
number the performance of AF begins to degrade. It needs extra
dissipation to push residual down. In contrast to the excellent
results of AF by Yee [24] our AF is not successful for high Mach
number. We suspect the difference might come from boundary

conditions.
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Van Albada’s limiter gives slightly better convergence rate
than minmod. All the results shown later are from using van

Albada’s limiter.

Fig. 43, 44, and 45 show results of Mach 2, 5, and 20 flows

from various solvers.

3.7 Experience with GMRES Solver

The GMRES solver by Saad and Schultz [27] 1s a conjugate
gradient-like mehtod for solving linear systems of equations.
Since we only solve the matrix equation approximately and the
factorisation error is not small, we could possibly solve it with
same Or more accuracy by GMRES with only few iterations. From the
numerical experiments few subiterations inside GMRES for each
iteration is required initially, however when residual reduces by
the order of two or three the subiterations required increase very
quickly. We conclude that to wuse Ilinear GMRES as approximate
solver is not competetive. If we solve the matrix equation very
accurately at the expanse of long CPU time only few hundred
iterations is able to drive the residual to machine zero. This
indicates our boundary conditions are sufficient good at least for

DDADI.

The nonlinear GMRES by Brown and Saad [28] is a clever
combination of inexact Newton method and linera GMRES for solving
the nonlinear systems of equations. According to Wighton [29],
with any solvers such as AF as preconditioner, the nonlinerar
GMRES will help convergence in the difficult case and help to
stabilise scheme. In our experience we are not able to have any

gain. We decide not to use it.



Page 30

3.8 Concluding Remarks

We have produced basic implicit codes by DDADI and method 5
for hypersonic calculations. Although we are not successful with
AF we believe our implicit codes provide a reasonable start for

investigating zonal method.

The biggest difficulty we have during this investigation 1is

the Dblunt nose instability. Further research on this problem is

required.
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CHAPTER 4. THE IMPLICIT ZONAL METHOD

4.1 Introduction

To ease the grid generation in three dimension and to improve
the grid quality the most flexible approach is to use overlapped
grid. The biggest obstacle to use the overlappéd grid is to
maintain the flux conservation. As pointed out by Berger [30] it
is extremely difficult to achieve exact conservation. An good
example of bad result from nonconservative interpolation algorithm

is given by Benek et al [31].

Nevertherless it is perhaps not necessary to have EXACT flux
conservation, 1f the flux conservation is met to certain degree of

accuracy. The approach suggested by Thomas et al [32] seems to

meet this condition. They conserve the conserved variable ZAsW
instead of interface flux. Their results on nonoverlapped
composite grid are guite encourging. Moon and Liou [33] make

significant refinement on this technique and apply it to
overlapped and overlaid grid in two dimension showing very
promising result. One inherent problem of this approach is that
the complexity of programming and computing overhead is larger

than nonoverlapped approach especially in three dimension.

Here we only persue the nonoverlapped grid approach, that is

grids with common boundaries.

We first categorise the zonal boundaries, see Fig. 46. Type
Bl has continuous grid lines, it can be either continuous or
discontinuous in slopes. Type B2 has integer grid spacing, while

type B3 has noninteger grid spacing.
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The composite grid can be classified as two types. Type G1
is globally structured, the zonal boundaries can only be the Bl
type. Type G2 is golbally unstructured which 4is the case in
practices, the zonal boundaries consists of all three types. One
important advantage of G2 type grid is that it allows local grid
refinement. For the flow sclvers, we can have either explicit
(81) or implicit (S2) solver. The explicit solver uses only local
grid data to march in time, while the implicit scheme needs all
data in the computational domain to march in time. This

difference has important implication on the zonal method.

For data management we assume the data stores in both the
primary and secondary menory, which is the situation for realistic
3D calculaton. Type Ml uses the data in the primary and secondary
menory at the same time, see Fig. 47. The time spent on the data
access 1s in general too long. Type M2 uses only the data in the
-maln memory, the data in the main menory and secondary menory

exachanges periodically. Type M2 is the usual case.

Combine the grid, slover, and data management we have several

options.

M1/M2+S1+Gl is simply the case for single zone grid.
M1+31+G2 is easy in the finite volume formulation. M2+S1+G2 adds
some problems on the data exchange. M1+4S2+Gl is trivially the
case for single zone. MI1+S8S2+G2 can be done but the matrix becomes
unstructured, for which no efficient solver is available. The
most challeging combination are M2+S8S2+Gl/G2. The matrix 1is
structured for using Gl grid for which efficient approximate
solver can be used; however, the order of the matrix equation is
very large. One do not wish to solve it as a whole. The

situation for G2 grid is even difficult. One will prefer to from
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the matrix equation and solve it zone by =zone. But with this
approach the implicit scheme now can not receive all the data.

This will the the centre issue of our research.

4,2 Selected Literature Review

There are so many papers about the zonal method that an
complete review is impossible. Here we only concentrate on some

works. The reader is encourging to read the references cited.

Rai [18] uses AF finite difference scheme on G2 type grid.
We consider his treatment on the conservation is more complicated
due to the finite difference setting. The implicit zonal boundary
condition he wuse is not stable for one subiteration. In [34] by
relaxation method one subiteration is stable. The implicit
boundary condition he choose is simply to set the W in the other

zone to zero. Mach 2 is the maximun tested Mach no.

Belk and Whitefield [35] use LU finite volume scheme on Gl
type grid. The implicit zonal boundary condition is either to set
the &W=0 in the other zone or take the OW ~==5“%m, where the

6Woa is the OW from previous iteration . With the M2 case one
can choose to use the old data or to use the newest data available
from the other updated zone. They name synchronisation (SYN)
as using only the old data and unsynchronisation (UNSYN) as using
the newest available data. The test problem is transonic flow
passing wing. The main conclusion from their work i1s that the
convergence speed in order is UNSYN+6W=0 first, SYN+dW=0
second, and UNSYN+ 6W,q=01last. The SYN+ 6Waa=0 approach is not

stable.
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Morice [36] uses a noncentred finite volume scheme on Gl
grid. The test case 1s M=0.85 GAMM bump. His 4implicit
characteristic boundary condition is perhaps the most reasonable
in our opinion. However it is still not gehuinely implicit
because of intrinstic restriction of the M2 case. He shows the

same convergence rate as for single grid case can be achieved.

Kathong [37] first applies Ramshaw’s algorithm [38] to find
the overlapped areas in the 3D block boundary. This point will be

addressed later.

Eriksson and Rai [389] give the first numerical stability
analysis of the Jameson type scheme and upwind scheme. They
conclude the upwind scheme is superior in stability for all BIl,
B2, B3 type zonal boundaries. Usually for nonupwind schemes extra

dissipation is required for using B2 and B3 type boundaries.

4.3 The Explicit zonal boundary condition

As we stated earlier the explicit part calculation only needs
local data. There is Dbasically no difficult. With the finite
volume and the flux limiter approach one can assume tﬁe flow 1is
locally uniform inside the computational cell. With reference to
Fig. 48 one can work out the lst order flux across ab by simply

solving the Riemann problem with Wl and W2 as the left and right

states. For the 2nd order flux, we need to compare af¥” at mn
with Af* at ab to obtain I'*. When Fﬁi is evaluated we scale
the Af%' The T for limiter function is therefore

Af:: FHERY Af::n Con Sl

k+ o k- =
rab Afk+ 2 r&b
ab Cab I S de|

k—
of ab Czab IS mnl

After all interface fluxes are found the R(W) for cell 1 is equal

to  Hy,+Hp —HgetHyg—He,
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In the above approach we assume there is a common boundary
running through different zones. One needs a table of the data at
the neighbourhood of zone boundary. The table is most convenient
to produce during the grid generation stage. In the grid
generator one first establishes all the boundaries, such as solid
boundaries, far field boundaries, and zonal boundaries etc. These
boundaries are usually represented in parametric from. In two
dimension one parameter is enough. By comparing the number of the
parameter one can establish the table quickly. Three dimension

case will be discussed in section 4.6.

Because the assumption of common boundary the cells at the
boundaries are not quadrilateral in general. In our calculation,
for example, the area of the cell abcde is assumed to have the
same area of abcd. Note that we still keep flux conservation.
The error will be insignificant i1f the =zonal boundary 1is quite
straight with respect to each <c¢ell. TIf one decide to have to
exact area it is most conveniently supplied from the grid

generator.

4.4 The Implicit Zonal Boundary Condition

With the M2 data management and the basic implicit scheme we
use 1in chapter 3 there will be no real implicit zonal boundary
condition if one do not want to solve the complete matrix
equation. With this understanding we believe the success of
implicit zonal schemes comes from the coupling of explicit part.
In general the implicit schemes still need hundreds of iterations
to reach convergence 1in single grid calculation. During the

iterations the explicit part couples different zone effictively.
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Therefore we adopt the §W=(0 approach. The diagonal term D

has to treated properly especially when the G2 grid is used.

Use similar approach as in the explicit part we can work out
the interface Jacobian. Take the conservative form for example

the diagonal term for cell abcde, see Fig. 49, 1is

D=1+0.5 (J,.] +[doe] +1Jgel +1dal +1de6l)

A try which does not include the Jacobian in the =zonal interface

turns out to be unstable.

4,5 Results and Discussion

In general the schemes which can converge in single grid have
no stability porblem in two zone cases with §W=(0 and the SYN or
UNSYN updating approach except when a strong shock lies on the
zone Dboundary. This conclusion also applies to AF, which is

unstable according to Rai [18].

1f one takes the single grid and bisects it to two zones,
One can compare the convergence rate of two-zone calculations with
single grid calculations. In general the convergence rate for

two-zone calculations is only slightly slower.

The UNSYN approach converges faster than the SYN approach in
general because in the UNSYN approach the number of explicit

coupling DOUBLES.

Before the results are presented we have to explain how to
look our contour plottings. Since we use finite volume
formulation the flow data is cell-centred. We plot the contours
zone by zone and inside each zone we do not try to extrapolate the
contour lines. Therefore at the zonal boundary the contcour 1lines

are not connected. Nevertheless it is easy to use imagination to
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connect the lines.

Fig. 50 is for GAMM bump computed by SYN approach with
nonconservative from with DDADI solver. The zonal boundary lies
exactly inside the shock. The convergence rate is only slighted
degraded. Fig. 51 is for the integer grid spacing case with UNSYN

approach.

All the following results are from the conservative form.
Fig. 52 shows the results for Mach 2 flow past cylinder. 1In this
case the UNSYN and SYN approaches have nearly the same convergence

rate.

Fig. 53 to 58 are for Mach 5 flow past reentry body. Fig.
54 and 55 have zonal boundary inside the shock. The zonal
boundary of Fig. 55 is one more cell away from the body then that
of Fig, 54.. 1In this case SYN approach is UNSTABLE for CFL no.
equal 10. Lowér CFL no. has to be used. Fig. 56 has small shock
to =zonal Dboundary angle. Fig. 57 has =zonal Dboundary in the
supersonic region. Fig. 57 is produced by method 5 with marching
in the =radial direction to the body. O©f these results shock
positions do not seem to produce problems with UNSYN approach.

Fig. 58 is for the integer grid spacing case.

Fig. 59, 60 , and 61 are examples for Mach 20 flow past

cylinder with various zonal boundaries.

4.6 Generalisation to Three Dimension

The method we use can be generalised to 3D in principle.

To keep the conservation we need the overlapped area on the
zonal plane. If the zone boundary i1s a straight plane Ramshaw’s

conservative re-zoning algorithms can be implemented efficiently,
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e.g. Kathong [37]. However the zone boundary is generally a
curved plane no efficient method exists to the auther’s knowledge.
One @possible solution is to apply Ramshaw’s technique on (s,t)
parameter plane after the curved boundary 1s parameterised, see
Fig. 62, and this should be integrated to grid generation

procedure.

To compute the volume of multiface cell abutting on the zonal
boundary extra effort is required. If the boundary is guite
straight, one can again calculate the cell volume as if it is a
texahedrons. Some of the cell surfaces intersecting the zonal
boundaries might have more than four edge. The area vector of
these surfaces is required for the finite volume scheme. Again if
the zonal boundary is quite straight we can calculate it as a

four-edge surface.

These geometry problems is not too difficult to overcome and

not costly to compute.

Another problem associated in a 3D patched-grid is addressed
in Thomas et al [40]. ©Near a solid wall the grid could be unable
to match especially for highly stretched mesh for thin-layer ©N-S
calculation. For further details see Thomas et al [40]. We will

prefer to avoid this situation.

4.7 Concluding Remarks

The W=0 approach seems to work well for the finite volume
scheme. This i1s partly because the optimun CFL number for the
basic implicit scheme is quite modest and the matrix formed from

upwind scheme is diagonal dominance.
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Although our explicit operator 1is a central~-difference
operator with TVD limiter, we believe other explicit operators can

be used if the 1lst order implicit operator is treated as before.

Although promising result is obtained in 2D three dimensional

test still has to be done.
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in phase space

Osher’'s scheme

Bell's scheme

with linera interpolation of A

Fig. 11 wave paths of Osher’s and Bell’s schemes

in the phase space

Fig. 12 wave diagram for dissipation
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Fig. 41 GRID INDEX SYSTEM
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Fig. 42 BLUNT NOSE INSTABILITY
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Fig. 46 VARIOUS GRID STRUCTURES
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Fig. 47 DATA MANAGEMENT
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