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Abstract

omputational Fluid Dynamics (CFD) techniques have settled to a stage, where it is

Cpossible to gain signicant insight into uid ow processes of turbomachinery.

However, the purpose of uid dynamics naturally goes beyond improved understanding

to the aim of improving the perfonnance of the engineering systems. Consequently, the

present thesis investigates the use of a automated design optimisation method using

CFD. This presents a new design method for a important turbomachinery part, blade

proles of centrifugal pump impellers, based on a shape optimisation algorithm in

combination with CFD. The use of genetic algorithms in shape optimisation dose not

allow the design engineer to use any derivative infonnation on the evolution of the

shape, but only simple evaluation techniques. A optimisation library (GAlib), based on

a genetic algorithm (GA), was used. GA controls the evolution of a population of

proles towards an optimum design. The optimisation process can handle simple

objectives as well as conicting ones. The tness value of each population element is

evaluated using a CFD ow solver (Mac_LNS) based on nite-difference discretisation

of the incompressible, Navier-Stokes (N-S) equations on stnctured polar-coordinate

meshes. A number of design examples have been developed and the behaviour of the

genetic algorithm has been tested using different kinds of objective functions. I

addition, the algorithm was tested with a multi-objective mction. Bézier curves were

selected to represent the impeller prole. A symmetric prole, identical prole for the

pressure side (PS) and suction side (SS), was used as a basic shape to generate the

population elements. GAlib was modied to run as a parallel algorithm using Message

Passing Interface (MPI). It is indicated that parallelisation using MPI is good technique

to overcome the time taken by GA and CFD, and quite good optimisation convergence

criteria was obtained by using parallelisation. The obtained results show that the genetic

algorithm is capable of achieving satisfactory designs of centrifugal impeller blade

proles effectively and with a minimum amount of user expertise.
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Chapter

1

Introduction

1.1 DESCRIPTION OF THE RESEARCH WORK AND ITS
IMPORTANCE `

1.1.1 Centrifugal Machines

The purpose of a centrifugal machine (pump, or compressor) is to add energy to or

produce pressure rise in the uid, which ows through it. The work is done by the

impeller and is evaluated in tenns of the angular momentum imparted to the uid. The

casing (volute, and/or vaned or vaneless diffuser) collects the ow from the impeller

and while further transforming part of the kinetic energy into pressure guides the ow to

a suitable discharge opening.

Centrifugal machines produce a large head rise since the work input and the consequent

head rise is proportional to the square of the impeller exit wheel speed. Therefore, the

work input is proportional to rf. The axial pump, lacking this attribute, achieves less

head rise, but can have a large inlet area and hence can achieve very high ow rates.

Even, with the recent availability of higher speeds, associated with the advancements in

material and manufacturing technologies, small centrigal impellers with higher-

pressure rise are being considered to replace the multistage axial compressors in gas

turbine industry and other pump applications. -
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The overall performance of a centrifugal machine is a function of the uid ow

behaviour inside the rotating impeller, the stationary volute, and the interaction between

the two. However, due to the complexity of the relative ow structure, more attention

must be given to the description of the relative ow in different impeller geometries and

under different operating conditions. For the designer of a centrifugal impeller, the

ultimate goal is to obtain high relative ow diffusion with uniform velocity prole at

the exit where the impeller discharges the ow into the volute.

1.1.2 Centrifugal Pump Design ~

I today's competitive world, pump designers are tempted to just quickly copy existing

pumps, or fall back on empirical design fonnulas established by statistical surveys of

existing pumps. Such guidelines can be prograrrmed into computer programs and can

produce pump designs with the push of a button. Great problems arise, however, when

the designs do not perform as expected. Without the deeper understanding of the ow

pattem in pumps, the reasons for malfunctioning are incomprehensible. Statistically

average designs may be adequate but will not provide a competitive edge and will leave

the manufacturer in the same attitude. Today°s pump designers need this push button

(computer code) that has been built on a deep understanding of the ow pattern in

pumps. Specially, present computers have higher speed and memory than those where

empiical fonnulas were implemented. Computational Fluid Dynamics (CFD) codes

have been improved to simulate the complete pump and reduce prototype testing and

lead times for a new product. Even at the high speed of present computers and power of

CFD, the major portion of the time is not consumed by the rurming of the program but

by the time needed to judge the design. This time is to collect and input the data,

reduction, plotting, and interpretation of the results. For example, gure 1.1 shows

functional representation of a pump design software, named COMIG, Jansen (1995), the

central core is the database (containing geometry of blade surface, etc.) that is generated

during preliminary calculations. The engineer can direct the ow of calculations to the

modules that surround the database. Even, it is easy for all modules to access the

database but still it is the human decision (not automated), where, there is no module to

judge each design case and give automated corrections.

2



I some design, it is attempted to automate the design by using inverse design and direct

design methods. Although both methods provide the means of nding a efficient

performance shape without resort to the expensive and extremely knowledge-based or

try-and-error techniques, they have their own advantages and drawbacks.

vo
cuvucs oaumcntuanav OUYPUYozvce

ssounc nowconsnucron tmturss
svecc emc

vue- vos:vnocssson
I . vnocesson

/ \

COMIG

\
\

\
\

\

,4_.__...Ã

/
//

/

\`Ä±

cowumzzn NICDHAFTING MACMNING

'Dotted lines represent intertaces to other software systems

Figure 1.1, Functional representation of COMIG pump design system, Jansen
(1995).

The inverse design method starts from guessed body shape and the ow solver

computes the surface pressure distribution over this guessed body. Then the resulting

pressure distribution is compared with the given target pressure and the difference

between each other is calculated. The inverse design module provides the necessary

correction to the body shape that minimises that difference. While this method is

extremely cheap because it does not require a large number of iterations, the inverse

design method has inherent difculties, it is hard to dene the target pressure

distribution that produces optimum or desirable performance.

The direct design (optimisation) method couples a CFD code and a optimisation

algorithm. The performance quantities such as head, efciency, relative velocities

distribution and pressure distribution are computed by the ow solver and the optimiser

iteratively minimises a objective function, which relates shape and perfonnances. The

3



drawback of some optimisation methods is high demand of calculation for computing

the gradient of the objective function. There is also the possibility of nding a local

minimum that is close to the initial condition because of a limited number of design

variables that cannot span the whole space of feasible solutions. Genetic Algoithms

(GAs) address these drawbacks, as it will be discussed later. Although optimisation

procedure using GAS allows the design to have global and efcient design, a will be

seen in the current work, it is expensive in tenns of optimisation procedures (iteratively)

or objective function calculations using CFD, especially if the trend is to improve the

performance calculations. I this case, it requires intensive use of 3D Navier-Stokes

solvers during the design process. Parallel programs help to reduce calculation time by

dividing the task into large pieces and to solve these simultaneously using multiple

processors, this will be discussed in this work. Another way to address the excessive

time requirement is by using a approximate model inside the optimisation loop instead

of the original model (N-S solver). Figure 1.2 describes how this method works.

User

M 'Y orman K

l

Re ured r cesw
Aerod namic

PJO l . Re/Ca. M(s).f\
Mcchnic :

Area. Rtc. lmin. Imax,

alpha.-« DATABASE

\_º' ,Nr N *-M;",_______§=.*,_ _ .., ."f2"'* 21, '

_-........_...--. K-«gp . Pro osºdo umzed
_ geopmetry

`\ ----`* Flow Solution

,º,.iwruvÜ ro Ö \

fül
sto N)

yes
End

Figure 1.2, Design procedure using ANN.

4



The core of the design system is a database that contains the results of all N-S

computations performed during the previous and present impeller design process.

Artificial Neural Networks (ANN) can be used as approximate model and the

identication process (learning process) is realised by back-propagation of the error.

Aer the mapping of the database samples, the neural network is able to generalise,

meaning that it can predict the performance of a new impeller geometry under given

ow-eld boundary conditions. A optimisation code proposes a new geometry to be

analysed by the ow solver, which is added to the database. Finally the perfonnances

are checked. If the target performances have not been achieved, a new modication is

initiated and the same process is repeated until convergence to an optimum geometry is

reached.

1.1.3 Optimisation

Evaluation, nature's ability of continuous adaptation to ever-changing physical

conditions, is a beautiful image for the concept of optimisation. I its efforts to create

optimum chances of survival, humanity has beneted from distinct pioneering skills to

construct devices designed for rational use of the resources available at any time. I

modem society, the task of design, construction, and control of such devices is typically

undertaken by engineers. Engineering design activities are concemed with the

determination of designs, which meet a priori specied behavioural features. The

specied design objectives are conventionally met through a iterative process of

analyses, evaluations and modications of design. I this sequential trial-and-error

procedure, the designer must count on experience, sixth sense and ingenuity for every

redesign, which makes engineering design a potentially creative discipline. However, in

practice designers are often forced to depend on tried concepts, to cut a path through a

incomprehensible number of feasible designs. This is why engineering design

historically has been characterised by a slow gradual improvement of existing types of

designs.

I parallel with computing speed and memory capacity of digital computers, a persistent

systematisation of design methodology has led to tools for Design Optimisation (DO).

These tools aim at a automation of the conventional design process through integration
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of numeical tools for analysis, optimisation, and mathematical prograrmning, so that

the best design in terms of a pre-supposed criterion can be determined. Automated

design optimisation is very attractive technology, because it substitutes workable

designs with optimal ones, while cutting down on design times to enable a faster

response to market changes. For manufacturing industries operating on todays

competitive teclmological markets, these advantages may prove crucial for business

success. A overview of important mechanisms stimulating the trend toward the

application of DO is given in gure 1.3, Baysal and Eleshaky (1991).
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Figure 1.3, Factors stimulating the trend towards substitution of conventional
design methods with tools for computer-aided design optimization.

1.2 AIM OF THE RESEARCH PROJECT

The aim of the present work is to develop and integrate methods of analysis, design, and

optimisation of viscous ows govemed by the Navier-Stokes (N-S) equations and to
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apply this work to turbomachinery especially for the design of centrifugal impellers.

Methods of design can be of human factor type, where the designer controls the design

aer analysis, and optimisation, type try-and-error, which is very complicated for

human to reach the optimum. On the other hand, mathematical codes, for example

optimisers, can do this powerfully and easily. Otherwise, viscous ows govemed by N-

S equations can be solved analytically by some simpliñcations, Euler/N-S equations, or

numerically using for example Computational Fluid Dynamics (CFD).

Since the main aim is to merge two well-established elds of research, CFD and design

optimisation, the interplay between these in the design process attraets special attention.

Thus, the principal theoretical interest is levelled at methods of design for the coupled

system of non-linear equations goveming uid ow. It will be chosen to adopt a

existing N-S CFD code for use, which was previously developed by Wahba (1997).

This ow solver is based on nite-deference discretisation of the incompressible, N-S

equations on structured polar-coordinate meshes, as shown in Appendix A.

For an optimum uid design there are a variety of design objectives to achieve, for

example:

0 Loss mínimisation

To minimise friction losses through a impeller passage.

To maximise the mass ux through a pump passage with given maximmn pressure

rise.

0 Fashion design of parameter dístributíons

To obtain unifonn velocity distributions.

0 Optimisation of fluid ow forces

To minimise uid ow forces acting on structural components.

To avoid ow cavitation in the impeller passage inlet.

These objectives can be accomplished by:

(i) studying steady viscous ow in centrifugal impellers as seen in Appendix A to

understand the CFD technique which is used in this thesis;
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(ii) trying to cast the impeller geometry in a automated optimisation design

procedure with a CFD code, and proposing a number of criteria, integral, local

and multi-criteria.

1.3 THESIS LAYOUT _

The work is presented in seven chapters, with the rst one as introduction. The rst step

in this project was reviewing optimisation methods, which are used in shape design, and

for this reason a brief literature review is presented in the Chapter two. Also, this review

contains GAs and constraints handling methods and their link with actual shape

optimisation for uid ow problems.

A decision of using GAs as an optimisation teclmology has been taken after a

comprehensive study of the concepts of optimum engineering design. This study is

presented in Chapter three, where it contains why GAs are used and how they are

working. A link between a GA library (GAlib, Wall 1996) and a CFD code (Mac_LNS,

Wahba 1997) has been properly carried out. Chapter four describes this link. Results

and discussion are presented in chapters ve and six.

Chapter ve describes how GAlib works and how the parameterisation of its variables

affects the design procedures. Chapter six focuses on the impeller design processes,

which are based on various optimisation objectives and constraints. Conclusions and

recommendations are presented in Chapter seven. _

There are two appendices added to the thesis. Appendix A contains a brief overview of

the Mac_LNS code used in this work. Appendix B contains two codes used in the

present work, Eva_POP(GAPopulation & p) function used to parallelise the GAlib

using MPI and De Castelj au's Algorithm used to develop Bézier curves.
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Chapter

2

Literature Survey

2.1 INTRODUCTION

Several pump design procedures are described in the literature, including methods

covered in books, engineering journals, or govemment reports. These procedures

concem themselves primarily with design point operation, Whiteld and Baines (1990).

So far, It is necessary at the outset to establish quite clearly the designers' objectives.

The perfect hydraulic pump design is of no use unless it can be made and put into

service, economically. lnvariably there is a conict created by the design needs of each

objective, and compromise is necessary. This compromise may become a subconscious

optimisation in a good experienced designer, nevertheless it is still desirable to have a

quantitatively dened set of priority ranked targets in the design specication. Where,

as is increasingly common, there are separate applications engineers, hydraulic

designers, mechanical engineers and production engineers, it is even more important

that the hydraulic designer recognises the effect of his/her decisions on the ability of the

others to meet their commitments. Hydraulic design needs a list of requirements that

may be one of conict and compromise. For example, the impeller, which is easiest to

cast, is unlikely to produce the best hydraulic perfonnance. The hydraulic designer

therefore needs a system, which allows rapid optimisation. From this point of view, this

chapter will provide a literature review for these methods used for pump design. Also, it

9



will handle the interaction between CFD and design and the interaction between shape

design and optimisation using inverse design and direct design. Finally, a

comprehensive survey of GAs, as a powerful tool for optimisation design, will be

presented containing GAS methods, constraint handling approaches and GAs

parameterisation.

2.2 PUMP DESIGN

I this section, various aspects of classical theory are described in order to demonstrate

the foundations of some of the current industrial hydraulic design and comparing

methods. This is followed by design procedures used for pump design.

2.2.1 Pump Design Methods

Many methods have been provided for pump design, foruexample modelling, modied

modelling, inlet design, free votex, area ratio, design coefcients and through ow.

Modelling design is derived from consideration of geometric and uid dynamic

similarity. Its idea depends on dimensional analysis using Eulers equations to deduce

the same relationships. This technique depends on geometric scaling which is not

always feasible since mechanical sizes do not generally vary in the same proportion as

hydraulic size. It is therefore necessary to make corrections, either to size or to

performance predictions, particularly if the size ratio between the model and prototype

is large. There is considerable discussion on the question of pump perfonnance scaling.

Nixon (1966) is a particularly comprehensive reference discussing all the related

factors. Progress in this area has been slow, but other sources of information are: Nixon

and Caimey (1972), Fay (1976) and Osterwalder and Ettig (1977). The modelling

design method has been modied in some references like Karassik et al (1986),

Stepanoff (1976), Varley (1961), Worster (1963), and Schweiger (1969). The

modication was derived from the theory of more fundamental (larger eye diameter,

impeller blade outlet angle, blade number, impeller outlet width, or collector throat

area).
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I case of inlet design, it is used for those pumps being designed from scratch, where it

is rst necessary to decide on the optimtun inlet conguration. For more details see:

Pearsall (1973 & 1977), and Anderson (1955).

Worster (1963) published an analysis of pump performance using free vortex method.

This analysis showed the explicit relationship between the impeller and collector

geometry in establishing pump performance. This method depends on dening the

velocity distribution around the impeller. It also, produced a relationship between ow

rate, total head, impeller design parameters and collector throat area.

The basis of the area ratio method, produced by Anderson (1938), is a collection of

nonnalised design data, in the fonn of head and ow coefcients plotted against area

ratio. Refer to Thorne (1979), it has been shown that there is a relationship between area

ratio and specic speed for optimum efficiency, stable total head/ow rate characteristic

and shape of impeller blade. I the area ratio method, for any specic speed there is a

innite range of designs possible.

Stepanoff (1976) has published the rst and complete hydraulic design of a pump by

using design coefcients. lt is based on velocity and geometry analysis charts plotted

against specic speed, where the principal variables are head and ow coefcients

based on dimensionless terms. The charts assume a consistency of design so that, only

pumps of similar type, construction, number of impeller blades, etc., should be plotted

on one chart.

The through ow analysis techniques available compute the behaviour of a large

number of small elements of the ow in order to establish the effective energy transfer

and velocity vectors at any point. Total ow rate and head are established by integrating

across the passage blade-to-blade and wall-to-wall, and summating for the number of

passages. These methods have extensive research in handling real ow in real machines

analytically and numerically. But the instnmentation techniques necessary to measure

intemal ow in order to verify the predictions are extremely sophisticated. For modem

computing power, these methods are suited to interactive design and so potentially
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improve the design process by giving the designer the facility to look at many variables

simultaneously and to select appropriate values quickly. This is leading to enhanced

optimisation.

2.2.2 Pump Design Procedures

A calculation procedure to estimate the theoretical perfonnance of a pump is a

indispensable tool in pump design. Performance needs to be known, not only at the

rated, best efciency point, but also off design. Pump specications oen impose

special requirements, such as head at shutof maximum power demand, rate of head

rise to assure stability and so on. A good pump design procedure requires trial-and-error

iteration, a check on predictable performance with a trial geometry, and progressive

approximation to the optimal design conguration. The best hydraulic design does not

necessarily correspond to the best comnercial pump product. Compromises are

unavoidable.

Excellent pump perfonnance calculation procedures have been developed and published

(Stepanoff 1948 and 1976, Tuton 1994), and several computer programs are

commercially available. A typical computer program developed by NASA from the

COSMIC collection software is called PUMPA

(http://wwvv.openchannelfoundation.org/projects/PUMPA/). PUMPA is based on the

Euler equation coupled with empirical correlations compiled from rocket pump data and

does not identify the various loss mechanisms. Generally, the more accurate and

detailed these calculations are, the greater the number of input variables needed; not

only the desired head, ow rate, and rotational speed, but also the details of the

geometrical description of the impeller and housing. The labour and cost required to

prepare and enter the input variables limit the practical use of computer programs for

simple, inexpensive pumps. Traditionally centrifugal impellers have been designed

using semi-empirical techniques such as, the area ratio method. These methods are

effective, but largely treat the impeller as a black box". The uncetainty associated with

these methods often requires experimental verication and optimisation of the

performance on rst prototype impellers. This experimental work is both costly and

time consuming leading to increases in both product development life cycle costs and
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time to market. I a recent study it was shown that a delay of six months in bring a

product to market could reduce prots over the product°s life by a third*.

2.3 CFD AND DESIGN

Over the last twenty years, much work and progress has been made using CFD. This

work has led to signicantly new physical insights into the behaviour of ows ranging

from laminar to turbulent, from non-reacting to reactíng, from Newtonian to non-

Newtonian, etc, there is much technology now available to reliably compute ows in

complex geometry with complex physics. Computation now stands as a equal partner

with mathematical analysis and experimental inquiry. CFD has become such an

effective tool that many researchers who previously would depend only on experiment

to uncover uid phenomena now use CFD to achieve their goals more rapidly and cost

effectively, Orszag and Staroselsky (2000). Moreover, up to now, several factors have

limited the impact of CFD in the industrial design enviromnent. Among these factors,

two seem especially limiting. Firstly, traditional CFD methods have mostly focused on

the analysis of existing congurations with the purpose of identifying possible problems

and shortcomings of the existing design: little or no guidance is offered to the designer

on how to improve the existing design or how to avoid the conguration shortcomings.

Secondly, the complexity of the required calculations has lengthened the tum-around

time to a point where CFD cannot play an effective role in the continuously shrinking

design cycles. For numerical techniques to be employed successfully in a design

environment, these two key issues need to be dealt with effectively. So, current efforts

attempt to use CFD in design by lirking it with CAD (Al-Zubaidy, 1995) or

optimisation algorithms (Narducci et al., 1995; Johansen et al., 1997 and Madsen et al.,

1997).

I recent years, there has been signicant effort to infuse design sensitivity analysis into

CFD analysis; gradient-based non-linear programming algorithms then utilise the

sensitivities to perform the optimisation efciently; Newman et al (1999), Taylor et al

(1992) and Appa et al (1998). These developments have received considerable attention

'
Solid Modeling - Today's Engineering Reality, Published by Hewlett Packard.
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in the aerospace, automotive, and biomedical industry due to the massive potential of

design sensitivity analysis as a design tool. Newman et al (1999) and Taylor et al (1992)

applied the sequential implementations of design optimisation method for the design of

airfoils, wings, Wing-bodies and complex aircra congurations using both the potential

equation and the Euler equations. A two-step design optimisation process employing

features of structural, aerodynamic, propulsion and ight control systems is developed

by Appa et al (1998). Similar rapid evolution of design optimisation based on CFD

analysis is also reported in the automotive, biomedical and electronics industry

literature. A design optimisation methodology for compact heat exchangers used in the

automotive industry, like the radiators and condensers, for 2D n louver is presented by

Bouzida (1997). Another detailed study of CFD design optimisation of nned heat sinks

for impingement cooling of electronic packages was carried out by Kondo et al. (1998).

I Siegel and Makhijani (1998), numerical optimisation has been documented for

practical biomedical design constraints. A multi-disciplinary shape optimisation using

generic algorithms has also been reported for aerodynamic and Electro-magnetic

applications by Makinen et al. (1999). -

From these documented contributions in the literature, it is evident that CFD can and

should be used for the purpose of design in order to cut down the cycle time for a new

or improved product. However, for a practical problem involving large matrix of

candidate designs or design variables, the numerical optimisation procedure may require

prohibitively expensive computational resources, but parallel calculation can be applied

for both CFD and optimisation to solve this problem.

2.4 SHAPE DESIGN

The bulk of work relating to design optimisation in uid mechanics has been related to

aerospace applications, considering, for example, the optimum shape of airfoils or parts

of aircra combination, as mentioned in the last section. For the most part, up to the late

eighties, these studies relied on irrotational approximations of the uid ow, which is

justiable for the analysis of high-speed external ows around aircras. However, the

current use of Euler or even N-S solvers for these problems has increased the

computational costs to a extent, where efcient optimisation methodologies have
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become essential to the prospects of CFD-optimisation. Moreover, since the present

scope is that of intemal ows, there is a predictable call for efcient techniques to limit

the computational expenses involved in the optimisation of N-S ows (Taylor et al.,

1991).

Methodologies for solving shape design problems can be distinguished into 'two classes:

inverse methodology and optimisation (direct) methodology. The distinction is based on

how the design problem is formulated.

2.4.1 Inverse Methodology

Historically, the predecessor of numerical design optimisation in uid mechanics is the

inverse design methods. A inverse design problem is posed by prescribing a target

pressure or velocity distribution around an object, and is solved by detennining the

shape of this object that achieves the specied distribution. Lighthill, 1945, devised a

inverse design method for the incompressible ow past airfoils, making use of

conformal mapping and potential ow solutions. State-of the at inverse methods are

based on the Euler equations and wall modications by means of a so-called

transpiration model, Giles and Drela (1987) and Demeulenaere (1997). Inverse methods

are primarily dedicated to the design of airfoils, wings, and turbomachinery cascades,

but have also been applied for the design of duct geometry, Cabuk and Modi (1991),

and Cabuk and Modi (1992). Dulikravich (1991) published surveys of inverse design

methods.

In the eld of turbomachinery blade design, von Kannan Irstitute (VKI) has a valuable

thrust in inverse design. VKI used the inverse design with many ow solvers like,

potential ow, Euler, and Navier-Stokes, (Van den Braembussche, 1998; Bogers, 1998;

Demeulenaere, l998(a&b); and Nielsen and Myllerup, 1998).

The main drawback of the use of inverse design methods is that these require a a priori

denition of an optimal target distribution by the designer. This obviously demands a

close understanding of the ow phenomena considered, and furthennore involves a

problem regarding the existence of solutions. For these reasons, it is a desperate

undertaking to apply inverse design methods for general purposes, while the methods

may prove very efcient for specic problems, which are well understood, such as for
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the design of pump impellers, Zangeneh et al. (1996). Numerical optimisation

techniques avoid the complications described, and futhermore encompass the solution

of inverse problems, which may be formulated as problems of minimising a norm of the

difference between desired and actual perfomance.

2.4.2 Optimisation (Direct) Methodology

I the optimisation (direct) methodology, the design problem is based as a minimisation

(min) or maximisation (max) problem of an objective function subjected to constraints

on the geometric and uid properties. Optimisation methods assist the designer in

locating the min/max of the objective while satisfying the constraints. From the

practical point of view, optimisation methods, pioneered by Hicks et al. (1974), are

more attractive since these methods can handle a large class of design problems,

including those classied as inverse problems. Direct methods can be distinguished into

two categories: global methods and local methods. Global methods, such as those based

on the GAs, Doorly (1997), are aimed at obtaining the global optimum, these methods

are most useful for cases in which multiple minima/maxima are present in the design

space, where in real life, the majority of design problems have multiple objectives

(minima/maxima). GAS are used in the present work and more detailed description

about that will follow later.

Local methods use the infonnation on the gradient of the objective for locating the

optimum. Therefore, for cases with multiple minima/maxima, local methods are limited

to produce only one of the objective (i.e., the local Optimum), the actual value of which

depends on the starting point of the optimisation process. Recent developments in the

gradient-based optimisation methodology suggest that two main streams may be

distinguished: the method of sensitivity analysis and the variational method. This

distinction is based on how the gradient is computed. The sensitivity analysis method

has the advantage that the sensitivities of the ow properties on the grid points can be

detennined, where, the gradient of a objective function can be computed easily using

the chain rule. For more details, see Pandya (1997), Haftka (1986a), Elbanna and

Carlson (1990), Baysal and Eleshaky (1991), Taylor et al. (1991). The variational

method needs the values of the so-called adjoint variables as the solution of a set of

adjoint equations. For more details, see Alonso (1997), Jameson (1995), and Reuther
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(1999). Gradient-based optimisers have successfully been applied to a variety of design

problems (Kroo, 1988 and 1990 and Gage, 1992). Unfortunately, these methods cannot

be applied to problems with discrete variables or discontinuous objective and constraint

functions, because gradients are not dened in these domains. Furthermore, gradient-

based optimisers must start with a specic parameterisation of the design and are

limited to nding optimal values of the chosen design variables. The most obvious

limitation of gradient-based optimisers is their need for gradient infonnation. So, nite-

difference estimates must be calculated in most cases, which account for the bulk of the

computational effort. Automatic differentiation may offer a fast alternative for gradient

calculation (Stamatiadis, 2000 and Hong Hu, 1999), but even this method is not

effective for domains in which gradients are undefined.

2.5 EVOLUTIONARY ALGORITHMS

Mankind tries to leam from the natures principles. Whereas, in previous times people

only copied structures or shapes found in nature, e.g., wings of a bird, in the mid sixties,

strategies were developed, emulating the principles of organic evolution in order to

model adaptation or optimisation strategies. Today, these algorithms are terrned as

Evolutionary Algoríthms (EAS). I general EAS simulate evolution using four main

elements: 1) encoding structure that will be simulated; 2) operators that affect the

individuals of a population; 3) a tness function that indicates how good a certain

individual is with respect to the others; and 4) a selection mechanism. EAS are divided

into three main streams, whose motivations and origins were completely independent

from each other.

First, Evolution Strategies (ES), invented by Schwefel (1995) around 1965 at the

Technical University of Berlin, were rst used for experimental optimisation. With the

appearance of the rst computers, this strategy developed towards a numerical

optimisation strategy based on real-coded vector representations.

The second is Evolutionary Programming (EP), which was invented by Fogel et al.

(1966), who described a EP for the evolution of nite state machines to solve
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prediction tasks. I the beginning of last decade, his son Fogel (1995) extended his

father's work to real-valued object variables.

Third, Holland (1975/1992) is a pioneer in the area of genetic algorithms whose

research interests was devoted to the study of general adaptive processes. Hollstien

(1971) and Delong (1975) applied these GAs based on binary variables to parameter

optimisation. Finally, Goldberg (1989) presented a monograph building a reference

book in the eld of GAs. The current work will use GAs, and for this reason the next

subsections will discuss work which has been done in this area and constraints handling

strategies.

2.5.1 Genetic Algorithms

I the last few years research devoted to GAs and their application has signicantly

increased as indicated by the existence of several conferences on the topic. I particular

the use of GAs has gained some popularity in optimisation, Goldberg (1989), and has

been identied as a potential technique to be evaluated in heuristic search and

combination problems. GA is a global search technique. It simultaneously evolves many

points in the parameter space. By working with a population of solutions, the algorithm

can search many local minima/maxima and thereby increase the likelihood of nding

the global minima/maxima. The main advantage of GAs methods is that they do not

require any mathematical increase to the numerical solution methods used to represent

the ill objects. GAs have recently been applied to turbomachinery, for example,

turbomachinery cascades (Oksuz and Akmandor, 2001), vaned diffusers for centrifugal

compressors (Benini and Tourlidakis, 2001) and pumps (Oyama and Liou, 2001 and

Wahba and Tourlidakis, 2001a).

There exists a excess of studies investigating the interactions between different GA

parameters for different application of GAs. This is rightly so, because GA parameters

(such as population size, choice of GA operators, operator probabilities, representation

of decision variables, etc.) interact in a complex way. More importantly, their

interactions are largely dependent on the function being optimised (Hart and Belew,

1991). Since these interactions are complex and a complete analysis of all their

interactions is difcult to achieve, researchers have used different analysis of all their
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pair-wise effect on GAs perfonnance. These isolated studies are valuable and have

provided useful guidelines for choosing GA parameters, such as population size,

Goldberg, Deb, and Clark (1992) and control maps for operator probabilities, Goldberg,

Deb, and Thierens (1993). I order to obseve the interactions of various GA

parameters, empiical studies have also been used, Esheelman and Schaffer (1993). To

study the dynamics of these interactions, more sophisticated stochastic models have also

been developed and analysed, Suzuki (1993).

2.5.2 Parallel GAS

Recent advanccs in computational science can be attributed to the development of new

efcient algorithms and the development of fast hardware. Computer hardware has been

developing in an explosive fashion over the past two decades, providing practical

solutions to many problems. The concept of parallel computation has been greatly

speeded up and it is important to develop efcient algorithms, which take advantage of

these developments. On the other hand, it is rather easy to parallelise GAS, unlike many

traditional optimization methods, because of the inherent parallelism of these algorithms

(Dorigo, and Maniezzo, 1993). The individuals can be modied and, most importantly,

evaluated independently of each other, e.g., using a master-slave approach (Bäck,

1996). It results in a speed-up scaling linearly with the number of processing units. The

fact that standard selection acts on the whole population, thus limiting the speed-up,

motivated the development of parallel GAs using local selection within sub-

populations. For two of these algorithmic variants, migration models (Rudolph, 1991)

and difsion models (Spiessens and Manderick, 1989), it has been observed that local

selection techniques not only yield a considerable speed-up on parallel computers, but

also improve the robustness of the algorithms (Gorges-Schleuter, 1992) and ease the

search.

2.5.3 Constraint Handling

A aspect normally disregarded when using EAS for optimisation is that these

algorithns are unconstrained optimisation procedures, and therefore it is necessary to

device ways of incorporating the constraints (nonnally existing in any real-world

application) into the tness function. Different techniques are available for handling

constraints, e. g., Lagrange multipliers, Adby and Dempster (1974), and mathematical

19



programming, Mital (1977) and Bazaroo and Shetly (1979). However, the problems that

are undertaken by GAs, often do not allow the use of these methods because the

constraints carmot explicitly be dened in terms of the problem parameters, i.e., only

after evaluation of a trial solution it may become clear whether or not a constraint is

violated. Coello (1999) has achieved a very good survey of EAS constraint handling

techniques.

One technique to handle constraints is to use crossover and mutation operators such that

the constraints are always satised. The operators designed for handling combinatorial

problems with GAs, Goldberg (1989), gives the most illustrative example for this kind.

The second technique is to represent the optimisation problem such that it is impossible

to violate a constraint. Two other types of constraint handling techniques comprise the

repair and penalty functions. Penalty functions were introduced by Courant, 1943, and

constraints are added as a weight term to the objective function that must be optimised,

that means, the constrained problem is transformed into a unconstrained problem. I

other words, the simplest approach to constraint handling in optimisation algorithms has

been to assign infeasible individuals a arbitraily low tness (Goldberg, 1989). This is

possible given the ability of optimisation algorithms to cope with the rapid tness

changes, which arise on the constraint boundaries. I this approach, provided feasible

solutions can be easily found, any infeasible individuals are selected out and the search

is not affected much. Michalewicz and Schoenauer, 1996, handled more efciently

certain types of constraints, such as bounds on the decision variables and other linear

constraints. They mapped the search space so as to minimise the number of infeasible

solutions it contains and/or designing the mutation and recombination operators

carefully in order to minimise production of infeasible offspring from feasible parents.

This and the previous approach are complementary, and are oen used in combination

with each other.

I the case where no feasible individuals are known, and cannot easily be found, simply

assigning low-tness to infeasible individuals makes the initial stages of evolution

degenerate into a random walk. To avoid this, the penalty imposed on infeasible

individuals can be made to depend on extend to which they violate the constraints. Such
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penalty values are typically added to the unconstrained values before tness is

computed (Goldberg, 1989). Although penalty functions do provide a way of guiding

the search towards feasible solutions when these are not known, they are very much

problem dependent. Some infeasible solutions can, even with the penalty, be seen as

better than some feasible ones, which can make the population evolve towards a false

optimum. I response to these difculties, Richardson et.al. (1989) have described

guidelines on the use of penalty functions.

Deb (2000) has proposed one of the most recent approaches to constraint handling. This

method is based on penalty functions but does not require any penalty parameter and

offers distinction between feasible and infeasible solutions. It uses the idea of

comparing infeasible solutions depends only on tenns of constraint violation. This

perspective is supported and extended in the present work.

2.6 CONCLUSION

From this literature review, several pump design procedures are described. These

procedures concem themselves pimarily with design point operation, whereas other

methods depend on copying existing pumps, or on empirical design fonnulas

established by statistical suveys of existing pumps. Therefore, the designer needs a

system, which allows rapid optimisation.

It is concluded that, CFD can and should be used for the purpose of shape design in

order to cut down the cycle time for a new or improved product. It is also clear from the

literature review that, there are a lot of attempts to nd new methods that are intended to

minimise the number of inteventions of the designer and to shorten the design time.

Experiments or N-S calculations are currently perfonned on designs produced by a try

and error procedure which allows good design, but is very expensive in tenns of

computer and/or designer time. Its outcome strongly depends on the expertise of the

designer. Direct optimisation method is one of these methods, which the designer can

get his objective with minimum effort and lesser experience. GAs offer a much more

robust way to handle the optimisation problem especially multi-objective optimisation.
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Chapter

3

Multi-Objective Optimisation

Using Genetic Algorithms

3.1 INTRODUCTION

Searching a complex design space involves a trade-off between two apparently

conicting objectives: exploiting the best solution currently available and robustly

exploring the unsearched space.

The most direct way to take advantage of the current best solution is to improve upon it.

This ensures that information about the best solution currently available is not lost and

that maximum use is made of this information. This method examines all good points

neighbouring the current best solution, but on the other hand does not examine points

that are far from the current solution. Examining regions of unexplored search space,

even if far from the current solution, might provide knowledge that leads to the

discovery of an even better solution. Greedy search, Duxbury and Dobrin (1999), is a

good example of a search strategy that exploits the present infonnation for nding an

improved solution. Since, greedy algorithms take such a limited view of where the

opportunities for improvement exist, they are vulnerable to getting trapped in regions

far removed from the optimal solution. If focusing on a apparently most promising
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region does not lead to the optimal point, a good search strategy should move on to

other regions of the space and continue its search.

Two kinds of calculus based methods exist for nding the optimal value of a function

using the improvement method. One is dependent on the availability of the function's

deivatives: the function is evaluated at all points of its domain where the gradient is

zero and the best among them is selected. The second method seeks the optimum by

searching in the direction related to the local gradient. This is simply the notion of hill

climbing: to nd the local best, search the function in the steepest permissible direction

until a best value is reached. The problem with the rst method is that the derivative is

not always available for all search spaces, and the problem with the second method is

that the procedure can get stuck in local optima and not be able to achieve the global

optimum. Another interesting point to note is that the success or failure of these

algorithms is very dependent on the single starting point.

Both these methods are local in scope where the optima they seek are the best in the

neighbourhood of the current point, but not necessarily the best in the overall picture.

These procedures depend to a great extent on where the search is started. Since the real

world of search rarely ever has a continuous and unimodal mction, both the above

methods are of little use when solving real world problems. As researchers have

recognised the problems with calculus-based methods, randomised search algorithms

have gained popularity. Random search, on the other hand, makes no use _of the

currently available infonnation and blindly samples every region. For very small size

problems, this is probably acceptable, but for any good size problem this method is

intolerably inefcient. For searching discrete design spaces, enumerative schemes are

probably the most simple and straightforward, but, once again, are effective only if the

search space is relatively small. Enumerative schemes evaluate the objective function at

every point of the design space, but if the design space is large, this technique becomes

prohibitively time consuming.

GAS, on the other hand, are much more robust in their search in multimodal, real valued

search space. Search using GAS strikes a reasonable balance between exploiting the
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available infonnation and searching through unexplored regions. The feature of survival

of the ttest conserves the current useful knowledge and the recombination operators

make use of the current knowledge to search unexplored regions of the design space. I

contrast to other, more standard, search algorithms, GAs base their progress on the

perfomiance of a population of candidate solutions, rather than on a single candidate

solution. The motivation behind this is that, by simultaneously searching many areas of

the design space, the risk of getting stuck at a local optimum is greatly reduced.

GAs have been established that they are more robust in their search than other

conventional algorithms. GAs are computerised search algorithms based on the

mechanisms of natural selection. They lie on one of the most important principle of

Darwin: survival of the ttest. John Holland, in the 1970s, thought that he could

incorporate such a technique in a computer algorithm, to solve difcult problems

through evolution. This technique, close to the laws of nature, uses a population of

potential solutions represented by string of binary digits, called chromosomes or

individuals, which is submitted to many transfonnations, called genetic operations such

as selection, crossover and mutation. The population is going to evolve during the

generations according to the tness value of the individuals; then, when a stationary

state is reached, the population has converged to the solution of the given optimisation

problem. Goldberg (1989) introduced a signicant thrust in the research eld of GAS.

GAs are different from nonnal optimisation procedures, e.g. simple or conjugate

gradient methods or steepest descent methods, in many ways:

0 They work with a coding of the parameter set and not the parameters themselves.

The advantage of working with a coding of parameter set is that the coding

discretizes the search space, even though the function may be continuous. On the

other hand, since GAs require only function values at various discrete points, a

discrete or discontinuous function can be handled with no extra cost. This allows

GAs to be applied to a wide variety of problems.

0 They work simultaneously with a population of potential binary coded solutions, not

only with one solution. So, it is very likely that the expected GA solution may be a

global solution. Also, multiple optimal solutions can be captured in the population

easily.
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0 They use probabilistic rules, the genetic operators are applied with probabilities, and

not deterministic ones.

0 They investigate in a search space composing a database of the solutions, which

implies that they cannot fall into a local optimum;

0 Two keywords are linked to GAs: exploration and exploítation. Exploration of the

search space is important at the beginning of the GA process while exploitation is

desirable when the GA process is close to the global optimum.

3.2 GAS: WORKING PRINCIPLES

The basic structure of a GA consists mainly of the following steps: (1) Random

initialisation of a population of individuals. (2) Evaluation of individuals, which takes a

member of the population and decides about its tness (cost functional) value according

to the information that it encodes (most GAS use a simple binary encoding string of

bits to store the solution information). The evaluation function, or tness function, is

domain dependent and unique to every encoding of every problem, the closer that a

individual is to encoding the ideal solution to the given problem, the higher the tness

of that individual. (3) Application of genetic operators (selection, crossover and

mutation) to the population and return to step 2 until the best individual is reached. I

the next subsections, Genetic operators will be described:

3.2.1 Selection process (or reproduction)

Selection is the process that copycats survival of the ttest observed in natural genetics.

It is usually the rst operator applied on a population. Once the population of search

points are evaluated and given a tness value based on their predicted goodness in

searching for the optimal value, selection probabilistically selects a few good points and

moves them over to the next generation. I other words, it picks randomly two

individuals from the current population and selecting the best according to its tness.

This best individual is retained for the next (new) population. The two individuals are

then put back in the current population and the process is restarted until a new

population is completed. This is a way of maintaining the useful information already

available.
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Several different methods may be used for selection, each with a slightly different

effect. One common technique assigns each chromosome a probability of selection that

is proportional to the individual°s fitness divided by the tness of the entire population.

This selection can be easily implemented using a roulette-wheel, which is an

imaginary wheel. This wheel is split up into as many parts (slices) as the population,

which assign to each individual a slice of the wheel proportional to the fitness of the

individual.

A
E A mB 0

20%`12% 8

Fitu

uQ

C

43% 17°/âº

Figure 3.1, Selection process using roulette-wheel.

As an example, let us imagine that the search is being conducted om ve points; A B,

C, D, and E. Let the relative fitness of each be 8%, 20%, 17%, 43%, and 12%

respectively. Then the wheel would look like the wheel shown in Figure 3.1. Now if the

wheel is spun, when the wheel stops the probability that the arrow would be on A is

0.08, on B is 0.20 and so on. This means that the probability of D (the predicted best

point to lead to the optimal value) being selected is the maximum and the probability of

A (the predicted worst point to lead to the optimal) being selected is the minimum.

Essentially, the role of selection is to ensure that the points that are predicted to lead

quickly to the optimal value are preserved. For more details, see Deb (1995) and

Goldberg (1989).

3.2.2 Crossover operator

As reproduction does not create new individuals, the crossover operator is needed to

increase diversity between the population. Crossover proceeds in two steps. First, two
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individuals are selected from the existing population. The chances of any individual

being selected for crossover are dependent on the tness value of that point. The higher

the tness of an individual, the higher its chances of being selected for mating. Second,

each pair of individuals (known as the parents) undergoes crossing-over to create two

new individuals (known as offspring or children) by swapping all characters between

certain position. The idea is that by rearranging the genetic material of the parent

chromosomes, one or both of the new chromosomes will contain the good properties of

each, resulting in better chromosomes. For example, one-point crossover begins by

choosing a random point somewhere in the middle of the two selected chromosomes.

Taking all of the information to the left of the crossover point of one parent and all

information to the right from the other parent then creates the rst new chromosome.

The same is done for the second chromosome, only the le side is taken from 'the

second parent and the right is taken from the rst, see in figure 3.2. A with selection,

there are several methods for performing crossover and detailed descriptions can be

found in Goldberg (1989).
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Figure 3.2, Structure of Genetic Algoríthm, represents:
a) Selection; b) Crossover; c) Mutation.
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3.2.3 Mutation operator

The mutation is the nal basic genetic operator for GA. lt is needed because

reproduction and crossover can occasionally lose some potentially useful genetic

material, by creating a point in the neighbourhood of the current point (local search

around the current solution). Mutation is then a insurance policy against premature loss

of important notions. This works by randomly changing parameters in a chromosome

with low probability because it might otherwise cause the GA to become too randomly

in its search. I a binary encoding context, this simply means, changing a 1 into a 0 and

vice versa, randomly, with a small probability. For example, as seen in gure 3.2, take

string equal Olšlš10 and assume that position 3 is chosen randomly to mutate. The new

string would be 0lš10. The mutation is also used to maintain diversity in the

population.

3.2.4 GAs termination

There are several ways to stop a GA. One method is to stop after a predetermined

number of generations or function evaluations. Another is to stop when the average

quality of the population does not improve aer some number of generations. Another

common altemative is to halt the GA when all the individuals are identical, which can

only occur when mutation is not used.

3.3 MULTI-OBJECTIVE OPTIMISATION

I every day life, several scores must be satised simultaneously to obtain a optimal

solution. Multi-Objective Optimisation (MOO) extends optimisation theory by

permitting multiple objectives to be optimised simultaneously. MOO is known as

multicriteria, multidisciplinary, or a vector optimisation problem. Some of the main

approaches proposed in the literature are presented below, for a detailed survey of this

methods see Coello (1999).

3.3.1 Vector Evaluated VEGA

Schaffer (1985) modied the selection operator of a Simple Genetic Algoritlnn (SGA)

so that at each generation a number of sub-populations was generated by performing

proportional selection according to each objective function in tum. These sub-
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populations would be rearranged together to obtain a new population, on which the GA

would apply the crossover and mutation operators in the usual way.

3.3.2 I-Iierarchical

The basic idea of this technique is that the designer ranks the objectives in order of

importance. The optimum solution is then found by minimising the objective functions,

starting with the most important one and proceeding according to the order of

importance of the obj ectives, Rao (1984). Another version of the algorithm reported by

Fourman (1985) consisted of randomly selecting the objective to be used at each

generation.

3.3.3 Weighted sum

This is perhaps the most commonly used method because of its simplicity. This method

takes each objective function and multiplies it by a fraction of one weighting

coefcient. These modified functions are then added together to obtain a single cost

ftmction. Hajela and Lin (1992) included the weights of each objective in the

chromosome, and promoted their diversity in the population through tness sharing.

Their goal was to be able to simultaneously generate a family of optimal designs

corresponding to different weighting coefcients in a single run of the GA. Besides

using sharing, Hajela and Lin used a vector evaluated approach based on VEGA to

achieve their goal.

3.3.4 Multiple objective genetic algorithms

Fonseca and Fleming (1993) have proposed a scheme in which the rank of a certain

individual corresponds to the number of chromosomes in the current population by

which it is dominated. All non-dominated individuals are assigned rank 1, while

dominated ones are penalised according to the population density of the corresponding

region of the trade-off surface.

3.3.5 Non-dominated sorting genetic algorithm

The Non-dominated Sorting Genetic Algoithm (SGA) was proposed by Srinivas and

Deb, 1993, and is based on several layers of classications of the individuals. Before

the selection is perfonned, the population is ranked on the basis of non-domination: all

non-dominated individuals are classied into one category (with a dummy tness value,
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which is proportional to the population size, to provide a equal reproductive potential

for these individuals). To maintain the diversity of the population, these classied

individuals are shared with their dummy tness values. Then this group of classied

individuals is ignored and another layer of non-dominated individuals is considered.

The process continues until all individuals in the population are classied.

3.3.6 Niched Pareto GA

Horn and Nafpliotis, 1993, proposed a toumament selection scheme based on Pareto

dominance. Instead of limiting the comparison to two individuals, a number of other

individuals in the population were used to help determine dominance. When both

competitors were either dominated or non-dominated (i.e., there was a tie), the result of

the toumament was decided through tness sharing (Goldberg and Richardson, 1987).

Population sizes considerably larger than usual were used.

I the present work, the hierarchical approach was used for its simplicity although it has

the disadvantage of limiting the choices available to the designer, making the

optimisation process a rather difcult task. The approach allows the designer to rank the

objectives in a descending order_of importance, from 1 to k. Each objective function is

then minimised/maximised individually subject to an additional constraint. This

additional constraint, equation 3.1, does not allow the minimum/maximum for the new

object to exceed a prescribed fraction of a minimum/maximum of the previous object.

This approach and others are presented in Fonseca and Fleming (1996).

f,-(>?)S
(1±(9i'Tiº1]ff-'(7(j"º), for j = 2,3,...k (3.1

where, s1 is the assumed coefcient of the function increment, expressed in percent.

S for minimisation, and 2 for maximisation.

Also, weighted sum is used in the present work. Some weights are tested, and

comparison between it and hierarchical approach has been taken place in Chapter six.

3.4 CONSTRAINT HANDLING METHODS

Many real-world search and optimisation problems involve inequality and/or equality

constraints and are thus posed as constrained optimisation problems. A constrained
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optimisation problem is usually written as a non-linear programming (NLP) problem of

the following type:

Mmimise f(x) (3.2)

subject ro. g,.(x) 2 0, j = 1,1 (3.3)

h,(x) = o, k =1,1< (3.4)

xf Sx. Sxf, i=l,n (3.5)

f(x) is the objective function with number n of variables, x , and J K are number of

inequality and equality constraints, respectively. gj and hk are the jth inequality

and km equality constraints, respectively. The parameter x varies in the range ,

xf'Constrainthandling methods used in classical optimisation algorithms can be classied

into two groups: generic methods and specic methods that are only applicable to a

special type of constraints. Generic methods, such as the penalty function method, the

Lagrange multiplier method, and the complex search method, Deb (1995), are popular,

because each one of them can be easily applied to any problem without much change in

the algorithm. However, specic methods, such as the cutting plane method, the

reduced gradient method, and the gradient projection method, Deb (1995), are

applicable either to problems having convex feasible regions only or to problems having

a few variables, because of increased computational burden with large number of

variables. I the next two subsections, penalty function methods and penalty function

based on feasibility will be presented where the later one will be used in the present

work.

3.4.1 Penalty Functions

The most common approach in evolution algorithms (mainly with GAS) community to

handle constraints (particularly, inequality constraints) is to use penalties. The penalty

function approach involves a number of penalty parameters, which must be set right in

any problem to obtain feasible solutions, as seen:

(3.6)
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F is dened as the sum of the objective function f and a penalty term which

depends on the constraint violation gj. RJ is to make the constraint violation of the

same order of magnitude as the objective function value. Equality constraints, equation

(3.4), are usually handled by conveting them to inequality constraints as follows:

gm (x) E 6 - |h, (x)| 2 o (3.7)

where, 5 is a small positive value.

By penalty function, the constrained problem is transformed into a unconstrained

problem. The existence of penalty parameter causes the optimal solution to depend on

it, and users usually have to try different values of it, to nd what value would be the

best.

Because of dependency of GA's perfonnance on penalty parameters researchers devise

sophisticated penalty function approaches such as multi-level penalty functions,

Homaifar et.al. (1994), dynamic penalty functions, Joines and Houck (1994), and

penalty functions involving temperature-based evolution of penalty parameters with

repair operators, Michalewicz and Attia (1994). All these approaches require extensive

experimentation for setting up appropriate parameters needed to dene the penalty

function. Michalewicz (1995) described the difculties in each method and compared

the performance of these algorithms on a number of test problems. I a similar study,

Michalewicz and Schoenauer (1996) concluded that the static penalty function method

is a more robust approach than the more sophisticated methods. This is because one

such sophisticated method may work well on some problems but may not work so well

in another problem. Deb, 2000, developed a constraint handling method, which is based

on the penalty function approach which does not require any penalty parameter.

3.4.2 Penalty function based on feasibility

Deb (2000) proposed an interesting approach, which is based on penalty functions but

does not require any penalty parameter and can offer distinction between feasible and

infeasible solutions. Deb uses the following rules to compare two individuals:

1. A feasible solution is always preferred over a infeasible one.

2. Between two feasible solutions, the one having better objective function is

preferred.
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3. Between two infeasible solutions, the one having smaller constraint violation is

preferred.

I other words, in order to evaluate any solution, it is a usual practice to rst check the

feasibility of the solution. If it is feasible, its objective function value is computed. If the

solution is infeasible (at least one constraint is violated), the designer will never bother

to compute its objective function value. lt does not make sense to compute the objective

function value of an infeasible solution, because the solution simply cannot be

implemented in practice. Here, the idea of comparing infeasible solutions depends only

on terms of constraint violation. Mathematically, the tness function can be in the

following form:

fü)
ifg xzo

FG) = 1+< _ j( ) (38)f.mx 8 - x otherwise
_/=l

The parameter m is the objective function value of the worst feasible solution in the

population. Thus, the tness of an infeasible solution not only depends on the amount of

constraint violation, but also on the population of solution at hand. However, the tness

of a feasible solution is always xed and is equal to its objective function value.

3.5 PARALLEL GAS h

The basic idea behind most parallel programs is to divide a task into large pieces and to

solve these simultaneously using multiple processors. This divide-and-solve approach

can be applied to GAs in many different ways, and the literature contains many

examples of successful parallel implementations. Some parallelisation methods use a

single population, while others divide the population into several relatively isolated sub-

populations. Some methods can exploit massively parallel computer architectures, while

others are better suited to multi-computers with fewer and more powerful processing

elements.

There are three main types of parallel GAs: (1) global single-population master-slave

GAS, (2) single-population ne-grained, and (3) multiple-population coarse-grained

GAS. I the next sub-sections, a brief idea about these types of structure and their

advantages and disadvantages will be presented.
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3.5.1 Micro-Grain GA

The micro-grain GA (mgGA), also referred to as master/slave GA, is the simplest

parallel GA model. It is unique from the other parallel GA methods in process, where,

there is a single population (just as in a simple GA) which is maintained principally by a

master, but the evaluation of tness is distributed among several processors acting as

slaves (see Figure 3.3). Since in this type of parallel GA, selection and crossover

consider the entire population, it is known also as global parallel GA. Ideally, there

should be one processor for each individual in the population, but the chromosomes can

be distributed among any number of slave processors. Maximum speedup can be

obtained when each of the slaves receives a equal amount ofwork.

f r 9 g g i E± E 0 Stores the population,
0 Executes GA operations, and

H ' ' ' ' '0 Dstrbutes ndvduals to the slaves
z± s a t l E z a a a

Slaves

Massa asszraa aaaesriaaa vuee
Evaluates the Evaluates the Evaluates the ____________________________________

tnessl tnessz tneSS3 EE Eåëlëlä
HEâlšEEEIÜEE EëlëßÃ¤

Figure 3.3, A schematic of a master/slave parallel GA.

The greatest advantage to the micro-grain method is its simplicity. This method does not

require a particular network topology, although a highly connected network would be

best to reduce communication overhead. The algorithn is roughly equivalent to the

serial GA. The micro-grain is generally a good method for gaining speed with the

genetic algorithm without introducing extra complexity issues.

3.5.2 Fine-Grain GA

The ne-grain GA (fgGA) model is a compromise between the single global population

model described above and the models with several fully separated populations
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discussed below. The fgGA may be equivalently viewed in two different ways. It can be

modelled as a single global population with the restriction that a chromosome may only

interact (or mate) with its neighbours. For example, the population can be mapped to

one of many different topologies (i.e. linear, mesh, ring, etc). When selection is

performed for crossover, only adjacent chromosomes are eligible to be selected

together. Each chromosome will be neighbour to several other chromosomes, allowing

genetic material to pass from one "neighbourhood" to the next. A fgGA mapped to a

fully connected network would be roughly equivalent to a micro-grain genetic

algorithm. A second way to view a fgGA is to show several separate but overlapping

sub-populations. When selection is perfonned, only chromosomes within the same

population may mate, but many chromosomes will be members of multiple populations

and therefore free to pass material from one population to another.

Figure 3.4 shows how the population in fgGA might be divided. Again, if the algorithm

is mapped to a fully connected network, then every individual could potentially be a

member of every population, causing the fgGA to degenerate into mgGA. The purpose

of the fgGA is to slow the spread of genetic information through the population while

still allowing some information to migrate from one sub-population to another. One of

the more significant issues associated with the fgGA is deciding what topology to use

when mapping the GA population to a network. A highly connected network with low

diameter will allow infonnation to ow from one sub-population to another more

quickly. This increases the chance that the GA may become dominated by one or a few

strong individuals, causing the entire population to converge too soon. However, if the

network topology is too sparse, then each sub-population will be very small and

infonnation will move slowly across the population. I this case, the algorithm may n

very slowly, requiring an excessive number of generations to ñnd the best solution,

Goodman et al. (1994).
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Figure 3.4, A schematic of a fine-grain parallel GA.

There are a few advantages to the fne-grain GA. For example, the representation is

reasonably simple and avoids some of the more complicated migration issues that arise

with the coarse-grain GA described in the next section. The boundaries between sub-

populations are unclear, so there is no need for a explicit migration policy to allow

infonnation to move through the population. However, local populations are isolated

enough to help prevent early domination of the entire population by a few strong

individuals. This method is also very well suited to a multi-processor. All interaction is

done at the "edges" of the populations, so there is no need to transpot data across large

sections of the network. The majority of exchanges will take place between

neighbouring or nearby processors, thereby reducing communication overhead to a

necessary minimum.

3.5.3 Coarse-Grain GA

The coarse-grain model of genetic algorithms (cgGA) is somewhat similar to the ne-

grain model. The population is again divided into multiple sub-populations, but this

time the bomdaries between are sharp rather than unclear. I the fgGA model,

information diffused through the network simply by gaining membership in new

populations. Migration was inherently a part of the fgGA stncture. This is not the case

with cgGAs where migration must be explicitly handled, as seen in figure 3.5, rather

than leaving migration to a random process of drifting as in fgGAs, or ignoring the

potential benefits of dividing and migrating the population as the simple mgGA does.

The implication of this theory is simple. A single large population will eventually

converge, causing new chromosomes fonned to have only insignicant differences from
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their parents. This problem may be resolved by evolving many (probably smaller)

populations simultaneously and independently. The populations will eventually

converge on competitive, yet hopefully unique solutions. Evolution can then continue

by swapping in some new material from other populations, which should increase local

diversity.

/I

12 8
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directioÄ±

Population g _
I1 3 ` T

/

Figure 3.5, A schematic of multiple-population parallel GA. Each process is a
simple GA, and there is (infrequent) communication between the populations.

The coarse-grain model is one of the most robust forms of genetic algorithms. The

reduced need for inter-process communication helps to reduce one of the major

restricted accesses in parallel processing so increasing overall efciency. Even more

signicant is the ability to adapt many aspects of a cgGA to each specic problem.

Unfotunately, this is also one of the greatest disadvantages with the coarse-grain

method.

3.6 CONCLUSION

This chapter contained four main sections, GAS working principles; MOO methods;

constraint handling methods; and parallel GAS methods. From the rst section, it can be

concluded that: GAs are original systems based on the supposed functioning of the

Living. The method is very different from classical optimisation algorithms.

0 Use of the encoding of the parameters, not the parameters themselves.

0 Work on a population of points, not a unique one.

37



0 Use the only values of the function to optimise, not their derived function or other

auxiliary knowledge.

0 Use probabilistic transition function not deterministic ones.

Six methods of casting MOO were presented in the second section, where hierarchical

approach and weighted sum method are recommended to be used in the current work.

And because the hierarchical method is using the multi-objectives as constraints, two

methods of handling constraints are presented in the third section. I addition, it has

been suggested to use Debs method in this work. Finally, because of this project

requires to link GA and CFD, which is computationally very expensive, it is

recommended to use parallel GAs. Hence, parallel GAs methods are presented in the

fourth section, which can be summarised follows:

There are many methods available for parallelising GAS. Each method entails a slightly

different set of advantages and disadvantages. The parallel GAs described above have

some potential for a speed increase over the standard serial GAs, but the speedup is not

recommended for a simple distribution of work. While the micro-grain (master/slave)

GA does rely on distribution of computation for its performance increase, the other

methods rely on more complicated mechanisms. Fine-grain GAs, for example, use

overlapping "neighbourhoods" of chromosomes to reduce the probability of premature

convergence in addition to distributing the population over many processors. Both speed

and effectiveness of the search are therefore enhanced by a ne-grain GA. Coarse-grain

GAs moves one step further by segregating the population entirely and allowing only a

occasional exchange of infonnation. The coarse-grain GA is simply a network of tightly

coupled serial GAs, so any increase in speed will be minor in comparison to the increase

in cost. I this work, micro-grain (master/slave) GA is used because of its simplicity.
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Chapter

4

Impeller Design Procedure

4.1 INTRODUCTION

Several pump design procedures are described in the literature. These procedures

concem themselves primarily with design point operation. The design procedure

advocated here will focus on impeller blade prole. First, whole pump design procedure

will be described followed by old and suggested procedures used to design impeller

blade proles.

Since the head can hardly exceed U; /g , a fast check can be made to see if a reasonable

impeller size can achieve the desired head or if several stages will be required, where g

is gravity acceleration and U2 is the tip speed, it can be calculated from:

The number of impeller blades can be selected on a trial basis, usually six. More blades

guide the ow better, increase the slip coefcient, and therefore increase the head

somewhat. On the other hand, friction losses are increased. The value of the impeller

inlet diameter D 1 is usually selected to minimise the inlet relative Velocity. Low

velocities favor low losses (Vlaming, 1989). Low inlet relative velocities minimise the

difsion, the ratio between inlet and exit relative Velocity IV /W, in the impeller,

which may lead to ow separation if excessive. If pump specications require a low
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NPSHR value, then minimising the inlet relative velocity may not have rst priority,

and the possibility of cavitation must be examined in detail. Selection of the inlet

diameter, blade angles, and location of the leading edge of the blades must proceed by

trial and error. The impeller width B from hub to shroud can be calculated from the

relative velocity in the radial direction W and the ow rate Q at a given radius r:

B =-i (4.2)
27: rW,

Again, from Eulers fundamental equation it follows that the total head generated by a

pump depends on many variables such as; the peripheral velocity U2 and the meridional

velocity C,2 at the impeller outlet, the blade angle ß2, the number of blades z, and the

inlet to outlet impeller diameter ratio D1/D2. The same total head may be attained with a

smaller peripheral velocity U2, by using a impeller of smaller diameter (keeping the

same rotational speed n) but having a greater angle ,62 and a greater number of blades z.

Lazarkiewicz (1965) divided the design of the impeller to sections, impeller inlet,

impeller outlet, and blades design.

I the present work the process of blade design will be focused in two dimensions (2D)

by using GA optimisation linked with CFD. The description will contain traditional

methods used before, and how to apply the optimisation one by parameterising the blade

shape using Bézier curves. Finally, the optimisation procedure will be considered using

one and multiple processors; and how it is linked with CFD solver.

4.2 BLADE DESIGN

The desired suction head and correct incidence at the pump inlet determine the inlet

blade angle ß, from the tangential direction, and the desired pump head determines the

exit blade angle [32 fron the tangential direction. And as well, the major dimensions of

the impeller; inlet diameter D1, exit diameter D2, and impeller width B; can be

calculated. It does not however dene the geometrical shape of the impeller. The

increment change in the angular momentum corresponds to the pressure difference

exeted on the blade, the blade loading. Ideally, it should increase gradually from the
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inlet, reach a maximum at the middle of the blade length, and taper off at the exit

(Tuzson, 2000). Heavy blade loading at the inlet may increase inlet losses. Heavy blade

loading at the exit may create exit losses, pressure uctuations, and noise. Therefore,

the angular momentum is gradually incremented from the inlet to its exit value. Where

the angular momentum rC, is a stepwise-increasing fraction of its value at the impeller

exit:

H
R2C

ff? (4.3)

I impellers with two-dimensional blades, the hub and shroud lines coincide, the axial

coordinate z is constant, and the other two coordinates (radius r, and circumferential

angle 0) are enough to dene the blade shape. Traditionally, the angular momentum

along the streamlines has to be calculated at each r and 0.

Consequently, the main dimensions of the impeller (D1, B1, D2, B2) and angles ,B1 and ßg

can be calculated; these parameters do not however dene the shape of the impeller. For

this reason, we have to study methods that were used before to design the blades shape.

4.2.1 Traditional Methods

There were three principal methods for detennining the shape of blades: circular arc

method, point by point method, and the confonnal representation method.

0 Circular arc method is the oldest and simplest method. No attempt is made to obtain

a gradual change of the velocities or the blade inclination angle. So, it is therefore

difcult to shape the impeller passage correctly. The angle of inclination of the

blade changes greatly along the blade and intermediate values of blade angle may be

considerably larger than the outlet one. One or two arcs of a circle may dene the

blade; the latter however, gives better results, see figure 4.1.
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Figure 4.1, Shape of impeller passages using circular arc method.

Point by point method is based on the assumption that the transition from the inlet to

the ouíítt blade angle depends on the radius. A smooth curve is drawn through a

series of pre-determined points, see gure 4.2. This method gives the designer the

greatest freedom in shaping the blades.
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%

ó Â°

Figure 4.2, Shape of impeller passages using point-by-point method.
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0 Conformal representation method is widely used in USA under the name method of

error triangles. This method is relatively simple and less difcult than the point by

point method of determining blade shapes.

From the above discussion it can be seen that, methods have been used before provide

the same prole to all impellers, and there is no impeller proles classication based on

their objectives. For example: the length of the blades, and hence the passage length,

can be different for the same radii R1 and R2, the same angles ß/ and ,B2 and the same

number of blades. In short passages the angle of divergence may be excessively large,

which increases the chance of separation and formation of damaging eddies; if the

passages are very long and the angle of divergence very small, the losses due to

separation are reduced, while the friction losses are increased. The sum of all losses

should be kept to minimum for the highest possible efciency; hence it is necessary to

make some compromise. In this respect the results of investigations carried out by

research engineers in the Hydromechanical Institute of the Polytechnic in Braunschweig

are very instructive, Lazarkiewicz (1965). They compared six impellers with the same

number of blades and angles but with blades of varying length, forming passages with

various angles of divergence, as seen in gure 4.3. The best shape was given by

impeller II, in spite of the relatively large angle of divergence of the passage.
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Figure 4.3, Shapes of impeller passages.

Shape I: short blades with small frictional surface, but with large losses due to separation; Shape II:

optimum shape of blade; shapes III-VI: as the blade length increases, so also do the friction losses, but the
losses due to separation decrease. The sum of the losses is greater than for shape II (Lazarkiewicz, 1965).

4.2.2 New Method

With the help of optimisation linked with CFD, the designer can obtain his own

impeller design by specifying his needs (objectives) from this impeller with less effort,

experience and amount of experimental work. The task is to design the surface of blade

prole of a centrifugal impeller, which provides a high performance to the impeller.

For a impeller with inlet and outlet radii R1, R2, two consecutive blades, as seen in

gure 4.4, dene the shape of a impeller passage. The contour of the blade prole to

be optimised is dened by a Bézier curve starting at the leading edge and ending just at

the trailing edge. The positions of the control points of the Bézier curve are dened by

the location of seven or eight points (P1, P2, P6) with respect to the start control point
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P0. The line between every two-consecutive control points is called control line, and its

length depends on the angle differences between the current control point and previous

one from the impeller centre. For seven control points, the rst and the last control

points (P1, P6) defined by the ow inlet and outlet angles ,B1 and ß; with respect to (P0,

P5) and can be changed by the change of the blade angles. For the remaining control

points (P2, P3, P4, P5) change by the perturbation of difference angles dçb, døg, dø4, d/55,

until reaching the optimum solution. These changes are limited within specied overlap

angle q51 between two successive blades.

Control points

so

\\

\s

Figure 4.4, Blade deñnition through Bézier curves.

4.3 OPTIMISATION PROCEDURE

The optimisation problem, in general, is stated mathematically as follows:

Minimise F, (Q((/º), 4;) k = 1, NOBJ (4.4)

subject to the following constraints:

1. ow-type inequality constrains

2. geometric-type inequality constraints

G,.(ø)§o, j=NC0N, +1,NC0N (4.6)

3. side constraints

Ww 5 Ø S Øm (4-7)
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where, Fk denotes the objective functions and Q is the vector of the conserved variables

of the uid ow (solved by CFD analysis ow solver). NOBJ denotes the number of

objective functions, NCONf is the number of ow-type constraints and NCON is the

total number of inequality constraints. ØLE and am are the lower and the upper bounds

of the design variables. A sensible choice of these bounds is necessary to maintain a

acceptably smooth hydrodynamic shape.

It appears that there are two comerstones in the design of the problem in order to

formulate the optimisation problems: design variables and design objectives.

4.3.1 Design Variables

A important step in the formulation of any optimum design problem is for the designer

to explicitly identify an appropriate set of design variables. The countless number of

different ways to do so makes the decision of which parameters to pre-assign and which

to consider free, far from trivial. The requirement that the chosen design variables must

inuence the performance measures; mostly requires them to inuence the CFD

solutions. This leads to the following categorisation of relevant types of design

variables, as originally suggested for structural optimisation by Olhoff and Taylor

(1983).

0 Geometrical design variables

These variables are classied into three classes. The rst one is sizing design

variables, which represent a description of the dimensions of geometrical

properties. The second class is shape design variables, which represent a

description of the surfaces bounding the uid ow. Whereas, the third category is

topological design variables, which represent a description of the topological

properties of the ow domain and do to control the design domain.

0 Loading design variables

These variables describe position and distribution of some boundary conditions.
0 Material design variables

These variables describe properties of the uid, e.g. the viscosity.
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0 Manufacturing design variables

These variables describe parameters relating to manufacturing processes, which

may influence the perfonnance and cost of the construction, e.g. relative surface

roughness.

The work presented in this thesis concems shape optimisation, for which reason the

most interesting class of design variables are the geometrical ones.

4.3.2 Design Objectives

It is now in place to consider the criteria, objectives and constraints, used in dening

optimum design problems, equations 4.4 to 4.7. From a mathematical point of view, it is

possible to divide these into the following categories:

0 Integral criteria

I shape optimisation for uid devices, these cover global properties of the ow-

eld or geometry. For example loss minimisation, the objective is to minimise the

overall energy loss in a ow device. Another example is to maximise the possible

mass ow rate in the centrifugal impeller given a pressure rise between inlet and

outlet.

0 Local criteria

These cover any sub properties of the ow-eld or geometry. For example, to

maximise a Velocity component at a certain location with the object of providing

optimal Ventilation of risky chemicals changes.

0 Min/Max and Max/Min criteria

These types of criteria are among the most frequently used in practical engineering

optimisation problems. A typical application of such criteria is for the fashion

design of parameter distributions at certain geometry locations. For example the

design of good blade prole to obtain a unifonn downstream velocity distribution

by minimising the maximum velocity at the positions in question. Further example

could be to maximise the minimum static pressure in hydraulic designs, in order to

keep it above local saturation pressure and so avoid cavitation.
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0 Multicriteria

They refer to the kind of problems, where the objective is comprised of a set of

distinct criteria. The optimal solution for such vector problems is a element of the

set of Pareto optimal designs, and can be weighted to be solved, see section 3.3.

The present work contains examples of designs using min/max, local, and integral types

of criteria, whereas the point of including problems of multi-criteria optimisation has to

be implemented.

4.3.3 Serial GA

The simplest fonn of a genetic algorithm is the serial GA. Here, there is one population

and only one processor to perform the algorithm, as seen in gure 4.5.

For the current work, an already existing library has been utilised. A ow optimisation

procedure by means of a C++ Library of GA (Wall 1996), GAlib version 2.45, consists

of initialisation, evaluation, selection, crossover and mutation. GAlib contains four

types of genetic algorithms. The rst one is the standard Simple GA described by

Goldberg (1989).

- Initial random population
- Evaluate(calculatefitness of individuals)
- While(generat'on < MAX_GEN_NO)

select(select N members ofpopulation)
crossover
mutate
evaluate
generation = generation + 1

- EndWhile
- Return(ind`v`dual with greatestfitness)

Figure 4.5 Code for a serial genetic algorithm.

The second is Steady-state GA which uses overlapping populations, and the user can

control overlapping percentage. The third is Incremental GA in which each generation

consists of only one or two children. And the last is Deme GA which evolves multiple
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population in parallel using a steady-state algorithm. GAlib has many other attractive

features like three scaling schemes which give the user the choice to select linear, sigma

trtmcation, or power law scaling to scale the tness scores. Finally, GAlib is fully

controllable by the user.

GAlib has been used in the present study in combination with a CFD analysis code

(section 4.5) to optimise the geometry of blade proles of centrifugal pump impellers.

As mentioned above, the contour of the blade prole to be optimised is dened (assume

zero thickness) by six difference angles dø, starting from the leading edge to the trailing

edge. The inlet and outlet angles (ß1, ßg), and inlet and outlet radius (R 1, R2), as shown

in gure 4.4, are kept xed during the optimisation process. While the difference angles

dqßg, dq)3, dq54, dø5, are perturbed to change the geometrical shape using De Casteljau's

algorithm, Qiu-Lin Ding (1987).

4.3.4 Parallel GA

There are many reasons for parallelising the genetic algorithm. The most obvious is of

course speed. GAs are computationally expensive compared to most of the more

detenninistic forms of search and optimisation, especially if the objective function was

obtained through CFD, where CFD takes a long time to converge. Additionally, the

probabilistic approach taken by a GA as it must search a larger area (more objective

function call) than a detenninistic algorithm. These factors make GAs ideal for

parallelisation. In some cases, the GA can be parallelised to the point that each

individual clromosome is attributed to its own processor to perfom necessary

computations. This essentially reduces the running time for each generation to the

amount of time required for performing the genetic operations on just one individual.

Speed is not the only reason for parallelising a genetic algorithm. Some

implementations of parallel GAs have a signicantly higher cost than serial GAS,

instead they increase the chance of nding the optimal solution.

I this work GAlib has been modied to use any number of processors using a

master/slave method, gure 3.3, where the master stores the population, executes GA

operations, and distributes individuals to the slaves. The slaves only evaluate the tness
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of the individuals in this time the master evaluates one of the tness as well, as seen in

gure 4.6.

- Initial random population <Master>
- Distribute population on slave processes <Master>
- For each master & slave process p

evaluate each chromosome
- Wait until all slaves have returned their results (fitness)
- While(generation < MAX_GEN_NO) <Mas1er>

select(select N members ofpop) <Master>
crossover <Master>
mutate <Master>
For each master & slave process p

evaluate each chromosome
Wait until all slaves have returned their results (fitness)
generation = generation + 1 <Master>

- EndWhile <Master>
- Return(individual with greatesttness) <Master>

Figure 4.6 Code for a parallel genetic algoríthm.

Message Passing Interface (MPI) is used in this parallelisation. MPI efciently manages

message buffers by sending and receiving directly from the user data structures not by

buffers within the cormnunication library and therefore buffering may be totally

avoided. A program written for MPI is completely portable, and it is easy to recompile

and run on any computer platform. The author's personal view is that, MPI is easier to

use than the Parallel Virtual Machine (PVM). GAlib has parallel processing class,

which is using PVM. If you compare between this PVM class and the new modication,

which has been used in the present work. The modification is so simple where it is only

to replace the DefaultEvaluator(GAPopulation &) function with new function called

Eva_POP(GAPopulation &), Appendix B contains Eva_POP(GAPopulation &)

function.
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4.4 SHAPE PARAMETERISATION

I the 2D optimum shape design problems considered here, different impeller proles

represent the population of individuals. A natural parameterisation of the blade prole

could be a point by point one, based on the discretisation of the shape. Such an approach

presents two drawbacks:

0 in order to obtain accurate results, the shape has to be designed by a lot ofpoints and

it is well known that the convergence of GAS depends on the number of parameters

(Goldberg, 1998);

0 the point to point representation is not tted to the crossover operator. Indeed, the

crossing-over of two individuals may create two new individuals that are non-

feasible.

For this reason, several authors (Périaux, 1995; Poloni, 1995; and Quagliarella, 1995)

adopted a strategy, in which the shape parameterisation procedure is based on

parametic curves, like B-splines, qubic splines, and Bézier curves. A few control points

are then sufcient properly to represent the whole shape.

4.4.1 Bézier curves

Bézier curves were discovered simultaneously by Paul de Casteljau at Citroen and

Pierre E. Bézier at Renault around late 50s and early 60s. Bézier's technique is one of

the most famous in computer-aided geometric design. Its basic idea is to nd curves

which only approximate or approach the given points, rather than passing through them

like a qubic spline. This approach scheme is more convenient to the designer and the

design process, Qiu-Lin Ding (1987). On the other hand, the smoothness properties of

Bézier curves never imply the creation of non-feasible shapes by the crossover operator.

Bézier curves have a useful convex hull property that restricts the curve to never leave

the bounding polygon of the control points. The convex hull property is derived from

the fact that a Bézier curve is a convex combination of the data points, gure 4.7.

As seen in gure 4.7, Bézier curve of order n is dened by the Bernstein polynoms B_,~ :

P(u) = ZB,.~(u)P.~ (4-3
i=0

where the coefcients, the Bézier coejcients, are dened as follows:
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Figure 4.7 Bézier curve defined by five control points and Bézier coefcients

and the point that corresponds to u on the Bézier cuwe is the "weighted" average of all

control points, where the weights are the coefcients B-(u). The line segments, PUP1,

PIP2, P_1P, are called control segments. The nctions B(u), 0 si S n, are

usually called the Bézier basis nctions. Note that the domain of u is [0,l]. I u is not

[0, 1] the Bézier basis functions will change to:
i n-i

nl u-a u-a

These new Bézier coefcients dene a Bézier curve on the domain of [a,b].

P,º = (r 45,) are the coordinates ofthe control points, as seen in gure 4.4. In this work, a

6' order (n=6) Bézier representation has been used (with 2 xed points, P0 and P6,

because they corespond to the leading and trailing edges of the impeller prole and 5

control points change with the variation ofdø; (where ø < 50°). The values of rf are

xed and the only parameters that vary are the co-ordinates çáf depending on í as:
i n-i

_ " nl r-R1 r~R1

ø(r)_ºZ(ii!(";i)!(R2 `R} (1 Rz "RJ øi T (4.11)

where, r e [R1, R2], and ;« is the sum ofall a'q5,- starting from i=l because gg = 0.0.
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A vector of R4 denes a chromosome; the genes are the co-ordinates of the control

points. In addition, we need to use a geometrical constraint: the Ø, 's vary on intervals

[min,~, maxi] which is the search space. The parameters constituting the chromosomes

are then binary encoded.

4.4.2 D Casteljau's Algorithm

The fundamental concept of de Casteljau's algorithm is choosing a point C in line

segment A such that the distance between A and C and the distance between A and B

has a given ratio, say u, as seen in gure 4.8. A a example, if the procedure to nd the

point on the Bézier curve which corresponds to u=0.4 is described. For the curve is

dened by the control polygon with the six points 0 to 5, gure 4.8. Firstly for the value

ofu on each line segment of the control polygon new points, 10, ll, 12, 13, and 14, are

dened dividing the line segment to two parts according to the u ratio. This will

continue for another n times. Where in this example n = 5, then point 50 is on the Bézier

curve with the given control points.

The de Casteljau's algorithm can also be explained geometrically as follows:

By dividing the edges of the control polygon in the ratio (l-u) to u, connect the resulting

points by straight lines, divide the new edges again in the same ratios, and repeat this

process a total of n times, then the dividing point obtained in the last step is the point on

the curve corresponding to u. Appendix B contains the full de Casteljaus algorithn.

Figure 4.8 De Casteljau's algorithm to find a point on Bézier curve corresponding
to the value of u.
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4.5 IMPLEMENTATION OF CFD IN AUTOMATED DESIGN
SYSTEM

Fluid ow treats many different settings and seems to pervade vital aspects of human

life. So, it is playing a essential role in many engineering devices, such as thermal

process equipment, tubomachinery, and aircrafts. Fluid ow is also important in

weather systems prediction and human body itself, which relies on uid ow for

maintaining some of its basic functions such as the circulation and oxidation of blood.

Altogether, the major of uid ow processes makes the comprehension and prediction

of these important, and to that end CFD has emerged as a rewarding approach.

4.5.1 CFD and Automated Design Requirements

With the objective of integrating CFD as part of a automated design process kept in

mind, the choice of solver has especially highlighted the following qualities:

0 Computational efficiency

Regardless of applied methodology, a predictable part of any optimisation process

is the substantial number of analyses, which are required to explore the design

space with the algorithm, so that it may come up with an optimum solution.

0 Robustness

The automated design process sets high demands to the robustness of the CFD-

code, because numerical difculties may arise from the analysis of extreme

geometrical variants. Especially, turbomachinery has a very complicated geometry.

0 Interface capabilities

Both data-input and output fonnats of the applied solver should be clear and easy to

follow.

0 Code transparency

The implementation of semi-analytically derived design sensitivities requires close

consideration of the modelling equations and boundary conditions actually

implemented for the analysis. Therefore, advantage may be drawn from code-

insight, for instance by directly utilising quantities from the analysis code, which

are not nonnally accessible. The call for code transparency more or less disqualies

cormnercial codes, where access to source codes is very limited or non-existent.
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4.5.2 FLOW Solver

I the present study, the evaluation of a tness value to be associated to a individual

requires the calculation of the flow inside the impeller passage. The objective of this

section is to briey describe the main characteristics of the underlying ow solver for

the solution of the 2D N-S equations. Appendix A contains more detailed for this ow

solver, and the whole program is published by Wahba, l997. The code is quite

computationally efcient from the point of view that it treats 2D N-S equations in a

blade-to-blade centrifugal impeller. It has its own grid generator with which it can

capture a wide range of geometry, and offers robustness to the whole process. The

source code is available, so, the user can control its inputs and outputs or add some

calculation if the optimiser needs (interface capability and code transparency).

The ow eld simulations are performed using the nite difference, MacCormack

scheme (2d order of accuracy), viscid, laminar, incompressible CFD code Mac_LNS

(Wahba, 1997). This code has been applied to analyse a variety of centrifugal impeller

proles, (Wahba et al., 1998 a&b).

I this work the code has been modied to represent the impeller prole with a Bézier

curve instead of a polynomial, as discussed in subsection 4.2.2. The code produces

consistent and repeatable ow simulations in the sense that small perturbations to

design variables are accurately reected in the ow eld solution especially, when it is

applied with a wide range of impeller proles.

4.5.2.1 Mathematical model

Consider the two-dimensional, incompressible N-S equations for a constant property

ow without body forces or external heat addition. The continuity equation, written in

the system relative to a blade row, is:

V 0 u = 0 (4.12

where u is the relative ow velocity.

The momentum conservation law for a blade rotating with angular velocity c can be

written as follows:
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where:

F, is the general friction force equal to the gradient of viscous plus turbulent

du 2 1 l_+2oº®u-co r=--Vp+-Ff (4.13)dt = p

shear stresses.

2co ® u is the Coriolis acceleration.

c zr is the centrifugal acceleration.

p is the operating uid density.

4.5.2.2 Mesh update procedure
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With each individual, we have a new impeller shape. Once a new shape has been

determined using the procedure described in Section 4.2.2 and 4.3, the overall

computational mesh has to be updated for each new shape. I this ow solver, a

structured mesh generator based on repetition of the blade curve along the blade-to-

blade passage and crossed with circular curves along inlet-to-outlet is represented,

gure 4.9.

4.6 CONCLUSION

This chapter investigates the use of genetic algorithms for shape optimisation. It fully

describes details of how the GA optimisation procedure is linked to the CFD method to

nd out the optimum shape of a pump impeller prole. It is indicated that the CFD

solver used is quite good to achieve the required work. It is indicated that Bézier curves

is a good tool to present the impeller prole where a few control points are enough to

represent the whole shape. It has been stated that traditional methods produce the same

prole to all impellers, and there is no impeller proles classication by their

objectives. Some examples of the design variables and design objectives have been

stated where design variables and design objectives are the main comerstones of any

design problem.

It is indicated that parallelisation is a good teclmique to overcome the time taken by GA

and CFD, and by parallelisation this procedure can be extended to achieve design

optimisation using CFD to 3D cases.

I the next chapter the GAlib, library used to carry out optimisation work, will be

discussed and GA parameters will be studied. Results of these parameters will be

presented and recommended to be used.
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Chapter

5

GA Parameterisation

5.1 INTRODUCTION:

One of the most challenging aspects of using genetic algorithms is to choose the

appropriate conguration parameter settings. Discussion of GA theory provides little

guidance for proper selection of the settings. Several research papers have been

published to ll this void, (Chapter 2). This chapter will present how GAlib has been

congured to cover the needs of the current work. Because it is important to know why

GAlib has been used in this work and how it works, a brief idea about GAlib will be

presented. In addition, this chapter will contain an overview of how to implement a

genetic algorithm, the programming interface for GAlib classes.

5.2 GALIB

5.2.1 Overview

GAlib is an object oriented C++ library of genetic algorithm objects, created by

Matthew Wall (Wall 1996). The software and necessary documentation can be readily

downloaded via p from p://lancet.mit.edu/pub/ga/. The source code is available at no

cost for non-prot purposes. A extensive manual and associated set of example

applications make this library extremely easy to use. The library includes tools for using

genetic algorithms to carry out optimization in any C++ program using any
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representation and any genetic operators. The user who uses the library works primarily

with two classes: a genome and a genetic algorithm. Each genome instance represents a

single solution to the user's problem. The genetic algorithm object denes how the

evolution should take place. The genetic algorithm uses an objective function (defined

by user) to detemiine how t each genome is for suvival. It uses the genome

operators (built into the genome) and selection/replacement strategies (built into the

genetic algorithm) to generate new individuals. There are three actions a user must take

in order to solve a problem using a genetic algorithm:

1. Dene a representation

2. Dene the genetic operators

3. Dene the objective function

GAlib helps with the first two items by providing many examples and pieces from

which the user can build his representation and operators. I many cases the user can

use the built-in representations and operators with little or no modication. The

objective function is completely up to the specic problem. Once there is a

representation, operators, and objective measure, the genetic algorithm can be applied to

nd better solutions to the problem.

When the user uses a genetic algorithm to solve a optimization problem, he must be

able to represent a single solution to his problem in a single data structure. The genetic

algorithm will create a population of solutions based on a sample data structure that is

provided. The genetic algorithm then operates on the population to evolve the best

solution. I GAlib, the sample data structure is called a GAGenome (some people refer

to it as a chromosome). The library contains four types of genomes: GAListGenome,

GATreeGenome, GAArrayGenome, and GABinaryStringGenome. These classes are

derived from the base GAGenome class and a data structure class as indicated by their

names. For example, the GAListGenome is derived from the GAList class as well as the

GAGenome class. The user can use a data structure that works with his problem

denition. For example, if he is trying to optimize a function that depends on 5 real

numbers, then he has to use as his genome a 1-dimensional array of oats with 5

elements.
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There are many different types of genetic algorithms. GAlib includes three basic types:

"simple", steady-state, and incremental. These algorithms differ in the way that

they create new individuals and replace old individuals during the course of a

evolution.

GAlib provides two primary mechanisms for extending the capabilities of built-in

objects. First of all (and most preferred, from a C++ point of view), the user can derive

his own classes and dene new member functions. If he needs to make only minor

adjustments to the behavior of a GAlib class, in most cases he can dene a single

function and tell the existing GAlib class to use it instead of the default.

Genetic algorithms, when properly implemented, are capable of both exploration (broad

search) and exploitation (local search) of the search space. The type of behavior that the

user will get depends on how the operators work and on the shape of the search space.

GAlib Features can be capsulated in these points:

0 The library has been used on various DOS/Windows, Windows NT/95, MacOS, and

UNIX congurations. GAlib compiles without wamings on most major compilers.

0 Templates are used in some genome classes, but GAlib can be used without

templates if the compiler does not understand them.

0 Four random number generators are included with the library. The user can select

the one most appropriate for his problem, or provide his own.

0 GAlib can be used with PVM (Parallel Virtual Machine) to evolve populations

and/or individuals in parallel on multiple CPUs. I this work GAlib has been

modied to be used with MPI to evolve individuals in parallel on multiple

processors.

0 Genetic algorithm parameters can be congured from a data le, cormnand-line,

and/or code.

0 Overlapping (steady-state GA) and non-overlapping (simple GA) populations are

supported. The user can also specify the amount of overlap (% replacement). The

distribution includes examples of other derived genetic algorithms such as a genetic

algorithn with sub-populations and another that uses deterministic crowding.
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New genetic algorithms can be quickly tested by deriving from the base genetic

algorithm classes in the library. I many cases the user needs only override one

virtual function.

Built-in termination methods include convergence and number-of-generations. The

tennination method can be customized for any existing genetic algorithm class or

for new classes the user derives.

Speciation can be done with either DeJong-style crowding (using a replacement

strategy) or Goldberg-style sharing (using tness scaling).

Elitism is optional for non-overlapping genetic algorithms.

Built-in replacement strategies (for overlapping populations) include replace parent,

replace random, or replace worst. The replacement operator can be customized.

Built-in selection methods include rank, roulette wheel, tournament, stochastic

remainder sampling, stochastic uniform sampling, and detenninistic sampling. The

selection operator can be customized.

on-line and off-line statistics are recorded as well as max, min, mean, standard

deviation, and diversity. The user can specify which statistics should be recorded

and how oen they should be written to a le.

Chromosomes can be built from any C++ data type. User can use the types built-in

to the library (bit-string, array, list, tree) or derive a chromosome based on his own

objects.

Built-in chromosome types include real number arrays, list, tree, 1D, 2D, and 3D

arrays, 1D, 2D, and 3D binary strings. The binary strings, strings, and arrays can be

of variable length. The lists and trees can contain any object in their nodes. The

array can contain any object in each element.

All chromosome initialization, mutation, crossover, and comparison methods can be

customized.

Built-in initialization operators include uniform random, order-based random, and

initialize-to-zero.

Built-in mutation operators include random ip, random swap, Gaussian,

destructive, swap subtree, swap node.

Built-in crossover operators include patial match, ordered, cycle, single point, two

point, even, odd, uniform, node- and subtree-single point.
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0 Objective function, which can be population- or individual-based.

5.2.2 Genetic Algorithm classes

GAGeneticAlgorithm class is the base genetic algorithm class which keeps track of

evolution statistics such as number of mutations, number of crossovers, number of

evaluations, best/mean/worst in each generation, and initial/current population statistics.

lt also denes the terminator, a member function that species the stopping criterion for

the algorithn, where user can set or get the convergence percentage. The convergence is

dened as the ratio of the Nm previous best-of-generation score to the current best-of-

generation score. N is defned by the nConvergence member nction. This class is

automatically declared when any genetic algorithn is declared, and assigns default

operators for it.

The user can maximize or minimize by calling the appropriate member function.

Statistics can be written to a le for each generation or periodically by specifying a

ush frequency. Generation' scores can be recorded for each generation or less

frequently by specifying a score frequency. Parameters such as generations-to-

completion, crossover probability and mutation probability can be set by member

functions, command-line, or from le. The evolve member function rst calls initialize

then calls the step member function until the done member function retums gaTrue. It

calls the ushScores member as needed when the evolution is complete. If the user

evolves the genetic algorithm without using the evolve-member function, he has to be

sure to call initialize before stepping through the evolution. The step member function

can be used to evolve a single generation. The ushScores function should be called

when the evolution is nished so that any buffered scores are ushed.

As mentioned before, GAlib has many different types of genetic algorithms DemeGA,

IncrementalGA, SimpleGA and SteadyStateGA. I the next section a brief discussion

will be presented for these algorithms.

GASimpleGA class is a non-overlapping populations method. This genetic algorithm is

the simp1e genetic algorithm of Goldberg (1989). It uses non-overlapping populations.

When user creates a simple genetic algorithm, he must specify either a individual or a

population of individuals. The new genetic algorithm will clone the individual(s) that he
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species to make its own population. The user can change most of the genetic algorithm

behaviors after creation and during the course of the evolution. The simple genetic

algorithm creates an initial population by cloning the individual or population user pass

when he creates it. At each generation the algorithm creates an entirely new population

of individuals by selecting from the previous population then mating to produce the new

offspring for the new population. This process continues until the stopping criteria are

met (detennined by the terminator). Elitism is optional. By default, elitism is on,

meaning that the best individual from each generation is carried over to the next

generation. The score frequency for this genetic algorithm defaults to 1 (it records the

best-of-generation at every generation). The default scaling is Linear, the default

selection is RouletteWheel.

GASteadyStateGA class is defined as a overlapping populations method. This genetic

algorithm is similar to the algorithms described by Delong. It uses overlapping

populations with a user-speciable amount of overlap. The algorithm creates a

population of individuals by cloning the genome or population that user passes when he

creates it. At each generation, the algorithm creates a temporary population of

individuals, adds these to the previous population, and then removes the worst

individuals in order to retum the population to its original size. The user can select the

amount of overlap between generations by specifying the pReplacement parameter. This

is the percentage of the population that should be replaced at each generation. Newly

generated offspring are added to the population, then the worst individuals are destroyed

(so the new offspring may or may not make it into the population, depending on

whether they are better than the worst in the population). If the user species a

replacement percentage, then that percentage of the population will be replaced for each

generation. Alternatively, a number of individuals can be specied (less than the

number in the population) to replace each generation. Both cannot be specied in a

parameter list containing both parameters, the latter is used. The score frequency for this

genetic algorithm defaults to l00 (it records the best-of-generation every 100m

generation). The default scaling is Linear, the default selection is RouletteWheel.
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GADemeGA calss depends on parallel populations with migration. This genetic

algorithm has multiple, independent populations. It creates the populations by cloning

the genome or population that the user passes when he creates it. Each population

evolves using a steady-state genetic algorithm, but at each generation some individuals

migrate from one population to another. The migration algorithn is a deterministic

stepping-stone; each population migrates a xed number of its best individuals to its

neighbor. The master population is updated each generation with best individual from

each population. If the user wants to experiment with other migration methods, a new

class is derived from this one and a new migration operator is dened. The evolution

behavior can be changed by dening a new step method in a derived class. nMigration,

nReplacement and pReplacement are its main member functions, which control the

number of individuals to migrate, number of individuals to replace and percentage of

the population to replace for each generation.

GAIncrementalGA class depends on overlapping populations with 1 or 2 children per

generation. This genetic algorithm is similar to those based on the GENITOR model. It

uses overlapping populations, but very little overlap (only one or two individuals get

replaced at each generation). The default replacement scheme is WORST. A

replacement function is required only if CUSTOM or CROWDING is used as the

replacement scheme. A DeJong-style crowding replacement scheme can be carried out

by specifying a distance 'function with the CROWDING option, and also, the number of

children that are generated in each generation by using the nOffspring member function.

Since this genetic algorithm is based on a two-parent crossover model, the number of

offspring must be either l or 2. The default is 2. The replacement method is used to

specify which type of replacement the genetic algorithm should use. The replacement

strategy determines how the new children will be inseted into the population. If the

user wants the new child to replace one of its parents, the Parent strategy can be used. If

the user wants the child to replace a random population member, he must use the

Random strategy. If he wants the child to replace the worst population member, he must

use the Worst strategy. If he species CUSTOM or CROWDING he must also specify a

replacement function with the proper signature. This function is used to pick which

genome will be replaced. The rst argument passed to the replacement function is the
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individual that is supposed to go into the population. The second argument is the

population into which the individual is supposed to go. The replacement function should

return a reference to the genome that the individual should replace. If no replacement

should take place, the replacement function should retum a reference to the individual.

The score frequency for this genetic algorithm defaults to 100 (it records the best-of-

generation every l00th generation). The default sealing is Linear, the default selection is

RouletteWheel.

5.2.3 Scaling Scheme

The sealing object is embedded in the population object. The sealing scheme object

converts the objective score of each genome to a tness score that the genetic algorithn

uses for selection. It also caches tness infonnation for use later on by the selection

schemes. It keeps track of the tness scores (not the objective scores) of each individual

in the population. GAlib contains a number of sealing objects derived from the base

class. Here are the constructors for these sealing schemes:

0 NoScaling: The tness scores are identical to the objective scores. No sealing takes

place.

0 LinearScaling: The tness scores are derived from the objective scores using the

linear sealing method described in Goldberg's book (1989). The user can specify the

sealing coefcient. Negative objective scores are not allowed with this method.

Obj ective scores (obj) are converted to tness scores () using the relation:

f=a°obj+b (5.1

where a and b are calculated based upon the objective scores of the individuals in

the population as described in Goldberg's book (1989).

0 SigmaTruneationSealing: Use this sealing method if the objective scores will be

negative. It scales based on the vaiation from the population average and truneates

arbitrarily at 0. The mapping from objective to tness score for each individual is

given by:

f = obj - (obj_ave - c ° obj_dev) (5.2

where obj_ave and obj_dev are the obj ective average and standard deviation,

respeetively.
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0 PowerLawScaling: Power law scaling maps objective scores to tness scores using

an exponential relationship defined as

f= <o1ºfº* (5.3

0 Sharing: The tness score is derived from its objective score by comparing the

individual against the other individuals in the population. If there are other similar

individuals then the tness is derated. The distance function is used to specify how

similar to each other two individuals are. A distance function must retum a value of

0 or higher, where O means that the two individuals are identical (no diversity). For

a given individual,

f=" (5_4

Zqdj)

dj d
s(dj)= 1` § /<0 (5.5

0 djzo'

where:

a is distance between the current individual and individualj.

n is number of individuals in the population.

The default sharing object uses the triangular sharing function described in Goldberg's

book. You can specify the cutoff value (sigma in Goldberg's book) using the sigma

member function. The curvature of the sharing function is controlled by the alpha value.

When alpha is 1.0 the sharing function is a straight line (triangular sharing). If you

specify a comparator, that function will be used as the distance function for all

comparisons. If you do not specify a comparator, the sharing object will use the default

comparator of each genome.

Notice that the sharing scaling differs depending on whether the objective is to be

maximised or minimised. If the goal is to maximise the objective score, the raw scores

will be divided by the sharing factor. If the goal is to minimise the objective score, the

raw scores will be multiplied by the sharing factor. If the scaling object is associated

with a population that has been created independently of any genetic algorithm object,
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the sharing object will use the population's order to decide whether to multiply or divide

to do its scaling.

5.3 GENETIC ALGORITHM CONFIGURATION

The genetic algorithm process requires that certain parameters be set to some initial

value before starting a run. These parameters can effect the efciency of the search

process in several ways. The parameters that need to be initialised are the population

size for the problem (population size is the number of chromosomes in the population);

the selection scheme; the percentage of population created by crossover for each

generation; and the percentage of population that is mutated in each generation. I the

next sub-sections, some of these parameters will be discussed, from this work point of

view. Steady-state GA has been used with overlap between generations by 50%.

Roulette wheel used as a selection method. And because objective score (impeller°s

efciency) is between zero and one (may become negative, in case of constraints), so,

sigma-tnncation scaling has been used in this work where the default liner sealing does

not support negative objective scores.

5.3.1 Mutation rate

Mutation rate determines the probability that a mutation will occur. Mutation is

employed to give new information to the population (uncover new building blocks) and

also prevents the population from becoming saturated with similar chromosomes

(premature convergence). Large mutation rates increase the probability that good

schemata will be destroyed, but increase population diversity. Much experimental work

has been done in order to determine the best setting for the mutation rate p, of the GA,

but no clear answer to this question could be given. Even Greenwell (1995) tried to

prove a new approach that assumes more than one mutation rates and changes them

during the search process. He compared that technique with some xed rates, which has

been suggested by others. Some common setting are p,=0.00l (De Jong, 1975),

p,=0.0l (Grefenstette, 1986), and p, e [0.005, 0.01] (Schaffer et al., 1989). The

optimum value depends on the role-of-mutation (exploring the search space or

maintaining diversity). If mutation is the source of exploration (when, for example,

there is no crossover) then the mutation rate should be set so that a reasonable

neighbourhood of solutions is explored. Typically, this involves changing around one
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variable in the string, thus a mutation rate of 1/L is commonly used, where L is the

length of the individuals' genetic representation. When mutation is used for maintaining

diversity then the optimal mutation rate can depend on the size n of the population, for

example, pm z
å, where A is constant equals 1.75, Schaffer et al. (1989). On the

other hand, Hessner and Männer (1991) published that A= 1.0. Figure 5.1, shows the

results of applying different values of mutation rates where crossover probability and

population size are 0.6 and 30, respectively. It can be seen that large mutation rates is a

source of noisy good schemata can be destroyed because the chromosome string is in

fact inverted, vice versa, for the low mutation rates, the conversion is smoothly and no

valuable change in the range of =0.01 to 0.0083.
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Figure 5.1, Comparison between different mutation rates.

5.3.2 Crossover probability

The crossover probability controls how often the crossover operator is applied. If there

is no crossover, oifspring is exact copy of parents. If there is a crossover, offspring is

made from parts of parents' chromosome. If crossover probability is 100%, then all
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offspring is made by crossover. Ifit is 0%, whole new generation is made from exact

copies of chromosomes from old population (but this does not mean that the new

generation is the same, because of mutation). Crossover is made in hope that new

chromosomes will have good parts of old chromosomes and maybe the new

clromosomes will be better. However it is good to leave some part of population

suvive to the next generation.

The higher the crossover rates, the more quickly new chromosomes are introduced into

the population. If the crossover probability is too high, highly t individuals are

discarded faster than selection can produce improvements. On the other hand, if the

crossover rate is too low, the search might stagnate for lack of exploration. Usually,

crossover probability is used to be chosen between 0.5 and 1.0. Figure 5.2 represents

some runs of GA with different crossover rates (0.5, 0.6, 0.66, 0.7, 0.8, 0.9, and 1.0)

where population size and mutation rate are 30 and 0.0083, respectively. The result

shows how crossover rate is very important to have diversity between the population.
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5.3.3 Population Size

The population size, the number of chromosomes in the population, must be sufciently

large. Larger population sizes increase the amount of variation present in the initial

population at the expense of requiring more tness evaluations. The best population size

is dependent and related to the length of the clromosome and problem complexity. For

longer chromosomes and complex optimisation problems, larger population sizes are

needed to maintain diversity (higher diversity can also be achieved through higher

mutation rates and uniform crossover) and hence better exploration. Many researchers

suggest population sizes between 25 and 100. On the other hand, maximum number of

generations may be compensating little change in the population size. Even, it is not

necessary to obtain the same results when evaluating a population size of 10 over 1000

generation and a population size of 100 evaluated over 100 generations, even though

both processes would evaluate the same number of individuals. Figure 5.3, shows some

results with changing the population size. From the gure we can see for 120

generation, there is a ascending order of the maximum tness with respect to the

population size (10, 20, 30, 40, and 80).
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5.4 GAIib AND DESIGN-CASE INTERACTION

5.4.1 Technical Descriptions

The GA used in this study is a Steady State GA i.e. GA with overlapping populations.

The selection scheme is a Roulette Wheel selector that selects individuals proportionally

to the value of their tness. The scaling method consistently used along this work is

Sigma Truncation and the crossover is a single point crossover. The population size is

30 members. We can see nal statistical repot produced by the GA:

50.................. # current generation.

0.996434....... # current convergence.

800.............._. # number of selections since initialisation.

440................ # number of crossovers since initialisation.

488................ # number of mutations since initialisation.

750..............._ # number of replacements since initialisation.

620.............._. # number ofgenome evaluations since initialisation.

71



51................._ # number ofpopulation evaluations since initialisation.

1.27404........_ # maximum score since initialisation.

1.10901 ........_ # minimum score since initialisation.

For the CFD calculation, a convergence criteria of 10`5 has been used.

5.4.2 How GAlib i exploration and exploitation

When the aim is to convey to the human decision maker information concerning the

best trade-off, consequence of data, it reduces to the visualisation of overall solutions

for a single run. This can be represented in objective space by plotting the rst objective

component against the second, as shown in gure 5.4. It descibes the relation between

losses and head for a impeller, where it starts from the initialisation through some

intermediate generations to the optimum max. head aer 501 generation.
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Figure 5.4, Visualisation of trade-off data in two dimensions, from single run,
for one objective (max. Head).

Figure 5.5, shows the evolution of the genetic search. It reports the average tness of
the population of proles and the tness of the best prole for each generation. This

graph shows a typical step-like shape due to the appearance of better individuals. From

gures 5.4 and 5.5, we can see how GAlib is an exploratíon and exploitatior as
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mentioned in Chapter 3. In other words, it can be observed how the rst generation tries

to be discovery (has wide range), and how the last generation tries to give many

solutions as possible.
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On the other hand, in order to gain insight into how well a optimiser can be expected to

perform on a given problem, data from multiple optimisation runs must be considered.

Figure 5.6 presents these runs for min. losses and max. head respectively. iHuman

decision-maker can expect the optimum impeller prole is located with a mixture of

min. losses and max. head (multi-obj ective optimisation).

Before going to talk about multi-objective optimisation (next Chapter), some impeller

prole shapes can be presented here to know how GA works. Figure 5.7 shows how far

the GA starts and how it comes close to the solution (aer only one generation), which

will be discussed more deeply later.

%-ÄIi'>=- 0

0 Initial (random) geometry. in
1 Geometry for best score nl gen
Others are geometry for best score for If
some others

generations.Figure5.7, Impeller shapes for initial individual and sample of best score for

number of generation.

74



5.5 CONCLUSION

This chapter contained a brief description to GAlib and how it can be used to support

the current study.

Recommendations are often results of some empirical studies of GAS, for example:

0 Crossover rate generally should be high, about 60%-80%. (However, it is

recommended that around 60% is the optimum.)

0 On the other hand, the mutation rate should be very low. Best rates reported are

about 0.5%-1% (recommended that there is a relationship between mutation rate,

population size and chromosome length).

0 It may be surprising, that very big population size usually does not improve

performance of GA (in meaning of speed of finding solution). For the present

problem, good population size was found to be around 30-40, however sometimes

sizes 50-100 are reported as best (recommended that population size is two times

chromosome length, which is 16 bits in this case).

From this conclusion point of view, GAlib can be applied to optimise the design of

centrifugal impellers. I the next Chapter, a detailed presentation of centrifugal

impellers design results is given.
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Chapter

6

Centrifugal Impeller

Results and Discussion

6.1 INTRODUCTION

The rotating impeller imparts energy to the uid, and is the most important, the only

rotating elenent of the pump. The diffuser, following the impeller, can transform

kinetic energy into pressure energy, where it is equivalent to approximately 20% to 40%

of the total work input, but cannot increase the total energy of the uid. The shape of

the blades and the resulting ow pattern in the impeller detennine how much energy is

transferred by a given size impeller and how efciently it operates. The theoretical

energy increase, the theoretical head rise Hm through the impeller, can be found by

applying the principle of conservation of angular momentum.

On the other hand and as mentioned in the optimisation procedure Section 4.3,

optimisation problem has two comerstones: design variables and design objectives.

The design variables will be discussed in the next subsection in order to show how these

variables have been selected. The design objectives will be handled through the results,

in Section 6.3.
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6.1.1 Design Variable Selection

A critical element in the success of any shape optimisation method is its capability to

generate a great variety of physically realistic shapes. Ideally, the geometry model

should allow as much geometry exibility as possible with as few design variables as

possible. A parametric denition of the blade geometry is therefore required in order to

have a limited number of variables. In order to limit the number of design variables, the

blade shape must be dened by curves instead of a large number of points, as mentioned

in Section 4.4; Bézier curves have been used in this cLu'rent study. The blade shape is

dened using 9 parameters. Four of them are the LE and TE angles (magnitude and

direction), where the angle magnitudes will be discussed later in subsection 6.3.6. while

the rest of the parameters lie between these four and present ve difference angles, dçái,

start with '=2 to 6, where dø, and dqy are for LE and TE angles, gure 4.3. Table 6.1

presents limits of these difference angles.

Table 6.1, Design parameters limit.

dqg [degree] døg [degree] dqi; [degree] dØ5 [degree] døó [degree]

O <dØ2< 20 0 <d$3< 20 0 <dØ4< 20 0 <d(b5< 20 0 <dq§6< 25

To demonstrate the utility of the design method, a centrifugal impeller conguration,

has been implemented to the optimisation procedures. A impeller, with 6 blades, has

been selected for redesign. It has an inlet diameter of 35.6mm, a outlet diameter of

74mm and 23° and l7.74° as inlet and outlet blade angles, respectively, relative to the

tangential direction. At 23750 rpm, the nominal ow rate is 0.0067 m3/s.

6.1.2 Presentation of Results

I this Chapter, impeller design results will be presented and discussed. The results can

be classied into three groups: parallel optimisation results, design objectives' results,

and design using multi-obj ectives results.

I parallel optimisation results, a discussion of how it works will be presented and how

many processors are selected to achieve the optimisation. For the design objectives'

results, it is not easy to select objectives which can assist the designer to judge the best

prole, especially because the uid dynamics interaction of centrifugal impellers is very

complicated, for example, separation, jet-wake ow pattem, etc. Consequently, some of
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the design objectives categories can be applied individually to nd the most

appropriate one. Also, combination of objectives will be studied. This will be discussed

in the third results group design using multi-objectives. Also, a comparison between

two methods of handling multi-obj ectives will take place.

6.2 PARALLEL OPTIMISATION

As mentioned in subsection 4.3.4, GAs are computationally expensive especially if the

estimation of the objective function is based on CFD calculations. I order to

demonstrate how computationally expensive a serial GA, one objective for example

min. friction losses", is proposed using serial GA. Table 6.2 presents some impotant

data optimisation statistics used to achieve this objective.

Table 6.2, Min. friction losses optimisation statistics.

Population size 30
Current generation 100
Current convergence 1.00226
Number of selections since initialisation 1600
Number of crossovers since initialisation 857
Number of mutations since initialisation 1374
Number of replacements since initialisation 1500
Number of genome evaluations since initialisation 1275
Number ofpopulation evaluations since initialisation 101
Average time to evaluate one genome for 10000 CFD iterations for 220 seconds
computer PIII, 1000 MHZ.

Roughly, as seen in Table 6.2, each tness value calculation needs a average of 220

seconds for 10,000 convergence iterations, which is the average number of iterations.

Sometimes 30,000 iterations are required depending on the complexity of the blade

prole. On the other hand, the objective function has been executed 1,275 times for 101

population evaluations (initialisation and 100 generation as input) for 30 populations.

Consequently the average time of 280,500 seconds is required to achieve this case using

serial GA, neglecting the optimisation operators (selection, crossovers, mutation and

replacement), individual evaluation time only. On the other hand, in case of parallel

optimisation, with 15 processor, 36,507 seconds has been recorded for individual

evaluation and optimisation operators. The next two steps describe how this number of

processors has been selected:
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0 GA starts with randomly initialisation of a population of individuals, followed by

individual evaluation for all 30 individuals. This occurs in three steps: l) calculate

rst individual using the master processor to sign some commune variables; 2)

distribute next 29 individuals to the slaves and master, and gather objective values

from slaves in two times (2x15 processor). It can be noticed that the number of

processors in two times are greater than the number of remained individuals, so, the

last processor will update its vales and sleep during the second time; 3) apply

optimisation operators using the master node.

0 After the initialisation step, evaluation will continue for 100 generation assumed, for

other cases it can be 50, 150 generation or specified convergence criteria, as

previous. But if the number of individuals is less than or equal to the number of

processors, (this is usually the case), one generation acts like one individual

evaluation; if not it needs another time, which means two individual evaluations.

The main disadvantage of this method is that if the CFD calculation in one processor is

huge, requiring completing its task a large number of iterations to converge, all

processors have to wait until this processor completes its task. Nevertheless,

parallelisation is a very good approach to perform the calculations more than seven

times faster than the serial one, Wahba and Tourlidakis (200lb).

6.3 DESIGN OBJECTIVES

There are ve classes of design objectives from a mathematical point of view: integral,

local, min/max, max/min, and multi-criteria (for more infonnation see subsection 4.3.2).

For integral criteria, the designer can select one of these objectives: maximum impeller

head, minimum losses (friction or total pressure losses), or maximum efciency. On the

other hand the local criteria can be achieved through minimum reverse ow through the

impeller passage or minimum separated jet-wake ow. Two of the integral/local criteria

or even a mixture of integral and local criteria (max/max, max/min, min/max or

min/min) can represent the third and fourth type of criteria min/max and max/min

criteria. Also these two later types of criteria are a way to represent the h type of

criteria called multi-criteria".
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6.3.1 Impeller Head

The impeller head represents the network done on a unit weight of uid in passing from

inlet (LE) to outlet (TE). Hence, maximum impeller head can be assumed as a integral

criterion (objective) for the impeller design. Theoretically, Impeller head is represented

by a straight line equation: He = k,+k2Q in which k, and kg are constants with the value

of kl dependent on the value of the exit blade angle ßz. Figure 6.1 shows the Euler

theoretical head-capacity characteristics for the three possible conditions on the blade

angle at exit ,B2 (<90°, 90°, and >90°). The effect of exit blade angle ßg on gure 6.1

would be to change the value of HØ = U; /g at zero ow rate and the slopes of the lines

but all head-capacity characteristics would remain straight lines. Maximum head, as a

integral objective, has been applied. Figure 6.2a presents change of head, efciency,

and friction and total pressure losses with different mass ow rates.

H A
/,- ßz > 90Â

°

//
/_ . _ _

/ , / Rising Charactenstic//X . .
H80 / Flat Characteristic ßz = 90Â

°

Steep Characteristic

2 < 90Â°

0 0 ºHe0

Figure 6.1, Euler's head-capacity characteristics.

6.3.2 Impeller Losses

On the other hand, impeller losses can be assumed as integral objective for the impeller

design where good impeller performance needs minimising these losses. These losses

are made up of impeller skin friction, and dynamic head losses. Impeller dynamic losses

are entry shock loss; and hydraulic loss. Entry shock losses at the design point are small

and can be neglected in this study, where optimisation procedure takes place at design

conditions. I this work, hydraulic losses have been dened by total pressure losses.

Where less change in blade angle along the blade passage means reduced total pressure

80



losses and longer blade length. lmpeller skin friction losses are affected by changing

blade length and relative velocity. Although ow pattems in the impeller ow passages

are complex, the application of pipe friction formulae offers to date the best way of

co-relating design parameters with the magnitude of this loss, Neumann (1991). I the

application to impeller passage the friction loss can be expressed by:

H

W2
hf =/1 - - (6.1D EQ 23

where: Ä friction coefcient.

Ww average relative velocity.

l blade length.

DHEQ equivalent hydraulic diameter.

Colebrook°s formula is recommended to evaluate the friction coefcient which is a

function of Reynolds number (Re) and of the relative surface roughness coefcient ( Ä)
_ 2

- 1 4.52 R A
Ä = f(R ^)=

Zílogoßlílogo 7 + (Ö-2

where; R,= ; Ã =L and A = 0.00005 m.v DHEQ

Minimum iction losses and total pressure losses, as integral objectives, have been

applied, only one each time. Figures 6.2b&c present change of head, efciency, and

friction and total pressure losses with different mass ow coefcient.

From gures 6.2 a, b & c; it can be concluded that:

0 Using the rst objective maximum head offers better head and efciency

characteristics than those provided by the other objectives minimum friction and

total pressure losses", but there are a lot of parameters which lead the designer to

avoid this objective as will be seen in subsection 6.3.3.

0 The second objective minimum friction losses has better characteristics than the

one provided by the third objective minimum total pressure losses", where these

better characteristics can be attributed in reduced friction losses which has affected

both the head and efciency characteristics. This excess in friction losses in the third

objective minimum total pressure losses is due to more blade passage length,

which will be discussed in next subsection 6.3.3.
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Figure 6.2, Impeller characteristics with mass flow coefficient for different
integral objectives.
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On the other hand, gure 6.3 presents another side of comparison between these three

objective cases, which is the optimiser convergence criterion. Figures 6.3a&b show the

convergence history of the two objective cases max. head and min. total pressure losses,

respectively. In the case of max. head objective (a) convergence requested large number

of generation if it is compared with the case of min. total pressure losses. This is

because, there are many confusions which will be discussed in the multi-objective

criteria, later. Otherwise, the two curves are quite reasonable form the convergence

point ofview.
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6.3.3 Impeller Flow Separation

Flow detachment (separation) is an important term to judge between different geometric

designs in centrifugal impellers. Centrifugal impeller has backswept curvature and

rotational walls, and theory and experiments both show that a surface which is concave

towards the ow tends to move low-speed uid away from the wall. Conversely, the

surface with a convex face toward the ow tends to resist ow detachment less than a

at surface with the same pressure gradient. The Coriolis forces, resulting from rotation,

have a very similar effect, with the pressure surface resisting detachment more strongly

and the suction surface resisting detachment less strongly than a at surface with the

same pressure gradient. For detailed infonnation, see Kline and Johnston (1986). These

effects are illustrated in gure 6.4.
Ü ~ Ks/u :Peso
H - rm'c.s sveenconuc rRON

mm - vmcu "^U~ 5Â°novcs wir mo« mm u < 5um. " '
TRAILING SIUE

H
cyå> _u K 5

Q/\\*"
I ol'2

0 5va~gº1''c/* x ? `v&ºß_\\\ wm _ Ã\ s - Lennc
R

Ü,SALDWS °F uusnsz
C)ACK YOWARO UNBALANCEDwALL

mfctz novas CURVNUREa
\ ner roeca RATE OF ROTATION

Curvature Effect Coriolis Effects

Figure 6.4, Unbalanced net force due to curvature and Coriolis effects.

Figure 6.5 presents the relative ow Velocity prole in blade-to-blade impeller for three

differently designed geometries and same inlet and exit blade angles at design point.

The objective functions maximum head, minimum ictioni losses, and minimum total

pressure losses have been applied each time and the results are presented in a, b, and c,

respectively. A quite large eddy ow area appears in the case of maximum head (a) and

very smooth change of the blade angle appears in the case minimum total pressure

losses (c), which means long blade prole and relatively large friction losses.

For maximum head design (a), it can be seen how the surface tends to be less backswept

to give maximum head as it has been discussed in subsection 6.3.1, which means

excessive separation and reverse ow. Reverse ow decays in the case of minimum
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friction losses but is still detrimental. In other words, in cases a and b the blade prole

becomes concave in the pressure side just aer leading edge which means unstable

(particle moves away from wall) for two reasons concave curvature and Coriolis effect.

In the next subsection, the optimisation process will try to add some freedom to the

blade shape by changing the inlet and exit blade angles. Also, in section 6.4 the

optimisation will try to handle two or more objectives together in what is called multi-

objective optimisation in order to improve these weak points.
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Figure 6.5, Relative ow velocity in blade-to-blade impeller profiles for three
different objective functions for constant inlet and exit blade

angles at the design point.

Also, from gure 6.6, it can be seen how the blade angle changes through the impeller

passage and how the large change in it affects the ow through the passage. Where the

ow separation dose not appear when the objectives is minimum total pressure losses

where the change in the blade angle is quite small, and ow separation appears in the

other two cases where there is a quite large change in the blade angle. For objective

minimum load", it looks that there is a quite small change in the blade angle which

tends to be a straight line. This case will be discussed below, in the subsection 6.3.4.

Friction losses and sudden change in the blade prole can also cause non-uniform ow

at exit as in the case of a jet-wake ow pattern. This is apparent in gure 6.5a and starts

to decay in b&c, as discussed later in subsection 6.3.6.
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Figure 6.6, Blade angle changes through impeller passage for different objectives
for constant inlet and exit blade angles at the design point.

6.3.4 Blade Loading

In gure 6.6, it appears that there is an objective minimum load", that can change the

blade angle more linearly than the objective function minimum total pressure losses.

Blade loading is a very important parameter to select the proper impeller proles. The

majority of inverse design methods depend on how to nd the geomety prole for a

certain loading distribution. Because of the blade loading, the pressure difference across

the blade, the pressure side Velocity is lower than the suction side at the same fraction of

the blade length. Most designers plot the relative Velocity along the pressure and the

suction sides of the blade, against the streamline length, measured from the leading

edge. For more details see Tuzson (2000) and Japikse et al. (1997). The difference

between the velocities on either side of the blade illustrates the pressure difference or

blade loading, only qualitatively. VVhere, the rothalpy equation relates the pressure not

to the Velocity but to the square of the Velocity, as shown in next equation:

W2 _ W2
P (6.3
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From this point of view, the designer can depend on equation 6.3 as a objective to

judge the blade prole. Figure 6.7 shows the relative Velocity along the pressure and

suction side of the blade for three objective functions which have been discussed above

(max. head, min. friction and total pressure losses) and min. loading as a new integral

objective. The plot shows that if the blade loading becomes too large, the Velocity on

the pressure side approaches zero, the ow separates, and this situation must be

avoided. Also, it shows for the objective nction of minimum total pressure losses and

minimum loading, the loading is quite small, but for the objectives maximum head and

minimum friction losses, it is quite large. I the later two objectives, the danger of ow

separation is also presented because of big rapidly decreasing velocity and the pressure

increasing.

In gure 6.7, relative velocity change starts to reverse its direction, in other words the

pressure side relative velocity becomes higher than the suction side one, from around

60% or 75% of the blade 'action length to the impeller exit. This occurs because of the

jet-Wake ow pattem phenomena.

-A-SS (Max. Head) - -- - PS (Max. Haed)
--er-_SS (|VIin. Friction Losses) _s_PS (Min. Friction Losses)
-x-SS (Min. Total Pressure Losses) _º<_PS (Min. Total Pressure Losses)
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Figure 6.7, PS and SS relative Velocity difference in the impeller as an approximate
measure of blade loading for four different objectives for constant

inlet and exit blade angles at the design condition.
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6.3.5 Efficiency

The efficiency is an important performance parameter. It is a combination of two

integral criteria head and losses. Figure 6.8 presents a comparison between all previous

objectives in terms of efficiency and a new objective, which requires to accomplish

max. efficiency. From this gure it can be observed that the max. efciency objective

behaves similarly to max. head objective. For min. total pressure losses and min. load

objectives, the efficiency is reduced because of the extra frictional losses (longer blade

length). In section 6.4, max. efficiency objective will be implemented for specified

impeller head as a multi-objective criterion.

-e-Efficiency (Max. head)
-º(-Bficiency (Mn. tot. pressure losses)
--Head (Nhx. efficiency)
-- l-bad (Mn. friction losses)

-0-Efficiency (Nbx. efficiency)
--Efficiency (Mn. friction losses)
-IK-Efficiency (Mn. load)
-Head (Max. head)
-)- l-lead (Mn. tot. pressure losses) -( I-bad (Mn. load)
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Figure 6.8, Efficiency and Head for different objectives for constant inlet and exit
blade angles.
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6.3.6 Local Criteria

All the previous objectives can be identied as integral criteria. I this subsection, local

criteria can be tested as an objective. Local criteria are used to cover any sub properties

of the ow-eld or geometry. On the other hand, when separation appears in the

centrifugal impeller, two ow regions of different energy can be distinguished: the

separated region and the main stream, as shown in gure 6.9.

The relative velocity becomes different on either side of the streamline separating the

two regions. The acceleration and corresponding pressure increase are directed from the

suction side to the pressure side. A separated region of low energy will be stable and

can then continue along the suction side. I case of heavy blade loading, the ow

calculation may predict that the velocity slows to zero at the pressure side, as was

shown above in gure 6.7 (in case of max. head and min. friction losses), and that ow

separation will occur along the pressure side. However, since a separated region cannot

continue on the pressure side, the ow switches to a jet-wake ow pattem. From this

point of view, the designer can consider jet-wake ow pattem as a local criterion, which

he/she can manage to minimise its effect. This objective minimum jet-wake ow

pattern has been proposed in this work, where the difference between the relative ow

velocity on the pressure side and suction side, respectively, has been applied to be

minimum after the pressure side relative velocity becomes greater than the suction side

OHB.

Blade sucton
Side Baøe

/ pressure side

Wake Jet
W

w,

í'/Z

/°i

Figure 6.9, Separated jet-wake flow in impeller.
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Figure 6.l0 shows the pressure side and suction side relative Velocity for this local

criterion compared with some integral criteria for variable inlet and exit blade angles. In

other words, for this time, instead of xing inlet and exit angles (as shown before in

figure 6.6) and change only Bézier's control lines in-between, inlet and exit angles have

been released to change from one population to another. Hence the number of

parameters has changed from ve Bézier's control lines to seven. For the local criteria,

minimum jet-wake ow pattem, the area between the PS and SS after 85% of the blade

length looks slightly smaller than for the other cases which starts earlier (around 75% to

80% ofthe blade length).

_±_SS (Max. Head) - -PS (Max. Haed)
_a_SS (Min. Friction Losses) - -PS (Min. Friction Losses)
_x_SS (Min. Total Pressure Losses) - _ PS (Min. Total Pressure Losses)
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Figure 6.10, PS and SS relative Velocity for three integral and one local objectives
for variable inlet and exit blade angles at the design point.

Figure 6.11 shows how the blade angle changes along the impeller passage for variable

inlet and exit blade angles. The change of the inlet blade angle, ßf, varies between 30Â
°

and 40° for all cases except that max. head objective (45°), tries to go towards high

values (radial direction, figure 6.1). The lower and upper bounds ofß1, which were used
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in max. head objective case were 20° and 45.l0° respectively, as seen in Table 6.3. On

the other hand, the exit blade angle, ß2, is bounded between l4.5° S ,62 5 26.l0°. Two

objectives try to approach the upper bound and the other two the lower bound, as shown

in Table 6.3 as well. Comparing figures 6.11 and 6.6, we can nd there are large

differences for the case of min. friction losses, where the change of the blade angle

becomes distributed between inlet and exit (figure 6.11) instead of being maximum in

the middle of the blade (figure 6.6). Quite small differences are observed in the others

cases. This comparison will take place next in figure 6.14, using blade proles and

relative ow Velocity for all ow passages obtained with different objectives.

¬-Max. Head -an-Min. Jet-Wake
-x-Min. Total Pressure Losses --Min. Fiction Losses

-9

3._

*f;|

9 0 P5997391B ade an

-0. 0.1 0.25 0.4 0.55 0.7 0.85 1
Fractlon of blade length [-]

Figure 6.11, Blade angle changes through impeller passage for different objectives
for variable inlet and exit blade angles at the design point.
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Table 6.3, Comparison between different objectives.

Objective ß & /32 ß ßz
limits [degree] [degree] [ml

Head Friction Tot. Pressure Efficiency
Losses [m] Losses [m] [%]

Max. Head 20.0< ß <45.l
l4.5< ß, <26.1

44.90 26.09
. VÖ. .

13.42 27.17 87%

Min. friction
losses

20.0< ß <45.l
14.5 < ß, <23.l

36.27 21.13 507.86 27.74 86%

Min. total
pressure losses

20.0</3] <40.l
l4.5< ß, <23.0

34.40 16.09 447.35 40.63
'

i*2º2±62 79%

Min. jet-wake 20.0< ßl <40.l
14.5 < ßz <23.0

38.71 17.74 470.97 42.86 22.79 81%

Min. PS relative
velocity

20.0 < ,Bl < 40.1
43.32 24.96 483.79 28.19 25.15 84%14.5 < ß, < 22.6

From gure 6.10, it can be seen that the PS relative velocity starts to rise not only after

over-lapping between PS and SS relative velocity but before that (55% of the blade

length) for all cases except max. head which is the earliest one. Consequently, it appears

that, the last local criterion specied (minimise the difference between the relative

velocity on PS and SS, after the PS relative velocity becomes greater than SS one) is not

sufcient to decrease the jet-Wake ow pattem. A new local objective, min. PS relative

ow velocity, has been presented.

Figure 6.12 shows a comparison between these two local objectives, where quite small

difference appears. But in case of min. PS relative velocity there is a quite uniform

relative velocity along PS and SS than that in the min. jet-Wake case. This leads to quite

uniform pressure coefcient difference, as seen in gure 6.13.

A comparison of blade prole and relative velocity distribution between all different

objective cases is presented in gure 6.14. Where, it can be seen that, output relative

velocity (et ow) depends on how eddy ow is big and how blade length is long.
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Figure 6.12, PS and SS relative velocity for two local objectives for variable inlet
and exit blade angles at the design point.
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Figure 6.13, Impellers profile loading for two local objectives for variable inlet
and exit blade angles at the design point.
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Figure 6.14, Comparison of relative velocity [m/s] distribution for different objectives
and variable inlet and exit blade angles at the design point.

94



6.4 MULTI-OBJECTIVE DESIGN

The majority of engineering design problems requires the simultaneous optimisation of

more than one objective function (multi-objectives), in which there are several

conicting design aims, which need to be simultaneously achieved. I the previous

section, some of obj ectives have been applied individually. With multi-objective

problems, every solution has a number of tness values, one for each objective. This

presents a problem in judging the overall tness of the solutions. For example, one

solution could have excellent tness values for some objectives and poor values for

other objectives, whilst another solution could have average tness values for all of the

objectives. The question arises: which of the two solutions is the ttest? This is a major

problem, for if there is no clear way to compare the quality of different solutions, then

there can be no clear way for the GA to allocate more off-springs to the tter solutions.

So, this section will present some objectives combinations, which can be applied to

pump impeller blade prole, for example:

0 Maximise impeller head and minimise total pressure losses;

0 Minimise total pressure losses and minimise friction losses;

0 I some cases, it is needed to x the head and minimise the losses of the impeller.

I these and most other cases, it is unlikely that the different objectives would be

optimised by the same alternative parameter choices. Hence, some trade-off between the

citeria is needed to ensure a satisfactory design. Two methods are used in this study,

hierarchical method and weighted sum method. Also, a comparison between these two

methods will take place.

6.4.1 Max. Head and Min. Total Pressure Losses

Maximum Head does not mean minimum total pressure losses, so; designer has to nd

other tenns or mix between head and total pressure losses (multi-objective) to design

the centrifugal impeller blade prole.

The multi-objective optimisation method used here depends on the hierarchical

method, subsection 3.3.2, which is carried out in four steps:
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1. Rank our two objectives in order of importance (az min. total pressure losses and b:

max. head).

2. Find the optimum solution for single object (min. total pressure losses).

3. Find the optimum solution for single object (max. head) with one extra constraint:

New Losses S
(1 + Li-(-)å)Previous Losses, for 8 = 5,10, l5...% (6.4)

From Table 6.3, total pressure losses varies up and down within 20% between the

case max. head objective and the min. total pressure losses objective case. So, e can

be less than or equal to 20%.

4. Penalty method based on feasibility technique, Deb (2000), is used to handle this

extra constraint, as seen in section 3.4.2.

Figures 6.15 to 6.18 show results of this multi-objective method, and how it can nd

altematives from which the decision-maker can select the proper design.

It can be noticed that, the single objective case (SO: max. head) has some oscillation in

off-design (gures 6.16 and 6.17), this is for a poor blade prole as shown in gure

6.15. Also, these four gures show how to nd better head even than that obtained in

SO: max. head when xing more constraints guide the optimiser.

1. SO: Max. Head. '

2. MO: 20% Tot. Pressure Losses.

,3.MO: 20% Tot. Pressure Losses. '

4. MO: 20% Tot. Pressure Losses. ~

5. MO: 20% Tot. Pressure Losses. . ' 6 1
6. SO: Min. Total Pressure Losses. ,

/

()

Figure 6.15, Impeller°s profile geometry for these six design cases for
variable inlet and exit blade angles at the design point

(Multi-Objectives hierarchical method)
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Figure 6.17, Comparison between different design total pressure Losses/dynamic
head for variable inlet and exit blade angles
(Multi-Objectives hierarchical method).
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Figure 6.19, Impeller's profile loading for constant inlet and exit blade angles at



For these design cases, all multi-objective cases look to be very close to the single

objective one, min. total pressure losses. For this reason, the same case is applied with

constant inlet and exit angles, and this may show some differences in the loading and

relative Velocity distributions (gures 6.19 & 6.20), Wahba and Tourlidakis (200la).

For constant inlet and exit angles, gure 6.19 shows how loading coeicient changes

within 10% from max. head design to min. total pressure losses design. Moreover, it

shows how multi-objectives (mix between the two deigns) is needed to obtain better

profile loading, which looks like the one obtained with min. total pressure losses, and is

better than the one obtained with min. total pressure losses.
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Figure 6.20, Relative ow velocity [m/s] in impeller profiles for variable
inlet and exit blade angles at the design point
(Multi-Objectives hierarchical method).

99



ni

Figure 6.20 presents the relative ow velocity distributions in blade-to-blade planes for

Fitness Head Coeff c e

§1

sx selected rad and sx-designed geomety for constant nlet and ext angles at desgn

pont One objective functon (maxmum head and mnmum total pressure losses) s

appled and represented n a and f respectvely Back ow appears n the case of max

head and long prole length (enhanced frcton losses), appears n the mn total

pressure losses case For max head desgn (1) t can be seen how the surface tums to be

more radal n order to gve max head, whch means separaton and reverse ow

Reverse ow decays gradually when lookng for less head, see (2) and (3) and

dsappears for (4) and (5) For mn total pressure losses (6) t can be seen how smooth

s the change of blade angle, which means long blade prole and relatvely large 'cton

losses

Fgures 6.2la&b present optmsaton convergence hstory for two mult-objectve

cases, which are MO: max. head subjected to 5% and 10% of the case of min. total

pressure losses, respectively. Hierarchical approach using penalty method based on

feasibility has been used in these two cases, where this approach considers 5% or 10%

as a constraint. If this constraint is not feasible, it rejects the tness value, by assigning

the tness value with a value less than the lowest tness value by constraint violation

value. So, in case of 5% the constrain violations still appear in the end of convergence

history, which does not appears in the 10% case.
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Figure 6.21, Genetic Algorith Convergence History for multi-objective
a) MO: Max. Head & 5% Tot. Pressure Losses.
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Figure 6.21, Genetic Algorith Convergence History for multi-objective
b) MO: Max. Head & 10% Tot. Pressure Losses.

6.4.2 Total Pressure Losses and Friction Losses

As seen in subsection 3.3.3, the approach most users of GAs favour to the problem of

multi-objective, is to weight and sum the separate tness values in order to produce just

a single tness value for evey individual. This is allowing the GA to determine which

solutions are ttest as in the single objective case. In this section a design using sum of

weighted objectives by applying two objectives, total pressure and friction losses

(minimum losses) will take place. In other words, trying to minimise the summation of

the two losses, where weighting factors, R1 and R2 are multiplied to each one,

respectively. And as in the penalty function method, users usually have to try different

values of penalty parameter, to nd what value would be the best. Here also, these two

weighting factors will start equal with values (0.5 & 0.5) and change slightly. This

change will be in one direction only, increasing the total pressure case weighting factor

and decreasing the friction losses one. Figure 6.22 presents the impeller's prole

loading for this case. It can be seen that the sum of the weighted objectives method

works well for multi-objective functions where some intermediate design cases have

been obtained. Also, gure 6.23 shows the impeller's profile geometry for these six

design cases, where it appears that the decision-maker can nd a never-ending range
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and discover more design proles. All new four-design cases provided

subsection are quite acceptable.
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Figure 6.23, Impeller's proñle .geometry for these six design cases for variable inlet

2

Figure 6.22, Impeller's profile loading for variable inlet and exit blade angles at

and exit blade angles at the design point (Multi-Objectives weighted sum)
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6.4.3 Comparison Between Multi-Objectives Handling

Table 6.4 can assist in comparing among the method of weighted objectives sum and

hierarchical approach using penalty method based on feasibility. Table 6.4 presents

some summarised characteristic values, which have been obtained from the cases

discussed above in subsections 6.4.1 and 6.4.2. The weighted sum method, has been

applied for a simple case where the two obj ectives are quite close to each other in value.

The dependency of GA's performance on weighting factors became very small. The

results, which have been obtained using this method, are quite good without a lot of try-

and-error in order to nd the best weight factors, as seen in Table 6.4.

Table 6.4, Comparison between different objectives at design point
(Single and Multi-Objectives criteria).

. . ß, [32 Head Efficiency Friction Tot. PressureObfectwe [degree] [degree] [ml Losses [m] Losses [m]: ' 9
.MO:Max. Head &

50% Tot Pressure Losses 27.75 14.83 467.29 76% 67.05 22.21
MO: Max. Head &

30% Tot. Pressure Losses 23.61 18.58 510.14 81% 51.28 22.65

MO: Max. Head &
20% Tot. Pressure Losses 21.94 22.51 522.20 81% 56.02 22.37

MO: Max. Head &
15% Tot. Pressure Losses 20.66 14.69 515.49 81% 54.96 22.55

MO: Max. Head &
10% Tot. Pressure Losses 20.36 15.58 506.83 80% 62.26 21.36

MO: Max. Head &
5% Tot. Pressure Losses 33.82 19.52 479.62 82% 41.57 22.51

~ S®:šMin. Total pressure losses 34.40 l«6.`0.9.2 `.¬º.- 79% Ä: -1
.MO:0.1 Friction Losses + 37.48 14-97 45766 82%0.9 Tot. Pressure Losses 4330 2097
MO: 0.2 Friction Losses +

0.8 Tot. Pressure Losses 40.05 22.26 493.24 85% 23.81 24.99

MO: 0.4 Friction Losses +
0.6 Tot. Pressure Losses 3245 2253 51548 85% 27.56 26.19

MO: 0.5 Friction Losses +
05 Tot Pressure Losses 39.09 21.21 p M 502.04 86% 19.99 26.63

. ¬0= z
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The hierarchical approach using penalty method based on feasibility gave good results

easily as seen before, and discovered new blades proles with a better head than in the

case of single objective (min. total pressure losses). Table 6.4 presents these results

where less total pressure losses can be observed with higher head than not only the case

of min. total pressure losses but also the case of max. head objectives. It can be
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concluded that more specication means more discoveries in the proper place and good

results.

This confusion between the integral objectives, SO, and multi-objective, MO, results

which have been obtained is not a weak point in using GAs and it cannot be said that

GAs are local optimisations algorithms, because these results are obtained after small

number of generations. Also, the presented data (gures) are only for one individual

from a population of solutions. More details are presented in the next subsection.

6.4.4 Specied head

Pump users asks for a certain pumping head even it is clear from above discussions,

gures and tables impeller head varies up and down within 20%, where the main two

factors affecting pump head are its impeller speed and size. From this point of view,

more than two new multi-objective cases can be constructed where one or two of

integral/local criteria can be efciency linked with specied head. However the

question still remains which value for specied head can be selected. From gures 6.15

to 6.22 and table 6.4, it can be seen that case 4 (gure 6.23, MO: 0.4 Friction Losses +

0.6 Tot. Pressure Losses) is quite good design where it provides max. head within

reasonable losses and blade prole, and it is not strange if compared with those obtained

by the rst multi-objective case max. head and min. total pressure losses". For this

case, this head can be selected to be the specied head in the new multi-objective cases.

Figure 6.24 shows one of these new multi-obj ective cases, where one integral objective,

max. efciency, has been applied linked with 5% and 10% of the specied head, 515m,

respectively.

Figure 6.24 does not present only the nal optimum prole but population of proles,

which are presented in the last generation. This clears the confusion appeared before in

subsection 6.4.3, Are GAs local optimisers?, and the answer is NO. As seen in this

gure, the decision-maker has not only one optimum solution but also trade-off of

optimum solutions, where they are not in only one local area. This leads to that GAS

are a exploration and exploitation as mentioned in chapter three and proven in chapter

ve.
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Figure 6.24, Population of impellers profiles for two Multi-Objective design cases
~ for variable inlet and exit blade angles at the design point.

6.5 CONCLUSION .

This work presented a novel way to design the pump impeller blade prole using

parallel GAs and CFD. When GAs require only objective values as feedback from the

solver, the use of CFD as solver is not necessaily the most cost-effective approach.

Nevertheless the coupling of CFD with GAS, as it is shown by the results of the present

study, leads to an extension of the power of CFD as a contributor towards a fully

automated design procedure.

The chapter works step by step from how design variables are selected to how a ntunber

of objectives can be tested and how each objective behaves. Individual and multi-

objectives are tested. Two different kinds of single objective, integral and local, have

been used. Two methods are used to handle the multi-objective criteria, weighted sum

method and hierarchical approach using penalty method based on feasibility.

Comparison between these two methods has been presented.

Setting multi-objective criteria is very essential in order to nd a good design, where

focuses in the zone of good deign. Also, it is shown that GAs are a exploratíon and

exploítation optimiser, as mentioned before.
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Chapter

7

Conclusions and Future Work

7.1 CONCLUSIONS

The main aim of the research project documented in this thesis has been to develop and

integrate methods of analysis, design, and optimisation of viscous ows govemed by

the Navier-Stokes equations and how to apply this work to produce a novel method for

the design of centrifugal pump impeller blade proles. The new method depends on the

link between CFD and optimisation techniques. This has led to general design tools for

shape optimisation. The motivation for the present work has been the growing industrial

use of CFD for design puposes, accompanied by a increase in size and complexity of

practical solvable CFD problems. At the same time, the general demand for rapid

product development and fast response to market changes means that it becomes

gradually more difcult to base the design of new and better centrifugal pump impeller

on quick copies of existing pumps, or fall back on empirical design fonnulas established

by statistical surveys of existing pumps. I the author's opinion, it is a logical step to

boost the power of CFD by integration with optimisation tools for automated design

procedures. And, this has been the main emphasis of this study. The main conclusions

of this work can be summarised as follows:
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Literature review

I chapter two, an extensive literature review has been presented. It focused on the

existing pump design procedures and how these methods need to be automated. It is

concluded that, CFD can and should be used for purpose of shape design in order to cut

down the cycle time for a new or improved product. Consequently, the shape design

methods, inverse and direct (optimisation) design, are reviewed. The evolutionary

algorithms are discussed with main focus placed on genetic algorithms. Parallelisation

of GAs and constraints handling methods are also discussed.

GAs

GAs are original systems based on the supposed functioning of the living. They are very

different from classical optimisation algorithms. Chapter three handled the working

principles of GAs and MOO. Two simple methods of dealing with M00, are selected to

be applied in the current work, weighted sum method and hierarchical approach using

penalty method based on feasibility, for their efciently and simplicity. A comparison

between these two methods is presented in Chapter six. Also, parallelising methods for

GAs are presented in Chapter three together with reasons for why the micro-Grain

(master/slave) GA method has been selected and used in this work for its simplicity.

GAlib is a GA library, which has been selected and used to present the optimisation

comerstone of this work. GAlib was modied to nn as a parallel algorithm using

Message Passing Interface (MPI). It is indicated that parallelisation using MPI is a good

technique to overcome the time taken by GA and CFD, and quite good optimisation

convergence criteria obtained by using parallelisation. GA parameters are very

important to achieve the optimisation work successfully, and hence Chapter ve

presented how these parameters have been selected. The crossover rate recommended is

relatively high. On the other hand, very low mutation rate is also recommended, where

there is a relationship between mutation rate, population size and chromosome length.

The performance of GA was found not to be affected by the population size.
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Design procedures

Chapter four presented full details of how the GA optimisation procedures linked to

CFD to nd the optimum shape of a centrifugal pump impeller blade prole. The CFD

solver used, Mac_LNS, is quite good to achieve the required work. Mac_LNS is based

on nite difference, viscous, laminar, incompressible Navier-Stokes equations and uses

the MacCormack scheme (2"d order of accuracy). Also, Bézier curves are used in the

current study and proved to be a quite good tool to describe the impeller prole where a

few control points are enough to represent the whole shape.

The coupling of CFD with GAs, as it is shown by the results of the present study, leads

to a extension of the power of CFD as a contributor towards a fully automated design

procedure.

Finally, the optimum design tool has been implemented to optimise ow problems

concemed with centrifugal pump impellers with respect to different types of criteria.

Some integral criteria head, friction losses, total pressure losses and load are presented

in Chapter six. On the other hand, local criteria and multi-objective criteria have been

presented as well. There are several ow phenomena inside the centrifugal pump

impeller, which were discussed, for example, losses, blade loading, jet-Wake ow and

interaction between ow separation and curvature of the blade and Coriolis effects.

Quite good results have been obtained with lesser effort and no need to experience and

experimental work.

7.2 FUTURE WORK

The work on design optimisation in turbomachinery is a recently initiated research area,

which leaves many interesting possibilities for ture work. First of all, there is an

evident need to link further CFD and optimisation procedures, where some of CFD

commercial codes already starts to add optimisation modules attached to their

algoithms.
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For centrifugal pump design, it is important to apply this procedure to the whole pump

either using CFD or other preliminary design tools. Where, it is necessary at the outset

to establish quite clearly the designers' objectives and try to go outside of the closed

loop quickly copy of existing pumps, or fall back on empirical design fonnulas

established by statistical surveys of existing pumps. Where, the perfect hydraulic pump

design is of no use unless it can be made and put into service, economically and the

recent design procedures depend on try and error and experimental work, which are

expensve.

For the pump ow solver, it is important to have a very good ow solver regardless of

any applied methodology, which imposes two kinds of requirements:

Flow Requirements:

0 Good turbulence model to simulate turbulent ow near walls, tip leakage, secondary

ow, etc.

0 Powerful curvilinear grid generator to capture boundary layers;

0 Taking into consideration blade thickness.

0 Taking into consideration cavitating ows by two-phase ow which is the real case

ofhigh-speed pumps.

Optimisatío Requirements:

0 Computational efciency to handle a considerable number of analyses.

0 Robustness to handle the numerical difculties that may arise from the analysis of

extreme geometrical variants (turbomachinery has a very complicated geometry).

0 Good interface capabilities to be clear and easy to use.

0 Code transparency to utilise quantities from the code, which the designer needs as

obj ectives for his/her work.
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Appendix

A

Mac_LNS CFD Code

for Pump Impeller

n the following appendix a summary of the Mac_LNS CFD code, Wahba (1997),

Iwill be provided in order to give a general understanding and fom the necessary

background for how to use this code and CFD in general in combination with an

optimisation algorithms.

Firstly, a discussion of the ow in turbomachinery devices will take place, where a

number of simplifying assumptions used in this code is provided. The goveming

differential equations of steady, incompressible, viscous ows are presented for a two-

dimensional, polar-coordinate system. A explicit, nite difference Scheme used to

solve these goveming equations has been described.

A.1 INTRODUCTION

Turbomachinery ows are among the most complex ows encountered in uid dynamic

practice. I most instances, they are three-dimensional, with laminar, transitional and

turbulent ow; separated ows are frequently encountered. The ow may be

incompressible, subsonic, transonic, or supersonic; some turbomachinery ows include

all of these ow regimes. The ow may be single-phase or two-phase (liquid-solid or

liquid-gas). 1
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The viscous and turbulent regions encounter complex stress and strain due to three-

dimensionality, appreciable pressure gradients in all directions, rotation, curvature,

shock-boundary layer interaction, heat transfer and interacting boundary layers. The

ow is dominated by votical ows: secondary, leakage, trailing, horseshoe and

scraping votices.

The absolute ow is always unsteady in a rotor, and both the relative and absolute ows

are unsteady in a multi-stage environment. The equations are strongly coupled and

complex boundary conditions are often encountered (transpiration, periodicity, etc.).

The free stream turbulence is usually high. However, not all these effects are present in

any given blade row. The ow and geometrical variable direct the nature of goveming

equations and ow solvers to be used (Lakshminarayana B., 1991). V

The present Äppendix presents the development of a steady two-dimensional,

incompressible N-S equations solved in a polar-coordinate system using primitive

variables. The method was applied to centrifugal pumps with a radial and a backward-

curved blade, Wahba et.al. (1998a&b). The difcult problem of calculating the ow

pattem can be tackled only after making a niunber of simplifying assumptions.

l.The relative ow through the impeller passage is laminar, incompressible, and

steady.

2. The impeller is assumed to be rotating in a innite field.

3. The thickness of the impeller blades is neglected.

4. The effect of the turning from the axial to radial direction is neglected.

5. The width of the impeller passage is constant.

6. The velocity across the axial direction is constant and hence the ow can be

considered as a two-dimensional ow.

A.2 MAIN GOVERNING EQUATIONS

Consider the polar-coordinate system (r, 0), where r denotes the radial direction and 0

denotes the tangential direction. Consider the two-dimensional, incompressible N-S

equations for a constant property ow without body forces or external heat addition.

The continuity equation, written in the system relative to a blade row, is:

%§( ,.)+%-ó%()= 0 (Bi
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where:

u ug are the relative ow velocity components in r and 9 directions respectively.

p is the operating uid density.

Aer the above assumptions, the momentum conservation law for a rotating blade is the

N-S equations written as:

ä 1 ä 1 ä 2 1 a , 2 a

-1'602í(u)+lí(ru,u)+li(u§)+í+2aºu, = --1-fi-'l+v V2u -u-';+í2%ôí r ól r §0 r pr ââ r r â0

where:

p is the static pressure.

c is the angular velocity of the rotating blade.

v is the kinematic viscosity.

These equations are written in the so-called primitive-variable form where p, uf, and u

are the primitive-variables (Hirsch, 1976). The computation of incompressible ows is

not straightforward as in the case of computation of compressible ow. The most

characteristic aspect of the computation of incompressible ow is the difculty of

extracting the pressure from the combined continuity and momentum equations. One

common procedure is to dene a Poisson equation or an especially fonnulated

correction equation for the pressure. Application of compressible algorithms to the

incompressible equations is accomplished by adding a time derivative term to the

continuity equation in a manner analogous to that originally suggested by Chorin

(1967).

The aticial density is related to the pressure by the aticial equation of state:

P = 55 (B-4

where:

ß is the articial density (variable).

6 is a articial compressibility factor (constant).
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Considering constant density p, the continuity equation (B.l) can be rewritten in the

form:

â N l â 1 Öâ

Using equation (B.4).

â l â 1 Ã¢
(B6)

The following is a trial to investigate the articial compressibility factor ô. A articial

equation of state implies the existence of an articial sound speed (47 given by:

_
(B1)

«.
The maximum articial Mach number (Mm) based on this articial sound speed is

required to be less than unity.

M _ +11; )max _ '\/Kurz )max<1,_ ä _ _

The following condition is obtained: Â«

5 2 (uf + uå im (B9)

A.3 NUMERICAL ALGORITHM

A.3.1 Computational Grid

The computational domain is discretized into mesh points, gure B.l, to enable

discretization of the equations. The present scheme calculates the ow through one

blade passage. The computational boundaries comprise from the upstream inlet, the

downstream exit, the pressure and suction side blade surfaces. The blade surfaces were

extended along a surface of grid points in the upstream and downstream direction.

These fonn permeable periodic boundaries. A polar grid is used in the present method.
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Where:

Aøz = øi+ _ øi

am = `ri+Aøi

7131 = rz-Aø-Ä±

Sf- = ri-A8

S'+I = ri+1A6

A.3.2 Finite Diíference Scheme

There are two approaches to calculate incompressible N-S equations: implicit and

explicit techniques. We will use the explicit one for which the computational procedures

are relatively easy to implement. The most appropriate system of equations in

differential fonn is the Reynolds averaged N-S equations in a rotating polar-coordinate

system given by Lakshminarayana (1991).

âi+l@+l=lS+VíscousTerm (B.l0)
ât r är /ó'6l r

where:

Q is the conservation variable.

E, F are the ux vectors.

S is the source term.

The viscous term will be discarded for its later use as central difference form in r and 6

directions. Equation (B. 10) becomes:
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(B11)
ât r är r â0 r i

Using equations (B.2, B.3, B.6)

P pôu, pôue

Q= ur , E= uf+p/p, F= urue ,and

ue rue uš+P/P

0

S= uš+p/p+o)2r2+2oaru9 (B.l2)

-urue -Zcoru,

where the element Lu/ p] in the flux vector E and source term S respectively are

obtained from substituting
í- in equation (B.2) with |:-1-2 - p/p)] .p ól r p r ál

A.3.3 Predictor-Corrector Method

The Predictor-Corrector method proposed by MacCormack (Anderson 1984) is a two-

step procedure based on the Lax-Wendroff scheme, and is widely used for both internal
and extemal ows. The method is second-order accurate in both time and space. It can

be used for both steady and unsteady compressible ow, as well as viscous and inviscid

ows. For the inviscid ow, in the procedure suggested by MacCom1ack, an iterative
n+l

approach and intermediate value Q ,1J is obtained by a predictor step, and QZ' is

obtained by a corrector step, where n is the time step and n+l is the next one. The

predictor step written for the two dimensional (2D) inviscid equations in polar (r, 6

system is given by:

= Qiif `%iEi+,f _ Eiifi`r_í t6,iFfif+ ` (B13)

It should be highlighted here that this step provides only an approximate value for Q3' ,

and this can be corrected or updated using the following corrector step:

1 _ NF
_] Af [ _] S,../sr

n+l +1 H +1 n+l n+l -J=_ .. ..__E.._E. .-#11.-F.. +i ,14Q,j 2 {Q,_/ + Q.j Ar 1,/ -1,1 1,/ 1,1-I ( )
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where:

Ar is the element length in r direction.

A0 is the element angle in Qdirection.

The forward and backward differencing can be altemated between predictor and

corrector steps as well as between the two spatial derivatives in a sequential fashion.

The sequence is given in four time steps as shown in Table 1, in such a way to eliminate

any bias due to the one-sided differencing.

Table B. 1. Differencing sequence for the MacConnack scheme*

Predictor Corrector

Z Ä Ã 1
är âô är 649

F F B B

F B B F

B F F B

B B F F

* (F = Forward, B = Backward)

This procedure will be repeatedly carried out as required for the next four time steps.

A.3.4 Time Marching Procedure

The equations are solved using a time-marching procedure as is described in the

following steps:

1) Specify initial values for uu, p at time t = O.

2) Get stability condition, which is used to converge the solution. I other words,
calculate time steps At for all the grid points.

3) Solve the continuity equation and N-S equation at each interior grid point (predictor
and corrector).

4) Perform the appropriate smoothing for the primitive variables to maintain stability
in the numerical solution.

5) Find the primitive variables at the boundary using their values at the interior points.

6) Retum to step 3 if the solution is not converged.
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Practically, it was found unnecessary to recalculate the stability condition (step 2) after

performing each time step computation.

A.3.5 Smoothing Terms

For algorithms of the present type, it is often necessary to add smoothing tenns in order

to suppress high frequency oscillations. This can easily be accomplished by adding a

fourth-order explicit dissipation term to the primitive variables in the two-directions of

ow (r,6) for interior points. The added term has the fonn:

~@.i(Af)*' §(Q)+(A0)"%(Q)i (B15)

where ee is the explicit smoothing coefcient.

Since this is a fourth-order tenn it does not affect the formal accuracy of the algorithm.

The negative sign is required in order to produce positive damping. The smoothing

coefcient ae should be less than approximately 1/16 for stability (Anderson 1984). A

value of 0.05 is used in the present work. The fouth-derivative tenns are evaluated

using nite-difference approximations.

A.3.6 Stability Condition and Convergence Criteria

It is necessary to nd a value of the time step At for which the stability of the solution

could be maintained. For the inviscid and incompressible time marching method, a

complete stability analysis is reported by Abdalla (1981), who could express the

maximum possible time step for the 2D problem. Because of the complexity of N-S

equations, it is not possible to obtain a closed fonn stability expression for the

MacCormack scheine applied to the goveming equations. Anderson (1984) used a

empirical formula in case of one-dimensional N-S equations. The expressions of

Abdalla and Anderson have been combined into one empirical formula, suitable for 2D

incompressible N-S equations, in the form (Wahba, 1997):

Af = 21:' (13.16)
u, |u| 1 1 u ue 2 1 1+ + 4v 2 + , + _ +- + 46 i+iAr me (Ar) (way Ar rw (Ar) (me)

126



where F, is the time factor. It is found from experience that the time factor up to 0.9 can

be used. I case of an unstable solution, the time factor is reduced by 0.1.

Time steps are calculated based on the initial conditions and are not updated during the

calculations. Thus, the time step varies as a function of grid spacing only. The iteration

process is repeated until it converges. The computation is considered to be converged

when the root mean square of the residual in the velocity component ur drops below

10'?

1'MÃ

ib/Js

+l Ä±
Ur. . 14,. ..] 1./

RMS = (13.17)

3

-1)(M)

where:

N is the total number of grid lines from upstream to downstream extensions in the

radial direction.

M is the number of grid lines from blade-to-blade in the âdirection.

A.3.7 Upstream and Downstream Boundary Conditions

The prescription of the inow and the outow boundary conditions is one of the most

important tasks. These surfaces should be located far upstream and far downstream,

where the inuence of the blade rows under consideration is negligible. Hence, most

investigators locate them usually at about one to one half-chord upstream and

downstream. The far upstream and downstream boundaries are located about half-chord,

and one-chord respectively as shown in gure 4.9. On the upstream boundary the

relative velocity components u, and ug are specied. On the downstream boundary only

the static pressure p is required. The other variables at both upstream and downstream

boundaries are to be obtained by interpolation from the interior points.

A.3.8 Walls and their Extension Boundary Conditions
The wall points are considered as if they were interior points for the calculation of all

the variables. This required adding a grid line before the pressure side and a grid line

after the suction side. The parameters at these lines were obtained by quadratic

interpolation from the values at the wall and two interior points. This is numerically

exactly the same as applying the conservation equations to a point on the half spacing
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near the wall and then extrapolating from this point to the boundary (Abdalla, 1981). To

simulate blade row conditions, it is essential to impose zero radial and tangential

velocities in case of N-S equations. At the periodic boundary the variables were

calculated as the interior points. In this case the periodicity condition could be used to

obtain the variables which were located beyond the boundary. The results at

corresponding points were then averaged after each time step.

A.3.9 Iitial Conditions

The prescription of the ow for all grid points by relatively real values is one of the

most important tasks. This initial guess can be completely arbitrary, where this

procedure has no effect on the nal solution, but it affects the number of iterations

needed to converge the solution. Three zones of initial conditions are imaginary

upstream grid points, imaginary downstream grid points, and inside blade passage grid

points. The data required for the solution are the major impeller dimensions, the ow

rate, the uid viscosity and density, and the impeller speed. The radial velocity is

obtained from continuity. The tangential velocities in upstream and downstream are

obtained from Euler°s equation. Inside the blade passage, as the ow is considered

radial, the tangential velocity is neglected. Assuming reasonable starting value for the

downstream static pressure, Bemoulli constant at downstream is calculated. The initial

values of the static pressure at all the grid points can be readily calculated.
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Appendix

B

Some Codes Used

B.1 EVA_POP(GAPOPULATlON & P) FUNCTION

This function was developed in the present work to over load the default population

evaluation one in the GAlib code, in order to use parallel processing in evaluating the

population. The parallelisation method used is micro-grain (master/slave) method.

Which is the simplest parallel GA model.

This method uses single population (just as serial GA) which is maintained principally

by a master, but the evaluation of tness is distributed among several processors acting

as slaves.

Function listing:

#i1def_opt_cfd_mpi_cpp_
#dene _opt_cfd_mpi_cpp_

#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include <ga.h>
#include <ga.c>
#include <mpi++.h>
#include <Mac_LNS_mpi.cpp> // objective function file (CFD calculation).

void Eva_POP(GAPopulation &) ; // overload DefaultEvaluator(GAPopulation &) function
void get_max_min(oat &, oat &) ;
void set_max_min(oat, oat) ;
void Recv_Update() ;
int count = 0 ;
oat max tness, min tness ;
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int no_p, GADone=0
int rank, size ;
MPI_Request *req ;
MPI_Status status;

const int MG__Sleep
const int MG_Work
const int MG_Init
const int MG_Eval
const int MG Fres
const int MG_End

int msg = 0 ;
#endif

void

7

U1-I>bJl\Jº-O

Eva_POP(GAPopulation & p){

void Send_Work(int, int, int, oat*, int)
oat get_score(oat*, int, int, oat);
void Send_Update(int) ;
int gen ;
oat *y;
y = new oat[no_p] ;
int to = 1, PSize=0 ;
oat score = 0.0 ;
oat *max_s, *min_s ; // for the reason of multi-objective.
max_s = new oat [size] ;
min_s = new oat [size] ;

oat qStart, qEnd, qStep ;
if(msg!=MG_Fres) {

for(int

}else { .

i=0; i<p.size(); i++)
if(((GABin2DecGenome&)(p.individua1(i))).evaluated() = gaFalse) PSze++

PSize = p.size() ;
}

cout << "\n\n-------- count: " << count << " ------- PSize: " << PSize << " -----------
cout.ush();
for(int i=0; i<PSize; i++) {

gen = ((GABin2DecGenome&)(p.individual(i)))_geneticAlgorithm()->generaton()

for(int j=0; j<no_p; j++) y[j] = ((GABin2DecGenome&)(p.indivídua1())) phenotype(_])

if(msg==MG_Fres && !i)
{ qStart = 0.4 ; qEnd

else { qSta1t = 0.0 ; qEnd
1.6 ; qStep = 0.1 ; count = 0
0.05 ; qStep = 0.1 ; }

for(oat q=qSta1; q<=qEnd; q += qStep) {` &f(count==0 &
score =

et_ma

msg!=MG_Fres) {
get_score(y, rank, gen, q) ;

min(max_tness, min_tness);E X_
cout << "\n In main Score: " << score << " for pop: " << i ;
COUI <<
cout.ush();

"\t\t max: " << max tness << " & min: " << min tness <<"\n

for(int j=0; j<size; j++) {
max_s[_j] = max_tness ;



min_s[j] = min_ftness ;
}
p.individual(i).score(score);
p.individual(i).neva1pp() ;
count++ ;

}e1se if(to == size [| i=PSize-1) {

}else {

score = get_score(y, rank, gen, q ;
if(msg!=MG_Fres) {

get_max_min(max__s[0], min__s[0]);
max_tness = (max_tness>max_s[0])? max_tness : max_s[0] ;
min_tness = (min_tness<min_s[0])? min__tness : min_s[0] ;
set_max_min(max_tness, min_tness) ;
cout << "\n In main Score: " << score << " for pop: " << i ;
cout << "\t\t max: " << max_s[0] << " & min: " << min s[0] <<"\n",
cout.ush(); _

p.individual(i).score(score);
p.individual(i).nevalpp() ;

}
int k=0 ;
for(int j=l; j.<size; j++) {

if(j<to) {
MPI::COMM_WORLD.Recv(&k, 1, MPI::INT,j, 55);

cout << "\n I have to recv now from Pro: " << j << "\n" ;
cout.ush();
MPI_Wait(&(req[j]), &status) ;

MPI::COMM_WORLD.Recv(&max_s[j], 1, MPI::FLOAT, j, 77);
MPI::COMM_WORLD.Recv(&min_s[j], 1, MPI::FLOAT, j, 88);
if(msg!=MG_Fres) {

max_tness = (max_tness>max__s[j])? max_tness : max_s[]]
min_tness = (min_tness<min_s[j])? min_tness : rnin_
cout << " I recved Score: " << score << " for pop: " << k
cout << " from Pro: " << j ;
cout << "\t max: " << max_s[j] << " & min: " << min_s[j]
cout <<"\n"; cout.ush();
p.individual(k).score(score);
p.individual(k).neva1pp() ;

}
}else {
cout << "\n I will send to P: " << j << " ..Sleeeeeep..\n" ;
cout.ush();
msg = MG_Sleep ;
MPI::COMM_WORLD.Send(&msg, 1, MPI::INT, j, 10);
Send__Update(j) ;
}

}
to = 1 ;
C0unt++ ;

cout << " I'll send to: " << to << "\n"; cout.ush();
Send_Work(to, i, gen, y, count) ;
if(msg!=MG_Fres) Send_Update(to) ;
else MPI::COMM_WORLD.Send(&q, 1, MPI::FLOAT, to, 11);

132

S
7

5



req[to] = MPI::COMM_WORLD.Irecv(&score, 1, MPI::FLOAT, to, 4);
count++ ; to++ ;

}
}

}
}

B.2 DE CASTELJAU'S ALGORITHM

This function is used in the present work to develop Bézier curves.

The de Casteljau°s algorithm can be explained geometrically: If we divide the edges of

the control polygon in the ratio (1-u) to u, connect the resulting points by straight lines,

divide the new edges again in the same ratios, and repeat this process a total of n times,

then the dividing point obtained in the last step is the point on the curve corresponding

to u, see subsection 4.4.2. So this is the idea of how this algorithm works.

Function listing:

oat De_Casteljau(float *p, int n, oat t, oat a, oat b) {

oat *temp ;
temp = new oat[n] ;
for(int i=0; i<n; i++)

temp[i] = p[i] ; // save input
oat u ;
for(int k=l; k<n; k++)

for(int i=0; i<(n-k); i++) {
u = (t-a)/(b-a) ;
temp[i] = (1-u)*temp[i] + u*temp[i+1] ;

}
oat res = temp[0] ;
delete[] temp ;

retum res ;

}
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