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Abstract 

A new surface figuring machine called Helios 1200 is presented in this paper. It is 

designed for the figuring of meter sized optical surfaces with form accuracy 

correction capability better than 20nm rms within a reduced number of iterations. 

Unlike other large figuring facilities using energy beams, Helios 1200 operates a 

plasma torch at atmospheric pressure, offers a high material removal rate, and a 

relatively low running cost. This facility is ideal to process large optical 

components, lightweight optics, silicon based and difficult to machine materials, 

aspheric, and free form surfaces. Also, the surfaces processed by the Reactive 

Atom Plasma (RAP) are easy to fine polish through hand conventional sub-

aperture polishing techniques. These unique combined features lead to a new 

capability for the fabrication of optical components opening up novel design 

possibilities for optical engineers. 

 

The key technical features of this large RAP machine are fast figuring 

capabilities, non-contact material removal tool, the use of a near Gaussian 

footprint energy beam, and a proven tool path strategy for the management of the 

heat transfer. Helios 1200 complies with the European machine safety standard 

and can be used with different types of reactive gases using either fluorine or 

chlorine compounds.  
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In this paper, first the need for large optical component is discussed. Then, the 

RAP facility is described: radio frequency R.F generator, plasma torch, and 3 

axis computer numerically controlled motion system. Both the machine design 

and the performance of the RAP tool is assessed under specific production 

conditions and in the context of meter class mirror and lens fabrication. 

Keywords 

RAP; Figuring; Plasma Etching; optical fabrication; Plasma machining; 

Inductively Coupled Plasma 
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California extremely large telescope (CELT)  

Capacitively coupled plasma (CCP)  

Carbon tetra-fluoride (CF4)  

Continuous phase plate (CPP)  

Extreme ultra violet lithography (EUVL)  

Extremely large telescopes (ELT)  

Full width at half maximum (FWHM)  

Ion beam figuring (IBF)  

Inductively coupled plasma (ICP)  

Nitrogen tri-fluoride (NF3)  

Radio frequency (RF)  

Radius of curvature (ROC)  

Reactive atom plasma (RAP)  

Root Mean Square (RMS) 

Standing wave ration (SWR)  

Sulfur hexafluoride (SF6)  
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Introduction 

 

This paper focuses on the Helios 1200 machine which is a fast surface figuring 

machine for large scale ultra-precise optical components. The machine is designed 

around three key points: the Reactive Atom Plasma (RAP) technology, the need 

for ever larger optical surfaces corrected at nanometer level, produced with high 

reliability, and production capability offered through a dedicated designed 

Computer Numerical Controlled (CNC) machine tool.  

 

Embedded technology and dedicated design give a unique capability for the fast 

surface figure correction of meter class optical components. The specification is to 

achieve <10nm RMS surface figure accuracy when processing a meter sized 

optical component with a processing time shorter than 10 hours. This specification 

presents serious challenges when considering current achievements are obtained 

within 100 hours [1]. 

 

In 2003, driven by a steadily growing and unsatisfied demand for extremely high 

quality surfaces, a UK based research team undertook a review study about 

optical fabrication techniques. They subsequently aimed at creating an innovative 

and cost effective fabrication chain [2] to satisfy this worldwide demand. This 

production chain reflects the development of deterministic machining 

technologies to achieve figuring accuracy to 1 part in 10
8
 relative to optical 

surface size. Today, ultra-precise surfaces are developed for the overall society in 

wide ranging applications and products [3]. In fact, there are three major research 

programs demanding cost effective optical fabrication supply: high energy laser 

fusion systems, extreme ultra violet lithography (EUVL) and ground based 

extremely large telescopes (ELT). These application fields have common 

requirements and challenges. They can be summarized in two technical 

specifications: ultra-precise form accuracy and high surface integrity. 

 

For the past 10 years, the main dimension of the primary mirror of telescopes has 

increased significantly over 10 meters. Consequently the optical designs now 

favor segmented primary mirrors for numerous reasons and significantly due to 
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that of transportation. Most of the proposed next generation telescopes employ 

segments having dimensions measured from corner to corner in the order of 1.5 

meter. However their aspherical technical specifications require nanometer level 

form accuracy on non-perfect hexagon shape substrates.  

 

Although the overall size has changed by an order of magnitude, the different 

fabrication techniques have not made gigantic progress necessary to secure 

acceptable processing time. Disruptive technology is critical for the viability of 

these large scientific projects. In the case of fundamental astronomical 

development, the engineering choice for the telescope design leads to the 

requirement of nearly a thousand for large segments. In Europe, the major project 

is the European Extremely Large Telescope (E-ELT), whereas in the US, a strong 

emphasis is made on the Giant Magellan Telescope (GMT) and the Thirty Meter 

Telescope (TMT).  

To meet the current technical demand, surface figuring is facing significant and 

unprecedented challenges in terms of processing speed, surface integrity and level 

of form accuracy.  

For the purpose of this development, the fabrication chain of optical components 

(mirrors or lenses) can be presented through three main fabrication steps: 

grinding, polishing, and figuring.  

 

Across the optical fabrication field, there are numerous competing figuring 

techniques. The first of them is polishing - sub-aperture polishing - which is well 

established but has moderate capability to figure large optical components and 

does not enable the required throughout neither the ability to correct the surface 

shape near edge regions. The main disadvantages are: moderate determinism of 

the tool removal function, lack of control at the edge of the workpiece, continuous 

slurry management demands and long processing times. Secondly, Ion Beam 

Figuring (IBF) [4-5], which is well proven working at nanometer, is known to 

suffer from a low material removal rate for a given full width at half maximum 

(FWHM) of the beam footprint dimension. Also the equipment is expensive to run 

and to maintain due to the use of high cost components: molecular turbo-pump 

(required to vacuum the processing chamber), ion gun and electron beam 

neutralizer. From a processing viewpoint, a large IBF system is time consuming 
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as the pressure in the chamber must be below 1.0x10
-4

Pa. Typically, the pump 

down takes approximately 5 hours for a 10m
3
 chamber [6]. 

 

The other figuring techniques are Magnetorheological Finishing (MRF) [7-8], 

Chemical Vaporization Machining (CVM) [9-10-11] Atmospheric Pressure 

Plasma Machining (APPM) [12-13] Plasma Jet Machining (PJM) [14-15] and 

Reactive Ion Beam Etching (RIBE) [16]. Today, it is clear that there is a trend 

towards greater use of energy beams: particles, laser, or plasma. Plasma and 

particle based figuring techniques are gradually becoming mainstream processes 

in optical fabrication workshop as they offer high removal rate, broad material 

removal range and ability to tune for given applications.  

 

This paper presents a new generation of energy beam figuring machines. 

Specially, the Helios 1200, which has the capability to fulfill the aforementioned 

benchmarks of high technology industries and demanding science projects in a 

cost effective manner. 

 

2. RAP Process overview  

 

In this research work, the high material removal rate is achieved using the 

Reactive Atom Plasma (RAP) process whilst the performance of the figuring 

process is enabled through a purposely built Computer Numerically Controlled 

(CNC) machine tool. The RAP process was developed to provide a unique rapid 

surface figuring capability with extreme tool adaptability due to the soft edge of 

its plasma plume. The RAP technology is well-developed for processing optical 

surfaces made of fused silica [17-18], silicon, borosilicate, silicon carbide [19-20] 

and ULE® [21]. 

 

Unlike mechanical polishing processes, the RAP process does not induce sub 

surface damage and unlike capacitively coupled plasma (CCP), the RAP process 

does not require conductive material. Also it operates at atmospheric pressure and 

the energy beam footprint is scaled and tuned to process large surfaces with 

typical mid spatial frequencies superior to 0.2mm
-1

. As there is no need for 
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vacuum system, it benefits of a low running cost compared to Ion Beam Figuring 

(IBF). Additionally since there is no contact between tool and workpiece then 

there is no clamping mechanism and no post machining distortion. Finally, 

through the use of sophisticated time dwell algorithm compensating for the heat 

transfer, the RAP tool has the capability to etch optical components within a 

minimum number of iterations.  

 

The RAP process is essentially a dry etching process using a Radio Frequency 

(RF) Inductively Coupled Plasma (ICP) which atomizes the reactive gas to create 

free radicals. This process is localized in the plasma discharge area, the radical 

species are created from different reactive precursor gases such as: carbon tetra-

fluoride (CF4), nitrogen tri-fluoride (NF3) or sulfur hexafluoride (SF6) [22-23]. 

 

Table 1. Properties of reactive gases (at 293K and 1 atmosphere) 

 CF4 NF3 SF6 

Bond energy (kJ/mol) 485 277.8 285 

Boiling point (°C) -126 -129.1 -50.8 

Density* (kg/m
3
) 3.63 2.97 6.15 

Viscosity* (µPs) 17.0 14.5 26.6 

 

These gases are characterized by low enthalpies of atomization and are preferred 

to secure a high quality surface with minor surface roughness degradation. In 

some cases, the choice of reactive gas is carried out on the bi-product which can 

redeposit on the surface and affect the surface roughness in an undesirable 

manner. 

 

The RAP process has strong potential for four major types of highly demanded 

applications: rapid figure correction of large optics, figuring of phase plates, 

removal of mid spatial, and fabrication of complex aspheric surfaces [24]. Two of 

these applications are detailed hereafter.  

 

Firstly, in regards large telescopes, it was published in 2000 that the difficulty of 

figuring large aspheric optics by traditional means is approximately in proportion 

to the slope of the aspheric departure: 100um and 20um departure from spherical 
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shape for the Keck and the California Extremely Large Telescope (CELT) 

telescopes respectively. As surfaces depart more and more from a spherical shape, 

increasingly dexterous tools are required to obtain a good fit between the tool and 

the optical surface [25].The RAP process can theoretically achieve the figure 

correction of these highly complex surfaces. Secondly, in regards high laser 

system it was reported in 2004 that the fabrication of continuous phase plate 

(CPP), used in the integrated optical module of the final optic assembly of laser 

fusion programs, is perfectly feasible and cost effective [26].  

 

3. Mathematic development and applied 

engineering of the RAP process through de-

convolution methods  

Classically, a figuring process is carried out iteratively by analyzing surface figure 

error and removing material using a dedicated tool path algorithm [27]. Also, it is 

necessary to assess accurately the removal beam function of the plasma torch. To 

do so, the surface topography of a witness sample is measured using an 

interferometer, the surface is then exposed to the RAP energy beam for a defined 

amount of time. After this a second interferometric surface topology measurement 

is carried out and the difference between the two measurements gives the effective 

beam removal function. Such a procedure is not required systematically prior each 

processing as it was shown to be particularly consistent.  

The tool path velocity of the etching beam travelling on the work surface results 

from a dwell time proportional to the desired material removal depth. To carry out 

this task, Fast Fourier Transform (FFT) methods are used to calculate the dwell 

time distribution for the removing of a specific substrate topology. This is called 

de-convolution technique. On the other hand, the dwell time map enables 

modeling of post process surface topology (convolution) [17-28] and the 

calculation of the process convergence ratio. 

At given local speeds, dwell times t and the material removal function r the dwell 

time procedure can be expressed as follows: 

h = t x r + E                                                                                            (1) 
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(h stands for the heights of the removed material and the symbol ‘x’ denotes the 

convolution operator, and E is certain amount of error) 

Figure 1 illustrates the basic de-convolution procedure and presents it in its 

velocity form more relevant for the CNC machine tool.  

 

Figure 1.Typical de-convolution process 

 

4. Reactive Atom Plasma Process 

The RAP process was developed and patented [29] by a team of engineers in 2001 

through a spin-off company of the Lawrence Livermore National Laboratory in 

California, USA. The technology came from the need for removing subsurface 

damages of glass components, silicon wafer and silicon carbide optics. Based on 

plasma processing, the RAP process can be described as a non-contact dry 

chemical etching process carried out at atmospheric pressure. Since its invention, 

the main application has shifted towards ultra-precise surface correction of optical 

components used in astronomy, space, defense, and semiconductor industrial 

sectors.  

 

The shift in process development came in 2002 where a two axis motion system 

prototype machine called the RAP 300 was developed to carry out a feasibility 

study and determine the figuring capability of the RAP energy beam. This work 

demonstrated the tremendous potential of RAP process on most silicon based 

optical materials. The prototype machines pioneered fast figuring at nanometer 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9 

level using RAP energy beams. Following this successful achievement, a 1200 

mm processing capability machine was jointly designed and developed by 

Cranfield machine tool researchers and RAPT Industries engineers. In 2008 a new 

1200mm capacity machine was realized and brought into operation at Cranfield. 

The new facility which is presented in this paper is known as the Helios 1200. But 

first, we will focus on the torch.  

4. 1. RAP torch 

The RAP torch of Helios 1200 is equipped with a convergent divergent type 

nozzle to provide a turbulence free jet at subsonic velocities. Compared to a 

classic “full bore” Inductively Coupled Plasma (ICP) torch, the Helios torch 

design increases the performance of the etching footprint by bringing a higher 

number of reactive species to the process footprint. Both the radio frequency 

generator, torch coil and torch nozzle are water cooled to maintain optimum and 

consistent processing conditions over long periods of time. This thermal control is 

critical in the context of consistent tool footprint stability and consistency. 

 

Figure 2. ICP torch of Helios 1200 

The Radio Frequency Inductively Couple Plasma is generated by passing an 

alternating current through a coil which is wound around a dielectric tube. The 

plasma generated inside the quartz tube forms a closed conducting loop, known as 

the plasma core, which acts as a single turn secondary coil in a transformer. As 

the name suggests, the plasma is heated inductively. The electromagnetic (EM) 

fields, induced by the coil current, penetrate the plasma and through joule heating 

maintain it.  

Excitation 

region 

Glow discharge area 

Reactive gas 

Ar (main) 

Quartz tube 

Convergent divergent nozzle 

for high velocity plasma jet 
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Typically, the etch characteristics are dependent on numerous parameters such as: 

tube diameter, gas enthalpy, gas flow, RF power, and EM field frequency [30-31]. 

Much of the power is dissipated in the so-called ‘‘skin-depth’’ This prevents the 

electric field from penetrating into the core of the plasma. The skin depth of the 

plasma is defined as:  

δ=√(2/μωσ)                                                                                                  (2) 

where μ is the permeability, σ is the plasma electrical conductivity and ω is the 

angular frequency. According to (2) increasing the driving frequency will not 

necessarily couple more power into the plasma. As the frequency increases, the 

plasma will tend to shield itself. Overall the I.C.P. torch has numerous advantages 

over an alternative DC torch such as:  

 

 Impurity-free plasmas  

 Better control of heat transfer mechanism  

 No fundamental limit on torch power  

 Ability to generate plasma with the various types of gases  

 Operable to atmospheric and very low pressure  

 

4. 2. Radio frequency (RF) network 

Due to the size of the workpiece and consequently the duration of the figuring 

process, a robust RF network is of primary importance for the deterministic aspect 

of the RAP tool footprint. It is composed of an ICP plasma torch integrated within 

an inductive output L type RF network and an RF AC power generator. The RF 

generator uses agile technology and an algorithm based on Standing Wave Ration 

(SWR) to determine the optimum RF in a minimum amount of time.  

 

Figure 3. Inductive output L network 

Tune capacitor 
Load RF generator 

Load capacitor 
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A fixed matching inductively output L network delivers power into relatively 

large output coil (25mm diameter). The typical limitations of this RF network 

design are mainly due to the voltage rating of the tune variable vacuum capacitors 

and the self-resonant frequency of the coil. Due to process specifications of the 

RAP torch the choice of RF technology leads to cost effective frequency tuning 

methods avoiding expensive automatic matching network solutions. 

 

5. RAP machine design (Helios 1200) 

Due to the non-contact nature of the RAP process there are many possible 

configurations to manufacture precision optics. This feature greatly relaxes the 

mechanical constraints on clamping of the workpiece and in the Helios 1200 

enables the substrates to be held face down which prevents re-deposition of 

removed material.  

 

In the design considerations for the machine, the following attributes were seen to 

be desirable: non-contact material removal tool which allows for a force-free 

workpiece holding system; production capability assured by a high end CNC 

system, dedicated machine and gas handling control; specialized motion system 

designed for efficient raster scanning, configured for a small machine footprint for 

large scale optical components; double fault tolerant monitoring and post 

treatment of hazardous gases for process output consistency and compliance with 

all relevant European legislation and machine tool directives. 

 

The CNC motion system, controlled via a Fanuc 30i, is of a three linear axes 

orthogonal design. The plasma torch is mounted on a vertical Z axis of small 

stroke and low mass which is mounted onto a low mass high dynamic response X 

slewing axis. This high response axes being driven via a linear motor. Above and 

orthogonal to the Z-X axes arrangement is mounted the workpiece which is held 

within a Y axis carriage. This third axis s driven as a gantry system through twin 

motor ballscrew drive systems either side of the carriage.  

 

A dedicated software package covering gas handling interacts with the machine 

programmable logic controller (PLC)’s ladder to ensure machine safety. This is an 
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important feature as both hazardous gases and kilowatt radio frequency power 

supplier are used.  

 

Gas extraction is monitored and the treatment of volatile bi-product compounds 

(species) is carried out by a wet gas scrubber with a 720 cubic meter per hour air 

handling unit. A developed Human Machine Interface (HMI) software package 

manages the safety features, the radio frequency generator and the motion control 

system. 

 

Figure 4. Cranfield / RAPT Helios 1200 machine 

 

Due to European legislation, the machine chamber is designed with double skin 

principle where fresh air flows between the machine’s outer and inner skins thus 

providing efficient extraction of reactive and bi-product gases (fig. 5). 

 

 

Figure 5. Air flow configuration (double skin design) 

 

From a processing viewpoint, the motion between the torch and workpiece is of 

the raster scanning type. The optical component moves along the Y axis and the 

plasma torch moves in the XZ plane (fig. 6). The primary axis, called X, has an 

Air inlet 

Air inlet Air outlet 

Aperture for  

interlayer air to enter 

processing chamber 

Optical component 

Plasma torch 
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acceleration capability equal to 10 m/s2 that enables fine adjustments of the torch 

velocity in flight. This dynamic ability enables to transfer the time dwell map to 

the workpiece by adjusting the travelling speed along short distances when 

rastering [27]. 

 

Figure 6. Three (3) axis cinematic configuration 

 

The vertical axis, called Z, enables control of the standoff distance between torch 

nozzle and workpiece surface enabling figure correction of surfaces with sag up to 

50mm. The top-loading carriage holds the component with the surface to be 

figured facing downwards, and the torch moves across this surface using the 3-

axis range of motion.  

 

The machine Y axis is a mechanical ballscrew driven system with twin drive 

designed to carry over 500Kg moving mass with nominal acceleration of 0.1g’s. 

The picture below shows the workpiece holder as viewed through the machines 

top sliding door. 

 

 

Figure 7. Workpiece holder dimensions 
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The processing chamber accepts ELT type mirror segments (fig. 7). The general 

machine design is scalable (up and down) to enable figuring of virtually any size 

of optical components.  

 

6. Fundamental performance of RAP energy beam  

The basic principle of dwell time technique requires a characterized tool footprint 

which is detailed in this section. But first, here are provided the experimental 

conditions. 

 6. 1. Processing conditions 

• RF generator nominal power: 1000 W 

• RF generator frequency: 40 MHz  

• Temperature and humidity controlled room  

• SF6/Ar 10% gas mixture (research grade) 

All experimental works were performed on fused silica (grade Q1) substrates. 

 

6. 2. Beam footprint characterization 

The plasma tool footprint of the cold tip torch mounted in Helios 1200 has a 

Gaussian shape (FWHM: 11mm). Its determinism factor was assessed through 

linear tests where the maximum depth of the trench was analyzed (fig. 8). Typical 

figuring conditions are attained using feed speed values ranging from 1 up to 

6m/min that yield material removal rates from 0.5 to 2.5mm
3
/min. Profile and 

straightness of a single scan of the torch is shown in figure 8.  

 

 

Figure 8. RAP trench cross section (Feed speed: 1m.min-1 / material: fused silica, standoff 

distance: 6mm) 
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An important processing parameter is the low sensitivity of the standoff distance 

variation. The results (fig. 9) present both the maximum depth of the trench versus 

the standoff distance. The fitted polynomial trendline of the graph shows an 

interesting optimum value at 6mm which offers both the highest material removal 

rate and moderate sensibility to standoff distance variation. This is important for a 

deterministic ultra-precision process. 

 

 

Figure 9. Footprint depth versus standoff distance (Feed speed: 1m/min, material: fused silica) 

 

The characterization of RAP energy beam would not be completed without an 

assessment of the surface roughness changes. To do so a design of experiment 

was carried out to highlight both Sa and Sq values through the removal of tens of 

nanometer of material. The graph below (fig. 10) presents the results after buffer 

cleaning using aluminum oxide emulsion. 

 

 

Figure 10. Surface roughness versus material removal depth (material: fused silica polished down 

to 1.6nm Sa prior experimental test) 
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7. Application of RAP energy beam for optical 

fabrication 

Based on these fundamental results, a dwell time based figuring process was 

carried out on a 400mm diameter 3m radius of curvature (ROC) ULE workpiece. 

After five iterations, the surface figure error was drastically improved (fig. 11). 

All the measurements of the workpiece surface were carried out using an optical 

test tower equipped with a vibration insensitive interferometer [32]. The 

parameters which characterize the surface form were changed from 2260nm PVr 

373nm rms down to 250nm PVr 30nm rms.  

 

Figure 11. Topography of a pre and post 400mm processed ULE surface. 

 

8. Conclusion 

A new production capability for figuring large free form optics has been achieved 

through the design and fabrication of Helios 1200 machine. In the context of the 
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production of meter size optical components this machine offers an ability to 

avoid a significant bottleneck in the production process chain.  

The Helios 1200 is functional in production environment and the processed 

surfaces are highly compatible with simple buffing, or neutral sub aperture 

polishing. The RAP processing capability fits comfortably with grinding and 

polishing in various combinations. The RAP 1200 machine is highly repeatable 

and the RAP process itself highly deterministic when applied to a range of glasses 

and silicon based ceramics. The tool footprint influence function is stable over 

long durations making it especially applicable to larger optics and longer process 

cycles. It is also tunable according to the processed material and geometry. For 

thin section light-weighted optics demanding edge control it is especially 

appropriate. On-going process development of the RAP process is expected to 

confirm its advantages for lightweight optical components and continuous phase 

plates (CPP).  

This paper has introduced a new and novel energy beam machine tool which 

offers a unique optical processing capability where the technology can be easily 

scale up or down. 
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