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Abstract

Large Eddy Simulation is a method of obtaining high accuracy computational
results for modelling fluid flow. Unfortunately it is computationally expensive
limiting it to users of large parallel machines. However, it may be that the
use of LES leads to an over-resolution of the problem because the bulk of
the computational domain could be adequately modelled using the Reynolds
averaged approach.

A study has been undertaken to assess the feasibility, both in accuracy and
computational efficiency of using a parallel computer to solve both LES and
RANS type turbulence models on the same domain for the problem flow over
a circular cylinder at Reynolds number 3 900

To do this the domain has been created and then divided into two sub-domains,
one for the LES model and one for the k − ε turbulence model. The hybrid
model has been developed specifically for a parallel computing environment
and the user is able to allocate modelling techniques to processors in a way
which enables expansion of the model to any number of processors.

Computational experimentation has shown that the combination of the Smagorin-
sky model can be used to capture the vortex shedding from the cylinder and
the information successfully passed to the k-ε model for the dissipation of the
vortices further downstream. The results have been compared to high accuracy
LES results and with both k − ε and Smagorinsky LES computations on the
same domain. The hybrid models developed compare well with the Smagorin-
sky model capturing the vortex shedding with the correct periodicity.

Suggestions for future work have been made to develop this idea further, and
to investigate the possibility of using the technology for the modelling of mix-
ing and fast chemical reactions based on the more accurate prediction of the
turbulence levels in the LES sub-domain.
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Nomenclature

Roman

A anisotropy measure —
C cross stress term [m2 s−2]
CD constant —
CD Kolmogorov constant —
Cs Smagorinsky constant —
Cε1 constant —
Cε2 constant —
Cµ constant —
c constant —
D characteristic diameter [m]
D cylinder diameter [m]
E(κ) energy at specific wavenum-

ber
[m2 s−2]

Es unresolved energy [m2 s−2]
F body force [kg ms−1]
f frequency [s−1]
fs smoothing function —
h grid spacing [m]
J scalar in the dynamic model [m2 s−2]
k turbulent kinetic energy [m2 s−2]
kr unresolved kinetic energy [m2 s−2]
L Leonard stress [m2 s−2]
` length [m]
`DI lengthscale [m]
`EI lengthscale [m]
`f filter width [m]
`m Prandtl mixing length [m]
`o lengthscale [m]
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4

P production [m2s−2]
R Reynolds stress terms [m2 s−2]
Sij rate of deformation tensor [s−1]
ui instantaneous velocity [ms−1]
ūi average velocity [ms−1]
u′i fluctuating velocity [ms−1]
uo characteristic velocity [ms−1]
ûi resolved velocity [ms−1]
ũi unresolved velocity [ms−1]
xi coordinate direction —

Greek

δij kronecker delta —
∆ filter size [m]
∆t time step size [s]
∆x grid size [m]
η turbulent length microscale [m]
ε error —
ε dissipation of turbulent ki-

netic energy
[m2 s−3]

κ wavenumber [m−1]
λ Taylor microscale [m]
µ dynamic viscosity [kg m−1 s−1]
µt turbulent viscosity [kg m−1 s−1]
ν kinematic viscosity [m2 s−1]
ρ density [kg m−3]
σk constant —
σε constant —
τ turbulent timescale [s]
τ r unresolved stress tensor [kg m−1 s−1]
τij stress tensor [kg m−1 s−1]
τo timescale [s]
υ turbulent velocity mi-

croscale
[ms−1]

ω vorticity [s3 m−2]
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Dimensionless Groups

Re Bulk Reynold’s number

ρv`

µ

ReD Cylinder Reynolds number

ρvD

µ

Ret Turbulent Reynolds number

k2

νε

Reµ Microscale Reynolds num-
ber ηυ

ν
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Chapter 1

Introduction

Stirred tanks are a very important item of hardware on a chemical plant. They
are used in chemical and biological industries [87]. The importance of under-
standing the physical processes involved in stirred tank reactors can be easily
assessed by a casual glance through the pages of ‘Chemical Engineering Sci-
ence’ or ‘AIChE Journal ’ where there are regular articles, as this is a research
for a global, multi-million Euro industry.

In an attempt to give insight into the processes in the stirred tank, and in
an attempt to model the processes at real scale faster than the production,
commission, testing and operation of a pilot plant, much time and effort have
been spent in using CFD to simulate the flow in these vessels.

CFD has now been used to model multiphase mixing[71, 90], mixing of miscible
and immiscible fluids and non-newtonian fluid mixing. These may or may not
be combined with chemical reactions[9, 38, 39], degradation of the fluids and
calculation of power draw or associated dimensionless numbers[121].

However, all of the simulations are plagued by the underprediction of turbu-
lence in the mixing vessel which is demonstrated when compared to exper-
imental results[120, 78, 50, 122]. The prediction of the levels of turbulence
near the impeller is generally 10-50% of that measured in experiments, though
qualitatively correct[76]. The velocity field is generally well represented how-
ever. Some of these errors will be due to user error and incorrect application
of the CFD models[22], and some due to the failings of the turbulence models
themselves.

Large Eddy Simulation (LES) offers a possible way forward in the simulation
of stirred tanks[88, 86, 2]. The work undertaken looks promising, and the
explicit calculation of the large scales so responsible for the mixing in the
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8 CHAPTER 1. INTRODUCTION

vessel is conceptually closer to the process being modelled than the use of
mean flow with the addition of a turbulent diffusion.

However, LES comes at a price, and this is a massively increased CPU overhead
and associated memory cost for the explicit calculation of the flow on a very fine
grid with very small timesteps[19, 20]. We describe here an alternative study
investigating the possibility of using a combination of the LES and Reynolds
averaging techniques to give a better prediction of the turbulence near the
impeller, but without the cost of running a LES simulation over the whole
tank.

Given that the regions of the stirred tank where the bulk of the turbulence
energy is created and dissipated is known it would be advantageous to be
able to model this region with Large Eddy Simulation. This region is the
highly anisotropic, high shear region in the vicinity of the impeller. Where the
turbulence is less anisotropic, and the turbulence can be more represented by a
time averaged value a Reynolds averaged approach could be used. This would
then reduce the CPU and memory overhead speeding up the time to delivery
but would still enable the more accurate modelling of small scale processes
where the smallest lengthscales and fastest timescales are. In addition, by
only using the LES technique where the RANS modelling is poor, the driving
force for the process is the optimum level of results from the CPU input.

A CFD model of a stirred tank reactor, is a complex model of an equally
complex transient geometry and this means that the quantification of the
errors arising form the hybrid simulation could well be compounded by the
errors arising from the inadequate modelling of the system. In order to in-
vestigate the stability and effectiveness of a ‘hybrid’ model of both LES and
RANS modelling a simpler geometry that has received both intensive mod-
elling and experimental work has been used. That is the flow over a cylinder
at a Reynolds number (based on the bulk upstream fluid properties and the
cylinder diameter) of 3 900



Chapter 2

Background

2.1 Mathematics of fluid flow

The equations for fluid flow are given by the Navier-Stokes equations. Al-
though commonly referred to as the Navier-Stokes equations, strictly this is
the name for the conservation of momentum equation as is highlighted below

The first governing equation is the conservation of mass. This states that the
difference between the mass flow in and the mass flow out must be due to
accumulation of mass in the system by the varying of the density. For an
incompressible fluid, the inflow must equal the outflow. Thus,

∂ρ

∂t
+

∂ρui

∂xi

= 0. (2.1)

However this thesis is investigating the properties of incompressible flow and
so this reduces to,

∂ui

∂xi

= 0. (2.2)

The conservation of momentum equation is the application of Newton’s second
law to the fluid. This is the Navier-Stokes equation and is written (for an
incompressible fluid),

∂ui

∂t
+ uj

∂ui

∂xj

=
−1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

+ F (2.3)

9
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In Equation(2.3) the parts of the equation represent the following features of
the flow. The first term on the left hand side of the equation, represents the
rate of change of the velocity with time. The second the rate of change of the
velocity with the position. These two may be combined to give the left hand
side in terms of the substantive derivative

Dui

Dt
=

∂ui

∂t
+ uj

∂ui

∂xj

(2.4)

The first term on the right of Equation(2.3) is the pressure term, which provides
a driving force for the movement of the fluid, the second term on the right is
for the viscous stresses. The final term represents the body forces acting on
the fluid, these may be buoyancy, gravitation or magnetism.

However, to solve the conservation equations directly is very challenging due
to their non-linear behaviour. These non-linearities arise at high Reynolds
numbers, they are complex and contain small instabilities. In many engineer-
ing applications the small features of the flow have characteristics of random
fluctuations known as turbulence. In order to solve the equations approxima-
tions are used. The most common being spatial or time averaging [73, 117].
For spatial averaging the grid acts as a filter and a model is used to represent
the ‘unresolved’ scales that are smaller than the filter. For temporal averaging
an assumption that there is a clear distinction between the timescales of the
mean and fluctuating parts of the flow is invoked. Either way the flow may be
represented,

ui = 〈ui〉+ u′i (2.5)

where the term in the brackets represents the averaged or resolved term, and
the prime the unresolved or fluctuating component of the flow.

Applying this approximation to the equations of continuity and momentum
gives,

∂〈ui〉
∂xi

= 0 (2.6)

∂〈ui〉
∂t

+
∂〈ui〉〈uj〉

∂xj

+
∂〈u′iu′j〉

∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈ui〉
∂xj∂xj

(2.7)

The term 〈u′iu′j〉 represents the average of the unknown part of the model
and it is this term which is modelled by subgrid scale models (in Large Eddy
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Simulation) or turbulence models if the Reynolds averaged approach is used.

Spatial averaging, or filtering is achieved by applying a filter of size ∆ to the
flow. Often the filter size is related to the grid size h, the simplest approxima-
tion is ∆ = h.

〈f(x)〉 =
∫
G(x, x′)f(x′)dx′ (2.8)

where G is the filter function. Most commonly a Gaussian distribution, or a
‘top hat’ cutoff filter in either fourier space (frequency) or time. The Gaussian
distribution remains the same when transformed from wavenumber to real
space, but the other two alter when moved between spaces which can introduce
errors into the simulation.

The transient averaging is assessed in the following way,

φ̄ =
1

T

∫ t+T

t
φdt (2.9)

This leaves a fluctuating component of φ. This is the Reynolds decomposition
and is written in completion as,[117]

φ = φ̄ + φ′ (2.10)

Where φ is the instantaneous value of the variable being modelled, φ̄ is the
mean value of the variable, and φ′ the fluctuating value of the variable. As you
can see this is based on the approximation that the variable can be modelled
in this way. φ′ is usually defined in a way such that it will have fixed mean and
random distribution. There are further problems raised if the mean flow φ̄ is
slowly varying and this is briefly addressed by Roussinova [95]. So it follows
that strictly this is a modelling approach that can only be applied to stationary
turbulence.

All turbulence that is modelled by this methodology should be steady tur-
bulence, ie the fluctuations are about a point and the velocity varies little.
Turbulence models are often developed using experimental data from ‘simple’
geometries that are as controlled as possible. This may be one of the reasons
why the modelling of flow in stirred tanks is so often compromised as the model
is being forced to operate in an area where strictly speaking it is not valid.

The ergodic hypothesis is that transient averaging, spatial averaging and en-
semble averaging will all give the same answer. That is, if the flow is both
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stationary and homogeneous with time. Stationary turbulence is usually aver-
aged using transient averaging and on average does not vary with time. Homo-
geneous turbulence is usually averaged by spatial methods and is considered
uniform in all directions.

In the following discussion and development the use of spatial averages has
been denoted φ̂ for the resolved and φ̃ for the unresolved part. The transient
averaging has been denoted φ̄ and the fluctuating part φ′.

2.2 Overview of turbulence

2.2.1 Introduction

For a viscous fluid to move a force must ba applied to it. Initially at low
velocities the flow is laminar, and this is seen in pipes for example as a quadratic
velocity profile. This is because the forces have overcome the resistance to
movement slightly. The packets of fluid will slide over one another with such a
small difference in velocity that there is not enough friction between the packets
to provide a basis for instability. This is seen particularly at the boundary layer
where the laminar flow increases in velocity as the distance from the wall is
increased. The velocity profile is linear and the friction generated is too small
to cause instabilities at the surface. However, as the velocity at the wall is
increased instabilities will arise as the friction between the wall and the fluid
causes the fluid at the wall to slow down. This will then mean that the next
layer of fluid out will be travelling much faster than the layer next to the wall
and will therefore overtake it and expand to take its place. This expansion
and the fact that it then comes into contact with the wall will then slow that
packet of fluid down dramatically. This causes a random element to exist in
the flowfield and this is known as turbulence.

A measure of the ratio of viscous to inertial forces is the Reynolds number. It is
a dimensionless number that is used to suggest whether the flow is turbulent or
not. If the viscous forces dominate then the flow is laminar, and if the inertial
forces then the flow is turbulent. The turbulent Reynolds number is given by,

Re =
ρu′D

µ
(2.11)

For a pipe the transition to turbulence happens at a Reynolds number of
2 000−3 000 and if the flow is in this region the fluid will possess both laminar
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and turbulent flow patterns. If the wall of the pipe were to be made very
smooth then Re could be increased before the instabilities set in [14]. This
highlights another important element of the turbulence in that it has to be
initiated. It is often a shear force that is introduced to the flow that then
initiates the turbulence.

The turbulence is a property of the fluid in that situation, but is not a physical
property of the fluid. It is affected by the physical properties and the boundary
conditions, and this will determine the intensity of the turbulence u′iu

′
i As

mentioned before the viscosity acts on the turbulence to try to damp it out
so that the flow will return to laminar flow with no fluctuations. If there were
no energy put into the system then the turbulence would die away due to the
action of the viscosity of the fluid.

Turbulence is dissipative [111]. The constant fluctuations act to provide a
more random flowfield and this acts to disperse the flow and enhance mixing.
These fluctuations are caused by the shear or vortex actions of the fluid.

2.2.2 Visualisation of turbulent flow

Experimentally turbulence is seen as fluctuation in the flow. If the values at
a point in a turbulent flowfield are plotted they will be seen to be fluctuating
frequently about a mean value, in a way which makes transient averaging very
easy to comprehend and forms the basis of experimental studies (eg LDA,
PIV).

For isotropic turbulence, where the fluctuations are the same if the coordinate
system is rotated about any arbitrary point, the fluctuations in the velocity
field are random in size and direction. If the flow is averaged over a long
period of time then it can be thought of as a mean flow with turbulent fluc-
tuations about that mean. Long, in this sense in relation to the timescale of
the fluctuations themselves. If the turbulent flow, on average, does not vary
with time then the turbulence in said to be stationary. The three-dimensional
nature of the turbulence is demonstrated by the rotational flow field that is
often seen. The rotational flow can be described as eddies or vortices. A loose
definition would be that, a vortex has structure in the full 3D way where as
an eddy is an instability in the flow. The vortex is commonly seen in the
sink as the water leaves the bowl and from here it will be noted that as the
vortex becomes smaller (ie smaller diameter) the velocity of the flow increases.
This is because the momentum is conserved. Vortex lines are tangential to
the vorticity vector and vortex tubes are tube-like surfaces made up of vortex
lines. The strength of a tube can be defined as the circulation in a closed path



14 CHAPTER 2. BACKGROUND

on its surface going once round the tube and remains unchanged with time as
the tube is convected [69]. In an incompressible fluid as the tube is stretched
in the flow the diameter is reduced and the velocity increased and this is a
precursor to the energy cascade as will be discussed later.

2.2.3 The energy spectrum

The largest possible instability will be of the same order in size as the largest
dimension in the domain that could initiate the turbulence, the pipe diame-
ter or the impeller diameter being two examples. The largest instability will
be affected by the flow, which is similar in magnitude to the characteristic
dimension of the domain. It will also be acted upon by the viscosity. The
combination of the viscosity and the non-linear terms will act to break up the
large scale structure, but will result in the creation of smaller structures. In
turn these smaller structures will be acted upon by the viscosity and will be
stretched, broken or deformed into yet smaller structures. This however is a
dynamic equilibrium and changes with time and position [47]. The difference
in scales is easier to identify when the difference is large but there is a transfer
of energy from large to small scales in all flows. This transfer is described by
the energy cascade and so transfers the energy from the scales of the order
of the flow where the turbulence is introduced to the flow down to the scales
of the order of the Kolmogorov length (equation 2.13) where the energy is
dissipated as heat.

This process is often described as the energy cascade or energy spectrum, and
is only complete when the Reynolds number is high enough [111, 67, 116, 58]
The name is derived from the fact that the energy of an eddy is related to its
size. As the eddies are broken down by the viscosity the energy they contain
reduces. However, it must be remembered that one large eddy will break down
into many smaller eddies and the energy that may appear missing in an energy
balance will have been returned to the fluid as heat.

Turbulence is often categorised in terms of wavenumbers, where the wavenum-
ber is the inverse of the wavelength. Large eddies have long wavelengths, low
frequencies and small wavenumbers. At the dissipation lengthscale the fre-
quency and wavenumber are high and the wavelength small. The wavenumber
is defined by [79]

κ =
2πf

u
(2.12)
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Figure 2.1: Schematic of the power spectrum highlighting major features

where f is the frequency of fluctuation [Hz] and u the velocity [ms−1] of
the instability. Reynolds averaged models have wavenumber zero as they are
unable to capture fluctuations in the flow.

The energy cascade completes the cycle of the turbulence, from the introduc-
tion to the flow as a large scale through the gradual action of the viscosity and
the reduction in size of the eddies to the dissipation of the energy as heat.

2.2.4 Use of the energy spectrum

It can also be seen that there is no definite changing point between the large
and small structures in the flow, but rather a constant spread of eddy sizes.
This makes the analysis of the spectrum harder. The physics of the large and
the small scales are relatively well understood but in between less in known.
The energy spectrum can be divided up into sections. The large scale is where
the energy is provided into the turbulence from the mean flow, for if this
were not the case the fluctuations would die out. The action of the viscosity
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on turbulence is always to damp it out and so without an input of energy
the fluctuations would be removed to leave a laminar flow. The small scale or
viscous subrange is where the fluctuations are indistinguishable from heat. The
packets of fluid in the eddies become smaller and smaller until the size of the
packet is overcome by the viscosity and the movement becomes the movement
of the fluid molecules is random Brownian motion. The size at which this
happens is the Kolmogorov lengthscale. It is assumed that energy only enters
the spectrum at the top and only leaves the cascade at the bottom. This then
means that the connecting line will transfer all of the energy from the large
scales to the small scales. This is the inertial subrange and it is found that for
fully developed turbulence the gradient of the line is proportional to κ−5/3 for
this section of the line.

2.2.5 Microscales and dissipation

The energy cascade continues until the Reynolds number is sufficiently small
that the molecular viscosity acts to dissipate the flow.[84, 111]

Kolmogorov proposed that the velocity and time scales of the turbulent eddies
decrease as the lengthscale of the eddy decreases. This forms the basis of the
concept of local isotropy. At sufficiently high Reynolds numbers, where the
local lengthscale of the turbulence is much smaller than that of the large scale
turbulence, the small scale eddies are statistically isotropic. Extrapolating
from this Kolmogorov [47] postulated that at sufficiently high values of Re
the small scales are uniquely determined by ν and ε only, this is known as
Kolmogorov’s first similarity hypothesis. The size of these is given by ` < `EI

where `EI is the lengthscale where turbulence transforms from anisotropic to
isotropic flow. The eddies that are below this size are described as being in
the universal equilibrium range.

η =

(
ν3

ε

) 1
4

(2.13)

τ =
(

ν

ε

) 1
2

(2.14)

υ = (νε)
1
4 (2.15)

for the length, time and velocity microscales respectively. If a Reynolds number
is constructed from these scales it is of O(1), signifying the laminar and viscous
nature of the flow at this point [111].
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A smaller scale still is the Batchelor microscale. This signifies the point at
which the effects of the turbulent structures are no longer in evidence in the
fluid.

2.2.6 Introduction to the large eddies

Richardson observed in 1922 that energy is introduced at the large scales where
there is a perturbation of the mean flow[89]. The largest eddy size `o is com-
parable to the lengthscale of the domain ` and has characteristic velocity uo

which is defined as a function of the velocity and the domain size,

uo = u(`o) (2.16)

and is of order of the RMS of the turbulence intensity

u′ =
(

2

3
k
)2/3

(2.17)

and is comparable to the mean velocity. This means that the Reynolds number
of the large eddies is comparable to that of the mean flow.

Pope [84] states that the bulk of the energy is contained in the large eddies and
these are of the size `EI = 1

6
`o < ` < `o indicating that the large scale eddies

at the top of the energy spectrum contain the most energy. Kolmogorov’s
Second Similarity Hypothesis states that at a high enough Reynolds number,
the statistics of the turbulence have a form that is independent of ν.

2.2.7 The inertial subrange

The dissipation of the energy takes place at small scales of size η where the
viscosity is important. For a large scale turbulent eddy, ` À η, and assuming
that the Reynolds number is large then a turbulent eddy of this scale will be
little affected by the viscosity. Following this rationale Kolmogorov introduced
a similarity hypothesis stating that at in high Reynolds number flow, where
η ¿ ` ¿ `o the length is determined by the rate of turbulent energy dissipation
(ε) alone and is not dependent on the dynamic viscosity ν. If a lower size of
`DI is introduced at size `DI = 60η then when `DI < ` < `EI the eddies are
dependent on the rate of dissipation and inertial effects alone. The viscosity
is negligible. The energy contained by an eddy in this range is defined by
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E(κ) = CKε2/3κ−5/3 (2.18)

Velocity and length scales can be calculated for the eddies in the inertial sub-
range and from these the rate of transfer of energy from eddies of size ` to
smaller eddies. The rate of transfer of energy comes out as ε which suggests
the rate of transfer is independent of the lengthscale in the inertial subrange.

The inertial subrange is the region where the energy contained in the eddies
scales with the κ−

5
3 . This is the region where the viscosity acts to influence

the turbulent eddies and so the eddies are reduced in size. The reduction in
size corresponds to a reduction in energy, though energy is conserved by either
the transformation into heat or the production of many smaller eddies. Much
of the turbulence modelling work assumes that the flow of energy is one way,
that is, eddies only get smaller and there is no recombination of eddies to form
larger structures. This approximation means that the energy lost by the larger
eddies is equal to that dissipated at the Kolmogorov scale. All of the energy
contained in the large scales will be dissipated as heat, at the Kolmogorov
scale, by the action of viscosity.

Statistically this range is often seen as a discrete set of wavenumber sizes
with the energy cascading from one size to the next. Strictly speaking the
cascade is continuous, but the model allows for an analysis of the range. This
demonstrates that a majority of the energy into an eddy comes form one which
is slightly larger[111], and demonstrates the action of viscosity on turbulence
in gradually damping it out.

The rate of dissipation at the largest scales is governed by the rate of dissipation
by the largest eddies. A large eddy contains energy on the order of u2

o with a
timescale

τo =
`o

uo

(2.19)

so the rate of energy transfer scales with

u2
o

τo

(2.20)

at high Reynolds number.

The transfer of the energy in this region increases dramatically as the inertial
subrange is descended. [84] This can be explained using an energy balance. For
there to be a constant amount of energy in the system, the system could contain
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one large eddy, or several smaller ones. This is seen at every wavenumber, such
that the number of small instabilities is much greater than the number of large
scale instabilities. These smaller eddies move faster and break down into more
yet smaller eddies. In this way the transfer of energy increases. The rate of
transfer of energy remains constant. This is because more energy cannot be
dissipated than is present in the fluid. The dissipation rate is ε and for a steady
high Reynolds number flow this is equivalent to the production of turbulence.

2.2.7.1 Backscatter

It is possible for the smaller eddies to organise themselves in an ordered way
and so form a larger structure. This transfer of energy back up the energy
spectrum is referred to as backscatter. It causes problems with many the-
ories as the basic understanding is that the transfer of turbulence energy is
unidirectional with the flow from large to small. Backscatter complicates the
matter but the return of the energy to the large scales is thought to increase
the mixing ability in the flow. Research into this area (eg [123]) is still in its
infancy and the effect is ignored for the purpose of this study.

2.3 The Reynolds averaged equations

When Reynolds decomposition is substituted into the Navier-Stokes equation
for momentum the following is obtained.

∂ūi

∂t
+ ūj

∂ūi

∂xj

= −1

ρ

∂p̄

∂xi

+ ν

(
∂2ūi

∂xj∂xj

)
− ∂u′iu

′
j

∂xj

(2.21)

This then is all resolvable except for the ρu′iu
′
j term, and it is this term that

is the subject of the turbulence model.

Now the shear stress tensor τij is defined in the following way,

τij = −ρu′iu
′
j (2.22)

and a modelling assumption is made, that the turbulent stresses are approxi-
mately equal to the large scale shear.

Near a wall, the shear in the wall normal direction (y) is defined by,
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τij = µ
∂ui

∂xj

(2.23)

where the viscosity is acting to reduce the shear. In the way that the turbulence
of the fluid acts to smooth out the profile of the flow it is represented as an
increase in the viscosity of the fluid. This is the eddy viscosity or Boussinesq
hypothesis and forms a basis for many of the turbulence models. This is given
in term of the turbulent or eddy viscosity µt. This then allows the turbulent
stress to be modelled because it is related to the mean shear thus,

τij = −ρu′iu
′
j ≈ µt

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− 2

3
ρkδij (2.24)

The eddy viscosity µt is proportional to the product of the turbulent viscos-
ity scale and a length scale. The length scale used is derived in terms of the
dissipation by the equation ε ∼ k

3
2 ` which was obtained for isotropic turbu-

lence, which allows the description of the whole of the turbulence spectrum
by the single lengthscale. This is probably the weakest assumption in the two
equation models [109]

2.3.1 Law of the wall

Rapid variation of the velocity near the wall requires the use of fine cells to give
adequate resolution for the modelling process. However, an approximation was
used which assumes that the flow is developed and the average velocity profile
is known. This came to be known as ‘the law of the wall’.

In the vicinity of the wall the dimensionless distance to the wall is given by

y+ =
∆yp

ν

√
τw

ρ
(2.25)

where ∆yp is the distance from the wall to the first cell centre, τw is the shear
stress on the wall. It is made dimensionless by the inclusion of the density and
viscosity. If the value of y+ is less than 11.63 then the flow at that point can
be considered to be entirely laminar. Formulations have also been derived for
the dimensionless velocity and turbulence properties near the wall.

As such it is an approximation that allows the cell next to the wall to be po-
sitioned at a y+ value in the order of 100 and thereby not have to explicitly



2.3. THE REYNOLDS AVERAGED EQUATIONS 21

model the development of the flow next to the wall. This overcomes the prob-
lem of expanding the cells away from the wall. If the cell were small enough
to capture the molecular sublayer at then the whole domain would either have
to be modelled with cells of this size or the cells expanded quickly, though this
could introduce differencing errors if not done carefully. The most common
being that of the Van Driest type relation, and many are still in use today [33]

Many have therefore sought to develop models that are not reliant on the law
of the wall but can be used to resolve the sublayer. The disadvantage of this
is that generally more cells are required as the minimum y+ ≤ 10. However,
those in favour of this method argue that it should be used as the near wall
region is insufficiently universal for a wall law to be applied [37]

2.3.2 The k-equation

The transport equation for k, the turbulent kinetic energy per unit mass
[m2s−2] is given by,

ρ
∂k

∂t
+ ρūj

∂k

∂xj

= τij
∂ui

∂xj

− ρε +
∂

∂xj

[
µ

∂k

∂xj

− 1

2
ρu′iu

′
iu
′
j − p′u′j

]
(2.26)

where ε is the rate of dissipation of turbulent kinetic energy. These terms
represent in turn the transient change in k, and the convection on the LHS of
the equation. This is balanced on the RHS by the production, dissipation, and
then the three diffusional terms, molecular, turbulent transport and pressure
diffusion.

The LHS of equation 2.26 gives the change of k with time and with convec-
tion around the domain. The production term represents the generation of
turbulent energy from the mean flow, the work of the mean strain rate against
the turbulent stresses. The dissipation term is the rate at which the turbu-
lent energy is absorbed back into the fluid as thermal energy by the effect of
the viscosity. Molecular diffusion is the transport of the turbulent energy by
molecular diffusion in the fluid, whereas turbulent transport is the transport
of the turbulence by the turbulence itself. Finally the pressure diffusion term
is the the transport of turbulence by pressure-velocity interaction.

However, to reach a transport equation that can be modelled approximations
are introduced. The Reynolds stress tensor is modelled by the use of the
Boussinesq hypothesis,
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τij = 2µtSij − 2

3
ρkδij (2.27)

Where the last term is introduced so that a normal stress reduces to τii = −2
3

ρk.
This is because, an incompressible fluid has Sii = 0, but τii 6= 0.

The turbulent transport and pressure diffusion terms as given in equation
2.26 cannot be represented as they depend on the fluctuating components
of velocity and pressure. The transport term is modelled in analogy to the
gradient - diffusion term [117],

1

2
ρu′iu

′
iu
′
j + p′u′j = −µt

σk

∂k

∂xj

(2.28)

Where σk is the Prandtl-Schmidt number of order 1. The pressure diffusion
term is small and so is grouped with the turbulent transport.

Dissipation is a more difficult parameter to assess. On purely dimensional
grounds the turbulent kinetic energy, dissipation and turbulent length scale
can be related by

ε ∼ k3/2

`
(2.29)

Where ` is the integral scale which is a characteristic length in the turbulence.
For example, a function of the distance from the wall in a boundary layer
problem or the thickness of a jet or wake.

The transport equation for k has now become,

ρ
∂k

∂t
+ ρūj

∂k

∂xj

= τij
∂ūi

∂xj

− ρε +
∂

∂xj

[(
µ +

µt

σk

)
∂k

∂xj

]
(2.30)

2.3.3 Dissipation

The rate of dissipation of the turbulent kinetic energy back into the fluid is
denoted by ε. Strictly speaking this is the dissipation per unit mass, and has
units [m2s−3].

It is defined by the following equation,

ε ≡ ν
∂u′i
∂xk

∂u′i
∂xk

(2.31)
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The transport equation for epsilon is defined [117],

ρ
∂ε

∂t
+ ρūj

∂ε

∂xj

= − 2µ

[
∂u′i
∂xk

∂u′j
∂xk

+
∂u′k
∂xi

∂u′k
∂xj

]
∂ūi

∂xj

− 2µu′k
∂u′i
∂xj

∂2ūi

∂xk∂xj

− 2µ
∂u′i
∂xk

∂u′i
∂xm

∂u′k
∂xm

− 2µν
∂2ūi

∂xk∂xm

∂2ūi

∂xk∂xm

+
∂

∂xj

[
µ

∂ε

∂xj

− µu′j
∂u′i
∂xm

∂u′k
∂xj

− 2ν
∂p′

∂xm

∂u′j
∂xm

]
(2.32)

The terms on the LHS are the same as for the k equation, that is the transient
changes and the changes due to convection. On the RHS of the equation the
terms represent the production and dissipation of dissipation, the third and
fourth terms represent the molecular diffusion of dissipation, finally there is
the turbulent transport of dissipation.

The transport equation for ε is complicated and uses fluctuating values to
derive the answer. This is not however possible in practice and so the equation
is modelled and the simplified models tuned for practical considerations using
experimental results or DNS data [117].

It is important to recognize that the use of the inertial subrange and the
assumption of no backscatter means that the dissipation of k at the larger
lengths will match the dissipation at the Kolmogorov lengthscale.

The transport of dissipation by this equation is correct on dimensional grounds
and physical reasoning alone. That is not to say that the equation is incorrect,
but that it is modelled and therefore an approximation by closure of the actual
ε transport equation. This is often considered to be the weakest assumption
of the model.

2.4 Turbulence models

There are many turbulence models in use and often modifications are made
to the constants for a models to perform better for a given problem. A brief
overview of the models are given in increasing complexity.
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2.4.1 Algebraic

Prandtl’s Mixing length theory expresses the eddy viscosity as a function of the
mixing length in the system `m. This is characteristic of the level of turbulence,
and derived as an analogy to the kinetic theory of gasses [52].

If a volume of fluid at a point is moving with velocity ui and there exists a
velocity gradient in the y direction then the velocity at point y + δy is ui + δui.
The change in velocity is the difference between the velocities at the two points
displaced by the distance `m. If the velocity at the first point is known and
the gradient known, a first approximation of the velocity at the second point
is

ui|point2 =
∂ui

∂xj

δy`m (2.33)

The velocity uj must therefore change as well but this is assumed to be pro-
portional to the change in ui and so calculated from it. This means that the
turbulent viscosity can be calculated as follows

ρuiuj = ρ`2
m

(
∂ui

∂xj

)2

(2.34)

However, knowledge of the flow is required to be able to assess the mixing
length. This is usually assumed to be proportional to the distance from the
wall. It is possible to use `m as a function of k which ties the model to
experimental data as this is where the values of k have to originate from.

2.4.2 1-equation models

2.4.2.1 Older models

In an attempt to overcome the shortcomings of the mixing-length model the
next development was the implementation of the k − ` model whereby the
value of the turbulence energy was modelled and thereby the size of ` could
be calculated allowing the calculation of a turbulent viscosity.

The k-equation is derived from the momentum equation by multiplying through
by k and then approximations are made. A complete description of this is given
in the next section. The k equation is slightly different in that it is dependent
upon ` thus



2.4. TURBULENCE MODELS 25

ρ
∂k

∂t
+ ρūj

∂k

∂xj

= τij
∂ūi

∂xj

− Cµρ
k3/2

`
+

∂

∂xj

[(
µ +

µt

σk

)
∂k

∂xj

]
(2.35)

ε = Cµ
k3/2

`
(2.36)

where Cµ = 0.09 and σk = 1.0.

2.4.2.2 The Spalart-Allmaras model

Rather than model the turbulence itself and from that infer the turbulent
viscosity, Spalart and Allmaras [104] created a model based upon the transport
equation for the turbulent viscosity directly. It has use mainly in the aerospace
field of research [84] and as such has had considerable success in the fields of
flows over high-lift aerofoils [32, 45]. Less commonly it has been used for flow
in a stirred tank reactor [6], though this is essentially a ‘publicity’ paper and
lacking in experimental validation.

The model uses and empirical approach to define the terms in the transport
equation for νt, the kinematic turbulent viscosity

Dν̆t

Dt
= cb1(1− ft2)S̆ν̆

+
1

σ
(∇.((ν + ν̆)∇ν̆) + cb2(∇ν̆)2)

−
(
cw1fw − cb1

κ2
ft2

) (
ν̆

d

)2

+ ft1∆ū2 (2.37)

(2.38)

where the production of the turbulent viscosity is given by,

P = cb1Sν (2.39)

the diffusion given by

D =
1

σ
(∇.((νt∇νt) + cb2(∇ν)2) (2.40)

and the destruction given by
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E = cw1

ν

d
(2.41)

And in order to make the model scale to the wall correctly, working variables
are created. For example ν̆ is equal to νt except in the viscous region where it
will agree with the experimental and theoretical results. These scalings are

νt = ν̆fv1

fv1 =
χ

χ3 + c3
ν1

χ = κy+

S̆ ≡ S +
ν̆

κ2d2
fν2

fν2 = 1− χ

1 + χfν1

(2.42)

and with the addition of the terms introduced to capture the correct transi-
tion from laminar to turbulent boundary layer flow, have been used to create
a model that is relatively insensitive to the boundary conditions and is numer-
ically stable giving good results [32].

2.4.3 2-equation models

2.4.3.1 Introduction

For a long time, two equation turbulence models offered the simplest com-
plete method of modelling the turbulence with no intervention from the user.
Frequently, the models use k is the turbulent kinetic energy, ε the rate of dis-
sipation and ω the square of the vorticity fluctuations, where the modelled
equations relate to each other and to the lengthscale ` thus;

k = 0.5(u′iu
′
i) (2.43)

ω =
ε

(CDk)2
(2.44)

ε = ν
∂u′i
∂xk

∂u′i
∂xk

(2.45)

` = CD
k

3
2

ε
(2.46)
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This interrelation of the variables suggests that the models may be different in
mathematical form alone and not in content. Launder and Spalding address
these issues [56]. Firstly, it is not possible to transform the equations from
one form to another easily without introducing extra terms into the equations,
this is especially true for the third-order correlations that are approximated.
Secondly, it is not known which term is modelled the most correctly, though
this is a problem specific problem. Thirdly, there is a difference in the mod-
elling of flow near a wall, and the fitting of these results to experimental data.
Launder and Spalding conclude that this third reason is the most important
and subsequently choose the k-ε model for their research.

2.4.3.2 The k-epsilon model

Originally conceived in 1972 [44], the k-ε model is now a very common model
used by industry today [11]. Many of the commercial CFD packages use it
as their default model [115]. The model was first used to predict the relami-
narization of flow over a flat plate, and as such was working with developed
flow with an inherent law of the wall approximation which allowed the model
to work. Today the model is used in many more cases and often where there
is separation or when the flow is not developed and still produces adequate
results. Rodi [92] stated in his 1980 state of the art review that the model
was robust and reliable and even with shortcomings gave robust and reliable
results.

The model is in two parts. The k equation represents the turbulence energy
contained in the eddies of all sizes and as such is a running balance of the
generation and dissipation. The ε-equation represents the dissipation of this
turbulent energy and so together thy form a dynamic partnership.

This was the first complete model of turbulence. Meaning that it described
both the creation of turbulent energy, its transport and its dissipation and
also estimated the length scale as well with no intervention from the user.
The length scale estimated is ` as defined by the Prandtl mixing length model
which is approximately the size of one small eddy but much larger than the
Kolmogorov lengthscale

The k equation (Equation 2.35) can be approximated from the velocity equa-
tion by multiplying through by the fluctuating velocity. The units of k are
[m2s−2] and so a turbulent velocity can be described from the turbulence level
as a multiple of q =

√
k which will have units [m1s−1] The k equation has rel-

atively few modelled terms in it and so is physically realizable, meaning that
it will have bounded values.
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The ε equation however contains many more modelled terms and so there is
more doubt about it. The modelled version of equation 2.32 is,

ρ
∂ε

∂t
+ ρūj

∂ε

∂xj

= Cε1
ε

k
+ τij

∂ūi

∂xj

− Cε2ρ
ε2

k

+
∂

∂xj

[
(µ +

µt

σε

)
∂ε

∂xj

]
(2.47)

The other important equations to be derived from these modelled equations
are

µt = ρCµ
k2

ε
(2.48)

` = Cµ
k

3
2

ε
(2.49)

The value of Cε2 (= 1.92) is defined from the decay of homogeneous turbulence.
Cµ (= 0.09) is calculated from a local equilibrium shear layer and the product
of Cε2 and Cµ gives C1 = 0.17. The size of Cε (=0.08) is calculated from a
boundary layer near a wall.

The values for σk(= 1.0) and σε(= 1.3) are chosen to fit experimental date for
a round jet as is Cε1(= 1.44) [92]

In order to remove the need for ‘the law of the wall’ the ‘low Reynolds number
k-ε model integrates through the sublayer to predict the flow near the wall.
However, there is then a need to have lower y+ values of the order of 10. The
use of the low-Reynolds number modifications allow non-constant shear to be
modelled. Launder and Spalding [56] publish values for the modified values
of the constants Cµ and C2 which are functions of the turbulent Reynolds
number,

Cµ = 0.09× exp[
−2.5

1 + Ret/50
] (2.50)

C2 = 1.92× (1.0− 0.3exp[−Re2
t ]) (2.51)

where Ret is the turbulent Reynolds number. In addition the boundary con-
dition for ε is set to zero at the wall and the modelled equation for ε contains
an extra term that will vary k as the wall normal distance is increased. The k
equation has an extra modelled term for computational rather than physical
reasons to match ε near the wall
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2.4.4 Reynolds (differential) stress models

The stress models allow for anisotropic turbulence by the modelling of the
stress terms individually. As a result of this the Boussinesq hypothesis is not
invoked and the model is theoretically better placed to represent anisotropic
flow. This means that there are more equations solved but that the results
should be more accurate as few real flows are isotropic. However, the Achilles
heel of RANS turbulence modelling, the ε equation, remains.

Rather than only model the turbulence energy, these model the transport of
the Reynolds stresses u′iu

′
j. The rationale for this is that they will be able to

capture the complexities of the flow for example the anisotropic aspect of the
flow because the stresses are all modelled individually rather than the isotropic
k in the two-equation models. The turbulent kinetic energy is then calculated
directly from the stresses.

The form of the transport equation for the Reynolds stress is,

Du′iu
′
j

Dt
= −(u′ju

′
k

∂ūi

∂xk

+ u′iu
′
k

∂ūj

∂xk

)− 2ν
∂u′i
∂xk

∂u′j
∂xk

+
p

ρ
(
∂Ui

∂xj

+
∂Uj

∂xi

)

− ∂

∂xk

(u′iu
′
ju
′
k − ν

∂u′iu
′
j

∂xk

+
p

ρ
(δjku′i + δiku′j)) (2.52)

where the terms on the RHS represent the generation, dissipation, pressure-
strain and diffusion of the Reynolds stresses.

The terms that need modelling are the pressure-strain and diffusional terms.
Early work undertaken to do this was by Rotta, and Daly and Harlow [15, 94],
as this was then major problem facing the development of a stress model.

The pressure rate-of-strain term

p

ρ

∂2p

∂xj∂xj

= − ∂2

∂xi∂xj

(
u′iu

′
j − u′iu

′
j

)
− 2

∂ūi

∂xj

∂u′i
∂xj

(2.53)

φ1 φ2

Can be seen to be made up of two parts. The first, φ1, is the first term on the
right hand side of the equation and represents the ‘slow’ terms, the returning
to isotropy by the redistribution of the Reynolds stresses. The second term,
φ2, is the interaction of the pressure strain with the mean flow. It is the ‘fast’
term as it will react first if the flow is acted upon by a force.
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Rotta[94] modelled φ1 using the decay of homogeneous anisotropic turbulence
to derive the model for the ‘slow’ pressure rate-of-strain correlation.

R
(s)
ij = −CR

ε

k

(
u′iu

′
j −

2

3
kδij

)
(2.54)

However, the ‘rapid’ interaction with the mean flow remained absent until Daly
and Harlow [15] who found problems with their assumptions but overall the
model gave good results. Launder Reece and Rodi [55] moved the model on
more by proposing that only the most dominant part of the ‘rapid’ half of φ2

need be modelled thus,

φ2 = −C2

(
Pij − 2

3
Pδij

)
(2.55)

instead of the whole modelled expression,

φ2 = −C2

(
Pij − 2

3
Pδij

)
− C3

(
Dij − 2

3
Pδij

)
− C4k

(
∂ūi

∂xj

+
∂ūj

∂xi

)
(2.56)

with

Pij = −uiuk
∂ūj

∂xk

− ujuk
∂ūi

∂xk

(2.57)

Dij = −uiuk
∂ūj

∂xk

− ujuk
∂ūk

∂xi

(2.58)

P = uiuj
∂ūi

∂xj

(2.59)

Which from their comparison with experiments did not overly reduce the ac-
curacy of the problem.

All of the constants can be expressed as a function of a further constant C ′
2

C2 =
C ′

2 + 8

11
(2.60)

C3 =
8C ′

2 − 2

11
(2.61)
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C4 =
30C ′

2 − 2

55
(2.62)

C ′
2 = 0.4 (2.63)

This was strongly advocated by Hanjalić and Launder [36], and progressed
greatly by Launder Reece and Rodi [55] who played particular attention to
the pressure-strain correlation especially in the vicinity of a wall. Hanjalić and
Launder [37], further extended the model for low Reynolds number flows so
that it could be used up to a wall without the need for explicit wall functions.

Most of the Launder et al model remains unchanged [84] but the dissipation
term is changed so that the dissipation is modified by the turbulent Reynolds
number Ret = k2/νε. In addition the modelled ε equation is modified so that
the substantial derivative of ε scales with Ret and that the values of ε scale
with y2 near the wall so that the value of ε2

k
tends to a constant value rather

than infinity at the wall.

In addition to this the transport terms have to be modelled as well. Daly
and Harlow proposed a model for the triple correlation which was later shown
not to be invariant under different combinations of the tensors, and also to be
isotropic in nature. [109, 37].

u′iu
′
ju
′
k = C ′

s

k

ε
u′iu

′
l

∂u′ju
′
k

∂xl

(2.64)

whereas a model that remains unchanged under the rotation of the tensors
would be [55]

u′iu
′
ju
′
k = C ′

s

k

ε

(
u′iu

′
l

∂u′iu
′
k

∂xl

+ u′ju
′
l

∂u′ju
′
k

∂xl

+ u′ku
′
l

∂u′iu
′
i

∂xl

)
(2.65)

From experiments the early authors found this to be the most dominant term
for the transport of the stresses. In addition, if the model was to be used at
a high enough Reynolds number then the viscous diffusion would be minimal,
and the effects of the pressure diffusion could be ignored in comparison to the
triple correlation and the pressure rate-of-strain term.

For boundary layer flows, the dissipation term has been modelled as a function
of the turbulent Reynolds number so as to capture the highly anisotropic flows
near a wall. The dissipation term still tends towards infinity at the wall but the
wall flow is able to act on the dissipating eddies to redistribute the stresses.
There are two forces that act on the eddies near the wall. The turbulent
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Reynolds number (Ret = k2/µε) and the effect of the mean flow distorting the
eddy. The effect of Ret is much greater [37] and also easier to model so this
term is the only one included, giving the dissipation term as,

µ
∂u′i
∂xk

∂u′i
∂xk

=
2

3
ε

(
(1− fs)δij +

u′iu
′
j

2
3
kfs

)
(2.66)

where fs = (1 + 1
10

Ret).

The dissipation transport equation for the Reynolds stress model is similar to
that for the k − ε model. but with two main modifications.

Dε

Dt
=

∂

∂xi

(
Cε

k

ε
u′iu

′
j

∂ε

∂xj

)
+ Cε1

Pε

k
− Cε2

ε2

k
(2.67)

The two differences being that P is evaluated from the Reynolds stress di-
rectly rather that from P= 2µtS̄ijS̄ij and that the diffusion term involves the
anisotropic diffusivity.

A summary of developments for the Reynolds stress model [42] precede a new
proposal for the dissipation equation. By comparison with DNS results for
a variety of flows Jakirlić and Hanjalić [42] refine the approximations for the
terms in the dissipation equation and show improvements for flow along a plate,
over a step and inside a rotating cylinder. This is achieved without reference
to the surface being modelled, and in the bulk flow away from the solid walls
the value of the dissipation is as expected. The main improvements are made
by using a homogeneous dissipation term along with a stress diffusion term
to model the dissipation giving the improvements in predictions compared to
DNS down to y+ values of 0.1. This then is a drawback to the model, in that
in order to obtain the accuracy, the cells must be of the order of, or greater in
number than, a large eddy simulation.

εij = εh
ij +

1

2
Dv

ij (2.68)

with

εh
ij = (1− fs)

2

3
δijε

h + fs

u′iu
′
j

k
εh (2.69)

and
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Dv
ij = µ

∂2u′iu
′
j

∂xk∂xk

(2.70)

2.5 Large Eddy Simulation

2.5.1 Introduction

Large Eddy Simulation (LES) is based on the approximation that it is impor-
tant to capture the large turbulent eddies in the flow, and that the smaller
eddies that only have a small effect on the bulk flow need only be modelled as
a sink for the energy. Essentially this is done using a low pass filter and the
higher frequencies are then modelled by the sub-grid model. This means that
the grid required need only be fine enough to capture the larger eddies so the
computing requirements are much less than for DNS both spatially and tem-
porally, allowing the simulation of higher Reynolds numbers. The modelling
of the smaller eddies is done by the subgrid scale model and this is essentially
dissipative. The subgrid model is a large speedup over DNS where much of the
CPU time is spent modelling the dissipative scales [84]. In the same way that
the small eddies have a negligible effect on the large ones, the subgrid model
is expected to only have a small effect on the large eddies in the model.

It can be seen that the higher the frequency of turbulence that can be captured,
the closer the LES moves toward DNS and the relative importance of the choice
of the sub-grid model is reduced. However, for practical computations this is
not possible and so the cut-off point is placed so that it has to model larger
and larger eddies., This then means that the choice of subgrid model and its
ability to represent the larger scales is more important. Ferziger, [13] suggests
that if 80% of the energy is resolved then the model can be called LES, if less
than that then the model is a very Large Eddy Simulation (vLES). In practise
however, few authors estimate the energy resolved and so this distinction is
difficult to make.

The sub-grid scale model is intended to represent the dissipation of the turbu-
lence energy at a scale smaller than that of the filter. It could be ignored and
the effects of numerical diffusion used if desired as the dissipation will still oc-
cur. Derivation of flow equations starting with the Navier-Stokes equation, the
continuity equation and the equation for energy, the flows are filtered so that
the simulation will not model the smaller eddies where the energy is dissipated
but will only model the larger eddies which are of such a scale as to affect the
mean flow. Pioneering work was undertaken by Smagorinsky [102] in the field
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of atmospheric modelling. Notable other early investigators include Schumann
[98] and Leonard [58] who overcame many of the initial problems. Schumann’s
work is of particular interest as it is of a finite difference simulation

In a similar way to the Reynolds averaging approach the equations are filtered
to give the resolved and the unresolved scales. In a finite volume setting the
size of the filter is a multiple of the grid size with the simplest filter being
h = ∆. This dictates the size of eddy that can be captured and so defines the
large eddy in the LES.

The filtering is applied to the Navier-Stokes equations and these are then used
in the simulation. However, there is an unresolved term, the residual stress
tensor, and this has to be modelled in order to close the momentum equation.

The decomposition is

φ = φ̂ + φ̃ (2.71)

Where φ is a variable in space and time, φ̂ is the filtered or resolved variable
and φ̃ is the unresolved or subgrid-scale part of φ. An important difference

between φ̃ and φ′ in RANS modelling is that the value of ¯̃φ may not be zero,
whereas φ̄′ = 0 by definition of the RANS problem.

The filtered equation then becomes [93])

∂ρûi

∂t
+

∂ρûiuj

∂xj

+
∂ρ ̂̃uiũj

∂xj

= − ∂p̂

∂xi

+ µ

(
∂2ûi

∂xj∂xj

)
(2.72)

Which introduces the problem of how to resolve ûiuj. The initial modelling by
Leonard [58] and Clark et al [13] has been modified to give a galilean invariant
solution[106, 26].

The stress to be modelled consists of the filtered product of velocity, minus
the product of the filtered velocity,

τij ≡ ρ{ûiuj − ûiûj} (2.73)

which is evaluated by

τij = ρ{Lij + Cij +Rij} (2.74)

where,
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Table 2.1: Generic types of sub-grid scale models
Constant viscosity model µt = ρc0

Strain model µt = ρc1∆
2Ŝ

Vorticity model µt = ρc2∆
2ω̂

Unresolved energy model µt = ρc3∆E1/2
s

Lij = ̂̂uiûj − ˆ̂ui
ˆ̂uj

Cij = ̂̂uiũj + ̂̃uiûj − ˆ̂ui
ˆ̃uj − ˆ̂uj

ˆ̃ui

Rij = ̂̃uiũj − ˆ̃uj
ˆ̃uj (2.75)

Generally the largest term to arise from the averaging is the Reynolds stress
Rij, and it is this term that is representing the interaction between scales at
less than the filter size and needs to be modelled. The cross term Cij represents
the interaction between the resolved and modelled terms and would need be
modelled. Leonard [58] applied a Gaussian filter to approximate the values
for Lij and Cij leaving Rij as the only term to be modelled. Alternatively,
Deardorff [17] and Schumann [98] show that the values of the cross terms
become zero if the cells used in the simulation are volume averaged. The
Leonard term Lij of Germano can be calculated explicitly by the LES and so
the filtered product of velocities and the momentum equation can be modelled
as

ûiuj ≡ ûiûj +
τij

ρ
= ûiûj + τ r +

2

3
krδij (2.76)

where

kr =
1

2
τ (2.77)

is the residual kinetic energy and can be seen not to be a closed equation. In
order for the LES simulation to proceed a model for τ r has to be developed,
and the simplest one of these uses an eddy viscosity concept similar to that of
RANS modelling. Where µt is the sub-grid scale viscosity. Voke and Collins
[116] define four broad families for the description of µt and these are given in
Table 2.1

For the subgrid models the value of c is a constant, ∆ is a length scale that
is often the filter size and so for the finite difference method that Schumann
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used is the cell size. Ŝ and ω̂ are the resolved strain rate and vorticity tensors.
Es represents the unresolved energy, that is the subgrid turbulence energy
(1

2
˜̂ukũk). Ŝ is obtained by contracting the resolved strain rate tensor, thus,

Ŝ = (2SijSij)
1/2 (2.78)

The constant viscosity model should only be used for homogeneous turbu-
lence and is in effect a DNS as the turbulence is independent of the Reynolds
number because the viscosity that suppresses the turbulence is moved up the
energy spectrum. The strain and vorticity models are using different large
scale functions on which to base the subgrid scale turbulence characteristics
and the unresolved energy model needs a transport equation for the energy.
The energy model is often used with a production equals dissipation assump-
tion. This means that the subgrid energy that is dissipated can be calculated
from the resolved energy.

Earlier researchers [13] used the above models and found them to be of approx-
imately the same accuracy, and collectively much closer to experimental and
LES on a much finer grid (83 → 643) than those models based on the mean
strain rate or the rotation of the flow. The subgrid model was also shown to
have a small effect on the resolved scales [60], which is good as it shows that
the subgrid-scale terms are modelling the small scale flows and that the cut-off
point for the filter has been placed sufficiently down the energy spectrum for
the modelled small scales to be having little or no effect on the large scales.

Much of the current LES work is based on the analysis of turbulence or the
more accurate simulation using the LES method. For these more fundamental
investigations, workers tend to work in wavenumber space using fast fourier
transforms to study turbulence by spectral analysis. This research falls into two
broad groups. Where the research has been done on two different sized grids
to find the data for the simulation (a priori work) or where the simulations
are tested against experimental data (a posteriori work)[83]

However, the problem with the use of models that are similar to the eddy
viscosity hypothesis used by Reynolds averaged methods is that these are based
in the clear difference in scales between the large and small motions. In LES
the imposition of a cutoff in the inertial subrange is artificially cutting the
continuum in two and so is unrealistic from the start[53]. Some would say that
the use of this hypothesis is questionable and leads to a problem that is not
well posed [60] leading to results that will decorrelate from reality

To obtain the accuracy in the LES model higher order schemes are used. There
is debate over whether to use central or upwind differencing [99] and the order
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of the differencing to be used [75]. Sengupta and Nair argue that the use of
a central differencing scheme will reduce the maximum wavenumber that can
be captured by spectral methods and to prevent this and any aliasing effects,
a higher order upwind scheme must be used.

Most LES work is still undertaken on structured grids, this is because the
numerical dissipation from an upwind differencing scheme on unstructured
grid may enhance robustness but can affect accuracy for LES. [74]. Work
is underway to develop unstructured methodologies for LES that will enable
it to be used for real engineering problems in complex geometries, but has
implications for flow near a wall. One of the first problems to overcome is
the development of a robust technique for filtering over a tetrahedral mesh.
Pioneering work has been undertaken by Marsden et al [66]. Similarly, research
into the effect of non-orthogonality in the mesh may be a cause of error. This
also has been investigated and the skewness of the grid for a finite volume LES
simulation affects the results by less that 1%. [101]. This was achieved using
single precision computation, with central differencing in space and third order
Runge-Kutta differencing in time.

As with DNS there is a considerable increase in the CPU time required. Indi-
cations of this are given in [91]

2.5.2 The Smagorinsky model

This is one of the most commonly used models, and is accredited to Smagorin-
sky [102]. Smagorinsky was simulating atmospheric flows and looking to model
the large flows in the atmosphere. It uses the strain rate to calculate the eddy
viscosity,

µt = ρCs∆
2(2SijSij)

1/2 (2.79)

The Smagorinsky constant Cs has a value of 0.17 and is defined so that there
is a balance of energy between the large and small scales and that the cutoff
filter is applied in the inertial subrange where the energy spectrum obeys the
κ−5/3 law. This is defined as [67],

Cf =
`o

`f

=
1

π

3CK

2

−1/4

(2.80)

Where Cf is the ratio of length scale of turbulence to filter length, which
defines the size of turbulent eddy that can be simulated, given that the filter
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will effectively remove all scales smaller than the filter length. CK is the
Kolmogorov constant and has a value 1.5. This will ensure that the dissipation
in the smaller scales matches the dissipation rate from larger to smaller scales
[60]. If the value of Cs is equal to Cf then the filter scale is equal to the mesh
scale, given that Cs is defined by

Cs =
`o

h
(2.81)

The value of Cs given is then determined by the filter, the grid and the length-
scale of the turbulence. If the value of Cs as defined in Equation 2.81 is varied
and with it the grid size, for a fixed filter size, then as Cs is reduced the solution
becomes more accurate. However, to reduce Cs beyond 0.2 would imply that
h > `f and is therefore not possible to simulate. Conversely, for a fixed nu-
merical mesh, altering the filter scale by reducing Cs gives increased numerical
errors [67], suggesting that an optimum value of about 0.2 should be used.

However, the values of the constant is applied over the whole domain and so
is used for areas of mean shear and no shear. This is a problem as the optimal
value of the constant can be seen to vary with the position in the flow. Bardina
(1983) obtained values between 0.09 and 0.2 for the constant. The reason for
the change may be explained by the proximity of a wall, which affects the
turbulence because as there is turbulence generated there the dissipation has to
be reduced. Mason and Callen [68] observe that the value of ≈ 0.2 is adequate
for channel flow, but that care must be taken in choosing both the value of
the the constant and the grid sizing, as they impact on the lengthscale used
near the wall, when matching the model to a law-of-the-wall type function.
Deardorff [17] found that the value of Cs had to be halved in the region of
high shear, whereas in more homogeneous turbulence the original value could
be used.

Moin and Kim used a variation of the Smagorinsky model to successfully model
channel flow and achieve good correlation with experimental results by using
Cs = 0.065. [75] The model used 16×16×65 nodes in the streamwise, spanwise
and wall normal direction for a Reynolds number of 13 800 and had minimum
y+ < 2

The Smagorinsky model, however, is overly dissipative, even for the larger
eddies. This dissipation of low wavenumbers is caused by the constant Cs being
fixed so that the inertial subrange is correct and this extra eddy viscosity added
by the mean shear rate can make the representation of transition difficult. This
excessive dissipation is caused by the correlation of the Smagorinsky term and
the strain rate. [63]
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Despite its shortcomings the Smagorinsky model still functions well [53, 61],
one of the reasons for this could be that as long as the range over which
the subgrid is spread is small, it is relatively safe to assume that the subgrid
turbulence is isotropic.

2.5.3 Other LES models

2.5.3.1 No subgrid model

Lesieur and Métais [60] state higher order differencing for spectral LES intro-
duces numerical dissipation of the energy as a function of the wavenumber.
It may be regarded as pseudo-direct simulation [99] and is primarily for the
spectral study of turbulence. Much of this work has given unsatisfactory re-
sults [60] meaning that the results have to be checked very carefully. Boris et
al [7] also used no explicit filtering, the work is often justified on the grounds
that the scheme is accurate as long as the bulk lengthscale is large compared
to the gridsize, as this ensures well resolved flow. The main advantage of this
method is that the turbulent motion of the flow is represented in this case.
The energy removal is only where necessary. However, the details of this re-
moval are vague and the issues surrounding the numerics and the physics of
the problem become intertwined in such a way that it is not possible to obtain
a ‘grid independent solution’, or estimate what is happening at the sub-grid
scale because the physics is confounded with the numerics..

2.5.3.2 Dynamic models

Following on from the application of the same constants for the whole domain,
which can be seen to be flawed for a non-trivial domain, the constant could be
modified to account for the local flow field. This technique has been pioneered
by Germano [27, 26, 62] and is a more promising future for LES also allowing
modelling of near wall flows more accurately.

A test filter is applied to the filtered flowfield such that the size of this filter
is twice the original filter size. We can then divide the turbulence scales into,

• motions larger than
¯̂
∆

• motions between ∆̂ and
¯̂
∆

• and, motions smaller than ∆̂
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where ∆̂ is the LES filter and ∆̄ the test filter, and as before the motions

between ∆̂ and
¯̂
∆ are the motions just larger than the LES filter and those

just smaller than the test filter. Typically ∆̄ = 2∆̂

Germano et al noted the identity [28]

Lij = Tij − τ̄ij (2.82)

to relate the subtest and subgrid scale stresses to the resolved Leonard stresses.

Tij − 1

3
δijTkk = 2Cs∆̄

2 ¯̂
S

¯̂
Sij

τij − 1

3
δijτkk = 2Cs∆̂

2ŜŜij (2.83)

The value of Cs is optimised by the use of a least squares fit of Lij and Mij

Cs = −1

2

〈LijMij〉
〈MijMij〉 (2.84)

where (as demonstrated by Lilly to prevent the value becoming negative [62])

Mij = ∆̄2 ¯̂
S

¯̂
Sij − ∆̂2ŜŜij (2.85)

The brackets 〈. . .〉 denote averaging, usually over a similar plane, for example,
parallel to a wall in channel flows. This is used to give stability to the solution
as the value of C may be negative denoting backscatter of energy. Small
numbers of negative cells are acceptable though it is usual practice to set
the minimum value of Cs to be 0 [3]. This prevents backscatter and avoids
numerical instabilities. Ghosal and Rogers [31] successfully model a plane
wake using two dynamic models. Their dynamic model only averaged in the
spanwise direction, and their dynamic localised model (DLM), averaged and
then applied the Cs ≥ 0 condition. The DLM model took over half as much
again in CPU time for comparable predictions of the turbulence statistics when
compared to filtered DNS results. However, the DLM may be applied to more
general flows without the risk of numerical instability.

Averaging in a statistically homogeneous plane however, limits the LES model
to a relatively simple geometry. One way to overcome this was proposed by
Menevea et al [70] who proposed that weighted averaging along the fluid
particle path be used to provide the value of the Smagorinsky constant.
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The modelled scalars are taken from the dynamic model from Equation (2.84)

JLM = LijMij

JMM = MijMij (2.86)

The model is shown to work well near walls, in decaying turbulence and in
transitional flow, and in addition will not become negative. The model is
shown only to have a weak dependence on the timescale that the average is
weighted over, and the numerical diffusion from the first-order interpolation of
the scalars aids to smooth the constant.

Theoretically, the formulation for the value of Cs should allow the correct mod-
elling of wall flows as the transitional and laminar flows should be predicted
correctly, [67, 84].

It can be seen therefore, that the modification of the constant C dependent
on the local flowfield allows for a more accurate simulation of the flow. This
however indicates that the modelling strategy may not be entirely correct, for
if it were so the monitoring of the strain rate (in the strain rate model) would
represent what is happening to the flow, and a second equation to modify the
result of the strain rate by the use of another property of the flow would not
be required. In his review, Jiménez states that ‘the dynamic model owes more
to its robustness that to its correct prediction of the physics’ [43]. However,
for the subgrid models he tested, none correctly predicted the subgrid physics
adequately but the large scale predictions compared well with experimental
and DNS results.

The meeting of the UK LES/DNS consortia in March 2001 suggested the use
of the dynamic model as a result of research that they have undertaken. In
the case of the flame simulation and modelling of flow through an aero engine
the results from the dynamic models were better than those from the static
models for these fluctuating cases.

Due to the failure of the Smagorinsky model in regions of high shear, other
approaches have been proposed. Germano [27] proposes a galilean invariant
dynamic filter by means of the application of a second filter. The two filters
are then used to define a local value for the Smagorinsky constant in time and
space. This model has been validated and shown to recognize when the flow
is laminar, and also performs well in the transitional and turbulent regime
when compared to DNS results. This method was unstable and has been
modified [26, 28, 29] to increase the stability and allow a negative eddy viscosity
which represented backscatter to the correct pattern, though could itself cause
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numerical instabilities. The model behaves correctly near a wall giving zero
subgrid scale stress and correct behaviour near a wall. However the constant
is often averaged in the direction of flow making this model unsuitable for all
but the simplest of domains.

2.5.3.3 Kraichnan’s spectral eddy viscosity

Kraichnan proposed a spectral eddy viscosity which although developed for
isotropic turbulence works well for non-isotropic and inhomogeneous large
scales [60]. The prediction of backscatter is adequate. However, spectral eddy
viscosity is difficult to employ when working in physical space [60], though the
formulation of the eddy viscosity is close to that for the Smagorinsky model
and the RNG formulation.

2.5.3.4 Scale similarity model

Bardina et al [5] proposed the scale similarity model based on the assumption
that the most important correlations between the resolved and unresolved
scales are with the smallest of the former and the largest of the latter [84, 60].
Rather than the large scale strain rate used in the Smagorinsky model, the
authors used a second filtering to evaluate these large subgrid scales, which
they refer to as filtered small scale motions. The modelled residual stress is,

τij = (Lij − 1

3
δijLkk)− 2cs∆̂

2ŜSij (2.87)

Giving a model for the eddy viscosity that does not explicitly use the filter
width ∆, thus,

νt = 0.41(ûkûk − ˆ̂uk
ˆ̂uk)(2ŜijŜij)

1
2 (2.88)

It is the inclusion of the Leonard term that differentiates it from the dynamic
model.

However this model is found not to dissipate energy,[5] and has led to modifi-
cations to spatially average the strain or introduce a correction factor. Liu et
al [63] used physical data from a turbulent round jet to assess and tune the
scale similarity model bringing in dynamic elements. The relationship between
the real sub-grid scale stress τij and that modelled by the resolved scales Tij is
developed and the assumption that they are correlated is proved false. How-
ever, reasons for scale similarity are postulated and are given. Firstly, if an
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eddy is influenced by the next largest size, and that in turn is influenced by the
next largest eddy, then there may be some correlation between the largest and
smallest of the three sizes. Secondly, if a structure is decomposed into eddies
of a fixed size, then there will be correlation as in actual fact it is one structure
that is being viewed as a cascade of eddy sizes. A correlation between τij and

Lij = ̂̂uiûj−ûiûj is demonstrated, leading to a dynamic stress-similarity model
which uses a weighting function (which is a correlation of the stress and strain
rates to modify the modelled sub-grid scale stress).

2.5.3.5 One-equation models

As an analog to the one-equation models used in RANS turbulence modelling,
the one-equation model [16, 18, 48], models the turbulent transport equation
with a dissipative model (usually the Smagorinsky model). These authors are
looking towards the modelling of more of the flow with the sub-grid scale model
and so have modified the dissipative equation so that the effects of the mean
shear are lessened in the calculation of the eddy viscosity.

2.5.4 LES and the energy spectrum

The cutoff point between the modelled and simulated turbulence should lie in
the inertial subrange. This will then ensure a smooth transition from φ̂ to φ̃
from the approximations inherent in this range as all of the energy that is not
modelled can be assumed to be dissipated. This is naturally an obstacle to
modelling as the decision where to put the cutoff point decides the computer
power required, the accuracy of the model and the level of approximation that
is required to allow the dissipation of the sub-grid scale energy. It is important
to remember though that in physical turbulence there is no distinct change
from large to small scale. In the physical world there is a smooth transition.
This is a point where error may be introduced and so the placement of the
cutoff in the inertial subrange will attempt to mitigate these errors because
the transfer of energy at that point is generally in the direction of isotropic
dissipation but the effects of viscosity are minimal.

Models are being developed that will place the cutoff higher up the inertial
subrange [18]. This forces the subgrid scale model to be more descriptive of
the smaller eddies, but if successful will reduce the CPU time required for the
simulation as the cells can be larger because there is less resolution of the flow
required. The problem is that the placement of the cut-off higher up the energy
spectrum means that the subgrid scale model has to be more complicated to
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represent more features of the flow than just the dissipation by viscosity. A
balance, therefore has to be struck in the placement of the large-scale/small-
scale division between the simple subgrid scale model requiring smaller cells
and the more complex subgrid model with the larger cells.

2.5.5 Near wall approximations

Near a wall the flow undergoes high shear and so there is a generation of
turbulent energy. In order to capture the features of the flow it is important to
be able to resolve smaller scales at the wall and to better predict the shearing
in the direction parallel to the wall. The shear stress acts to create small
turbulent bursts but the wall acts to restrict the movement of this turbulence.
There is therefore coherent movement of the turbulent structures near the
wall and these cannot be represented by a model that assumes that any eddy
smaller that the filter width is entirely dissipative. Development of a near wall
model requires a much finer near wall grid which is computationally expensive,
a model allowing generation energy at sub-grid scales, or both [53, 67]. The
dynamic subgrid-scale model, is much better than the Smagorinsky model in
near wall regions, due to its less dissipative character and successful reduction
to laminar flow [3].

However, the use of a non-uniform grid introduces error into the simulation as
the filter is changing across the domain. Ghosal and Moin [30] tackle this by
introducing a term that allows the commutation error to be calculated so that
the flow may be calculated with as much accuracy as required. However the
use of nonuniform grids without the reduction in accuracy may be possible by
utilising an explicit filter and ensuring that the grid spacing is smaller than
the filter width, which though reducing the accuracy allows the filter to be
specified independently of the grid. This should increase the accuracy of the
dynamic model by controlling the errors, and also ensure that the filter is
known exactly [114].

Another approach to wall flows is to refine the grid in the region of the wall
and then to use body forces to act as though there is a wall whereas there is
not. [74] This approach relies on linear interpolation between the (refined) cell
centres to replicate the object being modelled and has worked successfully for
stirred tank reactors and the modelling of eddies behind lorries.

In the study of liquid metal flows, as used to cool nuclear reactors, wall mod-
elling has been used successfully in comparison with experimental data [34].
The wall sublayer extended well into the domain ensuring that it was ad-
equately modelled and the wall functions employed for the sub-grid scales
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moved smoothly from laminar to turbulent simulation being based upon uni-
versal velocity and temperature profiles.

As an alternative to resolving the flow up to the wall, there are a number of near
wall approximations that are available for Large Eddy Simulations. Essentially
developed to reduce the CPU overhead with the required wall resolution of a
Large Eddy Simulation, they are in effect ‘Hybrid’ models. These models fall
into 2 broad categories [80]. Both accept that the resolution of the grid is
not fine enough to capture the small eddies near the wall, but rely, to varying
degrees, on the fact that these small eddies are isotropic and can to some
extent be analysed in a statistical manner.

The first method is to use an equilibrium between the flow at the wall and the
flow further from the wall. This is a fix to ensure the correct behaviour of the
flow near the wall. It is only available for simple geometries and is, in effect,
a law of the wall for LES models.

The second category is to attempt to model the flow near the wall. There are
two popular methods to try to do this. The first is the so-called Two-Layer
model (TLM) which overlays a finer grid between the first grid point and the
wall in order to solve the 2-dimensional boundary layer equation in this space
[4, 82]. The method is shown to work well with simple geometries but not
for flow in a rotating pipe. This method does not perform well when coupled
to the Smagorinsky model [82], but when used with the dynamic SGS model
gives good representation of the log-layer.

The second method used to model the flow near the wall is Detatched Eddy
Simulation (DES) pioneered by Spalart et al 1997 [105], initially for detached
flow [80]. A second grid is not defined as in the Two-layer model, but rather
a RANS turbulence model is used near the wall until the lengthscale from the
turbulence model approaches the distance from the wall, and at that point
it is fixed to the filter width of the LES. However, because there is only one
grid the velocity field is smooth and does not have to be interpolated at an
interface. This then requires a division of the intended work for the DES grid
[103]. The model has been modified by the inclusion of a backscatter model to
reduce the error in the prediction of the log-layer just inside the outer (LES)
region, which may have been caused by incorrect matching of timescales from
the RANS and LES models[81]. There is limited use for DES for internal flows
however, as the spatial resolution is close to that of a LES. Its advantage is
for external flows where the reduction in the number of required grid points is
more prominent [97].
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2.6 Hybrid modelling

Given the accuracy but computational overhead of Large Eddy Simulation,
and the adequateness and lower computational overhead of the Reynolds av-
eraged approach, the idea of bringing the two approaches together will offer
the advantages of both. The Reynolds average technique will be used where
it is appropriate, this being where the turbulence is isotropic and where the
averaged approach holds. The Large eddy simulation will be used where the
turbulence is anisotropic such that the application of averages greatly reduces
the accuracy.

One of the large challenges facing the interlinking of the two forms of turbulence
modelling is that there is a difference in turbulent viscosity between the LES
and RANS procedures by an order of magnitude or more. Reasons for this
are that the turbulent viscosity for the LES simulation is smaller to allow
the fluctuations to be modelled, this is as a result of the derivation of the
governing equations. If µt were as large as for the RANS modelling procedure
only the mean flow would result, though on a much finer grid. To take this to
its conclusion, the DNS simulation does no have a turbulent viscosity, as there
are no modelling assumptions made.

Speziale proposed a workable very Large Eddy Simulation concept [107]. The
drive of the work was to scale the turbulent viscosity with the grid size and
so allow a sliding scale of modelling accuracy from the scaled µt. The results
presented were convincing but there have been criticisms from those who see
this as a scaled k−ε model as opposed to true LES/RANS hybrid modelling. It
is also required that care be taken with the timestep as that which is required
for the fine cells must be used for the coarse cells also, or the accuracy of the
pseudo-LES will be lost.

Dejoan and Schiestel [18] are developing a methodology similar to the ideas of
Speziale in that the properties of the filter change as the filter width is altered.
They develop a transport model for the resolved and sub-grid scale turbulence
energy and successfully combine this with a dissipative model in such a way
that the cutoff can be placed above the inertial subrange.

More recently a hybrid modelling approach has been put forward to solve
problems at the wall [35]. Essentially for a pipe the assumption is made that
the bulk of the flow can be resolved adequately using a 1-dimensional k −
ε model, but increased wall resolution is obtained by performing a LES in
that region. This is the opposite of the wall modelling approximations in
section 2.5.5 and used to extract data about the wall flows. However, both the
wall models mentioned earlier and Hamba’s work can be considered as hybrid
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models.

A multiple time stepping approach has been used successfully to model the
flow around a sphere by Teixeira and Awruch [110]. Here the domain is simple
and contains only ≈11 000 nodes, but the cpu time is reduced by over an order
of magnitude in the calculation of the final solution by the modelling of some
of the nodes on integer multiple timesteps of each other. This reduces the CPU
overhead but is insensitive to physical phenomena. To overcome this a mon-
itoring function has been introduced and the speedup is still eightfold. This
technique lends itself to parallel computing as the processors could run at the
different timesteps. This would allow many nodes to simulate the fluctuating
jet, and a larger number to calculate the rest of the domain which could be
much larger, a technique that could be invaluable in the accurate simulation
of chemical reactions.

Schlüter et al [96] have recently published the results of a method of com-
bining both LES and RANS modelling approaches with a view to a complete
simulation of an aero-engine using RANS modelling for the turbines and LES
for the combustion. They apply a user defined body force to the LES flow and
then can alter the velocity profile to ‘blend’ the results to the inlet flow for
the RANS modelling. This is done in an area where both of the models are
applied at the same time. The methodology is only applied to the flow from
the LES into the RANS, though it is noted that this does effect the flow in
the LES region. In practice a Reynolds averaged simulation would be used to
provide these boundary conditions for the integrated model.

However these approaches have not harnessed the possibilities of using a par-
allel computer to explicitly divide the workload between the methodologies.

2.7 Numerics and discretisation

In order to obtain a higher level of accuracy, a knowledge of how the numerical
solution is reached is important. The method used in the commercial code
CFX is that of finite volume approach. This may be simplified to the finite
difference approach if considered in two dimensions, and an outline of the finite
difference method is given below.

Additionally, for the program to be successfully applied to a parallel computer,
a knowledge of how that computer will interact with the code and solve the
problem is also required. An overview of the method used to parallelise the
CFX4.4 CFD package has been given.
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For a given function y = f(x) a prediction of the value of point y2 correspond-
ing to point x2 is given by the Taylor series expansion.

y1 = y0 + ∆x
∂y

∂x
+

1

2
∆x2 ∂2y

∂x2
+

1

6
∆x3 ∂3y

∂x3
+ . . . + higher order terms (2.89)

By manipulation of the Taylor series expansion an expression for the prediction
of the gradient using the two adjacent values of y may be obtained. Using the
value of y1 = f(x1) and y0 = f(x0) and x1 > x0, a prediction for the gradient
is,

∂y

∂x
=

y1 − y0

∆x
+O (∆x) (2.90)

This can be used to predict the flow in the CFD domain. It is the equivalent
to setting the velocity at a cell face to be that at the cell centre and then if
referred to as the ‘upwind differencing scheme’. Knowing the distance ∆x and
two of the other values the third may be calculated. It is only accurate up
to the second term in the expansion and so is referred to as being ‘first-order
accurate’

The gradient may also be obtained by combining two different predictions

y(x + ∆x) = y0 + ∆x
∂y

∂x
+ . . . (2.91)

y(x−∆x) = y0 −∆x
∂y

∂x
− . . . (2.92)

(2.93)

This gives rise to the ‘central differencing scheme’ and is ‘second order accurate’
as it encompasses two different values for y and is central about the point x1

where y1 = f(x1)

y2 − y0

2∆x
=

∂y

∂x
+O

(
∆x2

)
(2.94)

Thirdly, the ‘higher upwind scheme’

y =
3

2
y(x−∆x)− 1

2
y(x− 3∆x) +O∆x2 (2.95)
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The differencing scheme is then used to generate the solution in an iterative
fashion on the computational mesh that the domain has been divided into.
The mesh is progressively divided up into smaller and smaller cells until the
solution does not change. This is said to be a ‘mesh independent solution’ and
occurs when the approximations introduced by the discretisation become less
than the numerical errors from the differencing scheme, the models used and
the computer error.

The mesh spacing defines the accuracy of the model, especially in the case of
a LES. This is because the filter size is a function of the grid size, typically
∆ = h where h is the grid spacing and ∆ the filter size. This does mean that it
is difficult discern whether the grid has an influence on the solution. It is also
true that the Large Eddy Simulation is a fully transient model that is trying to
represent the chaotic nature of the turbulent flow with as few approximations
as possible. This makes the definition of a ‘grid independent solution’ very
difficult.

When the Reynolds number is large enough and there is a separation of scales
in the energy cascade the difference in size between the large and small eddies
will be in excess of 10 000 times. The resolution of the large eddies will require
the positioning of say 10 filters across the eddy size or say 20 grid points
across the eddy. This would lead to a grid density of 8000 grid points per
large eddy. However, usually it is more common to try to capture more of
the energy in the flow than just the largest eddies and so maybe this would
require 100 × 100 × 100 grid points which comes to 1 000 000 cells. This is a
thousand-fold increase in the number of grid points and to obtain a solution a
speed-up in computer resources of the highest magnitude is required.

When a finer grid is used there is a risk that the solution will propagate across
the cell in less than one timestep if the step is too large. In order for this to
be prevented the ‘CFL’ condition or Courant number must be adhered to,

u∆t

∆x
≤ 1 (2.96)

For the DNS models that resolve the flow down to the point of dissipation
of the energy the computation time is even greater. The reason for this is
that the grid required to solve for the Kolmogorov lengthscale is very fine. As
the Reynolds number increases the difference in size between the large and
small eddies increases, which for internal flow means that the Kolmogorov
scale becomes smaller requiring more cells for the simulation. This has knock-
on consequences to the time to reach a solution and the size of computer
required, especially as it is accepted that the Courant number should be [12].
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u∆t

∆x
=

1

20
(2.97)

An estimate of the number of points required for an DNS simulation is given
by [59, 93],

N ∼ Re9/4 (2.98)

The increase in size and complexity of problems leads to the development of
faster computers, conversely the development of computers allows us to solve
more numerically intense problems. The physical limitations of computing
today mean that the larger problems and completed more quickly if broken
down into smaller pieces and solved. Parallel computing provides the means
to do this, and because the pieces are all solved at the same time the answer
is reached faster. This speedup is defined by

S(n, P ) =
T (n, 1)

T (n, P )
(2.99)

Where P is the number of processors allocated for the job of size n. T (n, 1) and
T (n, P ) are the times to complete the job on one and P processors respectively

However, there is a penalty in spreading the work over many processors in that
they have to communicate with one another to ensure that they are working
at the same rate, this synchronization causes idle time on some processors
and the network traffic to increase. There is also an overhead attached to the
communications between the processors in the speed of the network and its
capacity.

There is therefore an efficiency associated with a given number of processors,
and this is defined as,

E(n, P ) =
S(n, P )

P
=

T (n, 1)

P T (n, P )
(2.100)

Assuming that the a machine with P processors can go no more than P times
faster than a single processor machine it can be seen that S(n, P ) ≤ P and
E(n, P ) ≤ 100. Additionally it should be noted that the problem should be
scaled with the number of processors. If the problem size remains the same,
then the load per processor will be reduced and more time will be spent in
communication than in computation, and the efficiency will drop
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The deviations from this ideal can be summed up in four main points [72]

• Amdahl’s Law. The speedup achievable on a parallel computer is limited
by the existence of a small fraction of inherently serial code that cannot
be parallelised. This fraction of code α affects the speedup, though as
the proportion of the code that can be parallelised is increased the value
of α will tent towards zero.

S(n, P ) ≤ 1

α + (1−α)
P

≤ 1

α
(2.101)

• Use of less than optimal algorithms when the best algorithm will not
parallelise or to reduce the communication overhead

• Parallelisation often increases the overheads associated with procedure
calls, which may be called a ‘relative’ overhead, and also the ‘pure’ over-
head of communication and synchronisation

• Load imbalance will force some of the processors to work for longer than
others and the resulting idle time will show up as a reduction in the
speedup.

2.7.1 Bulk synchronous parallel

A brief overview of the BSP model has been included as it is the method used
by CFX to parallelise CFX4.4 for the ccNUMA Origin2000 machine (mimir)
at Shrivenham Campus.

Developed by a collaborative group including Oxford and Harvard Universities,
the BSP model [10, 40] for parallel computing is one of the earliest, though
still receives much research as as it is an easily portable paradigm. [25, 113].
It allows fine grained parallelisation where the program is parallelised at the
loop level and so not as efficient as parallelising the whole program, because
the step size can be set by the user to optimise the parallelisation they have
undertaken.

Originally conceived as a way of parallelising programs on a distributed mem-
ory system, it has been implemented successfully on both shared and dis-
tributed memory computers [41] who show that with some care in the design
of the program the speedup is very good.

The model works in the following way. The program is divided into ‘supersteps’
that consist of three ordered phases.
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1. Computation locally to that node

2. Communications amongst the processors, which are only done at this
time.

3. Barrier synchronisation, which ends the superstep and makes the infor-
mation available to the processor ready for the next superstep.

The BSP model categorizes the parallel machine using measurable character-
istics that will then allow the machine to be defined and the computation
and communication time predicted. The ratio of computation time to com-
munication time is defined g, the time between successive synchronisations L
the maximum number of messages passed h and the number of processors P .
Ideally g ≥ 1 or the computer is spending more time communicating that cal-
culating. These allow the estimation of the time for one superstep as being
max wi + max hig + l where wi is the computation time of process i and l the
overhead associated with the synchronisation.

Work has been done to calculate the theoretical behaviour of the BSP model
on different computer including its use on a shared and distributed memory
parallel machines [25, 24]. The experimentation has proved the predictions to
be acceptable [51, 25] and also illustrated its portability and the need for only
a recompilation of the serial code on a new computer as opposed to a re-write
of the BSP calls.

2.8 Flow over a cylinder at ReD = 3 900

In 1998 the Advisory Group for aerospace research and development (AGARD)
proposed the adoption of flow over a cylinder as a test case for LES develop-
ment. The simulation requires resolution of a moving point of detachment for
the separating flow, and both physical and numerical instabilities which are
seen as, transition and large scale vortical structures. Computational work
has been undertaken for Reynolds numbers up to 140 000 where the Reynolds
number ReD is based upon the cylinder diameter, the mean upstream velocity
and the physical properties of the fluid upstream from the cylinder.

Up to ReD = 40 the flow is steady and laminar with a pair of ‘stationary’
vortices behind the cylinder. The region 40 ≤ ReD ≤ 190 is that of laminar
vortex shedding. From 190 ≤ ReD ≤ 260 has been labelled the ‘mode A’
instability by Williamson [119] and is where the domain and spanwise scales
have a wavelength of approximately 4 diameters. At ReD = 260 the ‘mode
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B’ instability is entered where spanwise differences are seen at a spacing of
approximately 1 diameter. The next change happens at between 30 < ReD <
3 000, though typically at ReD = 1200 when the shear layer becomes unstable
and separates [85]. Full transition to turbulence occurs between 2 × 105 ≤
ReD ≤ 3.5×106 and the boundary layer becomes turbulent before detachment
at Reynolds numbers exceeding 3.5× 106

Ong and Wallace [77] used hot-wire anemometry to provide accurate experi-
mental results for ReD = 3 900 with an aim for validating LES results. These
have been compared with the LES results of Kravchenko and Moin [49] for
the same Reynolds number and have shown very good agreement. Kravchenko
and Moin used three grids of 0.5M 1M and 2M cells and a B-spline method to
interpret the flow between the cells. In addition a central differencing scheme
was used as higher-order upwind schemes were shown to posses more numer-
ical dissipation. Accurate prediction of the Strouhal number is obtained and
the power spectrum matches the experimental results of both Ong and Wal-
lace and also Lourenco and Shih [64]. Spanwise lengthscales are predicted
correctly as in the earlier work by Kalro and Tezduyar [46] and Lei et al [57].
For comparison a simulation is done without a subgrid scale model, in this
case the mean velocities compare well but the energy spectrum shows much
less dissipation than when the Smagorinsky model is used. Franke and Frank
[23] used this case with a compressible LES code and obtained good results
when compared to experiments.

Anderson and Reider [1] investigate closely the numerics of the model. They
suggest that the grid resolution in the normal and tangential direction on the
cylinder is nearly equal with the mesh size being of the order of 1/ReD. They
also demonstrate the importance for careful development of the model to re-
duce startup errors and used in conjunction with their fourth order differencing
scheme, a CPU time of only 20% more than when the hybrid difference scheme
was used was realised.

Breuer [8] studied the case for ReD = 140 000 using both Smagorinsky and
Dynamic subgrid scale models on a parallelised finite volume grid. The con-
centration of cells around the cylinder gives a slight reduction of accuracy in
the wake which is especially noticeable in the u′u′ measurements. This is in
agrement with the conclusion of Kravchenko and Moin that the grid refinement
and influence of the grid on the solution has to be investigated and clarified.
The results also agree very well with the LES results of Lübcke et al [65] How-
ever, the latter estimated that their explicit algebraic stress model with its
non-linear stress-strain relationship can give comparable results at only 5% of
the computational time.
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Chapter 3

Method

3.1 CFX4.4

3.1.1 Overview

The work herein was completed using the commercial computational fluid dy-
namics (CFD) package CFX4.4, which is a block structured staggered grid
segregated solver CFD suite [11]. The choice of package was influenced by
the facilities within it to test whether the advantages in accuracy and com-
putational time by the coupling of LES and RANS methodologies could be
achieved. When this study was started in 1998 it was the most advanced CFD
program that AEA software produced, although now has been superseded by
CFX5, which is an unstructured coupled solver.

CFX4 consists of three main parts. A pre-processor where the computational
grid is generated. A solver where the solution to the problem is found, and
a post-processor where the solution may be viewed. (It should be noted that
as with many CFD programs the solver may read in grids from many sources
and there are a variety of post processors that can be used. For this study the
native pre processor has been utilised and either the native post processor or
‘Fieldview’ by Intelligent Light has been used)

To create the grid in the pre-processor ‘Build’, geometric points are created,
these are joined by edges, edges joined to give surfaces and these joined to give
blocks. The blocks have to be topologically hexahedral, so that the cells are
topologically cubes. There can be a number of blocks in a model, and this
allows the use of more blocks where the geometry is more complicated. How-
ever, being a structured mesh, the cells each side of the block boundary have

55



56 CHAPTER 3. METHOD

to match exactly and so the refinement of cells in one block may dramatically
affect the number of cells in the model overall. It is possible for the number
of cells each side of the boundary not to match and this is referred to as an
unmatched grid.

In the pre-processor, patches may be put on the block boundaries (2D patches)
or on a whole block (3D patches). 2D patches are used to mark walls, inlets
and outlets, periodic and symmetry planes. In addition to this a user defined
2D patch may be set that can be referenced by the used for a specific task.
3D patches may be used to set solids, porous regions and again user defined
regions that can be referenced explicitly.

Having defined the mesh or grid, and put the patches required onto it a geom-
etry file is generated by CFX4 and this can then be used by the solver. The
geometry file starts with a header which tells the number of blocks, patches
cells and points. Following that there is a summary of the size of the block,
given as the number of cells in the i, j and k direction. Next comes the de-
scription of the patches in the geometry, first the block faces that are glued
together, then the patches that have been placed by the user. Finally there is
a section containing the positions of all of the points in the geometry, which
finishes with an end of file marker.

In order for the solver to be able to use the geometry that has been created
it has to be provided with more information, this information is contained
within the command file. The command file contains the options instructions
and boundary conditions and given this and a geometry the solver will be
able to provide an answer. The command file tells the solver whether the
flow is laminar or turbulent, isothermal, compressible. It provides instructions
as to whether there are any more patches to be added. The fluid properties
are specified along with the differencing scheme, turbulence model and time
stepping information for a transient run. The solver and number of iterations
can be specified along with the under relaxation. The boundary conditions
are then given and then the options for the printing out of the results for
the post processor. There are many options for the command file and the
documentation should be consulted for more information. [11]

CFX4 is a general purpose code, and so there are some areas that are not
covered by the intrinsic functions. To solve for any problem that may lie
outside of the realms of the code, CFX allow the addition of ‘user fortran’
subroutines, which are linked to the source code and so produce the results
desired by the user. In order to allow the user to do this user will have to write
the code to be added. This can be in the form of FORTRAN77, but CFX4
will accept object code from F90.
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Table 3.1: Order of computation in CFX4.4
viscosity µ
velocity in x-direction u
velocity in y-direction v
velocity in w-direction w
pressure p
turbulent kinetic energy k
turbulent dissipation ε
user scalars SCAL

The solver reads in the information from the geometry, the command file and
any added user fortran and then using the options specified will generate a
solution to the problem and will output the results in the form of a dump file
containing the results, and an output file, which contains details of how the
solution was reached, the convergence history, and any error messages. The
solver solves each block in turn according to their numerical value. For each
block the cells within that block are numbered according to their position
including the dummy cells and then the solution obtained with the dummy
cells acting as boundary conditions for that block.

The post-processor enables the visualisation of the results and the printing
of these results. Functions may be defined in the post-processor to express
clearly the values that the user is interested in, and also the plotting of results
along a line, plane or volume, that can then be compared to the same plot
from another computational model.

It is also possible to restart from a previous run and this allows for the monitor-
ing of progress and the breaking of long runs into manageable sized simulations.

3.1.2 Order of computation

The order of computation of the flow variables for a laminar simulation is
given in table 3.1. When a LES model is run CFX4.4 is by default executed
as a laminar model where the eddy viscosity modifies the laminar viscosity.
The reason for this is that a LES model does not need the scalars that are
associated with the Reynolds averaging approach and so it is best to run the
model as a laminar simulation. If a RANS turbulence model is used for a
turbulent simulation then the turbulent viscosity is calculated at the end of
the iteration once the turbulence properties of the flow are evaluated

The CFX4 flag that controls whether the simulation is turbulent or laminar
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is called LTURB and is true for a turbulent simulation. It is not possible to
have different blocks within the domain holding different values for LTURB, it
is a global variable. It is possible to change the flag whilst the simulation is in
progress though the change will not create or remove the turbulence properties
though they will not be recorded after the change, which makes the use of the
change inpractical.

3.1.3 CFX4.4 - Parallel

CFX4 works equally well on both serial and parallel computers. On a par-
allel machine the pre- and post-processors remain unchanged but the solver
is altered slightly. At the start of the run there is decomposition step which
collects all of the geometry information and writes it to the geometry file. This
information may have been in the command file or may have to be extracted
from the user fortran. Once this is done the geometry is decomposed into a
number of domains corresponding to the number of processors specified, CFX
tries to balance the work done by each processor to reduce the idle time of
the processors by using the internal program ‘Meshimport’ to give good load
balancing and vectorisation. To enable it to recombine the geometry again at
the end of the simulation, there are files produced which tell CFX how the do-
mains fit together, most notable the PRL, config and connectivity files, which
are stored in the ‘para.control’ directory. Once decomposed, and if necessary
the restart dump file decomposed as well, the solver proceeds on each of the
processors as before. At the decomposition boundary the values are exchanged
at the beginning of each timestep. This is achieved by placing dummy cells
around each of the decomposed domains such that the dummy cell contains
the values from the active cell that it would overlap were the domains to be
fitted together again. The parallel execution of the model is controlled by the
Bulk Synchronous Parallel method 2.7.1. The solution is then calculated block
by block as before but for each node in parallel. At the end of the simulation
the parallel solver recombines the dump files form all of the computational
nodes, so that to the used it appears that the simulation has been achieved
on a serial machine. A parallel output file contains details of the run and the
output file from each domain is placed into a directory accessible to the user.
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3.2 Development of the hybrid model

This section leads through the development of the hybrid model based on the
ideas that may or may not be possible. For different problems, the potential
solutions have been given to show the development of the idea.

3.2.1 Overview of the solver

To demonstrate the approach of using a Hybrid model, the simplest way is to
split the domain into two sub-domains. This is not reflecting the number of
processors that are to be used but rather the number of modelling approaches.
One of these new sub-domains will execute the LES code for the calculation
of the flow field and the other will execute a RANS model. The interface
between the domains could be defined by the criteria in the program and
would therefore be adjustable as the program proceeds, or it could be set by
the user. At the end of the simulation the user will be presented with results
from both of the solvers and this will be available for post processing as if it
were from one solver. The LES solver will operate where there is generation
of turbulence and the RANS solver will operate where the process is generally
dissipative.

The user will construct the geometry in the first instance so that all of the
cells could be used for an LES simulation. This will allow for comparison
with an LES simulation of the domain. The CPU time will be compared
with both RANS and LES simulations. The interface will then be placed by
the user in an area deemed appropriate for it and the simulation run. This
placement will put the RANS model where the flow is modelled well by the
Reynolds averaged approach, the flow is mainly dissipative and that there is
little generation of turbulence. The LES sub-domain will be where there is
generation of turbulence and regions of strong swirl or anisotropy. Although
quicker to start the simulation with a purely RANS simulation, it would not be
possible to then refine the grid to allow a LES to take place on the other side
of the interface, due to the restriction of no unmatched grid implementation
in the parallel version of CFX4

In a fully automated LES/RANS hybrid model the position of the interface
would be placed automatically and the criterion could be based upon the
turbulence level, the anisotropy of the domain or the turbulence or timescale.
This is the first case for the work towards the use of different sized cells each
side of the interface, and then the combination of different sized time steps, or
the use of a steady state RANS simulation with the transient LES.
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Ideally the division of the work amongst the models, and hence the proces-
sors would be automated. This will take place after an initial analysis of the
domain to indicate where placement of the LES would be most appropriate.
Alternatively, the solver could also be stipulated by the user who defines the
two domains. They could be given distinctive names the ‘LES’ and ‘RANS’,
so that the computer will know where to use which model.

This however is an ideal situation. Initially CFX4 allocates work to processors
to balance the load as far as possible so as to get the best possible speedup
and most equal load balancing from the Meshimport program. The automatic
allocation of cells to processors is possible, but with intervention at the source
code level, it is possible for the user to allocate work, but this may not achieve
the same level of speedup as for the optimised algorithm. Additionally it is
not possible to refine the grid during a solver run with CFX4. A new grid is
required to be generated by the user and this then requires interpolation from
the results of the previous run which introduces small errors and increases the
time required for the simulation.

Initially the model will be created and operated by the user. The user, who
will have knowledge of the flow of interest, will then allocate the blocks to the
processors for the initialisation in such a way that the same allocation will
be possible for the hybrid modelling. The user will then be able to monitor
the run and should it become necessary to move blocks from one sub-domain
to another this could be done. What is being proposed then is a system
whereby the expert user may optimise the code to more accurately represent
the turbulence in a region of interest

3.2.2 Position of the Interface

Reynolds averaged turbulence models typically perform badly in areas of high
swirl or anisotropy. The anisotropy is estimated in the calculation of the
Boussinesq approximation, which approximates the Reynolds stresses by the
mean strain rate

−ρu′iu
′
j = τij = µt

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− 2

3
ρkδij (3.1)

When i = j this reduces to the formulation for the normal stresses,

τii = −2ρk (3.2)
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leaving the shear stresses

τij = µt

(
∂ūi

∂xj

+
∂ūj

∂xi

)
for i 6= j (3.3)

which could be used to indicate the anisotropy.

The shear stress tensor could be made dimensionless by using the value of the
turbulence in the cell, that could be used an a measure of anisotropy

A =
ρu′iu

′
j

ρk
for i 6= j (3.4)

This scalar will then be calculated and stored for each cell, a marker for the
level of turbulence. The results calculated in this way for the three shear
stresses can then be compared and the maximum and minimum values found.
If the flow is isotropic then the results will be the same if there is a uniform
grid. If the grid is not uniform then there will be an effect of the grid on the
results as the filter is related to the grid. For a non-uniform grid the filter size
is a function of the spacings in the 3 dimensions of the grid, for example [21]

∆ = (∆i∆j∆k)
1
3 (3.5)

or

∆ = (∆2
i + ∆2

j + ∆2
k)

1
2 (3.6)

However, if the flow is anisotropic then the values will be different. Depending
on the difference a tolerance can be built into the program so that the LES
domain does not try to cover the whole of the domain. The user will be able to
set the value of the tolerance such that if the inequality for each combination
of i and j (with no summation) will be used to give the ratio of anisotropy in
each cell. If the tolerance is exceeded then the code will execute the LES,

max |A|
min |A| ≥ Tolerance (3.7)

Another criterion for the position of the interface could be the turbulence level
in the domain. The initial level of turbulence will be calculated by the standard
k-ε model and this will highlight the areas of higher turbulence and a range of
values can be drawn for the domain. The application of LES will be to the area
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of the highest turbulence, where the cutoff level could be defined by the user.
Alternatively the application of the LES could be linked to the length scale.
This could be used to define a monitoring system such that the interface has to
be placed where there is less than a maximum level of turbulence or anisotropy.
The use of LES will allow the exact calculation of k and ε and so the levels of
these can be monitored and the boundary defined by the turbulence value.

k = 0.5u′iu
′
i (3.8)

ε = 2νSijSij = ν
∂u′i
∂xk

∂u′k
∂xi

(3.9)

where

Sij =
1

2

(
∂ūi

∂xj

+
∂ūj

∂xi

)
(3.10)

The use of an inequality for the level of turbulence energy across the whole
domain will give a region where the turbulence is high enough to warrant
the use of the large eddy simulation methodology, and would allow a control
mechanism for the positioning of the LES model.

max |k|
min |k| ≥ Tolerance (3.11)

The interface must be placed so that the LES will capture the slowly fluctuating
parts of the flow. As an example, it could be argued that in the centre of a
jet the flow is reasonably well modelled by the RANS models and that it is
on the edge of the jet that the LES should be applied. Following on from
this it is of importance that the LES is used to capture any shear layers or
far-field effects as it is these that are interesting from a modelling point of
view. This may require the insertion of a subroutine to monitor the flow and
check for periodicity. Ideally then this subroutine would be able to ensure that
the LES sub-domain covered this part of the flow. This would be achieved by
monitoring the averages of the velocities as well as the turbulence level.

A combination of the methods presented could be used, with weightings so
that the user may stipulate the type of flow that is to be modelled. At a more
simple level the division of turbulence modelling strategies will be governed by
only one of the criteria presented.
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Using the current version of CFX4, the domain will be divided up by the user
based upon the knowledge and expectation of the user and the results of the k-
ε model. This will be based on the users knowledge of the flow in anticipation
of any regions of high turbulence generation. The divided domain will then
be run on a parallel computer so that the initial results are obtained. After
the initialisation the LES model will be switched on and the model re-run. As
the k − ε model is hidden in the CFX4 code it is not possible to run only the
Smagorinsky model on the LES sub-domain without rewriting the k−ε model
in the user Fortran and running the model as a laminar simulation with the
k − ε and LES models modifying the viscosity. The flag for turbulent flow is
either on or off for the whole domain even when divided over nodes on a parallel
computer. This means that the k − ε model will be running which does have
certain benefits especially as it allows the values of k and ε to be overwritten
and their transport equations internally will ensure that the movement of the
turbulence is modelled correctly as it passes across the interface. This would
be the case for whichever of the turbulence models were used and currently is
a feature of CFX4. The main influence following this will be the imposition of
wall functions on the LES solution thereby saving in the finer cells required at
the wall by the LES sub-domain.

3.2.3 Initialisation of the LES domain

The LES code user subroutines will reach a turbulent solution more quickly if
given an initial flow field from which to start the calculations. This may be
from a random number generation or from an initial flowfield. In an attempt to
speed up the simulation a preliminary flowfield has been used to give further
indication of regions where the LES should be allocated and to allow the
validation of the grids in that region. The flowfield does not have to be fully
developed but has to have a majority of the flow defined, this enables the flow
variables to be read into the LES solver and executed. The initial flowfield is
required so that velocity gradients can be calculated and these in turn will be
used to calculate the turbulent viscosity for the LES subgrid-scale model.

The k-ε model provides a mean flowfield from which the LES can proceed. This
is required to gain an answer from the LES in a shorter time. The use of a
turbulence model in the initialisation will provide a measure of the turbulence
and so allow for an informed decision as to where to put the boundary. The
model use for the turbulence modelling will have to be complete so that the
prediction of the turbulence will be able to take place for all geometries without
any input from the user. This means that the choice is between the two
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equation models and the stress models.

As this stage of the hybrid model is to provide a basis for the LES to work
from there is little need for the use of a 7-equation stress model when a good
approximation can be reached by a 2-equation model. When the Hybrid model
is running then the LES is where the most interesting flows are taking place.
The prediction of the turbulence in the RANS domain can be left to a 2-
equation model as the results will be of less interest than the LES and so a
quick and reasonably accurate model can be used. This will minimise the CPU
time in the RANS domain and allow the use of more computer time in the
modelling of the LES.

From this initial result the choice of solver could be automated so that the
allocation of work and the choice of solver is left to the computer. Starting
from the initialised system an automated code would be able to redistribute the
blocks amongst the processors and then continue with the hybrid model. Grid
refinement and coarsening could be undertaken on the fly and the simulation
could run to completion, which would be easier on an unstructured grid, though
this is not available in CFX4.4 so cannot be used.

It is also possible to perturb the RANS solution so as to introduce instabilities
that may grow as the LES simulation progresses. However, it has been shown
that the instabilities die away and then the LES turbulence statistics are built
up again as the simulation progresses. It is quicker therefore to start the LES
simulation directly from the results of the initialisation.

There are many perturbation methods that could be used to help initialise the
flowfield, other than using a random number generator. The first considered
was to use a multiplier which will not be a random number but rather a
function of the length scale. This will then enable any structure captured by
the k-ε model to be passed to the LES domain.

u = (1 + `)× u (3.12)

If this were used then the continuity will have to be monitored as it may tran-
spire that this method to initialise the domain may violate the mass continuity
by altering the velocities and hence the mass flow. This could possibly be mod-
ified so that if the value of ` is greater than the weighted average of all of the
` values then the multiplier will be

1 + (`− ¯̀) (3.13)

This will mean that there will not be an overall increase in the velocities in the
LES region, as the use of a weighted average will prevent this. Though this is



3.2. DEVELOPMENT OF THE HYBRID MODEL 65

reliant on the assumption that there is a normal distribution of lengthscales
around a mean value in the domain.

If there is a fluctuation in the flow, for example vortex shedding, then the initial
flowfield could be perturbed using user fortran to emphasise the cross-stream
velocities in synchronisation with the vortex shedding frequency

For flow in a pipe, where the turbulent velocity profile is flat this is more
difficult. As the shear is at the walls of the pipe the most straightforward
method would be to ensure adequate resolution of the wall boundary layer
and to allow enough diameters for the LES to develop. An attempt to speed
this process could be to increase the roughness of the wall, thereby increasing
the friction and the shear as has been used successfully in experimental work
[54].

This highlights a key point that has not been developed in this thesis, that
being the flow into the LES sub-domain. As with the development of the tur-
bulence in the LES sub-domain, the inflow into it has to be allowed to develop.
The passing of isotropic k-ε turbulence levels with one lengthscale across an
interface, and the transformation of that information into a turbulence struc-
ture is complicated and cannot be circumvented if the inflow is to be developed
fully. However, if it is assumed that the turbulence is generated in the most
part in the region of the LES then the problem is reduced to the transport of
the statistics out of the large eddy simulation and into the Reynolds averaged
solution.

It is an important conceptual point to note that when the hybrid model is
started the velocities in the LES region change from being averaged velocities
where the turbulence model is used to predict the fluctuations, to filtered
velocities, which are much closer to the instantaneous velocities at that moment
in time. Time is therefore required for the smooth flowfield that is the RANS
solution to change into the more chaotic, instantaneous, LES prediction, which
is not possible to avoid for even a hybrid model as the importance of having
good results to pass from the LES to the RANS sub-domain is not one that
should be overlooked.

3.2.4 Spatial averaging

3.2.4.1 LES to RANS

The cell size required for LES so that the instabilities in the flow can be
captured is small because the cell size acts as a filter and any eddies smaller
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than this will be represented by the sub-grid model. The cells for the RANS
domain can be larger as the Reynolds averaged models solve for the average and
not the instantaneous values of the variables. This means that at the interface
the predicted variables from the model change from representing instantaneous
to averaged variables (or vice-versa).

The relationship for the passing of data to the LES sub-domain should not
lead to the RANS cells damping out any large eddies near the interface by
writing their value to many cells on the other side of the interface, This would
mainly be achieved by the careful positioning of the interface. The proximity
of the interface to the area of interest in the flow and the size difference in the
cells themselves, would govern the size of eddy that could be captured by the
LES cells near the interface.

Another issue to be resolved would be the manipulation of the values as they
are transferred to the RANS domain. These values will be of more importance
as they will be containing more accurate velocity and turbulence data. This
will have to be combined so as to allow as much of the information to be
preserved for the use in the k-ε model. An obvious way of accomplishing this
would be the use of cells where the interfacial areas of the RANS cells on the
interface are integer multiples of those on the LES side of the interface and the
interpolation of an unmatched grid (section 3.2.4.3). This would then facilitate
the transfer of information by removing the interpolation errors.

For a Reynolds averaged problem the value of k is given by

k = 0.5u′iu
′
i (3.14)

which is based on the fluctuating velocity. This fluctuating component is un-
known in RANS calculation and so is modelled. By using the LES methodology
we calculate the filtered velocity components, which, if the filter width allows
for a resolution of 80% of the energy is close to the real instantaneous velocity
of the flow.

If the LES model is ‘correct’ then the resolved velocity is close to the instan-
taneous velocity This then allows the calculation of a mean velocity based on
successive approximations for the instantaneous velocity and so ū and u′ can
be calculated, hence the turbulence values to be used as boundary conditions
for the RANS sub-domain.

Moving the information from the LES domain to the RANS domain is an
equally complex task, but potentially more complex as the implementation of
the LES should give more accurate velocity and turbulence predictions and it is



3.2. DEVELOPMENT OF THE HYBRID MODEL 67

important that this accuracy is not lost in the movement across the boundary.

The proximity of the cell to the interface may also affect the results in that cell.
If the smoothing in the RANS sub-domains from the higher turbulent viscosity
affects the cells near the interface on the LES side of the interface, then there
will be a need to enlarge the LES sub-domain so that the area of interest is
completely modelled by the Smagorinsky model with as little influence from
the interface boundary conditions as possible.

3.2.4.2 RANS to LES

Based on the assumption that the model is to give greater accuracy where the
turbulence is generated in the LES domain, the turbulence leaving the LES
domain is more important. However, for the flow from the RANS domain to
the LES domain the flow is going from the time averaged to the instantaneous
flow. The problems are that the velocity specified is the average and that the
turbulence levels give little idea of the structure of the flow.

The impact of the average velocities used at the interface will have affect the
LES region by smoothing the flow near the interface. This may require the
LES region to be a little larger than is required to ensure that the turbulent
fluctuations are adequately captured.

Relatively speaking, the turbulence level moving from the RANS domain to
the LES is expected to be low, and so in the first instance could possibly be
introduced as a source term in the calculation for k in the LES domain at the
interface. Alternatively the boundary cells on the interface could be perturbed
as they were in the initialisation stage and this would increase the velocities and
so by implication increase the turbulence level. The problem with the source
term method is that it inputs no structure into the LES but simply means that
the calculation for that cell will be higher. The problem with the perturbation
method is that the increase in the velocities gives no real information as to
the structure of the turbulence and could cause the continuity of the problem
to be lost. Another method could be to calculate the shear as used in the
Boussinesq equation and pass this across the interface so that the viscosity
in the LES domain becomes modified and so the turbulence levels are altered
because the velocities are altered through the altered viscosity. This is more
difficult to implement but could pass the information to the LES domain more
accurately.
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3.2.4.3 Unmatched grid interface

For a block structured CFD code such as CFX4.4, the most flexible method
used to concentrate more cells in a specific region, or to allow regions to move
against one another is called an unmatched grid eg Figure3.1. This is es-
sentially a block boundary where the cells on one side do not pass the flow
information directly to another cell on the other side, but that the flow is
interpolated to two or more cells on the other side of the block boundary.

Following the assumption that most of the turbulence will be generated in the
LES region, the main inflow into the LES sub-domain will be of a much lower
turbulence level and will contain smaller, lower energy, turbulent structures
than are generated therein. This would mean that although the unmatched
grid would offer less accuracy than if the cells were matched, flow into the LES
sub-domain is less affected by any inaccuracy. If the highest levels of turbulence
are to be found in the LES sub-domain, then the relative importance of the
size of numerical error matching the turbulence at the interface becomes less
important. This approximation does not hold if the inflow into the LES region
is isotropic, homogeneous and high in turbulence, but one of the assumptions
for the thesis is that the turbulence is generated in the LES region.

If there were a difference in the cell sizes required for the domains means that
there could be a difference in the cell sizes in the two sub-domains. This would
introduce complications into the passing of information between the two sub-
domains. With the cells being larger in the RANS sub domain that on the
LES side of the interface, an unmatched grid arrangement could be utilised to
allow the passing of data (fig 3.1).

If an unmatched grid were to be used at the interface then the problem with the
use of an unmatched grid will be the weighting of values as they are passed form
one sub-domain to another (fig 3.1). In the above figure, the cells are a factor
of 2 larger in each direction. This means that the exchange of information is
easier than if the multiple were not an integer. This problem has been solved
for the serial version of CFX4 but the unmatched grid option is not available
in the parallel code[11].

To calculate the correct flux between the two sub-domains if the grid does not
match a first-order interpolation scheme will be used. To get the flux from the
smaller cells of the LES to the larger cells of the RANS sub domain an addition
method will be used, where if the face of the LES is covered entirely by the face
of the RANS cell then all of the flux will move into the RANS cell. If the LES
cell is only partially covered then the flow is assumed uniform over the face
and the flux into the RANS cell is a ratio of the area. To move the information
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RANS region

LES region

Interface

Figure 3.1: Illustrating the potential problems of using an unmatched grid

from the RANS cells to the LES cells there will be interpolation between the
larger RANS cells. The gradients between the neighbouring RANS cells will be
calculated and the fluxes into the LES sub domain will be graded accordingly.
This will mean that there will be no shear induced at the interface and will
aid the stability of the solution.

• the values can be written to all of the LES cells from the corresponding
RANS cell and all of the LES cells will then write back to the RANS
domain. This could set up race conditions and should be avoided.

• The RANS cell will write to all of the corresponding LES cells and the
values from the LES cells will be averaged to provide a value from the
RANS cell. This will increase the work done at the interface by one line
of code.

• The value from the RANS cell will be written to all of the corresponding
LES cells and only the value from the closest LES cell will be written to
the RANS cell. This could lead to a continuity error, but the monitoring
of the residual at the interface will alert the user as to whether this is so.

Initially the mesh will be matched on each side of the interface and this will
then mean that each cell will be passing values to a single cell on the other
side of the interface. This will then reduce the complexity of the initial case
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by not including any averaging in a spatial or temporal manner. The main
concern is that the continuity of the problem is maintained, following on from
this the velocities and turbulence properties are to be calculated in a manner
so that the user, having set the interface in the pre processor will not be able
to tell where the interface is in the post processor.

The use of unmatched grids in the future will be a challenge as this should
enable the maximum speedup to be gained by the combination of modelling
methodologies. Unmatched grids will also allow for a much greater resolution
of the flow in the region of interest and this will aid accuracy to the model
where the turbulence is generated.

3.2.4.4 Discretisation Mechanism

LES requires a higher-order discretisation scheme to enable the accuracy to
be retained and the fluctuations in the flow to be captured. Initial work has
shown that the central and higher upwind schemes provided by CFX are able
to capture the instabilities and this could be used to cross the interface as well.
In many of the published works this is the minimum level of accuracy used.

The RANS domain will benefit for a higher-order scheme and this will increase
the accuracy. It would allow the use of larger cells were the sub-domain to be
coarsened and because it is starting from an initial solution the higher order
scheme should remain stable. As the CFL condition has to be met in the LES
domain this will in turn add stability.

A further reduction in CPU time could be achieved by the use of a lower
order scheme on the RANS domain. This would reduce the storage and make
the RANS simulation faster meaning that more of the CPU effort could be
concentrated on the LES domain. The greatest speedup would come from
the dissasociation of the LES and RANS domains in terms of timestep. If
the RANS cells are to be larger then the CFL stability limit will support a
larger timestep, thereby reducing further the CPU time spent in the RANS
region. Though reducing the CPU time spent in the RANS domain will have a
disproportionately small effect on the overall CPU time because the majority
of time would be expected to be spent in the LES sub-domain.

3.2.5 Temporal averaging

The LES simulation requires the use of small timesteps so that the fluctuations
in the flow can be captured. The use of such small timesteps for the RANS
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RANS domain not
solved but boundary conditions
held constant for the LES

Time

Figure 3.2: Schematic of the use of different sized timesteps

model is not required to get a solution as the CFL condition will centainly
be met by the use of smaller cells. Although the CFL condition does not
have to be met for an implicit code, the restraining of all calculations to this
requirement will ensure an adequate level of resolution. The use of the small
timesteps over the whole domain will provide a stable solution so that the
algorithm for the interface can be created and optimised.

A possible future development of the idea would be the use of different sized
timesteps for the different solvers (Figure 3.2). This introduces problems of
how to average the results and when to exchange the details of the flow. The
restriction on the exchange of information will have ramifications on the results
of the LES as the boundary nodes will be unchanging between timesteps and so
the restriction on the LES would seem greater. However, the small timesteps
on the LES are because of the small changes that happen each timestep. As
the changes are small it may be possible to exchange the data less frequently
than every timestep, but not so infrequently as to jeopardise the validity or
stability of the solution. For some simulations it may be possible for the RANS
simulation to be steady state and not transient at all. This would be possible
with the two separate domains so that the halo cells could hold the values
constant for the smaller timesteps of the LES. This would not prove to be a
problem for the Reynolds averaged side, as the exchange of information would
be once for each of its iterations.
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It should be remembered that the LES requires more computational effort than
the RANS because of the smaller cell size, and so depending on the size of the
two sub-domains this may be an academic exercise with little or no benefit to
the user. If however the number of LES cells is small compared to the number
of RANS cells then there could be a use for this optimisation. The frequency
of the RANS steps would still be higher than if the domain was only solved
with a RANS model but would be faster than if the exchange of variables took
place every step. The trade off is the time to process all of the RANS cells
against the time to exchange the data between the two solvers

3.2.6 Implementation of a moving interface

Large eddy simulation calculations are more exact and so will give more ac-
curate predictions of flow properties than the RANS models are able to. The
position of the interface will be defined by an allowable level of anisotropy and
also by the user. The user will set the maximum size of the LES domain in the
two domain model by the size given to the LES domain. The minimum size of
the LES domain will be specified by the extent of overlap in the two domains.
The actual position of the interface within the overlapping region will start in
the middle of the overlap. As the solvers progress the interface will be able to
move as the solution changes.

As the solution progresses the interface will be able to move within these
boundaries so that the solution will always be the best given the users con-
straints. The interface will be positioned at the cell centres so that the use
of the central differencing scheme will always take into account the cells from
either side of the interface. This will then ensure that the domains do not
diverge in their solutions.

An ideal option would be to implement a moving interface between the two
models by positioning the interface in a block that is solved by both method-
ologies. This would then be solved by the processors solving the LES and also
those solving the RANS model, and the cells where the answer is to be used
from would be marked (fig 3.3).

When the central differencing scheme is used and the domain decomposition
divides between the two solvers the values that are imported from the other
solver will be smoothed out. To prevent this the value at the interface will
have to be written to the cell beside the interface at each iteration so that the
solutions match each other. It will also mean that the values imported from
the other domain affect the results of the receiving domain (fig 3.4). This may
cause problems in that the read/write operations take time and it may require
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Figure 3.3: Interpretation of a moving interface

LES only Both Models RANS only

Moving interfaceExchange of all
data

Figure 3.4: detail of the communications cost with the moving interface

a separate method of solving the problem

If a moving interface were to be realised by both processors solving with a
mutual block over which the interface could move, then these are ideas as to
how the movement of the interface could be realised. The solution of the ‘mu-
tual block’ could then be obtained by both solvers and once the placement
of the interface had been decided the unwanted results discarded. The move-
ment of the interface would be controlled by the program internally and would
use the values set by the user. These will be the values of length scale and
anisotropy. If the anisotropy becomes less at the interface then the interface
could be moved so as to make the LES domain smaller. It may prove unwise to
have the interface moving every timestep as the computational effort would be
increased every move, in addition to the stability problem that may be intro-
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duced by the changing of methodologies for the cells over which the interface
is moving. Also the simulation should be given time to adjust to the change in
domain after every move so as to reduce the risk of the solution being affected
by the movement of the interface. Especially if the interface is going backwards
and forwards each iteration. To prevent the constant movement of the inter-
face it will be tied to the same position for a minimum of two fluctuations as
defined by the Strouhal number based on the largest fluctuation. This can be
calculated before the simulation by the user and the inputting of the timescale
into the model will ensure the interface is not constantly moving. To allow for
this a minimum time at each position will be set, this will be a multiple of the
turbulence timescale so that the simulation can check as to whether there are
periodic flows on the correct side of the interface before the interface is moved.

As a moving interface is not currently possible under CFX4 because the blocks
are divided among the processors once and once only because the duplication of
work is a waste of computational effort. The blocks are divided up along block
boundaries, so a user could move the interface manually between simulations,
but the increase in user time and effort may not increase the speed or accuracy
of the solution. The division of a block itself is possible as the Meshimport
program may achieve this. If it were to be done by hand then great care would
have to be taken to ensure that the geometry remained unchanged. This still
does not allow the possibility of a moving interface with out direct intervention
by the user.

For the hypothetical situation with a mutual block which is solved by both
processors the two domains will be initially operating on the same timestep
and the overlapping regions will be of the same sized cells. The two domains
will exchange values at the start of each timestep. The values will be written
from the cells next to the interface to a buffer and then into the other domain
next to the interface. These values will be re-written to those dummy cells that
are not solved. The use of the buffer will prevent the values from overwriting
one another. The other way to do this would be for only one of the processors to
solve the ‘mutual block’ but the values to be automatically overwritten to the
block which is also in the domain as the other processor thought not solved by
it. To perform the investigation with a moving interface as described here with
a ‘mutual block’ over which the interface may move would need intervention
at the source code level. However, the use of a number of cells that are solved
by more than one processor and then half of the results discarded is a waste
of resources. The advantage over solving for a larger LES region would have
to be investigated, as for the ‘mutual block’ to be of real use it would have
to allow the interface to move and this would require the inclusion of extra
subroutines on top of those used for the averaging at the interface. It should
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Figure 3.5: Increase in communications cost from a non-trivial interface

not be included as a mechanism for balancing the load over the processors
the inclusion of unnecessary work amounts to false economy in the name of
balancing the load. A mutual block would also mean that both models would
have to run on the same timestep, thereby removing any advantage that may
have been gained by coarsening the spatial and temporal resolution in the
RANS sub-domain.

The block structured nature of CFX4 means that the allocation of work to
processors is done in a static and block by block way to give the optimum
load balance, and so it is not possible to move the interface as the simulation
progresses.

If the interface were to be moved by the application of a criterion for the
positioning of the interface on an individual cell basis. For example, by those
cells that meet the criteria for the LES model being tagged in some way. Then
the changing shape of the interface would be possible. A method of this sort
would allow the cells to change as the large eddies passed, though would make
the communication more difficult to calculate and would make the separation of
the LES and RANS sub routines onto different processors much more difficult.

3.2.7 Communication between the domains

One problem that may arise is that the shape of the contour does not easily
match onto a plane of cells in the block that is parallel to the direction of
mean flow. The value of the plane that the interface rests along will be taken
to be the maximum value required by the test and then the plane will be
extrapolated along the length of the block. This will provide a starting point
for the definition of the interface. In the future the domain could be modified
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so that the blocks are nominated in such a way as to provide an optimised
shape for the domain by placing the interface nearer to the boundary specified
by the criteria. This would place the LES code strictly where it is supposed
to be applied and reduce the extra usage of LES where it does not have to
be applied. This problem can be overcome by judicious use of blocks and
techniques for this are outlined in the CFX4 documentation.

If care is taken and the cells on either side of the domain matched together
well then it is possible to produce an interface of any shape that lies on cell
faces. The problem will be the definition of the halo cells for this interface.
If the interface is kept to a minimum number of planes in the block then the
movement of the interface will be easier and the communication time for the
halo cells will be reduced as there will be less halo cells because of the simple
geometry of the interface. This is illustrated in figure 3.5 where the solid line
interface will have a larger communications overhead than the dotted line. In
addition it will be harder to move the solid line as there are corners which have
to be accounted for. The use of the dotted line may reduce the time spent
communicating between the domains, but this will result in the increased use
of CPU resources for the LES domain and so the trade-off in easier definition
of the interface may prove to not provide the minimum time for an accurate
solution.

For this investigation there will be no movement of the interface and the com-
munication between the domains will be performed using the internal CFX
routines. This reliance on the internal routines means that the description of
the program given in some depth in the documentation. In summary, each
block has surrounding it a layer of dummy cells. These hold as boundary con-
ditions for that block, the values of the cell at the edge of the neighbouring
block, which is the reason that CFX4 desires an orderly block structure. The
computer sees the blocks as being of dimension (length+2) in each of the i, j
and k directions and internally glues the blocks together and writes the data
from cells to dummy cells and back.

The geometry for the interface will be required to be simple to minimize the
communications cost of the modelling and to make the transfer of variables
as simple as possible. This will ideally be perpendicular to the bulk flow to
minimize numerical diffusion

The interface requires the exchange of variables in two directions. From the
RANS to the LES and from the LES to the RANS. The problems here are
that the different domains will calculate different variables in different ways.
The RANS domain will calculate the average values of velocity, from these it
will infer the Reynolds stresses and then calculate the turbulence properties
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from these values. Finally the new turbulent viscosity can be estimated and
this used to modify the calculations in the next iteration. LES on the other
hand calculates the instantaneous velocities in the domain where the mesh acts
as a filter and this means that all of the eddies larger than the filter will be
captured and those smaller than the filter will be modelled with the sub grid
model. The new viscosity is calculated on the basis of simulated rather than
modelled quantities and for the simple Smagorinsky model is a function of the
density, cell size and the large scale strain rate strain rate (Ŝij ) where

Ŝij = 2
√

SijSij (3.15)

Where all of the other quantities are then calculated from these values and the
averages have been calculated and then stored as the simulation progresses.

The only other possible need for communication would be if one of the domains
were taking longer to converge than the other. The monitoring of the two
domains could be initialised to inform the user which part of the solution was
not converging. This could be a helpful debugging tool and would also enable
the setting of different tolerances for the different domains, where a flag can
be used to show that the tolerance has been reached.

However, the standard k-ε model calculates the values for k and ε by the use
of transport models. The transport models include a production term and
this is modelled by τijSij. The values of these could be calculated in the LES
domain and then transported to the RANS domain where they overwrite the
calculated values. This will then introduce the modifications directly into the
turbulence transport equation and this would mean that the values are used
rather that acting as a boundary condition, but will only work if the values
in the dummy cells are solved and this is not normal. To overcome this the
dummy nodes will have to be solved for the turbulence or the imported value
of k used as a boundary condition. Initially the value of k will be used as a
boundary condition as this is the simplest option. The writing of k itself will
allow the calculation of the gradients to be calculated and so will allow the
propagation of the turbulence properties out of the LES domain.

3.2.8 Boundary conditions

Wall boundaries, periodic pairs and symmetry planes are not investigated as
there should be no loss of mass. It is possible that periodic pairs on the end
of an internal domain may eventually result in the fluid slowing down as the
friction from the walls removes energy from the fluid but this is not important
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to this investigation.

The boundary of the domain is described by a flat velocity profile. The outlet
is either a mass flow outlet or a pressure boundary. The main difference is that
the mass flow outlet will not allow the inflow of fluid and assumes a developed
velocity profile. The pressure boundary will allow inflow and does not assume
fully developed flow. The position of the outlet boundary may affect the flow
upstream. The mass flow outlet imposes the assumption of fully developed
flow on the outlet and this may serve to dampen the turbulence if the outlet
is not positioned far enough away from the source of the turbulence.

3.3 Extraction of statistics

The accurate representation of the flow statistics is very important to enable
a description of the velocity and turbulence profiles. The available options are
either a long running average over the whole simulation or a form of moving
average which will require less memory and be more representative of the
varying flow.

To obtain a long running average of a variable from a simulation of m timesteps
in duration for every cell in a mesh containing g cells requires the storage of
m × g values. This would allow the exact calculation of the average for the
whole simulation.

x̄ =
1

m

m∑

i=1

xi (3.16)

If all of the values during the simulation are store and then the average cal-
culated at the end of the simulation then the storage required for this to be
calculated for a long large simulation makes it prohibitively expensive. To
reduce the storage costs the summation could be carried out as the simulation
progresses so that on the last timestep only the division by m need be carried
out to provide the average.

Alternatively the long running average could be calculated as the simulation
progresses. The average velocity can be used to indicate as to whether the
solution is converged to a pseudo steady state. The running average

ūi =
ūi + (ut−1 × (t− 1))

t
(3.17)
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is an example of this. This average velocity can than be passed to the RANS
domain and be used as the averaged velocity without any manipulation. This
will be a seamless operation and so will highlight as to whether the passing of
the scalars is correct.

An alternative would be to using a moving window of n values so that at
timestep k the average over the last n timesteps is,

x̄k =
1

n

k∑

i=k−n+1

xi (3.18)

and at time k − 1 the average is

x̄k−1 =
1

n

k−1∑

i=k−n

xi (3.19)

Combining and rearranging gives

x̄k − x̄k−1 =
1

n




k∑

i=k−n+1

xi −
k−1∑

i=k−n

xi


 (3.20)

=
1

n
(xk − xk−n)

which gives for the moving average

x̄k = x̄k−1 +
1

n
(xk − xk−n) (3.21)

This only requires the storage of n previous values and so is less demanding
on the memory of the machine.

An alternative method requiring no storage of previous values is the exponen-
tially weighted moving average (EWMA). Consider the following two different
averages. The first given by equation 3.18,

x̄k =
1

n

k∑

i=k−n+1

xi (3.22)

and the second starting calculating up to time k + 1.
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x̄k+1 =
1

n + 1

k+1∑

i=k−n+1

xi (3.23)

Both start the averaging process at the the timestep k − n + 1. This means
that the difference between them is the value of xk−n+1 so that by opening the
summation, equation 3.23 can be re-written,

x̄k+1 =
1

n + 1


xk+1 +

k∑

i=k−n+1

xi


 (3.24)

Equation 3.22 can be rewritten as,

nx̄k =
k∑

i=k−n+1

xi (3.25)

which allows equation 3.24 for the timestep k + 1 to be rewritten with the
substitution of nx̄k for the summation to give,

x̄k+1 =
1

n + 1
(xk+1 + nx̄k) (3.26)

or

x̄k+1 =
n

n + 1
x̄k +

1

n + 1
xk+1 (3.27)

It can be seen that this only requires the storage of the previous average and
then calculates the current average from that and the current value. The
difficulty comes in ascribing values to the weightings. If the EWMA is written
as

x̄k = αx̄k−1 + (1− α)xk (3.28)

then the value of α is bounded by 0 ≤ α ≤ 1 and is equal to

α =
n

n + 1
(3.29)

where n is the number of samples in the data ‘window.’ The choice of the value
of α is important as it describes how quickly previous values of the variable
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are ‘discounted’ or forgotten. If α = 1 then the average remains constant
throughout the simulation. If the flow is known to be oscillating about a mean
then this may be desirable, but may not be useful in stationary flows. If α = 0
then there is no averaging and the mean is always set to the current value of
the variable.

Ideally α should be linked to a time constant of a process: τp, which will allow
‘low pass filtering’ such that the fluctuating component is removed but the
definite changes with time will be recorded. For a filter time constant of τf

and a sampling interval of ∆t where τf ≤ 0.1τp and ∆t ≤ 0.5τf , the filter time
is described as

α =
τf

τf + ∆t
(3.30)

and given the described values as a function of each other and the dominant
time constant of the process the final value of α should theoretically be.

α =
τf

τf + ∆t
=

τf

τf +
τf

2

=
2

3
≈ 0.7 (3.31)

For the flow over a cylinder where there have been 80 timesteps allowed for
one cycle, the sampling could be done every 4th timestep and the filter applied
over consecutive samples. However, in practice it is just as simple to monitor
every timestep and use all of these to average the flow.

From the results of previous researchers the flow behind the cylinder can be
seen to posses these large scale structures and many fluctuations besides. The
accurate capturing of the velocity fluctuations with relation to the fluctuating
mean will be captured by the EWMA filter with the theoretical settings. How-
ever, the closer the value of α gets to one the slower the filter is to respond to
changes in the flow and the more like a long average over all time the results
are.

3.3.1 Example of the EWMA filter

Examples are shown of filter responses to a sinusoidal wave, where one period
is described in 62 steps. The long running average is described by (where as
an initial guess x̄0 = x0,)

x̄k =
k − 1

k
x̄k−1 +

1

k
xk (3.32)
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Table 3.2: Weightings for the moving average
61
62

for 1 period

92
93

for 1.5 periods

123
124

for 2 periods

185
186

for 3 periods

619
620

for 10 periods

Which averages over the whole simulation.

For the EWMA averages the values of α other than the theoretical value of
0.7 are,

This test is not representative of the fluctuating velocities that will be seen in
the LES simulation. In order to demonstrate that for a non-smooth output
the EWMA formulation will capture the turbulence whilst following a moving
mean the following has been performed.

1. For 0 ≤ x ≤ 500 in steps of 0.1, the value of y has been calculated for
y = sin x

2. In order to allow for turbulent fluctuations, two random numbers −1 ≤
r1(x) ≤ 1 and −1 ≤ r2(x) ≤ 1 have been multiplied together to give an
error f(x) for each of the values of x. The random number (ε) is in no
way related to x and has a normal distribution about zero.

3. The ‘experimental’ value of y was defined by y = sin(x) + ε.

4. The averages used above were used to again calculate the averages for
the ‘experimental’ results.

5. For each averaging technique, the magnitude of the fluctuation about the

mean was calculated for each point using the formula f ′(x) =
√

(y − ȳ)2

6. The average value of the fluctuation f ′(x) was compared with the cal-
culated average of the actual fluctuation f(x) and the plot of the mean
compared with the known mean which is the sine wave.
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Figure 3.6: Averages calculated for a sinusoidal wave showing the effects of
averaging over (implied) different periods
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Figure 3.7: Averages calculated for a sinusoidal wave calculates many oscilla-
tions after the initial conditions
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As expected the longer the implied average the longer the EWMA method
takes to ‘forget’ the initial value and the closer to the long running average
the solution becomes

The averages of the fluctuations are displayed in Table 3.3. The figures showing
the effect of the averaging (Figure 3.9) on the experimental results, and the
comparison of the experimental results with the true sine wave (Figure 3.8)
have been combined to show the predictions of the ‘turbulent’ fluctuations in
the flow. In Figure 3.10 it can clearly be seen that the EWMA average most
accurately predicts the fluctuations by comparison with the fluctuations. The
use of the values from 400 ≤ x ≤ 408 is because the averages will have reached
a more stable value at that point. Clearly the value of the fluctuation for the
EWMA average over one period and the long running average can be seen to
move in a sinusiodal way as they are predicting the amplitude of the flow and
not the fluctuations about the moving mean. This shows clearly that the use
of the EWMA average will allow the averaging to follow a moving mean and
calculate the fluctuations from that mean rather than calculating an overall
mean for a uniformly fluctuating variable. In essence the flow is decomposed
into three. The overall mean, the slowly varying part and the fluctuating part,
viz.,

φ = φ̄ + φmove + φ′ (3.33)

A longer averaging period will cause the fluctuation in the variable to be mea-
sured as the variation from the mean flow and this will will then mean that
the fluctuations vary in a sinusoidal way as illustrated by figure 3.10. This is
because the variation from the mean of zero in a sine wave is dominated by
the amplitude of the wave and the fluctuations from that perfect wave would
mean that the average fluctuation on a perfect sine wave would have amplitude
0.707. It can clearly be seen that the longer the averaging period the closer
the value tends towards that number, meaning that it is the amplitude of the
oscillation that is dominating the turbulent prediction.

Clearly there is also a ‘phase lag’ between the EWMA average and the sine
wave (Figures 3.6 & 3.7). The reason for this is the value of the weighting
function α and the lag can be reduced as α −→ 0 but this adds an increased
weighting to the current value and reduces the smoothing from the ‘history’
associated with the averaging over a moving window. The width of the aver-
aging window does affect the results and may influence them either to smooth
out spurious data, or to remove all trends in the output. The optimisation of
this process will have a large impact on the outcome of the experiments.
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Table 3.3: Effect of different averaging periods
f(x) 0.248361
ȳ, f ′(x) 0.668364
EWMA(theoretical), f ′(x) 0.237657
EWMA(1 period), f ′(x) 0.65558
EWMA(2 periods), f ′(x) 0.670347
EWMA(10 periods), f ′(x) 0.672467
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Figure 3.8: Comparison of the pseudo-experimental results and the sine wave
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Figure 3.9: Averages of the pseudo-experimental results
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Figure 3.10: Analysis of the size of the fluctuations
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Figure 3.11: Schematic of the twoblocks domain

3.4 Twoblock test model

In order to develop the hybrid model as easily as possible, without concerns for
the grid or domain decomposition a simple geometry was created consisting of
two cubes, each 10× 10× 10 cells in size.

3.4.1 Method

The domain decomposition for the problem to work will have to be done by
hand to ensure that the different domains are on different nodes in the parallel
machine. The effect of this will be that the parallel code will have to be
modified in line with the message passing software to enable the different
nodes to execute different solvers. The computation will only be efficient if the
time for the computation will have to be long compared to the time for the
communication between nodes. It is also important to balance the loads on
the processor so that they spend as little time as possible idling whilst waiting
for another CPU to finish.

Periodic boundaries were placed at the top and bottom with vertical upward
flow. on the two vertical faces symmetry patches were placed and at the ends
of the domain were places walls to give a measure of turbulence generation.
Periodic patches were used to allow the boundary layer to develop in the
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space available and to reduce the effects of inlet boundary conditions. The
simulations were only executed for a short time so the effect of the drag from
the walls was ignored

On the block Solid-1 was placed a 3D patch called USER3D_RANS, and on Solid-
2 another called USER3D_LES so that the user fortran could be used and would
be able to distinguish between the two blocks. In order to enable the code to
smooth the viscosity at the interface between the two models the mutual face
between Solid-1 and Solid-2 was named USER2D_INTER.

Control over the allocation of the blocks to the processors was achieved using
a slightly modified parsolve4 script file and a PRL file of my own creation.
The parsolve4 script allows the user to define the PRL file which allocates
blocks to processors and a modified parsolve4 mi script means that this is
then retained and may be used again. The PRL file tells the program how
many processors to divide the job over, and which processor each block is
allocated to. The use of these files, in conjunction with the parsolve4 run
line option of including a config file meant the allocation of blocks to processors
could be defined, monitored and then modified. The config file also permits
the use of user defined load balancing for the distribution of work amongst the
processors, Though the grid has been specifically developed so that there are
approximately the same number of cells on each processor (±10%)

At this point a short transient k-ε run was executed to provide a starting
solution. From this dump file the hybrid RANS/LES model could be started.

Using the user Fortran subroutine USRVIS the Smagorinsky subgrid scale
model could be used to overwrite the value of the turbulent viscosity and
so allow the execution of a large eddy simulation. This was confined to Solid-2
and processor 2 by the use of IF statements, combined with IDOMNO, the vari-
able set to the processor number. The code has been constructed in such a
way as to allow ease of expansion for any number of processors for the LES
and RANS domains. As the user fortran is compiled and run for both of the
blocks, there had to be a comparable section for Solid-1 on processor 1 which
would write the value of the turbulent viscosity from the k-ε model to the
new value of µt without altering it. The user routine USRWTM was used
as a turbulent wall multiplier as the modelling using LES near walls is still
complex. The viscosity routine USRVIS is invoked every iteration, and so the
new value of the viscosity is always up to date. USRVIS contains two critical
sections, one for each modelling approach, so that the turbulent viscosity for
the k − ε model on the lower numbered processors remains the same, but the
turbulent viscosity in the LES region is overwritten for by the Smagorinsky
SGS viscosity.
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The geometry has been constructed so that when the decomposition of the
domain takes place the USER2D_INTER patch is on the RANS side of the inter-
face, that is, it is marked as being on the block with the patch USER3D_RANS.
This means that the smoothing is done on this side alone. Smoothing of the
viscosity difference is further complicated by the fact that the minimum size
for a block in CFX4.4 is 3 cells in any one direction (except for a 2D model).
This means that the smoothing has to ideally be performed in 3 cells from
the interface to prevent the possibility of crossing a block boundary. Initially
smoothing was attempted by simple interpolation each side of the interface.
Although this is simple to implement in serial it is not always easy to find the
interface in the parallel run as it only resides on one of the blocks that make
up the interface. This means that the smoothing can only take place on the
one block and an error is generated if the application tries to find the values
on the other side of the interface.

It is not possible to use a method as outlined by Speziale [107] as it is not
possible to have the difference in cell size that will make a substantial difference
in the turbulent viscosity in CFX4.4 because of the structured nature of the
mesh.

In an attempt to overcome the differences in turbulent viscosity, smoothing
was tried by the introduction of a user scalar, which would be set to the value
of the LES turbulent viscosity in the LES sub-domain and then would modify
the turbulent viscosity of the RANS sub-domain as it was convected into it.
The diffusivity of this scalar has been set very small so that it is effect a flow
followed, and so similar in conception to some of the ideas behind dynamic
SGS modelling. In addition the values of k and ε that have been calculated in
the LES sub-domain are convected by their transport equation (As it is not
possible to run part of the parallel simulation as laminar and part as turbulent,
the whole simulation is a turbulent one.)

A further user fortran subroutine USRTRN has been used to monitor the
flow and calculate the values of the average velocities and deviations from
those velocities, this can then be used to calculate the turbulence levels in the
simulation and see how these compare to the RANS models. An exponentially
weighted moving average technique has been used to calculate and modify the
average for the velocity and turbulence levels, and it is these averaged values
that are used to overwrite the values of k and ε

CFX International had tested a subroutine that would calculate a random
field to impose over the initial solution, but have concluded that this method
does not increase the speed of generating LES data as the random field is first
damped out before the more chaotic LES velocity field is created. In addition,
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Figure 3.12: Results of the ‘twoblocks’ experiment highlighting main flow fea-
tures

in a more complex domain there may be more processors working on the LES
model than the RANS. By putting the smoothing on the RANS side where
there is only one processor the modifications required to execute the program
will be reduced.

3.4.2 Results

The use of a very simple geometry enabled the idea to be tested. The compu-
tational models could be executed side by side and the smoothing of turbulent
viscosity could be achieved. One issue highlighted was the higher velocity in
the LES sub-domain. This was due to the lower turbulent viscosity and for
internal flows as the one modelled here should not prove to be a problem as
the flow over a cylinder is contained and there can be no loss of mass from the
way in which the model is created.

3.5 Implementation of hybrid technology onto

the bluff body

The domain to be modelled was based on that used by Moin for the same study
[49]. However, due to the computing power available the mesh was simplified.
The number of cells was reduced to allow a reasonable computational time
but at the same time trying not to reduce the complexity to the point of the
removal of confidence in the model.

The grid was refined until a solution was obtained that was not dependent
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Figure 3.13: Diagram of the computational domain for the bluff body study

on the grid, where a doubling in the number of cells failed to change the
solution from the simulation so that the solution could be said to be ‘grid-
independent’, for a reduction in residuals of over four orders of magnitude.
This grid-independence was achieved for the k-ε model as the transient nature
of the Smagorinsky model meant that the refining of the grid in the same way
for the LES model requires the collation of averages and then the time for the
recalculation at double the resolution, whilst more exact for the study, is time
consuming and expensive. All of the simulations were performed on the same
grid with the same boundary and initial conditions using the same timestep.
The only differences were the turbulence models used.

The grid was further refined in the region of the cylinder such that the y+

values for the Smagorinsky model were less than 7 giving a higher resolution
of the wall layer. The grid was created to facilitate load balancing for the
parallel solver when the domain was divided up by hand.

Four methods were used to effect the novel ‘hybrid’ model for the purposes of
this study. In order to calculate the timestep required the Strouhal num-
ber of the vortex shedding was calculated and the timestep size specified
to be 1/80 of the period of fluctuation. The Reynolds number was set to
3 900 and then the velocity at the inlet calculated with the density and vis-
cosity set to 1000[kg m−3] and 0.001[kg m−1 s−1], giving an inlet velocity of
0.1772727[ms−1] (assuming a flat velocity profile). As it is the flow around
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the cylinder that is of interest, and in order to retain similarities with previous
workers, there has been no attempt made to simulate developed flow at the
inlet.

Each of the models was generated in a similar way so that the difference
between test models was minimised. In order to obtain an initial guess from
which to start the LES models the standard k-ε model was used. This model
was run for 5 periods, where a period is a time period as calculated from the
Strouhal number. The ‘hybrid’ or LES model was then introduced (The LES
model was also executed over the k-ε model in an attempt to replicate any
difference in CPU time) and the model run for a further 10 periods. After
this time the simulation of a final 10 periods took place and it was during this
final run the the statistics were gathered. At each timestep a maximum of 30
iterations was specified.

The differencing schemes that were used were higher-order upwind (HUW)
for the u- and v- velocities and central differencing in the spanwise direction.
Temporal differencing was achieved through the standard backward differenc-
ing. Linear wall profiles were used as the wall function is required for the k-ε
model.

At the inlet the velocity profile was flat and the viscosity modifier (if used)
was given the value of the viscosity

Once working, the transition from a simple two block geometry to a larger ge-
ometry was made difficult mainly by the load balancing condition on the pro-
cessors. The allocation of blocks to processors where there was a large number
of cells for the LES compared to the RANS modelling technique, meant that
the modelling required three processors to give a more even load distribution
amongst them. This is possible in the user fortran by changing the LES IF
statement from

IF(IDOMNO.EQ.2)

to

IF(IDOMNO.GE.2)

which will mean that processors 2-3 will work on the LES part of the problem.
The smoothing will still be handled solely by processor 1 and the allocation
of blocks described in the PRL file as before. The config file is altered so
that there is a larger discrepancy allowed in the load balancing across the
processors.
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3.5.1 Smagorinsky model

The Smagorinsky model was executed over the k-ε model so that any effects
of the RANS technique would be present in all of the cases for fairness of
comparison. This will then act to remove the underlying effects of the k-ε
model as they will be present in all of the simulations and the hypothesis can
be tested.

3.5.2 Hybrid and Newhybrid models

The value of the turbulent viscosity will not be moved across to the RANS
domain. This is because the standard k-ε model explicitly calculates the tur-
bulent viscosity in each cell.

Where the LES model is executed the turbulent viscosity that it predicts over-
writes the k − ε value and this is used at that position. Once the flow is
convected across the interface an interpolating algorithm is used to smooth
the lower value of the turbulent viscosity on the LES side, with the higher
turbulent viscosity on the RANS side. As shown in the code sample below,
the averaging used was simply the algebraic mean of the two viscosities.

One of the concerns of this method is that the suppression of the predicted
turbulent viscosity in the RANS region may lead to an incorrect prediction of
the values of k and ε, which will affect the next prediction of the turbulent
viscosity which is calculated from,

µt = ρCµ
k2

ε
(3.34)

but then the value of the turbulent viscosity affects the bulk velocity in the
momentum equation. This then impacts on the turbulence levels and so in
turn modifies the turbulent viscosity.

If there is flow migration into the LES region and acceleration there then the
shear will also increase and so the turbulent viscosity also. This may be large
enough to stabilise the problem but this will need to be investigated.

The first attempt at a ‘hybrid’ model involved the use of a viscosity modifier.
For this a user scalar with a low diffusivity (0.000001[kg m−1 s−1]) was used
to minimise its diffusion so that it will follow the convected flow closely and
not smooth the results by diffusion. In the LES region the value of this scalar
was given the value of the turbulent viscosity as predicted by the Smagorinsky
model. When the scalar is carried across the interface by the fluid, there is a
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discrepancy between the value of the scalar and the turbulent viscosity in the
RANS sub-domain. In order to smooth out the differences the following code
has been implemented. The variable names are, TE for turbulent kinetic energy,
ED for dissipation rate, VIS for viscosity, VISN for the new viscosity, MU_LAM
for the laminar viscosity and SCAL refers to a user scalar. Essentially the code
is calculating the turbulent viscosity that would be used by the k − ε model
and then bounding the new viscosity by the laminar viscosity and twice k − ε
turbulent viscosity as a safety check. The turbulent viscosity is then compared
to a scalar and the value modified to smooth the effect of the change of models.
The user scalar is then set to the value of the modified viscosity to compare
with the viscosity calculated in the next time step.

IF(IDOMNO.LE.1)THEN

call IPALL(’USER3D_RANS’,’USER3D’,’PATCH’,’CENTRES’,IPT

* ,NPT,CWORK,IWORK)

DO 110 L=1,NPT

INODE = IPT(L)

c SAFETY CHECK

MU_T=MU_LAM+((0.09*TE(INODE,IPHASE)**2)/ED(INODE,IPHASE))

VISN(INODE,IPHASE)=MIN(MAX(VIS(INODE,IPHASE),MU_LAM),

& (2*MU_T))

c MODIFIER

IF((SCAL(INODE,IPHASE,ISC14)/VISN(INODE,IPHASE)).GE.LIMIT)

& THEN

SCAL(INODE,IPHASE,ISC14)=VISN(INODE,IPHASE)

ELSE

VISN(INODE,IPHASE)=0.5*(VISN(INODE,IPHASE)+

& SCAL(INODE,IPHASE,ISC14))

SCAL(INODE,IPHASE,ISC14)=VISN(INODE,IPHASE)

ENDIF

110 CONTINUE

Where IPALL is an internal CFX routine that will allow the user to loop over
all of the cells in the domain and perform operations on them. In this case the
code is only executed on processor (IDOMNO) one, and only for the code in the
RANS sub-domain of the grid (USER3D_RANS) which happen to coincide for this
model. It was important to remember that the call only worked for the cells
allocated to that processor as the division of different models to the processors
was made that much easier. The code then prevents any anomalous values
of the turbulent viscosity from being introduced by bounding the value of the



3.5. IMPLEMENTATION OF HYBRID TECHNOLOGY ONTO THE BLUFF BODY97

viscosity between the laminar viscosity and twice the value calculated by the
k-ε model. This is a safeguard in case of errors arising from the interpolation
at the interface.

Once the checking is complete then the modified value of the viscosity is cal-
culated. The first check is to see whether the viscosity will be modified by the
scalar and this is done by specifying the ratio between then to be less than
the value of LIMIT, which for the Hybrid model is set to 0.9. If the difference
is small the value of the scalar is set to be that if the turbulent viscosity and
will no longer influence the flow.

If, however, there is a larger difference between the value of the scalar and the
turbulent viscosity then the turbulent viscosity is set to be half of the sum
of the scalar and the turbulent viscosity and the value of the scalar set to be
equal to the new (modified) viscosity.

It is anticipated that the value of the turbulent viscosity will be different across
the interface and this method will allow for some smoothing at the interface.
The change in the viscosities will affect the calculation of the velocities and
pressure fields in the next iteration which will then affect the future time value
of the turbulent viscosity. However, by that time the flow will have been
convected downstream and the new turbulent viscosity will be modified by a
new scalar that is convected from the LES region.

The NewHybrid model is the same as the Hybrid model but with a limit of
0.95

The results will always be dependent on the mesh because the smoothing is
based on the grid. However, the mesh has been tested for grid independence
with the k−ε model and the placement of the interface in a position where the
smoothing will not affect the results, mean that the grid effects are minimised.

3.5.3 Nomodifier

At this point the model was tried where the LES and RANS regions were
simply butted together. This method was named Hybrid-Nomodifier. For this
simulation the convection diffusion equation for the user scalar was still solved
even though the viscosity was not modified in any way.
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Figure 3.14: Schematic of the use of the av3 modelling technique

3.5.4 av3 model

The final method tested was to overwrite the velocities in the cells next to the
interface with the time averaged values from the LES domain. This technique
would then allow for the development of a different sized timestep strategy as
the average value on the RANS side of the interface could be held constant
for the smaller timesteps of the LES sub-domain. The averaging time chosen
was that of one period and this was implemented by calculating the average
in the same way as for the EWMA average weighted over 1 period and then
apply the average velocity to the first cell in the RANS sub-domain by using
the USRSRC subroutine so that the velocities were applied as source terms in
the coefficient matrix

As the hybrid modelling technique involves the overwriting of the instanta-
neous velocities at the interface with the average values there may be a viola-
tion in mass conservation for the incompressible fluids studied. Two methods
present themselves as potential solutions to this problem. The first is to use
a pressure boundary on the domain to prevent a mass continuity error. This
is highlighted in the CFX documentation as a solution where this may be a
problem. The second solution is to only apply the imposition of the average
velocities over most of the domain. Once the averages have been built up
then there should be no problem with the imposition of values, but during the
generation of the averages the small mass errors will be ‘corrected’ by the flow
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across the interface where there is no overwriting of the average values

The application of these averages to the solution was not started until after the
completion of one period to allow the development of the averaged values. In
order to save time when the overwriting is to take place, on the first timestep
of the simulation a look-up table is generated so that all of the node numbers
for the overwriting are stored in a 1D array for ease of access. The distance in
the I direction is only 1 as the average is only required for the first cell into
the RANS sub-domain. The values of JCC and KCC alter as the layer of
cells at ICC = 1

C Call IPREC for blocks 9 and 10 and get the node numbers.

CALL IPREC(’SOLID 9’,’BLOCK’,’CENTRES’,IPT

& ,ILEN,JLEN,KLEN,CWORK,IWORK)

ICC = 1

DO 103 KCC = 1,KLEN

DO 102 JCC = 1,JLEN

INODE = IP(ICC,JCC,KCC)

C Write the node numbers to an array

USRSOLID9(((KCC-1)*JLEN)+JCC) = INODE

102 CONTINUE

103 CONTINUE

The array USRSOLID9 contains all of the node numbers that are to be over-
written for solid 9. This was repeated for block 10. The reason that the values
are not combined into one large array is that CFX4 is solved block by block
and so the creation of an array for each block may aid in faster execution.

Once the averaging has started the values are modified as below. The values
for the start and end of the do loop are block specific and are imputed by the
user. In this instance block9 is 30 × 10 in the I = 1 plane so the loop has to
contain 300 counts, one for each node. The SCAL(KNODE-1,1,ISC1) refers to
the user scalar that is storing the averaged velocity. The new source term, is
given by the old source term, with the addition of a weighting based on the
difference between the instantaneous and average velocity.

For each node previously stored in the 1D array USRSOLID9 addressed by the
counter KOUNT, the difference between the instantaneous velocity and the av-
eraged value is calculated and this is then used to modify the source term
for the calculation of the velocities in that iteration [11]. The pressure is left
unmodified as it is to be used to smooth out any irregularities as the pressure
distribution is calculated after the velocities for this iteration are calculated.
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C Loop over all of the cells to be modified in block9

DO 220 KOUNT = 1,300

KNODE = USRSOLID9(KOUNT)

C First add the source terms to the u velocity

If(IU.EQ.IEQN)THEN

SU(KNODE,1) = SU(KNODE,1) +

& ( AM(KNODE,4,1) * (SCAL(KNODE-1,1,ISC1) - U(KNODE-1,1)))

The values of the averages are calculated at the interface for the first few pe-
riods with no averaging taking place. After that the averages are imposed on
the flow passing across the interface. While this is happening the averages are
still being calculated so as to keep the average current. This is especially im-
portant as the theoretical EWMA average is being used as the moving average
has to be calculated regularly.

Due to the nature of this technique the imposition of the average at the same
position as all of the other interfaces affected the vortex shedding from the
cylinder. To overcome this the interface was placed at the end of the other
domains with another two blocks added at the end to allow the averages to be
seen in a RANS sub-domain. This however, meant that the velocity profiles
would all be in the LES sub-domain and so an indication of the transfer of
the variables across the interface would not be possible except by graphical
means. The additional two blocks also meant that an extra 60 000 cells had to
be solved. To keep the load balancing as even as possible this simulation used
four processors rather than increase the work of the three in use on the previous
methods. This will have the benefit of keeping the CPU loads similar to the
other methods so as to be able to compare the CPU times for the different
methodologies.

3.5.5 Monitoring of averages

For each case the average velocities for the simulation was calculated in the
user fortran subroutine USRTRN. This routine is called at the end of each
timestep when the iterations have converged and the answer for that timestep
is reached.

First of all the highest Courant number is calculated so that this can be moni-
tored. Even though CFX4.4 is an implicit code the use of the stability criteria
means that the temporal resolution is such that the cells will capture the flow
variations.
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The fluctuating velocity is then calculated as the difference between the mean
velocity and the new velocity. The fluctuating velocity is calculated and stored.
Once this has happened the average velocity is calculated from the EWMA aver-
aging method and this value is stored as a user scalar. User scalars are listed
in the appendix. The value of EWMA is the weighting fraction on the averaging
and AMWE has the value 1-EWMA to ensure consistency.

c-----------------

c Calculate the fluctuating u v and w, as the difference

c between the instantaneous and the mean c

SCAL(INODE,1,ISC5) = U(INODE,IPHASE) - SCAL(INODE,1,ISC1)

SCAL(INODE,1,ISC6) = V(INODE,IPHASE) - SCAL(INODE,1,ISC2)

SCAL(INODE,1,ISC7) = W(INODE,IPHASE) - SCAL(INODE,1,ISC3)

c c-----------------

c

c Calculate the new average velocity as from the EWMA algorithm c

SCAL(INODE,1,ISC1) = EWMA*SCAL(INODE,1,ISC1)+

& AMWE*U(INODE,IPHASE)

SCAL(INODE,1,ISC2) = EWMA*SCAL(INODE,1,ISC2) +

& AMWE*V(INODE,IPHASE)

SCAL(INODE,1,ISC3) = EWMA*SCAL(INODE,1,ISC3) +

& AMWE*W(INODE,IPHASE)

WRITE(NWRITE,*)’CALCULATED NEW AVERAGE VELOCITY’

WRITE(NWRITE,*)’IDOMNO’,IDOMNO,’ <<’

c c-----------------

The turbulent kinetic energy is then calculated and the fluctuating value and
average value calculated as before. If the level of kinetic energy is higher by
this method than from the k-ε model, then the k-ε value is overwritten.

The periodicity of the flow has been used to allow the assumption of a long
running average over all time [108]. Given that the flow is periodic and within
the deterministic nature of the periodicity, it can be assumed that each period
is the same as every other period once the flow has developed. This means
that the statistics from one period of developed flow will be the same as for
all other periods and so only the details of one flow period are required.

At four points equally spread throughout the last period ‘dump’ files were
created as snapshots of the flow. From each set of results the profiles at 1.06,
1.54, 4, 5 & 10 diameters downstream of the centreline of the cylinder were
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determined, to allow comparison with Kravchenko and Moin [49]. The results
were then averaged across all four dump files to give an estimate of the long
running average. From the averages the turbulence predictions could be made
at every snapshot and the averages of these calculated to give a prediction of
the turbulent stresses.

3.6 Conclusion

In order to construct a hybrid model, the domain is split into sub-domains.
Each sub-domain will solve for the flow-pattern using either the LES or the
RANS approach, and each approach will be carried out on a separate processor.
The many considerations that come with the construction of such a solver have
been discussed and from the discussion a number of methods to provide the link
between the LES and RANS methodologies have been proposed for testing.
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Results

4.1 Instantaneous contours

Pictures from the final timestep of the final simulation are presented for each
model. The order of the models is first the k− ε model, then the Smagorinsky
model. Following these the results for the hybrid models are shown, these are
in the order of the ‘av3’ model, then the ‘hybrid’ model. Finally the hybrid
model without the viscosity modifier and the ‘newhybrid’ model.

For each model the contours of the three velocity components, the pressure
and the turbulence properties of the flow are given. In addition the y+ values
are shown for the Smagorinsky model illustrating the distance form the wall to
the first node. All of the contour plots are taken midway through the domain
in the z-direction to minimise the effects of the periodic boundaries, and for
equal comparison. On the left of the illustrations is the scale. This is consistent
for comparable plots, except where the values were notably different from the
norm.

103
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Figure 4.1: contours of u-velocity from the k-ε model

Figure 4.2: Contours of v-velocity from the k-ε model
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Figure 4.3: Contours of w-velocity from the k-ε model

Figure 4.4: Pressure contours for the the k-ε model
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Figure 4.5: Effective viscosity predicted by the the k-ε model

Figure 4.6: Turbulent kinetic energy from the k-ε model
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Figure 4.7: Contours of turbulent lengthscale from the k-ε model
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Figure 4.8: Vectors of u-velocity from the Smagorinsky model

Figure 4.9: Contours of v-velocity from the Smagorinsky model
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Figure 4.10: Contours of w-velocity from the Smagorinsky model

Figure 4.11: Pressure contours for the the Smagorinsky model
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Figure 4.12: Effective viscosity predicted by the the Smagorinsky model

Figure 4.13: Turbulent kinetic energy from the Smagorinsky model
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Figure 4.14: Values of y-plus on the cylinder predicted by the Smagorinsky
model
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Figure 4.15: Contours of u-velocity from the av3 method

Figure 4.16: Contours of v-velocity from the av3 method
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Figure 4.17: Contours of w-velocity from the av3 method

Figure 4.18: Contours of pressure from the av3 method
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Figure 4.19: Streamlines of the av3 simulation

Figure 4.20: Effective viscosity using the av3 method
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Figure 4.21: Turbulent kinetic energy from the av3 method
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Figure 4.22: Contours of u-velocity from the hybrid method

Figure 4.23: Contours of v-velocity from the hybrid method
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Figure 4.24: Contours of w-velocity from the hybrid method

Figure 4.25: Pressure contours predicted by the hybrid model
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Figure 4.26: Effective viscosity using the hybrid method

Figure 4.27: Turbulent kinetic energy from the hybrid method
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Figure 4.28: Contours of u-velocity from the hybrid method without the vis-
cosity modifier

Figure 4.29: Contours of v-velocity from the hybrid method without the vis-
cosity modifier
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Figure 4.30: Contours of w-velocity from the hybrid method without the vis-
cosity modifier

Figure 4.31: Pressure contours predicted by the hybrid model without the
viscosity modifier



4.1. INSTANTANEOUS CONTOURS 121

Figure 4.32: Effective viscosity using the hybrid method without the viscosity
modifier

Figure 4.33: Turbulent kinetic energy from the hybrid method without the
viscosity modifier



122 CHAPTER 4. RESULTS

Figure 4.34: Contours of u-velocity from the Newhybrid method

Figure 4.35: Contours of v-velocity from the Newhybrid method
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Figure 4.36: Contours of w-velocity from the Newhybrid method

Figure 4.37: Pressure contours predicted by the Newhybrid model
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Figure 4.38: Effective viscosity using the Newhybrid method

Figure 4.39: Turbulent kinetic energy from the Newhybrid method
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Figure 4.40: Mean u-velocity 1.06 diameters behind the cylinder calculated by
averaging over 1 oscillation

4.2 Mean velocity downstream of the cylinder

In order to allow for a closer comparison with the work of Kravchenko and Moin
[49] mean velocities for the three component directions have been plotted at
the same distances downstream of the cylinder as in the mentioned paper.
These being 1.06, 1.54 4, 5 and 10 diameters downstream. For each case the
profiles of the hybrid models are compared with the Smagorinsky model that
was executed on the same grid, and the Kravchenko and Moin results. These
again are taken midway through the domain in the z-direction. The distances
have been normalised with respect to the cylinder diameter, and the velocities
with respect to the inlet velocity.
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Figure 4.41: Mean u-velocity 1.54 diameters behind the cylinder calculated
using the theoretical EWMA approach
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Figure 4.42: Mean u-velocity 4 diameters behind the cylinder calculated using
the ‘dump’ files
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Figure 4.43: Mean u-velocity 4 diameters behind the cylinder calculated using
the theoretical EWMA approach
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Figure 4.44: Mean u-velocity 5 diameters behind the cylinder calculated by
averaging over 1 oscillation
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Figure 4.45: Mean u-velocity 10 diameters behind the cylinder calculated by
averaging over 1 oscillation
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Figure 4.46: Mean v-velocity 1.06 diameters downstream of the cylinder cal-
culated using the ‘dump’ files

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-1.5 -1 -0.5 0 0.5 1 1.5

D
im

en
si

on
le

ss
 v

el
oc

ity

Dimensionless distance

av3
Hybrid

Nomodifier
NewHybrid

Smagorinsky
Moin

Figure 4.47: Mean v-velocity 1.54 diameters behind the cylinder calculated
using the theoretical EWMA approach
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Figure 4.48: Mean v-velocity 4 diameters behind the cylinder calculated using
the ‘dump’ files
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Figure 4.49: Mean v-velocity 5 diameters behind the cylinder calculated by
averaging over 1 oscillation
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Figure 4.50: Mean v-velocity 10 diameters downstream of the cylinder calcu-
lated using the ‘dump’ files
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Figure 4.51: Mean v-velocity 10 diameters downstream of the cylinder calcu-
lated by averaging over 1 oscillation
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Figure 4.52: Mean v-velocity 10 diameters downstream of the cylinder calcu-
lated using the theoretical EWMA approach
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Figure 4.53: Mean u’u’ stress 1.06 diameters downstream of the cylinder cal-
culated using the ‘dump’ files

4.3 Turbulence predictions

Graphs are presented to show the turbulence predictions at the same dis-
tances downstream as for the velocity profiles. Again the predictions have
been compared with the Smagorinsky model on this grid and the LES results
of Kravchenko and Moin. The calculation of the fluctuating velocities was cal-
culated by comparing the mean velocity for that model with the instantaneous
velocity. The use of the stress means that all of the values will be positive.
The w′w′ stress are only recorded for the 1.06 and 1.54 diameters by Moin
and so have only been compared at these diameters. Turbulence properties
are normalised with the square of the inlet velocity. The scales have been
chosen to extract the desired features from the results. This varies depend-
ing on whether the comparison is between the calculated results and those of
Moin, or whether the graph is to highlight differences between the different
methodologies used herein.
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Figure 4.54: Mean u’u’ stress 1.06 diameters downstream of the cylinder, cal-
culated using the ‘dump’ files
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Figure 4.55: Mean u’u’ stress 1.06 diameters downstream of the cylinder cal-
culated by averaging over 1 oscillation
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Figure 4.56: Mean u’u’ stress 1.06 diameters downstream of the cylinder cal-
culated using the theoretical EWMA approach
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Figure 4.57: Mean u’u’ stress 1.54 diameters downstream of the cylinder cal-
culated using the theoretical EWMA approach
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Figure 4.58: Mean u’u’ stress 4 diameters downstream of the cylinder calcu-
lated using the ‘dump’ files

0

0.002

0.004

0.006

0.008

0.01

-1.5 -1 -0.5 0 0.5 1 1.5

D
im

en
si

on
le

ss
 s

tr
es

s 
 

Dimensionless distance

av3
Hybrid

Nomodifier
NewHybrid

Smagorinsky
Moin

Figure 4.59: Mean u’u’ stress 4 diameters downstream of the cylinder calcu-
lated using the theoretical EWMA approach
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Figure 4.60: Mean u’u’ stress 5 diameters downstream of the cylinder calcu-
lated using the ‘dump’ files
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Figure 4.61: Mean u’u’ stress 5 diameters downstream of the cylinder calcu-
lated by averaging over 1 oscillation
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Figure 4.62: Mean u’u’ stress 5 diameters downstream of the cylinder calcu-
lated using the theoretical EWMA approach
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Figure 4.63: Mean u’u’ stress 10 diameters downstream of the cylinder calcu-
lated using the ‘dump’ files
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Figure 4.64: Mean u’u’ stress 10 diameters downstream of the cylinder calcu-
lated by averaging over 1 oscillation
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Figure 4.65: Mean v’v’ stress 1.06 diameters downstream of the cylinder cal-
culated using the ‘dump’ files

0

0.002

0.004

0.006

0.008

0.01

-1.5 -1 -0.5 0 0.5 1 1.5

D
im

en
si

on
le

ss
 s

tr
es

s

Dimensionless distance

av3
Hybrid

Nomodifier
NewHybrid

Smagorinsky
Moin

Figure 4.66: Mean v’v’ stress 1.06 diameters downstream of the cylinder cal-
culated using the ‘dump’ files
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Figure 4.67: Mean v’v’ stress 4 diameters downstream of the cylinder calcu-
lated using the ‘dump’ files
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Figure 4.68: Mean v’v’ stress 4 diameters downstream of the cylinder calcu-
lated using the theoretical EWMA approach
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Figure 4.69: Mean v’v’ stress 4 diameters downstream of the cylinder calcu-
lated using the theoretical EWMA approach
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Figure 4.70: Mean v’v’ stress 5 diameters downstream of the cylinder calcu-
lated using the ‘dump’ files
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Figure 4.71: Mean v’v’ stress 5 diameters downstream of the cylinder calcu-
lated by averaging over 1 oscillation
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Figure 4.72: Mean v’v’ stress 5 diameters downstream of the cylinder calcu-
lated using the theoretical EWMA approach
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Figure 4.73: Mean v’v’ stress 10 diameters downstream of the cylinder calcu-
lated by averaging over 1 oscillation
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Figure 4.74: Mean v’v’ stress 10 diameters downstream of the cylinder calcu-
lated by averaging over 1 oscillation
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Figure 4.75: Mean w’w’ stress 1.06 diameters downstream of the cylinder
calculated by averaging over 1 oscillation

0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

7e-06

8e-06

9e-06

1e-05

-1.5 -1 -0.5 0 0.5 1 1.5

D
im

en
si

on
le

ss
 s

tr
es

s

Dimensionless distance

av3
Hybrid

Nomodifier
NewHybrid

Smagorinsky
Moin

Figure 4.76: Mean w’w’ stress 1.06 diameters downstream of the cylinder
calculated by averaging over 1 oscillation
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Figure 4.77: Mean w’w’ stress 1.06 diameters downstream of the cylinder
calculated using the theoretical EWMA approach
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Table 4.1: Comparison of CPU times for the different models
simulation time CPU1 time CPU2 time CPU3 time CPU4
k-ε 5 564 5 563 5 563
Av3 41 810 41 690 42 440 42 430
Hybrid 41 700 41 650 41 670
Hybrid Nomodifier 34 170 34 160 34 180
NewHybrid 27 790 27 790 27 770
Smagorinsky 31 800 31 670 31 800

Table 4.2: Work distribution amongst the processors
Processor Number Number of cells

1 60 000
2 60 000
3 54 000
4 60 000

4.4 CPU time

These results are taken from the final simulation. The time duration is ten
oscillations of the wake, each cycle is 80 timesteps long and each timestep
contains a maximum of 30 iterations.

The times reported are in CPU seconds so not directly comparable to wall
clock time, but comparable amongst themselves. The nature of the project
means that the work was allocated amongst the processors so that they may
work on different parts of the domain. For this reason it is not possible to give
estimated speedup of the models when used on different numbers of processors.
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Chapter 5

Discussion of results

5.1 Introduction

Having laid out the results in an organised and comprehensive way, it is impor-
tant to discuss their meaning so that a conclusion can be drawn as to whether
there is an advantage in the Hybrid method developed.

This chapter is presented in the same order as that in which the results were
presented for ease of comparison. Initially the contour plots from the final
timestep have been discussed, then the velocity profiles and finally the turbu-
lent profiles. In each section the models are presented in the same order as for
the results.

A conclusion is not given at the end of the chapter, as the the next chapter
collates all of the discussion into conclusions for the thesis. However, a brief
overview is given before the discussion of the results.

5.2 Overview

Overall the results from the hybrid models developed herein compare well to
the large eddy simulation performed using the Smagorinsky SGS model on the
same grid. The velocity profiles are of the same amplitude and the turbulence
predictions are of comparable amplitude and shape to the Smagorinsky model.

Although the results compare less well with the LES simulation of Moin, there
is a large discrepancy in the number of cells used and the differencing scheme. I
have included his results for the purposes of providing the best results available.

149
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It can be seen from the contours of velocity and viscosity that all of the hy-
brid models have comparable periods to the Smagorinsky model indicating a
preservation of variables across the interface.

5.3 Model development

The use of a commercial code as a basis meant that the constraints of that
code influenced the hybrid model’s development. In particular, the concept
of a moving interface that would allow for an optimisation between the LES
and RANS methodologies was not possible as the division of the cells over
the processors is done so that there is no overlap. There is no need for two
processors to solve the same cells twice in a commercial code so without source
code intervention it would not be possible to change this and allow the moving
interface.

The imposition of a USER2D patch on the interface for the purpose of smooth-
ing the solution also proved to be difficult to control when the blocks were
divided amongst the processors. The division of nodes between the proces-
sors made it very difficult to control which block the patch was allocated to
and this in turn meant that it was not possible to be sure that the averaging
could always be done on the RANS side of the interface. For this reason the
USER2D patch could not be used to effect the smoothing at the interface.

Although the development of the model has followed the same number of
timesteps each with potentially the same number of iterations the velocity and
turbulence profiles are different for the different approaches. This may be due
to the sensitivity of the vortex shedding to the close proximity of the interface.
This however has not been investigated.

5.4 Contour plots

The first observation is that the k-ε model failed to capture the vortex shed-
ding from the cylinder (Fig 4.1, 4.5). With a different strategy for temporal
discreetisation it is possible to see this phenomenon but with the method used
for this set of experiments this was not the case [112]. Reasons for this un-
derprediction include the smoothing from the higher turbulent viscosity from
the k-ε model which will act to suppress the generation of vortecies, and the
poor prediction of detached flows with this model. This highlights the impor-
tance of the initial conditions and also the difficulty of capturing this vortex
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shedding with the k-ε model. Although the obvious candidate for blame is
the turbulence model, the Reynolds-Averaged results derived from the use of
the k − ε compare well with the averaged results from the LES simulations
thereby giving validity to its findings. However, the flow is not isotropic, and
this combined with detachment are known to be areas where the k − ε model
performs less well. Fluctuations in the w-velocity are so small (Fig 4.3) that is
impossible to distinguish between numerical error and CFD prediction. This
is expected as there is no velocity gradient in the ‘z’ direction and therefore
no expected flow in that direction.

The results of the Smagorinsky model clearly show the capturing of the vortices
behind the cylinder (Figs 4.8, 4.12) and the effects of the vortex shedding can
be seen to have almost completely disappeared by 10 diameters downstream
of the cylinder (Fig 4.9, 4.10), which may be because of the effect of the
end of the domain or because the bulk flow smooths the wake. This latter
theory would concur with the knowledge that the Smagorinsky model is overly
dissipative and once the energy has been given up as heat there is only the
mean flow remaining. The use of the k−ε model with the Smagorinsky model
executed over the top of it means that the results from the simulation are
exactly comparable with all of the hybrid models and that the values of k
around the points of detachment are much higher as expected. This is because
of the moving point of detachment and the very small length and time scales
associated with the detachment of the fluid from the cylinder.

For the av3 hybrid method the prediction of the velocities is similar to that
from the Smagorinsky model except that the vortices remain evident in the
flow rather than stopping after 10 diameters as in the Smagorinsky model (Figs
4.9, 4.10, 4.16, 4.17). This may be because the domain is longer and so the
outlet boundary condition does not influence the wake of the cylinder. The
flow patterns for the w-velocity are seen to be enhanced as the fluid moves
from the LES to the RANS sub-domains. There is no averaging of the w-
velocity at the interface as it is very small. It is possible that the smoothing
of the u- and v-velocities is causing the enhancement of the w-velocity though
this effect does not last. As the fluid moves towards the outlet the w-velocity
fluctuations are damped.

The higher turbulent viscosity also has a smoothing effect which makes the
model ideal for steady flows (Fig 4.15). The av3 model clearly captures the
vortex shedding from the cylinder and at the interface to the RANS sub-domain
converts from the instantaneous to the average and passes these values to the
k-ε model where the failure of the model to capture the vortex shedding is
its strength as here the flow is a wake and the k-ε model can reproduce this
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adequately (Fig 4.20, 4.21). It would also be possible to change the length of
the averaging at the interface to allow the retention or damping of the flow
instabilities as required. Here is a clear example of the use of LES where
required and then switching back to the RANS models for the flow governed
by the mean velocity showing the hybrid methodology working well.

As can clearly be seen from the turbulent kinetic energy plot for the ‘av3’
model the wall layer grows rapidly in the k-ε sub-domain and this will affect
the wake by preventing it spreading and eventually damping it out (Fig 4.21).
The thicker wall layer changes the distribution of k and ε next to the wall
which will in turn prevent the spread of the vortices from the vortex shedding.
The imposed wall functions will be used more correctly with the y+ value of
approximately 30 nearer the top and bottom walls.

There is an anomaly in the wake clearly visible in the results from the av3
model. Whilst still in the LES region the wake can be clearly seen to move
towards the top wall of the passage. Whilst Moin used an open domain the
present work has a wall at the top and bottom it is unclear as to why the wake
should move. The fact that the wake moves back to the centreline once the
fluid has passed into the RANS sub domain is even more curious (Fig 4.15).
One explanation is that the ‘coanda’ effect (Figure 5.1) is causing the effect
by the faster moving flow above the cylinder causing an area of lower pressure
which in turn ‘sucks’ the wake toward itself. However, this seems doubtful as
the movement of the wake occupies the whole of one block and then moves
back suddenly, whereas the movement by the pressure field would be a less
sudden movement that would either continue or dynamically correct over a
period of time. The inlet velocity profile is flat and there is no buoyancy used
in the simulation that may affect the results in this way.

This movement of the wake to a position above the centreline occurs and is
removed at each end of a block. The smoothing of the flow by averaging would
not remove this effect, as the error would be passed to the RANS sub-domain..
Clearly there is an effect of passing the information into and out of this block
which is causing the values to move. The sudden change at the LES/RANS
interface could clearly be a sign that the interpolation at this interface is not
correct, or it could be that the interpolation is correct but whatever moved
the flow up at the other end of the block is now moving it down again. The
movement of the wake back to the centreline is the probable cause for the
increased w-velocity at the wall seen in Figure 4.17 to ensure continuity.

Despite the movement of the velocity contours those for the turbulence prop-
erties remain aligned centrally (Fig 4.21). As the generation of the turbulent
kinetic energy is where there is a velocity gradient so the generation should
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Figure 5.1: Schematic diagram of the Coanda effect

move with the velocity. The contour plots are from the same period in time
so the difference could be that the gradient either side of the contour line is
different or that another factor is generating the turbulence, for example that
the transport away from the cylinder is affecting the result.

The Hybrid model itself captures the vortex shedding with the interface much
closer to the cylinder and as with the Smagorinsky model the vortices become
less coherent after approximately 10 diameters (Figs 4.22, 4.23 & 4.26). The
fluctuations in the u-velocity are damped much sooner and the modification
of the turbulent viscosity does not smear the flow in the RANS domain into
a wake as is seen in the av3 model but rather the fluctuations can be seen to
continue, spread and then be damped out. The plots of w-velocity (Fig 4.24)
show the vortex pairs stopping suddenly.

The use of the hybrid model without a viscosity modifier is in essence the two
models placed together with no interpolation. The pressure contours do not
capture the centre of the vortices but they are marked but the u-velocity con-
tours and the effective viscosity (Figs 4.31, 4.28 & 4.32). The turbulent kinetic
energy demonstrates the fluctuations but also the peak in the values at about
1.5 diameters above and below the centreline and these peaks remain constant
rather than spreading out (Fig 4.33). Clearly the peaks in the Nomodifier
model prediction of the turbulent kinetic energy is in the path of the vortices
at about 1 diameter above and below the centreline of the wake and this is
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very close to the Smagorinsky model.

The Newhybrid model captures the decaying vortex shedding from the u- and
v-velocities and these are seen in the contours of pressure as well (Fig 4.34,
4.35 & 4.37). The u-velocity lacks the resolution of the vortices that is seen in
some of the other modelling techniques though the v-velocity is more similar
. The w-velocity suggests coherent structures that follow the vortex shedding
from behind the cylinder but the magnitude of the w-velocity is much less
than for the other models and of the same order as the k-ε model, though with
structure. This movement is concentrated in the region immediately behind
the cylinder and at the outlet of the domain suggesting that it is not well
resolved at all. The effective viscosity is seen to increase as well and this then
damps out the oscillations. This then could be a tunable parameter though
was not intended as such. The contours of kinetic energy do not posses the
twin tails that are seen from the LES simulation but is aligned centrally behind
the cylinder and is higher along the centreline as would be expected by the k-ε
model alone.

An obvious difference in the pictures is that of the difference in the w-velocity.
The grid contains ten cells in the spanwise direction which is half a diameter
thick. The patches on the front and back of the domain are periodic, meaning
that what leaves the domain in one enters in the other. The Smagorinsky
model captures the vortex shedding from the cylinder and for each of the
vortices there is a predicted rotation about the direction of bulk flow. The
rotation may be in part an effect of the boundary condition because of the
small depth of the domain (0.5D). It is reported in the literature that there
are spanwise movements in the wake, though for simulations that are this
narrow in the spanwise direction this is less common. The periodic boundary
condition simulates an infinite wake in the spanwise direction, and so this
suggests that there is no rotational motion about an axis aligned with the
direction of mean flow but rather countercurrent flows in the spanwise direction
of infinite length. This however is not reported in the literature and is therefore
an effect heightened by the boundary conditions[100].

The contours of w-velocity are different for the LES and the hybrid models.
For the Smagorinsky model there are two pairs of counter rotating vortices
that decrease in size after approximately ten diameters. The vortices do not
spread more that two diameters from the centreline, this is after approximately
seven diameters and before that there is a gradual spread from the cylinder.
The av3 hybrid model does not appear to have captured the w-velocity vortex
pairs at all. This is unusual as in the av3 model the LES sub-domain is used
for a much longer period than the other models which do capture the vortex
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pairs. Another unusual feature is that the contours of w-velocity next to the
wall in the RANS section for the av3 model. The most striking feature is
that the contours only appear on the lower wall. There is no difference in
the treatment of the upper and lower walls and the velocities have not been
limited to any values. This is probably caused by an interpolation error in the
averaging for the body forces and is then convected along the domain. The
velocity in the spanwise direction remains low and this therefore will not affect
the bulk flow along the domain which has an average velocity two orders of
magnitude higher. The Hybrid method transfers the w-velocity vortex pairs
into the RANS domain but the spread of the eddies is suppressed once it
crosses the interface, and also in the RANS domain there are extra disturbances
introduced so that the motion is not a pair of vortices but more a dance in a
figure-of-eight. The Hybrid-nomodifier model predicts a better spread of the
counter-rotating vortices though they are soon damped out by the turbulent
viscosity from the k-ε model. Similarly to the Hybrid model, the Newhybrid
model fails to resolve the vortices in the RANS domain but their spread is
again restricted. This is not from the walls but rather the viscosity modifier
aids the initial development of the vortices, but restricts them to the region of
lower viscosity. Were the vortices to spread they would be suppressed by the
higher turbulent viscosity of the flow near the walls.

5.5 Velocity profiles

The EWMA averaging technique is sensitive to where in the oscillation the
simulation is when the sample is taken because of the bias of the current value
to the moving average. Whilst the average turbulent fluctuation could be cal-
culated this does mean that the answer becomes dependent on the averaging
and not the physics (Section 3.3) leading to a bias towards the most recent
values which is clearly seen in Figure 4.40. This however, is the cost of mea-
suring the actual fluctuation from the moving average as opposed to the RMS
value of the amplitude which would reveal nothing of the turbulent statistics.
This is the reason for the distortion in the values for the mean velocities. All
of the models match the results for the turbulence profiles close to the cylinder
suggesting that the LES region is not adversely affected by the proximity of
the interface and that the capturing of the attached vortex behind the cylinder
is correct.

The robustness of the EWMA methodology and that it can calculate results
as the simulation progresses means that if for some reason the solution were
to stop the statistics would be calculated. The good comparison of the results
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with all of the models and with those of Moin add weight to the method as
a way of averaging a varying mean. The main problem with the method is
the time lag between the fluctuating value and the moving average. This is
unavoidable though unless the weighting on the latest variable is altered such
that there is little weighting on the current average, this though means that
the weighting on the current value is such that it scarce can be called an
average. An optimum balance has been used though this was formulated on
theoretical grounds and not specifically for this case. However the altering of
a general tool for specific cases only proves to show that the tool is general
and is not a solution to all of the problems. For example the k-ε model itself
has many documented values for its constants depending on the composition
of the domain. This highlights the weakness in the model in that it has to be
tuned. Whilst the k-ε model is a good general model it does need optimising
for specific cases.

This returns to the rationale for this thesis. If the simulation has to be as
general as possible with the fewest number of situation specific constants to
be tuned then the accuracy of the model has to be increased as well. It has
been demonstrated that the LES models in use today still contain a number
of parameters that can be adjusted and extrapolating from this the increased
in accuracy could be achieved by the use of DNS. Pragmatically though, this
is not currently an option for complex engineering flows where the purpose
of the CFD model is insight and the models placed on the top of the CFD
are often based upon experiments and may be correct to only ±30%.1 The
underlying (in)accuracy of the fluid flow becomes less important compared with
the chemical reaction being solved. Furthermore, the bulk of LES simulation
being reported in the scientific journals only compare the mean velocity to
experimental data. It is a waste of resource allocated to an LES simulation if
the primary use of it is the production of a mean velocity data set.

One of the possible causes for the models being out of phase with one another
is the method used to generate the initial flow field. This used a k-ε model
solution as an initial starting point and then developed the flowfield from there
without vortex shedding at the first instance. This means that the models
may have initially started shedding vorteces at slightly different times as the
method was followed and only the final run analysed for the results. Large
eddy simulation is essentially attempting to model a chaotic flow that has a

1CFD models are discreet approximations of continuous fluid flow. They are based upon
mathematical models which have been curve-fitted to the best experimental data. This
experimental data has been gathered with a machine error and then interpreted by people.
At each stage there is an error introduced, and the effect of this becomes larger the closer
to the CFD model one is
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certain level of deterministic behaviour to give the coherent structures and as
such the expectation that all LES models will give the same results is false
for the short term. This would account for why the averaging over tha last 10
oscillations will produce similar results.

The use of a theoretical Strouhal number to calculate the timestep required
for this simulation may lead to an error if the periodic time is not predicted
correctly by the simulation. The result of this would be that as the time
period is not predicted correctly the period of averaging will be incorrect for
the ‘dump’ averaging and the averaging over one period of the vortex shedding.
For the ‘dump’ file averaging this will lead to a bias of the results and for the
long average the results will again be skewed. If the wrong number of steps had
been calculated for one time period this would not affect the average as all of
the averages would have been wrongly calculated. That is of course assuming
that all of the time periods are the same for all of the different models. It is
also possible that the adjustment of the turbulent viscosity may have an effect
on the fluid flow to smooth the change in turbulent viscosity and in doing
so altered the flow characteristics. This is suggested by some of the velocity
profiles (Figs 4.42, 4.44)

It is possible for the downstream conditions to affect the flow upstream and the
position of the interface between four and five diameters downstream from the
cylinder is quite close. In a pipe, turbulent flow is assumed to take 10 diameters
to develop. A turbulent wake is assumed to require 80 diameters to obtain self-
similarity [111] (where the turbulence is isotropic, governed by its immediate
surroundings and changes slowly). This condition has been challenged by this
model and yet it still works. One of the reasons for this may well be the
robustness of the k-ε model above what it was originally intended to do by
giving adequate results when used in anisotropic turbulence, an alternative is
that the turbulent viscosity from the k-ε is not so high that it smooths the
vortices that are convected into the RANS sub-domain. However, the influence
of the interface on the LES sub-domain has not been investigated by the study
but it has been inferred that the effect is small as the profiles of velocity and
turbulence remain unchanged from the full LES model.

The v-velocity profiles are very different from those of Moin, though the hybrid
results compare to the LES results of this study. One of the reasons for this
will be the difference in averaging period. The theoretical EWMA average
will be affected more by the passing of turbulent fluctuations than the other
methods and so the fluctuations are much more dependent on where in the
cycle the simulation is stopped.

The solutions do not match the results of Moin for a number of reasons. The
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first is that the domains used were of different boundary conditions where his
are open and the ones herein were walls at the top and bottom of the domain.
The imposition of the walls will suppress the spreading of the wake, as will
the higher turbulent viscosity in the RANS sub-domain. The imposition of
walls at the top and bottom of the domain will act to constrain the wake
from spreading, thought the use of the RANS modelling methodology and
specifically the higher turbulent viscosity, will act on the wake to smooth it
prematurely[92]. The number of cells used for these simulation are an order of
magnitude less that used by Moin and the differencing scheme is only second
order in accuracy. This will only serve to reduce the accuracy. For this reason
then the ‘LES’ calculation performed herein can only be assumed to be a very
large eddy simulation though the results compare well with those of Moin for
the mean velocities The turbulence statistics the results are the correct shape
though the order of magnitude is wrong. The imposition of an interface at
any point to impose averaging will reduce the amount of information that can
be drawn from the simulation, and the positioning of the interface near the
cylinder will have an as yet unquantified effect on the result. Having stated
this, the results in the isotropic k-ε model sub-domain compare well when
compared to the LES simulation of Moin.

At 1.06 diameters downstream of the centreline of the cylinder the u-velocity
profiles are similar to those from Moin but whereas Moin’s are symmetric about
the centreline the bias from the most recent detachment from the cylinder is
evident in the other averages such that the profile is not symmetric about
the centreline (Fig 4.40). The results from the v-velocity at this distance
from the cylinder is such that all of the hybrid models compare well with
the Smagorinsky model. The Newhybrid model has a much larger amplitude
predicted than the other models and comparable in amplitude that the results
from Moin as well (Fig 4.46). However, this average was made using the ‘dump’
file method which has been shown to be closer to the results of Moin.

At 1.54 diameters the u-velocity profiles are more symmetric in the average
from the dump file that from the moving averages indicating the history effects
on the moving averages (Fig 4.41). The EWMA average over an entire period
shows the symmetry of the Newhybrid model about the centreline but the
other hybrid models are still affected by the wake. It is of interest to note
that the av3 model would be expected to be very similar to the Smagorinsky
model as the interface for the av3 model is where the domain ends for the
other models (ie that the length of the Smagorinsky model is the same in both
cases). However, as all of the models have been allowed to develop the vortex
shedding the av3 model has become out of phase with the Smagorinsky model
by π radians. This will provide a check for the results as the av3 results should
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remain out of phase if the hybrid methodologies are retaining the same period
that is passed to them by the LES sub-domain. It is also noticeable that the
Nomodifier model that uses no smoothing at the interface has very similar
results to the Smagorinsky model. The v-velocity averages are all dissimilar
to the results of Moin. From the dump files many of the velocities above the
cylinder are positive and the centreline of the profile does nor correspond with
the centreline of the wake. Many of these results can be attributed to the
method used to average the results which means that the effect of the current
vortex means that the profile is not smooth but has a second peak (Fig 4.47).
The results from the av3 model can be seen to be closer to those of Moin. For
the models using a viscosity modifier there is a minimum and maximum in the
v-velocity for the Newhybrid and Hybrid models respectively.

The length of the recirculation behind the cylinder should be up to the 1.54
diameter profile. This is not easily demonstrated by the velocity profiles but
rather can be seen by looking at the pictures of the v-velocity plots. All of the
models compare well with this observation.

The profile at 4 diameters is indicative of the behaviour of the flow just before
the interface is crossed by the fluid. The effect of the phase can be seen in that
the u-velocity averages all have minima on the opposite side now to the profiles
at 1.06 diameters (Fig 4.42). For the average over one period the results are
further from those of Moin that from the short averaging. The Smagorinsky
results are close to those of Moin and the models comparable to the LES
simulation from this study. The Newhybrid model has noticeably off-centre
results where the minimum is markedly smaller than the other results and
the other averaging techniques (Fig 4.43). The v-velocity from the Newhybrid
model has a similar shape to the results of Moin though the amplitude is larger
(Fig 4.49). All of the averaging techniques predict the smaller v-velocity above
the cylinder than below it though the behaviour one diameter either side of the
centreline is very different. The dump file average predicts that the av3 model
has a strongly negative velocity about the centreline, as does the theoretical
EWMA average. The weighted average over one period however predicts that
the v-velocity of the av3 model is positive by the same magnitude. In a similar
way the Hybrid model has a positive average for the dump and theoretical
EWMA average but has a peak below the centreline and is then negative for
the average over one oscillation. At four diameters behind the cylinder the
average from the dump files for the ‘Hybrid’ simulation show that the flow is
moving vertically upwards. The domain is bounded at the top and bottom by
a wall so the fluid must either move downstream or in a spanwise direction
to remain incompressible. At four diameters downstream of the cylinder the
mean u-velocity calculated from the dump files is not centrally aligned and the
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flow above the cylinder has a faster velocity. The faster velocity will mean a
lower pressure and this will cause the flow to move upwards. This movement
will then either cause the wake to move upwards towards the lower pressure
thereby reducing the flow and allowing more fluid to move along the bottom of
the domain, dynamically balancing the fluctuating velocity, or will cause the
suction of the wake closer to the wall whereby the distance between the wake
and the wall is reduced and so the fluid moves faster through the space available
which decreases the pressure more and encourages the cycle of suction.

The velocity profiles at 5 diameters are the first inside the RANS sub-domain
for all except the Smagorinsky and av3 models. The Hybrid and Newhybrid
models now both have increased minimum u-velocities so that they are more
comparable with the other models. The av3 model remains out of phase with
the Smagorinsky model as before. All of the velocity profiles are skewed above
the cylinder except for the hybrid model which is almost symmetrical (Fig
4.44). As with the averages at 4 diameters those at 5 for the v-velocity are
very different between the different modelling techniques. The moving averages
have values comparable to one another with the Newhybrid model retaining
its ‘v’ shaped profile but with a negative velocity over the whole of the profile
(Fig4.49), with the dump file though this profile is again similar in shape to
that of Moin but with a greater amplitude. The Smagorinsky and Nomodifier
models are again similar and have maxima at about ±0.6D.

The 10 diameter velocity profiles vary by up to 25% of the inlet velocity (Fig
4.52). The av3 model which is still using the Smagorinsky model at this point
indicates an almost flat profile with what may be an averaging effect from the
top to the bottom of the plot, which may be due to when the average was
taken. The Hybrid model also has a flat profile. The newhybrid model has a
very pronounced ‘v’ shaped profile and whilst not of the same magnitude as
the work by Moin has a much more pronounced shape that the Smagorinsky
model. For both the averaging over one oscillation and the theoretical EWMA
average the flatter velocity profile of the av3 model is present. The profile
has a more pronounced ‘v’ which indicates that the effect could be from the
averaging used and the period within the oscillation that the solution stopped.
The Hybrid model contains a similar profile which is almost a reflection of
the av3 model about the centreline. The Newhybrid model retains the largest
amplitude ‘v’ but it van be seen to be more offset (Fig 4.45) The Smagorinsky
model has a ‘v’ shaped profile but this is not as pronounced as the results
published by Moin and also indicates that the flow may have localised regions
of faster flow and approximately ±0.6D before the fluid velocity again increases
towards the top and bottom of the channel. It is noticeable that the mean
velocity at the top and bottom of the sample region is not as large as the
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inlet velocity indicating that there must be a broad ‘v’ shape over the whole
channel for there to be conservation of mass. The difference between the two
viscosity modifier methods is seen in that the hybrid model now has a much
flatter profile where the smoothing into the k-ε model is shorter and so the
higher turbulent viscosity has contributed to the smoothing of the flow. The
Newhybrid model has retained more of the features of the flow and hence has
a larger ‘v’ shaped profile. Comparison with the contour plots indicates that
the vortices have all but died out in the Smagorinsky model at this length from
the cylinder and this would be indicated by a flatter profile (Fig 4.12, 4.45).
However, for the Newhybrid model the turbulent viscosity is seen to increase
along the centreline of the wake as the flow nears the end of the domain,
this increased resistance to motion will have the effect of forcing the fluid to
move faster nearer the walls to allow the same throughput of volume. This
is also indicated by the v-velocity plots (Fig 4.50) and the contour plot for
v-velocity and viscosity for the Newhybrid method (Fig 4.35, 4.38). For the
v-velocity plots themselves, it is noticeable that the results of Moin indicate a
general upwards movement of the flow especially above the cylinder. It would
be expected that the general motion of the fluid above the culinder would
be down and the dominant v-velocity of the fluid below the cylinder would
be upwards.The boundary conditions are not the same but for a non-buoyant
flow this is surprising. All of the models have peaks at approximately ±1
diameter above and below the centreline. For all of the models except the
Newhybrid model (which has a flat profile) and the av3 model the peaks are
maxima. For the av3 model the peaks are minima. The importance of where
in the cycle the simulation is stopped is shown here but also the continued flow
of the vortices into the RANS sub-domain in the av3 model whereas in the
Smagorinsky model the vortices are dying out by this point. The other large
peaks are associated with the hybrid model and these positive peaks can be
accounted for by the ending of the coherent structure behind the cylinder in
the same way as the Smagorinsky model (Fig 4.50, 4.8 & 4.22). The breakdown
of the coherent structure can account for the irregularities in the flow as the
fluid motion gradually changes back to channel flow with a smooth velocity
profile.

It would be expected that for the hybrid models the flatter velocity profiles
associated with the 10 diameter profile will be influenced by the isotropic
nature of the k-ε model which increases the spreading rate of jets and wakes.
This will cause the velocity profile to become flatter sooner, and to dissipate
the higher turbulence energy that is currently at the centreline of the domain.
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5.6 Turbulence profiles

The comparison of a long running average velocity with the fluctuating com-
ponent has been shown earlier to measure the RMS value of the amplitude
of the oscillation and not the fluctuation of the velocity about the varying
mean. It has also been shown that the use of a moving average will allow the
comparison of the phase averaged mean and the instantaneous value to give a
turbulent fluctuation at that point, and that the longer the period over which
the moving average is weighted the more it becomes similar to the average over
all time. For this reason it would be expected that the turbulence predictions
from the EWMA model where the weighting time is longer would be closer to
the ‘dump’ file calculated turbulence properties than the theoretical EWMA
approach, especially as all of the mean velocities are comparable to one an-
other. This is clearly not the case. One explanation for this is the use of the
instantaneous value for the value of the fluctuating velocity that is used for
that timestep, and as such is not a clearly representative sample. It is not an
averaged u′u′ that is plotted but an instantaneous value and so the averaging
over 1 period is particularly vulnerable to the value of the velocity compared
to the mean velocity because at times during the period the value of u′ will
be zero. In addition to this the velocity fluctuation at a point is not that
great so the longer time averages at that point will give smaller fluctuations
which will always be of approximately the same value, whereas the theoretical
EWMA average which moves more each timestep will always allow for larger
fluctuations. In addition the larger grid will not allow for the simulation of
small eddy sizes so the interpolation and other numerical errors will affect the
flow more.

The u′u′ profiles at 1.06 and 1.54 diameters downstream of the cylinder are all
similar to the Smagorinsky model and the results of Moin in shape though of
a much reduced magnitude. This can be attributed to the size of the grid, the
differencing scheme and the averaging. In addition the turbulence property
plotted is the instantaneous for that timestep and is not an average turbulence
value. If the comparisons are made with the Smagorinsky model on the same
grid then the results of the hybrid models fare well. The results of Moin
are used to indicate the shape of the turbulence profiles. (Fig 4.53, 4.54,
4.55 & 4.56). It is noticeable that the Hybrid, Newhybrid and av3 methods
consistently give larger turbulence predictions.

For the Hybrid and Newhybrid an attempt could be made to explain the larger
turbulence predictions on the grounds of their influencing the downstream
boundary condition by the use of the viscosity modifier. However the change
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from LES to RANS still happens at the same position and the treatment of
the models in the LES sub-domain is exactly the same for all of the hybrid
and LES models. The difference between the Smagorinsky model and the av3
model is much more subtle. They are known to be completely out of phase
from the u-velocity plots, and the turbulence statistics are instantaneous for
the last timestep of the simulation. The differences then between the value
calculated by the ‘dump’ files and the moving averages can be seen to be
different whereby the moving averages have much closer predictions for the two
models as at this point they are the same. Both models have over 15 diameters
behind the cylinder before any change in boundary conditions (outlet for the
Smagorinsky model and interface for the av3 model). However the u-velocity
contour plots have indicated that the vortices in the Smagorinsky model are
removed by the end of the domain but that the av3 model retains structure
until the interface. Either way it is unlikely that these boundary conditions
are influencing the fluid motion so close to the cylinder and so far from the
boundary condition.

For the v′v′ stresses the predictions near the cylinder are all comparable to the
Smagorinsky model (Fig 4.65, 4.66). Again the general shape of the profile is
comparable to the results of Moin but the magnitude is smaller. As with the
u′u′ stresses the Newhybrid model has the largest predicted level of turbulence
and this is then followed in turn by the av3 and hybrid models. Apart from
the Newhybrid model all of the other models are comparable in magnitude.
As before the results calculated from the ‘dump’ file method are the largest
and those from averaging over one whole time period the smallest. The results
are all close to being symmetric about the centreline of the wake. As these
profiles are both within the LES region the differences are probably because the
stresses have been calculated for the final timestep and there is no averaging
or measuring of the maximum value.

At 4 diameters downstream from the cylinder, which is just before the inter-
face, the predictions of the u′u′ stresses from all of the models compare well
with those of Moin (Fig 4.58). Again the asymmetric profile is seen as a result
of the averaging and the final position of the solution impinges on these re-
sults greatly. The moving averages again show much smaller predictions than
the ‘dump’ file results (Fig 4.59) which will be influenced by the averaging
method used, though it is interesting to note that the results for the dump
file all tend to zero for in the immediate wake of the cylinder rather than re-
ducing in magnitude as is seen in the results of Moin. The moving averages
all represent the shape of the profile well (Fig 4.59) with the twin peaks. As
with the u′u′ stresses the v′v′ stresses are closer to the results of Moin for the
‘dump’ file average. The moving averages clearly indicate a single peak but
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the history associated with the moving average has biased the peak away from
the centreline. The av3 model can be clearly seen to be directly out of phase
with the Smagorinsky model as in the velocity profiles (Fig 4.47). The Hybrid
and Newhybrid models have differing answers, the peak of the Hybrid model
is larger though the Newhybrid model is symmetric about the centreline of
the wake. These two viscosity modifier models are not entirely in phase as is
indicated by the velocity profiles (Fig 4.43) and the difference in phase may
account for some difference in magnitude.

At 5 diameters downstream of the cylinder the u′u′ stresses are represented
less well by the ‘dump’ file averages. The effect of the RANS models is now on
the models. The long averages all have 3 peaks instead of 2 (Fig 4.61, 4.60).
Apart from the centrally aligned Newhybrid model the larger peak is on one
side with the smaller peaks at the centreline and at approximately 1 diameter
the other side of the centreline and are much smaller than the larger peak.
The third peak is almost certainly not an effect of the change in sub-domain
as it is clearly evident in both the Smagorinsky and av3 models which have no
such change. Probably this is how the turbulence has been predicted here and
the smaller values make the results seem worse. The results for the theoretical
EWMA average are as the dump file, with two peaks, again with the bias
to reflect where the simulation finished. For both the u’u’ and v’v’ stresses
at 5 diameters behind the cylinder where the profile is just inside the RANS
domain the stresses are seen to be closest to those predicted by Moin and
having the most symmetry, suggesting that at this point the flow properties of
the LES sum-domain are still influencing the flow in the RANS sub-domain,
and furthermore this effect is increased by the use of the viscosity modifier.
By ten diameters downstream the velocity and turbulence profiles are much
the same as for the other methods of merging the models.

The v′v′ stresses are predicted well by the ‘dump’ file method and as with the
u′u′ stresses the results are not quite as good as for the profile at 4 diameters
(Fig 4.70). An obvious answer for this would be that the use of the turbulence
model is affecting the size of the fluctuations seen. However, if this were the
only reason then the Smagorinsky model and the av3 model would retain the
comparatively more accurate results as thy have not changed to a Reynolds
averaged method of calculating the flowfield. In addition to this the size of the
mesh, coupled with the overly dissipative nature of the Smagorinsky model
will make the dissipation of the turbulence happen more quickly. The larger
lengthscale indicated by the k-ε model as the flow moves toward the outlet
suggests that the turbulence is lessening and the flow instability is dominating
over the turbulence. This is seen in the results of Moin as the size of the v′v′

stress is reduced as the fluid moves downstream of the cylinder. The coarser
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the grid the larger the lengthscales that the grid is able to adequately represent,
and as the turbulence dies away the lengthscales become smaller. The use of
only a second order differencing schemes will lead to more numerical dissipation
than if a higher order scheme were used. The coupling of these two, therefore,
will act to reduce the level of turbulence that can be accurately predicted.
The moving average with averaging over one period gives less bias to where in
the oscillation the simulation stops than does the theoretical EWMA average
(Fig 4.71, 4.72). The moving average weighted over one period carries the ‘M’
profile seen in the coutours of tubulent kinetic energy because of this history
effect. In addition it remains an order of magnitude smaller than the prediction
by the theoretical EWMA average. From the EWMA average the Smagorinsky
and av3 models remain out of phase and the peaks in their results are the same
in magnitude and vertical distance from the centreline as each other, thereby
validating each others results. As before all results are comparable to the
Smagorinsky subgrid scale LES simulation performed on this grid.

At 10 diameters downstream of the cylinder the profiles of the u′u′ stresses
have become increasingly small inline with the reduction from the profiles at 4
and 5 diameters. The ‘M’ shape to the profile is very prominent with the centre
dip returning to zero as opposed to being a dim. The av3 model remains out
of phase with the others, and remains with a much higher minimum level at
all points in the simulation (Fig4.63). The Newhybrid model remains centrally
aligned. The long weighted average shows this difference in minimum values
more clearly (Fig 4.64) and suggests that the many of the models have moved
to a more centrally aligned position. The offset of the av3 model coincides
with its movement towards the top wall clearly seen in the contour plots (Fig
4.15).

All of the models, though comparable with the Smagorinsky model on this grid
underpredict the v′v′ stresses after 10 diameters. From the moving averages
the predictions of the profiles are the correct shape for the Newhybrid and
Nomodifier models but not for the Smagorinsky, av3 or hybrid model which
have smaller peaks to one side, though the largest level of turbulence is on the
centreline(Fig 4.73). A comparison with the mean u-velocity after 10 diameters
indicates that all of the models are comparable except the Newhybrid model
(Fig 4.45) but this is not the case for the turbulence predictions. The mean
v-velocity after 10 diameters indicates an almost flat profile for the models
though this does not indicate that there are no fluctuations in the flow merely
that the profile is flat. The absence of shear does indicate that the turbulence
predictions will be small though. For both the long average and the theoretical
EWMA average the Nomodifier model predicts higher stresses than many of
the other models, and the Hybrid model gives the worst predictions. Given that
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the Hybrid and the Newhybrid model are very nearly the same this suggests
that the viscosity modifier has a large impact on the results.

The w′w′ stresses are all very small compared to the results of Moin. The
results are all comparable to the Smagorinsky model on this grid with the
largest predictions being made by the Nomodifier and Smagorinsky models.
These results are demonstrated in the contour plots for the w-velocity. The
Smagorinsky model retains the strong gradients of w-velocity, the Nomodified
model starts with strong gradients but they are suppressed once transition into
the RANS sub-domain is achieved (Fig 4.75, 4.76). Again the results from the
av3 model are surprising as this close to the cylinder it would be expected that
the results would be as for the Smagorinsky model. The Hybrid model only has
large gradients of w-velocity in the RANS sub-domain, whereas the smallest
predictions, those from the Newhybrid model are very much lacking in con-
tours of w-velocity at all. The lack of contours indicates a lack of turbulence.
Although the w′w′ stresses will be affected by the other velocity components
the bulk flow is away from the cylinder with the primary disturbance in the
vertical direction. This would suggest that the turbulent fluctuations in the
spanwise direction are much smaller and will therefore require a much finer
grid (Fig 4.77,4.77,4.66,4.55).

The use of the k-ε model for the whole of the domain would mean that the
inherent wall functions in the model are used. However, for a y+ value of 7
(Fig 4.14) the first cell centre is much closer to the wall and actually in the log
layer and this is where the influences of both the viscosity and the turbulence
are felt by the fluid. This means that for the flow around the cylinder the wall
function will not be used, though for the flow along the walls it will be utilised
due to the higher y+ values. It would possibly have been better to have used
the low Reynolds number k-ε model as his integrates through the boundary
layer removing the need for wall functions. Though this would not have been
using what is often the default model.

Frequently the turbulence profiles have qualitatively the correct shape though
the orders of magnitude are too small. For example, at 10 diameters the u’u’
values are two orders of magnitude too small. This may be a combination of
the coarseness of the grid and the smoothing from both the numerical diffusion
and the k-ε model.

The highest courant number in the simulation is 0.4, which indicates that the
fluid flow is adequately resolved in each cell and were this an explicit code that
it is operating within its stability limit. In the immediate wake of the cylinder,
where the LES simulation is to be used, the initial k-ε model predicts that the
turbulent time scale is of the order of 0.359 to 0.43 seconds. In the region
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where the flow detaches from the cylinder the predicted turbulent timescale is
0.008 seconds. The timestep size is 7.051 × 10−3 seconds so the capturing of
the turbulent fluctuations is possible from the transient perspective. However,
the predicted turbulent timescale from the Smagorinsky when run with the k-ε
model predicts a turbulent timescale of 1.42 × 10−3 seconds in the near wake
of the cylinder for which the temporal discretisation is too large to capture
the fluctuations on that scale. At the point where the turbulent eddy detaches
from the cylinder the timescale predicted by the k-ε model is of the order of
10−10 and this fluctuation is far smaller than can be simulated by the current
time step.

In addition the coarseness of the grid will increase the numerical diffusion in
the solution and the use of only a second order differencing scheme introduces
errors compared to the model of Moin. The coarser grid will not be able to
capture such fine eddies and this reduces the turbulence statistics that can be
captured by the model.

The size of the turbulent eddies predicted by the initial k-ε model suggest
that in the region behind the cylinder the size of a turbulent eddy ranges from
4× 10−5[m] where the flow detaches from the cylinder, to 1.5× 10−3[m] where
the centreline of the wake crosses into the RANS sub-domain. The grid size
in the RANS part of the model is 4 × 10−3[m] in the x-direction and this is
larger than the turbulent lengthscale predicted by the k-ε model for the whole
of the simulation as the predicted lengthscale increases to 3 × 10−3[m] as the
flow leaves the domain. However, the prediction of the turbulent lengthscale
by the k-ε model is calculated as follows

` = Cµ
k

3
2

ε
(5.1)

and the lengthscale predicted in this way is smaller where there is a higher
predicted level of turbulence. The k-ε model assumes local isotropy so creation
and dissipation of turbulence take place at approximately the same position
in space and time, this is why the lengthscale is much smaller at the point of
detachment and much larger as the fluid leaves the domain. The turbulence
is affecting the bulk flow and so as the fluid moves towards the outlet the
turbulent fluctuations are smoothed (as is shown from the Smagorinsky model
simulation) but the fluctuation in the mean flow remains hence the larger
lengthscale. The flow Reynolds number is 3 900 and so many of the flow effects
may be from the macro flow instabilities and not the turbulent fluctuations
about these instabilities leading to an incorrect use of the k-ε model in the
transitional regime, as it was originally intended for high Reynolds number
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flows.

It is therefore more important to have more cells in the region where the flow
is rapidly changing as the flow disengages from the cylinder and the length and
time scales are very small. The cell size next to the cylinder is 4× 10−4[m] in
the direction perpendicular to the cylinder and this is an order of magnitude
higher than the predicted lengthscale at the point of detachment, making the
resolution of the turbulent eddies in that region impossible. However, the wall
function of the underlying k-ε model will affect the flow and the detachment
points are correctly predicted as is the behaviour of the fluid in the wake
of the cylinder. Apart from the point of detachment the resolution in the
immediate vicinity of the cylinder is adequate enough to capture the turbulent
lengthscales predicted by the k-ε model. The Smagorinsky model assumes
that the filter is the same size as the cell spacing and so this means that the
cell size is too large in the LES sub-domain. However, this is not an in-depth
study into the the physics of turbulence but a proof of concept that the novel
hybrid methodology works. As to this respect the LES model captures the
flow dynamics that are possible and that are not captured by the k-ε model.

The use of the viscosity modifier can clearly be seen to affect the turbulence
statistics and the mean flow. From the predictions of the u-mean velocity
and the u′u′ and v′v′ stresses the effect can clearly be seen. As there is a
higher viscosity immediately behind the cylinder as compared to that above
and below the cylinder then the fluid continues to move faster nearer the
walls. This is seen as the NewHybrid model has larger turbulent stresses in
the vertical direction immediately into the RANS domain. The modification
of viscosity will suppress the immediately higher turbulent viscosity of the k-ε
model but the maximum viscosity in Figure 4.38 is still 8 times less than for
the k-ε model itself indicating the fluctuations in the viscosity predicted by the
Smagorinsky model will have little effect on that from itself and so the limited
usage of a viscosity modifier.

It is unclear as to any detrimental effect that the use of the viscosity modifier
may be having on the k-ε model. If the turbulent viscosity is reduced in-line
with the use of a turbulent viscosity modifier then there is less resistance at
that point to the movement of the fluid. If the flow were unbounded at in
the model by the use of pressure boundaries then it would be likely that flow
would be entrained into the wake of the cylinder faster as the lower turbulent
viscosity would allow for an increased velocity and hence a lower pressure
entraining flow in. This would lead to a shortening of the wake. Extrapolating
from this there is reason to suspect that the use of a viscosity modifier may
lead to physically unrealistic results in a case where the domain is unbounded
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and the turbulence generated in the centre of the domain. This behaviour
could probably be mitigated by the use of a large enough domain such that
the boundary conditions were far enough away from the LES sub-domain to
reduce the effect of this. It is probably that the reason why this does not
happen in this case is the use of walls at the top and the bottom of the
domain. The enclosure provided by the walls restricts the flow in the (lower
effective viscosity than would be expected) RANS sub-domain to what enters
from the LES sub-domain.

It is not possible from the results to assess the difference that the interface
for the av3 results may have had on the LES sub-domain. As the results
are used to form an average in the first cell of the RANS sub domain it is
possible that there may be an effect upstream on the LES. The results from
the av3 run compare well with the those of the Smagorinsky model, though
the Smagorinsky model itself has the outlet placed the same distance form the
ten diameters profile as the interface is in the av3 model. The mass outlet used
by the simulations enforces a fully developed flow at the outlet by assuming
zero gradient in the direction normal to the boundary

The levels of turbulence predicted by the models are all comparable with each
other and the Smagorinsky model. They are all smaller than the results of
Moin. The results from the ‘dump’ file method of averaging predict the largest
turbulent fluctuations. This is because the turbulence is being measured as the
amplitude of the flow away from a mean value, and so tends towards the RMS
value of the amplitude. Where the EWMA averaging methodology is used,
the ‘short’ average, the measure of the turbulence statistics the fluctuation is
calculated at each timestep. It is measuring the disturbance from an average
that moves with the flow. The use of the EWMA methodology with an implied
weighting over one period the ‘long’ average, should give larger predictions
for the turbulence that the theoretical EWMA as the longer averaging period
means that the average is closer to the long running average and so the method
is closer to measuring the amplitude than the fluctuation. However, thought
the mean velocities for the methods are very similar the turbulence predictions
vary by up to two orders of magnitude. There are three main reasons for this.
The first is that the values given from the ‘long’ and ‘short’ EWMA averages
are instantaneous as they are the values for that timestep only, whereas the
‘dump’ averages have an implication of averaging as they are calculated and
averaged at four points in that last cycle. The second is that though the mean
velocities for the wake are very similar between the two EWMA averages,
there is only a small difference between the mean and instantaneous value
(ignoring the fact that all of the velocities are averages in the RANS sub-
domain). When multiplied to give the u′u′ stress, the multiplication is enough
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to accentuate the difference between the differences, which leads into the third
point. The mesh spacing used in the simulation is not fine enough to sufficiently
resolve the turbulence fluctuations and so there are only very small differences
between the average and instantaneous values, which in turn leads to very small
predictions of turbulence. This would be expected in the RANS sub-domain
as the velocities there are all averages anyway, but for the Smagorinsky and
av3 models the turbulence predictions for all of the profiles downstream of
the cylinder would be expected to be larger. The dump file averages compare
better with those results of Moin as this method of averaging is close to the
long average used by Moin. The predictions are larger therefore, as the method
is predicting the RMS of the amplitude of the oscillation.

Outside of the academic community how many people will investigate the tur-
bulence properties of the flow may be questioned. However the ‘hybrid’ models
all provide adequate representation of the flow when quickly investigated by
the use of a post processor before the closer inspection by way of assessing
the turbulence properties. If this is given as a criteria then the inspection of
the turbulence contour plots (Fig 4.6, 4.13,4.21,4.27,4.33 and 4.39) all show
comparable turbulence properties in the wake of the cylinder.

5.7 Summary of the different hybrid method-

ologies

In conclusion, it can be shown that the Hybrid model with no viscosity modifier
is the best solution to this problem. The turbulence predictions are close to
those from the Smagorinsky model and there is the least amount to do to make
the model work. The implementation of the interface is trivial as the variables
are simply passed across leaving the two modelling methodologies to utilise
the predicted velocities

The av3 model also predicts the turbulence well, and the use of averaging at the
interface means that the RANS sub-domain is able to dissipate the turbulence
that is predicted by the LES model. The averaging at the interface also means
that the RANS model is passed the mean velocity as it is expecting and so the
methodology of Reynolds averaging is upheld.

The Hybrid and Newhybrid models, though similar in concept, give differing
results. The hybrid model with the lower limit gives good prediction of the
turbulence and velocities at the expense of having to calculate the movement
of a user scalar, which, with the current implementation gives a minimum
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viscosity as the modifier places a lower bound on the turbulent viscosity. In
addition it does not enforce any mass balance for the user scalar. This is visible
in that the value at the inlet is that of the laminar viscosity and at the outlet
is the laminar plus turbulent viscosity which means that there is a nett gain
of scalar in the model. Although this does not affect the flow of the fluid,
this may be seen as untidy. Another important issue will be the spread of the
scalar in the domain as its diffusion across the direction of flow will have an
impact on the shearing that may be captured.

5.8 Estimated speedup from the ‘Hybrid’ model

Clearly there will be a CPU overhead from using a commercial code. Although
CFX4.4 is linked at runtime the implicit nature of the code will increase the
communications overhead and the extra user scalars required for the transport
of the variables combined with the superposition of one modelling technique
on another will mean that there is an increase in computational cost over the
standard k-ε model, which as a rule of thumb consumes approximately 10% of
the CPU time for a simulation [118]

It is striking that the CPU time for the k-ε model is so much less than for any
of the Smagorinsky models. This is due, in the most part, for the final solution
being steady. The solution is not changing each timesteps and so the conver-
gence is very quick. This is contrary to the LES which takes more iterations
each timestep to converge. The second major influence will be that lack of user
scalars in the k-ε simulation. This means that the wake of the cylinder is not
changing as there is no vortex shedding and so that the simulation needs only
one or at most two iterations per timestep. As the CPU times listed are for the
final experimental run when the data is collected this is most pronounced as
the flow is not developing any more. Contrary to this the LES and the ‘hybrid’
models that have captured the vortex shedding and because of the transient
nature of the flow there are more iterations required each timestep to resolve
the flow to the desired accuracy.

It can also be seen that the load balancing on the processors is reasonably
good. The number of cells for each processor is about 60 000, and the number
of dummy nodes is comparable for all except the first two processors where it
is 50% higher due to the communication between the two domains above and
below the cylinder. The results of this are born out by the comparable times
of the separate nodes in the parallel operation having comparable CPU times.

There is possibly a small effect on node4 of the misalignment of the i j and k
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directions in the final two blocks of the av3 simulation. The longest direction
has become the k and not the i direction and in doing so this may hinder
effective vectorization. It may be the case that this was not seen for these
results as the number of cells on processor 4 is not near its effective operating
limit and so the effective use of local memory is less of an issue. (Though still
important)

The CPU time is presented as reported by CFX4. However, it is unclear
from the documentation as to whether this is the time spent in calculation
only or whether this is also the time spent where the processor is idle but has
been reserved by CFX whilst waiting for another processor to finish. This can
clearly be seen in the comparison of CPU times for the LES sub-domains as
these vary by as much as half as much again between the av3 and NewHybrid
simulations for processor1, which is performing the same task on the same size
grid in each case. For this reason it would be wrong to compare the times on
processor 3 and remark on how much faster the Newhybrid model is compared
to the others and how there can be seen to be a good speedup in the processing
time when compared with the Smagorinsky model.

If the CPU time reported is that of the slowest processor then it would be
assumed that the hybrid models would all be approximately the same as the
slowest node would be the LES sub-domains around the cylinder as this is
where there is the most communication cost, the largest number of wall nodes,
the fastest change in the simulation requiring the most iterations and the
largest use of user Fortran as it is running the LES code over the top of the
k-ε model.

Based on the assumption that the time spent in the k-ε model in an ‘average’
simulation is no more than 10% of the total CPU time of the simulation. The
positioning of the Smagorinsky model over the k-ε model and the use of further
user Fortran to monitor the flow would still take only a small fraction of the
total processor time. If it is assumed that the total time spent running the
turbulence models in the ‘hybrid’ simulation is less than 20% of the total CPU
time, then to try to reduce this would appear to be the speeding up of the
fastest part of the program, and in addition the operation of the code as only
an LES model would remove the need for a turbulence model at all and could
reduce the CPU time further. However, the use of a LES model to capture
80% of the energy in the flow would require many more cells than has been
used in the studies in this thesis, which would again increase the CPU time of
the simulation.

If the number of cells in the LES sub-domain were quadrupled in each direction
then that would increase the number of cells to 1 920 000 cells. To do this for
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the whole domain (excluding the av3 model) would put the total number of
cells at 2 784 000 cells. Even with the amount of time spent in the turbulence
modelling subroutines being less than 20% of the total time the vast number
of cells included in the simulation mean that the CPU time will go up by an
estimated factor of 12, with the assumption that each processor could process
16 times the number of cells with linear speedup and no additional memory
requirements (which is unlikely, as the increase per processor from 60 000 cells
to 960 000 cells is a considerable increase).

If, however, the ‘hybrid’ model were used with the current (grid independent)
grid for the k-ε model used for the downstream part of the model, then the
CPU time increase is only increased by a factor of 9, which is a 25% saving over
the complete LES model, demonstrating the facility of placing more cells where
the flow is changing faster and of more interest but being able to model the
flow for the rest of the domain with adequate accuracy to predict turbulence.

Were this to be used in a mixing vessel where only one quarter of the volume
is simulated using the LES model and the rest the k-ε model. Assuming as
before that there is a 16 fold increase in the number of cells in the LES region
then the speedup of the hybrid model over a complete LES simulation could
be up to fourfold. If the volume used for the LES region were only one tenth
of the vessel size then there could be a tenfold increase in the speed compared
to an LES simulation.

The estimates of speedup are based upon the assumption of scalability of the
code and the memory requirements.
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Chapter 6

Conclusions

In this thesis I have demonstrated that it is possible to split up a domain into
two parts, such that one has the flow modelled using the Smagorinsky subgrid
scale model and the LES modelling technique, whilst the other part of the
domain uses the Reynolds averaging approach and the k-ε model to model the
turbulence.

The Hybrid LES/RANS model has been validated against high accuracy com-
putational data for the vortex shedding behind a cylinder at Re = 3 900, which
is a well documented case for unsteady flow with separation which is difficult to
predict because of the curvature of the cylinder. The hybrid models compare
well to a large eddy simulation performed on the same grid. The velocity pro-
files compare well to the higher accuracy LES simulation and the turbulence
predictions are qualitatively the same.

This technique been accomplished on a parallel machine whereby the different
modelling approaches are used on different processors. The different models
have explicitly been used on different processors and the interface designed
so that it could be extended for a larger domain with variable numbers of
processors in each sub-domain.

The Hybrid LES/RANS model has been compared with both the LES and
the k-ε model for the same simulation. The computational time of the hybrid
model is comparable to that of the LES simulation, but waiting time for the
processor is measured as computational time. It is estimated that for a care-
fully placed interface for the hybrid model there would be a large reduction in
the time taken for the hybrid model compared to the large eddy simulation of
the same domain.

In addition a new application of a method for averaging the results has been
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used that would be equally applicable if the flow were not periodic. The
development of this model and its use has been demonstrated, both that the
turbulent fluctuations are captured, and that it is the turbulence and not the
amplitude of the periodic flow that is measured.



Chapter 7

Further work

In order to evaluate the usefulness of the hybrid model further, it should be
evaluated on different domains. Initially the domain could be enlarged. This
will test the speedup of the model more thoroughly and will also allow the
effect of the boundary conditions to be assessed. The performance of the
hybrid models could be assessed also with different turbulence models for the
RANS sub-domain in case there are numerical gains to be obtained by passing
different variables across the interface. If the k − ε model were implemented
directly into the user fortran then the user would have a greater control of the
variables passed at the interface and this may facilitate understanding of the
model.

Once a greater understanding of the model is obtained then the model will
have to be tested on different geometries to compare against LES and RANS
models, and ideally against experimental results as well. This will allow the
model to be tested in both simple geometries and also more complex cases to
measure the speedup and the performance of the model with combustion or
chemical reaction as well as the hybrid model. These more complex cases will
test the action of the interface on user scalars other than those used for the
hybrid model.

Ideally the interface should be modified such that the grid on either side of the
interface no longer has to remain uniform. This could either be achieved by the
use of an unmatched grid, or by transferring the model into an unstructured
grid format.

However, before the model can become very useful the boundary conditions
for the flow from the RANS sub-domain into the LES sub-domain will have to
be investigated and demonstrated. This will then fully allow the modelling of
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stirred tank reactors.

Finally it may be desirable to allow for the dynamic movement of the interface
depending on the predicted turbulence level. If the interface were to move
depending on the turbulence level then the model would become useful for
more dynamic simulations. For example, the effect of lorries turning corners,
and changing from a headwind to a sidewind could be modelled, and the
interface would move to optimise the LES resource usage as the wake changes
shape.



Appendix A

List of user scalars

USER SCALAR1 ’USRDCC U AVERAGE’
USER SCALAR2 ’USRDCC V AVERAGE’
USER SCALAR3 ’USRDCC W AVERAGE’
USER SCALAR4 ’USRDCC K AVERAGE’
USER SCALAR5 ’USRDCC U FLUCT’
USER SCALAR6 ’USRDCC V FLUCT’
USER SCALAR7 ’USRDCC W FLUCT’
USER SCALAR8 ’USRDCC K FLUCT’
USER SCALAR9 ’USRDCC SGS VISCOSITY’
USER SCALAR10 ’USRDCC VISN’
USER SCALAR11 ’USRDCC TAU MID’
USER SCALAR12 ’USRDCC TAU’
USER SCALAR13 ’USRDCC TMULT’
USER SCALAR14 ’MODIFIER’
USER SCALAR15 ’USRDCC LES EPS AVG’
USER SCALAR16 ’USRDCC LES EPS INST’
USER SCALAR17 ’YPLUS’
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Appendix B

CFX4.4 specific files used

B.1 Sample command file for the simulation

>>CFX4

/*for the calcuator the names represent ...*/

/*the inlet plane velocity*/

/*the frequency of oscillation as calculater from St=l/tU*/

/*period of the oscillation*/

/*no of steps/cycle*/

/*size of the timesteps*/

/*number of oscillations to be modelled*/

/*number of steps for the whole simulation*/

/*or could use CYCLES*STEPS !*/

/*number of iterations/step*/

#CALC

DENSITY = 1000;

VISCOSITY = 0.001;

VELOCITY = 0.1772727;

STROUHAL = 0.22;

DIAMETER = 0.022;

PERIOD = DIAMETER/(STROUHAL*VELOCITY);

FREQ = 1/PERIOD;

STEPS = 80;

STEPSIZE = PERIOD/STEPS;

CYCLES = 10.0;

NO_OF_STEPS= CYCLES*STEPS;

ITER = 30;

REYNO = 1000*VELOCITY*DIAMETER/VISCOSITY;

#ENDCALC /********************************************

Changes this command file Restarted from m16.

********************************************/

>>SET LIMITS
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TOTAL INTEGER WORK SPACE 25000000

TOTAL CHARACTER WORK SPACE 9000

TOTAL REAL WORK SPACE 55000000

MAXIMUM NUMBER OF BLOCKS 16

MAXIMUM NUMBER OF PATCHES 100

MAXIMUM NUMBER OF INTER BLOCK BOUNDARIES 25

END

>>OPTIONS

TURBULENT FLOW

ISOTHERMAL FLOW

INCOMPRESSIBLE FLOW

TRANSIENT FLOW

USER SCALAR EQUATIONS 17

>>USER FORTRAN

USRTRN

USRVIS

>>VARIABLE NAMES

USER SCALAR1 ’USRDCC U AVERAGE’

USER SCALAR2 ’USRDCC V AVERAGE’

USER SCALAR3 ’USRDCC W AVERAGE’

USER SCALAR4 ’USRDCC K AVERAGE’

USER SCALAR5 ’USRDCC U FLUCT’

USER SCALAR6 ’USRDCC V FLUCT’

USER SCALAR7 ’USRDCC W FLUCT’

USER SCALAR8 ’USRDCC K FLUCT’

USER SCALAR9 ’USRDCC SGS VISCOSITY’

USER SCALAR10 ’USRDCC VISN’

USER SCALAR11 ’USRDCC TAU_MID’

USER SCALAR12 ’USRDCC TAU’

USER SCALAR13 ’USRDCC TMULT’

USER SCALAR14 ’MODIFIER’

USER SCALAR15 ’USRDCC LES EPS AVG’

USER SCALAR16 ’USRDCC LES EPS INST’

USER SCALAR17 ’YPLUS’

>>MODEL TOPOLOGY

>>INPUT TOPOLOGY

READ GEOMETRY FILE

END

>>MODEL DATA

>>DIFFERENCING SCHEME

U VELOCITY ’higher upwind’

V VELOCITY ’Higher upwind’

W VELOCITY ’CENTRAL’

>>SET INITIAL GUESS

>>INPUT FROM FILE

READ DUMP FILE

FORMATTED
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>>WALL TREATMENTS

/* WALL PROFILE ’LOGARITHMIC’ */

NO SLIP

>>PHYSICAL PROPERTIES

>>FLUID PARAMETERS

VISCOSITY #VISCOSITY

DENSITY #DENSITY

>>SCALAR PARAMETERS

>>DIFFUSIVITIES

MODIFIER 0.000001

>>TURBULENCE PARAMETERS

>>LOGLAYER CONSTANT

MODIFIER 1.0

>>SUBLAYER THICKNESS

MODIFIER 1.0

>>TRANSIENT PARAMETERS

>>FIXED TIME STEPPING

TIME STEPS #NO_OF_STEPS * #STEPSIZE

INITIAL TIME 0.000E+00

NUMBER OF VARIABLES CHANGED ON RESTART

>>SOLVER DATA

>>PROGRAM CONTROL

MAXIMUM NUMBER OF ITERATIONS #ITER

MASS SOURCE TOLERANCE 1.0000E-04

>>CREATE GRID

>>INPUT GRID

READ GRID FILE

END

>>GRID OPTIONS

COMPUTE DISTANCES TO WALLS

>>MODEL BOUNDARY CONDITIONS

>>INLET BOUNDARIES

PATCH NAME ’INLET’

NORMAL VELOCITY #VELOCITY

MODIFIER #VISCOSITY

>>WALL BOUNDARIES

PATCH NAME ’WALL_CYL’

>>OUTPUT OPTIONS

>>DUMP FILE FORMAT

FORMATTED

SINGLE PRECISION

>>DUMP FILE OPTIONS

INITIAL GUESS

ALL REAL DATA

GEOMETRY DATA
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>>DUMP FILE OPTIONS

TIME STEP 740

ALL REAL DATA

>>DUMP FILE OPTIONS

TIME STEP 760

ALL REAL DATA

>>DUMP FILE OPTIONS

TIME STEP 780

ALL REAL DATA

>>DUMP FILE OPTIONS

FINAL SOLUTION

ALL REAL DATA

NO GEOMETRY DATA

>>PRINT OPTIONS

>>WHAT

NO RESIDUAL HISTORY

>>LINE GRAPH DATA

XYZ 1.000000E-01 0.000000E+00 5.500000E-03

EACH TIME STEP

FILE NAME ’MONITOR.TXT’

ALL VARIABLES

>>LINE GRAPH DATA

XYZ 5.000000E-01 0.000000E+00 5.500000E-03

EACH TIME STEP

FILE NAME ’FAR.TXT’

ALL VARIABLES

>>STOP
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B.2 Subroutine for the the turbulent viscosity

SUBROUTINE USRVIS(VISN

+ ,U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,

+ XP,YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,DIFLAM,

+ URFVAR,IPT,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,

+ IPNODB,IPFACB,WORK,IWORK,CWORK)

C

C**********************************************************************

C

C USER SUBROUTINE TO PROVIDE VARIABLE LAMINAR VISCOSITY, IF REQUIRED.

C

C >>> IMPORTANT <<<

C >>> <<<

C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<

C >>> THE DESIGNATED USER AREAS <<<

C

C**********************************************************************

C

C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES

C CUSR CVIS

C

C***********************************************************************

C CREATED

C 22/11/89 ADB

C MODIFIED

C 08/08/91 IRH NEW STRUCTURE

C 03/09/91 IRH CORRECT ARGUMENT LIST AND /CHKUSR/

C 25/09/91 IRH ADD USEFUL COMMON BLOCKS

C 29/11/91 PHA UPDATE CALLED BY COMMENT, INCLUDE RF ARGUMENT,

C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2

C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3

C 03/07/92 DSC CORRECT COMMON MLTGRD.

C 02/08/93 NSW INCLUDE DIMENSIONING FOR URFVAR

C 21/09/93 NSW MODIFY FOR USER TO SET NEW VALUE OF VISCOSITY

C TO BE UNDER-RELAXED. CHANGE IVERS TO 4

C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.

C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D

C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE

C 22/08/94 NSW MOVE ’IF(IUSED.EQ.0) RETURN’ OUT OF USER AREA

C 19/12/94 NSW CHANGE FOR CFX-F3D

C 02/07/97 NSW UPDATE FOR CFX-4

C

C***********************************************************************

C

C SUBROUTINE ARGUMENTS

C

C * VISN - NEW VALUE OF VISCOSITY
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C U - U COMPONENT OF VELOCITY

C V - V COMPONENT OF VELOCITY

C W - W COMPONENT OF VELOCITY

C P - PRESSURE

C VFRAC - VOLUME FRACTION

C DEN - DENSITY OF FLUID

C VIS - OLD VALUE OF VISCOSITY

C TE - TURBULENT KINETIC ENERGY

C ED - EPSILON

C RS - REYNOLD STRESSES

C T - TEMPERATURE

C H - ENTHALPY

C RF - REYNOLD FLUXES

C SCAL - SCALARS (THE FIRST ’NCONC’ OF THESE ARE MASS FRACTIONS)

C XP - X COORDINATES OF CELL CENTRES

C YP - Y COORDINATES OF CELL CENTRES

C ZP - Z COORDINATES OF CELL CENTRES

C VOL - VOLUME OF CELLS

C AREA - AREA OF CELLS

C VPOR - POROUS VOLUME

C ARPOR - POROUS AREA

C DIFLAM - LAMINAR DIFFUSIVITY

C URFVAR - UNDER RELAXATION FACTORS

C

C IPT - 1D POINTER ARRAY

C IBLK - BLOCK SIZE INFORMATION

C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES

C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS

C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES

C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS

C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS

C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACES

C

C WORK - REAL WORKSPACE ARRAY

C IWORK - INTEGER WORKSPACE ARRAY

C CWORK - CHARACTER WORKSPACE ARRAY

C

C SUBROUTINE ARGUMENTS PRECEDED WITH A ’*’ ARE ARGUMENTS THAT MUST

C BE SET BY THE USER IN THIS ROUTINE.

C

C

C NOTE THAT THE USER SHOULD SET THE VALUE REQUIRED FOR THE

C NEW VISCOSITY. THIS WILL BE UNDER-RELAXED WITH REGARD TO THE OLD

C VALUE OF VISCOSITY AUTOMATICALLY BY THE PROGRAM.

C

C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE

C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4

C USER MANUAL.

C
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C***********************************************************************

C

LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP

+ ,LRECT,LCYN,LAXIS,LPOROS,LTRANS

C

CHARACTER*(*) CWORK

C

C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES

C

REAL L,DELTA,SMAG,SMAG2,VIS_SGS,CO,ONETHIRD,MU_LAM,YDIST,TAUWALL,

& D,YPLUS,APLUS,MU_T

INTEGER IUDIST

INTEGER INODE1

REAL LIMIT, Sij

C

C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++

C

COMMON

+ /ALL/ NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM

+ /ALLWRK/ NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE

+ /ADDIMS/ NPHASE,NSCAL,NVAR,NPROP

+ ,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,NRLIST,NTOPOL

+ /CHKUSR/ IVERS,IUCALL,IUSED

+ /DEVICE/ NREAD,NWRITE,NRDISK,NWDISK

+ /IDUM/ ILEN,JLEN

+ /LOGIC/ LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP

+ ,LRECT,LCYN,LAXIS,LPOROS,LTRANS

+ /MLTGRD/ MLEVEL,NLEVEL,ILEVEL

+ /SGLDBL/ IFLGPR,ICHKPR

+ /SPARM/ SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON

+ /TRANSI/ NSTEP,KSTEP,MF,INCORE

+ /TRANSR/ TIME,DT,DTINVF,TPARM

C

C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS

C THESE SHOULD START WITH THE CHARACTERS ’UC’ TO ENSURE

C NO CONFLICT WITH NON-USER COMMON BLOCKS

C

COMMON

+ /USRWAL/ JWALLO

& /DOMRUN/ IDOMNO,NPCHDO

C

C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++

C

DIMENSION DIFLAM(NVAR,NPHASE),URFVAR(NVAR,NPHASE)

C

DIMENSION
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+ VISN(NNODE,NPHASE)

+,U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),P(NNODE,NPHASE)

+,VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),VIS(NNODE,NPHASE)

+,TE(NNODE,NPHASE),ED(NNODE,NPHASE),RS(NNODE,NPHASE,6)

+,T(NNODE,NPHASE),H(NNODE,NPHASE),RF(NNODE,NPHASE,4)

+,SCAL(NNODE,NPHASE,NSCAL)

C

DIMENSION

+ XP(NNODE),YP(NNODE),ZP(NNODE)

+,VOL(NCELL),AREA(NFACE,3),VPOR(NCELL),ARPOR(NFACE,3)

+,WFACT(NFACE)

+,IPT(*),IBLK(5,NBLOCK)

+,IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6),IPNODF(NFACE,4)

+,IPNODB(NBDRY,4),IPFACB(NBDRY)

+,IWORK(*),WORK(*),CWORK(*)

C

C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS

C

C---- AREA FOR USERS TO DEFINE DATA STATEMENTS

C

C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++

C

C---- STATEMENT FUNCTION FOR ADDRESSING

IP(I,J,K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I)

C

C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG

C

IVERS=4

ICHKPR = 1

C

C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++

C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1

C

IUSED=1

C

C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++

C

IF (IUSED.EQ.0) RETURN

C

C---- FRONTEND CHECKING OF USER ROUTINE

IF (IUCALL.EQ.0) RETURN

C

C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++

c julian 26/6/02

c parallel execution of the smoothing not working.

c left with spurious high values of the viscosity but only in the

c keps side.

c there was also no smoothing of the viscosity
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c

c action taken

c 1, have tried with different geometry to see if the BC’s had an

c effect no FX

c 2, have tried to make the flow go faster so that it is turbulent

c crashes

c 3, have tried combination of these.

c 4, have investigated k-eps run that I start from.

c that is OK

c 5, have tried with just k-eps and smag with no smoothing

c all OK but unsmoothed at interface

c 6 about to put smoothing back in

c this will go into the critical sections again.

c 7 change from IPNODB to INODE1=IPNODF(IFACE,1)

c this seems to work

c 8, make the forced values of viscosity more obvious to check

c that they are coming through. Esp. INODE3.

c The smoothing is only happening n the RANS side. I believe

c this to be more to do with the geometry than the turbulence

c model. I am sure that the smoothing only happens on 1

c side as I can only ’force’ values of viscosity on that

c side.

c The results are encouraging, but the viscosity for INODE2 goes

c negative. I will write out the values both before and after

c interpolation

c 9, using TEMP.GEO, I have created 2 user2d_inter patches

c these are numberes 1 and 2 so I can call them explicitly

c 1 is on the RANS block

c 2 is on the LES block

c In decomposition, both of the USED2D patches are moved onto

c block 1

c 10, Only put the USER2D patch on block2 and see what happens

c (again by changing temp.geo)

c works, am including INODE5 to check that it is OK by

c forcing the viscosity

c 11, RANS processor does less work so will put smoothing there,

c am concerned that the VIS for INODE2 is negative.

c Will also remove smoothing algorithm from LES side.

c 12, changing the smoothing on the RANS side so that it is

c scaled more evenly between the LES and RANS. I will put the

c three nodes at 0.25 0.5 and 0.75 of the distance between them.

c I am still only averaging over three nodes as this is the

c minimum for a block I can do this as I know which will be the

c higher viscosity because I am putting these on the RANS side.

c 13 writing out the values of k eps and coordinates for INODE2 in

c the smoothing algorithm.

c values for variables not realistic, thereforededuce that INODE2

c is not the dummy cell containing the values from the next domain.

c kmax=1000 xmin=0.001, xmax=0.011 zmin=-0.0005 zmax=0.0099
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c 14 print out values k, eps, xp,yp,zp for the interface patch node to

c see if I can use that for smoothing.

c values for k,eps reasonable, but cannot calculate mu_t from it.

c values of xp,yp,zp all over the place - But, when I use IBDRY

c to point to INODE1, INODE1 is next to the interface.

c Therefore I am disregarding the values of xp,yp,zp and using

c IBDRY

c 15 Use IBDRY to modify the viscosity with. Limit the damage by

c calculating mu_t by k and eps and setting the max possible

c mu_t to be twice this.‘

c 16 23/7/02 Will use a user scalar to smooth the viscosity. In

c the LES region the value of the scalar will be set to the

c same as the viscosity. In the RANS domain the value of the

c viscosity will be set to the mean of the scalar and the

c viscosity of that cell. The scalar will then be set to the

c same value. The scalar will be allowed to diffuse. When

c the value of the scalar is >90% of the viscosity in the RANS

c domain the value will be set to that of the RANS domain and

c there will be no further change.

c 17 24/7/02 Removing the min/max protection from the RANS domain

c as I am concerned that the viscosity her eis an order of

c magnitude lower than the laminar viscosity

c 18 05/08/02 Inserting error traps as I am concerned that the

c viscosity from the LES is lower than the laminar viscosity

c 19 21/08/02

c Running on 8 processors in th BOX geometry

c THis means that I have 4 LES and 4 RANS nodes

c To get around this I have to change the node number for the

c critical regions so that this works

c 20 10/09/02

c Remove references to modifier scalar. I am trying witht the

c modification of k and eps instead

c 21 12/09/02

c Move the calculation of the instantaneous values for

c epsilon in the LES section to USRVIS. K left in USRTRN as this

c does not require the calculation of gradients and is not

c dependent on Sij, or mu_t

c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

c END COMMENTS SECTION

c&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

C---- SETTING CONSTANTS

APLUS = 25.

CO = 0.1

ONETHIRD = 1./3.

IPHASE = 1

MU_LAM = DIFLAM(1,IPHASE)

LIMIT = 0.9
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c echo printing

IF(NITER.EQ.1)THEN

WRITE(NWRITE,*)’APLUS’,APLUS

WRITE(NWRITE,*)’CO’,CO

WRITE(NWRITE,*)’ONETHIRD’,ONETHIRD

WRITE(NWRITE,*)’IPHASE’,IPHASE

WRITE(NWRITE,*)’MU_LAM’,MU_LAM

ENDIF

C---- RESERVE REAL WORKSPACE FOR VELOCITY GRADIENTS

CALL SETWRK(’USRVIS’,’WORK ’,’UGRAD ’,3*NCELL,JUGRAD)

CALL SETWRK(’USRVIS’,’WORK ’,’VGRAD ’,3*NCELL,JVGRAD)

CALL SETWRK(’USRVIS’,’WORK ’,’WGRAD ’,3*NCELL,JWGRAD)

C

C---- GET ADDRESS FOR DISWAL

CALL GETADD(’USRVIS’,’GEOM ’,’DISWAL’,ILEVEL,JDISWA)

C

C---- GETTING SCALAR NUMBERS

CALL GETSCA(’USRDCC SGS VISCOSITY’,ISC9,CWORK)

CALL GETSCA(’USRDCC VISN’,ISC10,CWORK)

CALL GETSCA(’USRDCC TAU_MID’,ISC11,CWORK)

CALL GETSCA(’USRDCC TAU’,ISC12,CWORK)

c CALL GETSCA(’MODIFIER’,ISC14,CWORK)

CALL GETSCA(’USRDCC LES EPS INST’,ISC16,CWORK)

C---- COMPUTE VELOCITY GRADIENTS

CALL GRADV(’USRVIS’,IPHASE,U(1,IPHASE),V(1,IPHASE),

+ W(1,IPHASE),WORK(JUGRAD),WORK(JVGRAD),WORK(JWGRAD),

+ XP,YP,ZP,VOL,AREA,

+ IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,

+ WORK,IWORK,CWORK)

c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

c this is the start of the critical part of the code

IF(IDOMNO.LE.1)THEN

c WRITE (NWRITE,*) ’--ENTERING USRVIS FOR KSTEP,NITER’,KSTEP,NITER

c WRITE(NWRITE,*) ’NPCHDO’,NPCHDO

call IPALL(’USER3D_RANS’,’USER3D’,’PATCH’,’CENTRES’,IPT

* ,NPT,CWORK,IWORK)

DO 110 L=1,NPT

INODE = IPT(L)

c MU_T=MU_LAM+((0.09*TE(INODE,IPHASE)**2)/ED(INODE,IPHASE))

c VISN(INODE,IPHASE)=MIN(VIS(INODE,IPHASE),(2*MU_T))

VISN(INODE,IPHASE)=MAX(VIS(INODE,IPHASE),MU_LAM)

c VISN(INODE,IPHASE)=MIN(MAX(VIS(INODE,IPHASE),MU_LAM),

c & (2*MU_T))
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c IF((SCAL(INODE,IPHASE,ISC14)/VISN(INODE,IPHASE)).GE.LIMIT)

c & THEN

c SCAL(INODE,IPHASE,ISC14)=VISN(INODE,IPHASE)

c ELSE

c VISN(INODE,IPHASE)=0.5*(VISN(INODE,IPHASE)+

c & SCAL(INODE,IPHASE,ISC14))

c SCAL(INODE,IPHASE,ISC14)=VISN(INODE,IPHASE)

c ENDIF

110 CONTINUE

C WRITE(NWRITE,*)’ NO MODIFIER USED ’

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c endif for IDOMNO

ENDIF

c this is the end of the code for the rans part

c////////////////////////////////////////////////

c\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

c this is the start of the code for the LES part

C-------------------------------

C---- SMAGORINSKY SGS VISCOSITY

C-------------------------------

IF(IDOMNO.GE.2)THEN

c WRITE (NWRITE,*) ’--ENTERING USRVIS FOR KSTEP,NITER’,KSTEP,NITER

C write(NWRITE,*) ’this is domain IDOMNO’,IDOMNO

C WRITE(NWRITE,*) ’NPCHDO’,NPCHDO

CALL IPALL(’USER3D_LES’,’USER3D’,’PATCH’,’CENTRES’,

& IPT,NPT,CWORK,IWORK)

C---- LOOP OVER ALL INTERIOR CELLS

DO 100 I=1,NPT

INODE=IPT(I)

DUDX = WORK(JUGRAD+INODE-1)

DUDY = WORK(JUGRAD+NCELL+INODE-1)

DUDZ = WORK(JUGRAD+2*NCELL+INODE-1)

C

DVDX = WORK(JVGRAD+INODE-1)

DVDY = WORK(JVGRAD+NCELL+INODE-1)

DVDZ = WORK(JVGRAD+2*NCELL+INODE-1)

C

DWDX = WORK(JWGRAD+INODE-1)

DWDY = WORK(JWGRAD+NCELL+INODE-1)

DWDZ = WORK(JWGRAD+2*NCELL+INODE-1)

C
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C----- CALCULATION OF THE SMAGORINSKY TERM

Sij = 2.0*(DUDX**2 + DVDY**2 + DWDZ**2)

+ + (DUDY + DVDX)**2 + (DUDZ + DWDX)**2

+ + (DVDZ + DWDY)**2

SMAG2 = 2*Sij

SMAG = SQRT(SMAG2)

IF(SMAG.LT.0.0)THEN

WRITE(NWRITE,*)’(SMAG.LT.0.0)’

WRITE(NWRITE,*)’XP ’,XP(INODE),’, YP ’,YP(INODE),’

& , ZP ’,ZP(INODE)

ENDIF

C

C----- CALCULATION OF WALL DAMPING

c IWALL = IWORK(JWALLO+INODE-1)

c IBDRY = IWALL - NCELL

c INODE1 = IPNODB(IBDRY,1)

C----- USE EITHER THE TIME AVERAGE OR INSTANTANEOUS SHEAR STRESS

C FOR WALL DAMPING CALCULATION

C TAUWALL = SCAL(INODE1,IPHASE,ISC11)

C TAUWALL = SCAL(INODE1,IPHASE,ISC12)

C YDIST = WORK(JDISWA+INODE-1)

C YPLUS = YDIST/(MU_LAM/MAX(SMALL,DEN(INODE,IPHASE)))

C + *SQRT(TAUWALL/MAX(SMALL,DEN(INODE,IPHASE)))

C D = 1-EXP(-YPLUS/APLUS)

C

C----- CALCULATION OF FILTERLENGTH

DELTA = VOL(INODE)**ONETHIRD

C L = D * CO * DELTA

L = CO * DELTA

C !RUN WITHOUT WALL DAMPING

c write(*,*)’calculation of filterlength’

IF((DELTA.GT.0.1).OR.(DELTA.LT.0.0))THEN

write(*,*)’DELTA = ’,DELTA

ENDIF

IF(L.LT.0.0)THEN

WRITE(NWRITE,*)’(L.LT.0.0)’

WRITE(NWRITE,*)’XP ’,XP(INODE),’, YP ’,YP(INODE),’

& , ZP ’,ZP(INODE)

ENDIF

C

C----- CALCULATION OF SGS VISCOSITY

c

VIS_SGS = L**2 * SMAG

IF(VIS_SGS.LT.0.0)THEN

WRITE(NWRITE,*)’(VIS_SGS.LT.0.0)’

WRITE(NWRITE,*)’XP ’,XP(INODE),’, YP ’,YP(INODE),’

& , ZP ’,ZP(INODE)

ENDIF
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c

C----- CALCULATION OF NEW VISCOSITY

c

VISN(INODE,IPHASE) = MU_LAM + VIS_SGS*DEN(INODE,IPHASE)

SCAL(INODE,IPHASE,ISC9) = VIS_SGS*DEN(INODE,IPHASE)

SCAL(INODE,IPHASE,ISC10) = VISN(INODE,IPHASE)

c SCAL(INODE,IPHASE,ISC14) = VISN(INODE,IPHASE)

C-- Calculation of Instantaneous dissipation

SCAL(INODE,IPHASE,ISC16) = VIS_SGS*Sij*Sij

c

IF(VISN(INODE,IPHASE).GT. 0.1)Then

write(NWRITE,*)’VISN’,VISN(INODE,IPHASE),

& ’ XP ’,XP(INODE),’, YP ’,YP(INODE),’, ZP ’,ZP(INODE)

& ,’, TE’,TE(INODE,IPHASE),’, ED’,ED(INODE,IPHASE)

ENDIF

IF(VISN(INODE,IPHASE).LT.MU_LAM)THEN

WRITE(NWRITE,*)’(VISN(INODE,IPHASE).LT.MU_LAM)’

WRITE(NWRITE,*)’XP ’,XP(INODE),’, YP ’,YP(INODE),’

& , ZP ’,ZP(INODE)

ENDIF

IF(SCAL(INODE,IPHASE,ISC9).LT.0.0)THEN

WRITE(NWRITE,*)’ NEGATIVE SGS VISCOSITY’

WRITE(NWRITE,*)’XP ’,XP(INODE),’, YP ’,YP(INODE),’

& , ZP ’,ZP(INODE)

ENDIF

100 CONTINUE

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c endif for IDOMNO

ENDIF

c //////////////////////////////////////////

C---- DELETE REAL WORKSPACE FOR VELOCITY GRADIENTS

CALL DELWRK(’USRVIS’,’WORK ’,’UGRAD ’)

C DELWRK DELETES EVERYTHING ABOVE LABEL ’UGRAD’

c --------------------------------------------------------------------

C

C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++

C

RETURN

END
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B.3 Subroutine for averaging variables

SUBROUTINE USRTRN(U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL,

+ XP,YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,CONV,IPT,

+ IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,

+ WORK,IWORK,CWORK)

C

c

c

C**********************************************************************

C

C USER SUBROUTINE TO ALLOW USERS TO MODIFY OR MONITOR THE SOLUTION AT

C THE END OF EACH TIME STEP

C THIS SUBROUTINE IS CALLED BEFORE THE START OF THE RUN AS WELL AS AT

C THE END OF EACH TIME STEP

C

C >>> IMPORTANT <<<

C >>> <<<

C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<

C >>> THE DESIGNATED USER AREAS <<<

C

C**********************************************************************

C

C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES

C CUSR TRNMOD

C

C***********************************************************************

C CREATED

C 27/04/90 ADB

C MODIFIED

C 05/08/91 IRH NEW STRUCTURE

C 01/10/91 DSC REDUCE COMMENT LINE GOING OVER COLUMN 72.

C 29/11/91 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,

C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2

C 05/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3

C 03/07/92 DSC CORRECT COMMON MLTGRD.

C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.

C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D

C 22/08/94 NSW MOVE ’IF(IUSED.EQ.0) RETURN’ OUT OF USER AREA

C 19/12/94 NSW CHANGE FOR CFX-F3D

C 02/07/97 NSW UPDATE FOR CFX-4

C 02/07/99 NSW INCLUDE NEW EXAMPLE FOR CALCULATING FLUX OF A

C SCALAR AT A PRESSURE BOUNDARY

C

C***********************************************************************

C

C SUBROUTINE ARGUMENTS

C
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C U - U COMPONENT OF VELOCITY

C V - V COMPONENT OF VELOCITY

C W - W COMPONENT OF VELOCITY

C P - PRESSURE

C VFRAC - VOLUME FRACTION

C DEN - DENSITY OF FLUID

C VIS - VISCOSITY OF FLUID

C TE - TURBULENT KINETIC ENERGY

C ED - EPSILON

C RS - REYNOLD STRESSES

C T - TEMPERATURE

C H - ENTHALPY

C RF - REYNOLD FLUXES

C SCAL - SCALARS (THE FIRST ’NCONC’ OF THESE ARE MASS FRACTIONS)

C XP - X COORDINATES OF CELL CENTRES

C YP - Y COORDINATES OF CELL CENTRES

C ZP - Z COORDINATES OF CELL CENTRES

C VOL - VOLUME OF CELLS

C AREA - AREA OF CELLS

C VPOR - POROUS VOLUME

C ARPOR - POROUS AREA

C WFACT - WEIGHT FACTORS

C CONV - CONVECTION COEFFICIENTS

C

C IPT - 1D POINTER ARRAY

C IBLK - BLOCK SIZE INFORMATION

C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES

C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS

C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES

C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS

C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS

C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS

C

C WORK - REAL WORKSPACE ARRAY

C IWORK - INTEGER WORKSPACE ARRAY

C CWORK - CHARACTER WORKSPACE ARRAY

C

C SUBROUTINE ARGUMENTS PRECEDED WITH A ’*’ ARE ARGUMENTS THAT MUST

C BE SET BY THE USER IN THIS ROUTINE.

C

C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE

C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4

C USER MANUAL.

C

C**********************************************************************

C

C

LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP

+ ,LRECT,LCYN,LAXIS,LPOROS,LTRANS
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C

CHARACTER*(*) CWORK

C

C++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES

CHARACTER*1 CDUM

REAL TKE_INSTANT,EPS

C

C++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++

C

COMMON

+ /ALL/ NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM

+ /ALLWRK/ NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE

+ /ADDIMS/ NPHASE,NSCAL,NVAR,NPROP

+ ,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,NRLIST,NTOPOL

+ /CHKUSR/ IVERS,IUCALL,IUSED

+ /CONC/ NCONC

+ /DEVICE/ NREAD,NWRITE,NRDISK,NWDISK

+ /IDUM/ ILEN,JLEN

+ /LOGIC/ LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP

+ ,LRECT,LCYN,LAXIS,LPOROS,LTRANS

+ /MLTGRD/ MLEVEL,NLEVEL,ILEVEL

+ /SGLDBL/ IFLGPR,ICHKPR

+ /SPARM/ SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON

+ /TIMUSR/ DTUSR

+ /TRANSI/ NSTEP,KSTEP,MF,INCORE

+ /TRANSR/ TIME,DT,DTINVF,TPARM

C

C++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS

C THESE SHOULD START WITH THE CHARACTERS ’UC’ TO ENSURE

C NO CONFLICT WITH NON-USER COMMON BLOCKS

COMMON

+ /USRPIP/ PIPER,PIPEL

+ /USRWAL/ JWALLO

+ /USRMID/ MIDSTART

+ /USRSPC/ JYPLUS,JTAUX,JTAUY,JTAUZ,JTAU,JUWALL,JVWALL

+ ,JWWALL,JPRESS

+ ,JNODPL,JNODPT,JIUW,NMAX,NIUW

COMMON

& /UCAVERAGE/ EWMA,AMWE

& /DOMRUN/ IDOMNO,NPCHDO

C

C++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++

C

DIMENSION

+ U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),P(NNODE,NPHASE)



198 APPENDIX B. CFX4.4 SPECIFIC FILES USED

+,VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),VIS(NNODE,NPHASE)

+,TE(NNODE,NPHASE),ED(NNODE,NPHASE),RS(NNODE,NPHASE,6)

+,T(NNODE,NPHASE),H(NNODE,NPHASE),RF(NNODE,NPHASE,4)

+,SCAL(NNODE,NPHASE,NSCAL)

DIMENSION

+ XP(NNODE),YP(NNODE),ZP(NNODE)

+,VOL(NCELL),AREA(NFACE,3),VPOR(NCELL),ARPOR(NFACE,3)

+,WFACT(NFACE),CONV(NFACE,NPHASE)

+,IPT(*),IBLK(5,NBLOCK)

+,IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6),IPNODF(NFACE,4)

+,IPNODB(NBDRY,4),IPFACB(NBDRY)

+,IWORK(*),WORK(*),CWORK(*)

DIMENSION SGNWL(6)

C

C++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS

C

DIMENSION XYZ(3),XPL(200),YPL(200)

C---- AREA FOR USERS TO DEFINE DATA STATEMENTS

DATA IFIRST/0/

SAVE IFIRST,NODPL1,NODPL2,NODPL3,NODPL4,NODPL5,NODPL6

+ ,NODPL7,NODPL8

+ ,XPL,YPL

+ ,NODPT1,NODPT2,NODPT3,NODPT4,NODPT5

C

C++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++

C

DATA SGNWL / 1.0, 1.0, 1.0, -1.0, -1.0, -1.0 /

C

C---- STATEMENT FUNCTION FOR ADDRESSING

IP(I,J,K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I)

C

C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG

C

IVERS=3

ICHKPR = 1

C

C++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++

C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1

C

IUSED=1

C

C++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++

C

IF (IUSED.EQ.0) RETURN

C
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C---- FRONTEND CHECKING OF USER ROUTINE

IF (IUCALL.EQ.0) RETURN

C

C++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++

c 1 Input the values of k calculated in the LES model, to overwrite

c the values of the TE given by the k-epsilon model. If this

c fails that I will put the routine into usrvis. This will

c require an IF statement to ensure that the overwriting only

c happens in the LES region.

c_NOTE_ corrected the formulation of K instant and K fluctuating.

c_NOTE_ in order to reference the domains the common block /DOMRUN/

c must be used.

c 2 In order to calculate a value for epsilon to communicate

c with the k-eps model it is necessary to calculate the gradients

c of the velocity

c 3 gradients calculating OK. Use these values in the loop to

c calculate the value of epsilon

c 4 Instead of calculating the value of epsilon explicitly

c I will calculate it from the viscosity and turbulence levels

c and then overwrite the value in the LES domain with this lower

c epsilon. This will then be convected/diffused by the k-eps

c equation and may set to modify the values of mu_t in the RANS

c domain

c 5 Stopped this as it was leading to crashes. Latest idea is to

c use a user scalar which is set to the vscosity of the cell in the

c LES domain but to modify the viscosity of the cell in the RANS

c domain. The value of the scalar will then be modified itself,

c and in this way the effect of this scalar will only be felt

c near the interface This will be implimented in USRVIS 23/7/02

c 6 26/7/02 Inputting calculation for the courant number into the

c code. Putting into USRTRN as it only needs to be calculated

c once per time step

c 7 29/07/02 Insert error trappings so that if the courant number is

c about to divide by zero, the answer is set so that it does not

c affect the results

c

c 8 04/09/02

c Calculate the instantaneous values for k and epsilon and store

c these at cell centres. Then average them with the EWMAmethod

c Then overwrite the k-epsilon model values.

c 9 10/09/02

c Removing references to modifier to see what happens if I

c modify k and epsilon

c 10 Move the instantaneous calculation ofi epsilon to

c USRVIS. Only the averaging will be done here. K left in USRTRN as this

c does not require the calculation of gradients and is not

c dependent on Sij, or mu_t

c 19/09/02

c tidy up the formula and insert the code to detect the inter-node
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c boundaries in the RANS section.

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C

c WRITE(NWRITE,*) ’ENTERING USRTRN FOR KSTEP’,KSTEP

C

C

C----------------------------------------------------------------------

C

C---- USER PARAMETERS FOR OUTPUT

C --------------------------

C

C NDTPRT : NUMBER OF TIME STEPS BETWEEN CONSECUTIVE WRITES

C OF PROFILES

C MIDSTART : NUMBER OF TIME STEPS BEFORE STARTING CALCULATING

C LES STATISTICS

C TPARM : TIME PARAMETER IN CRANCK NICOLSON

C SET TO 0.6 TO DIFFUSE CHEQUERBOARDING

C NPROF : NUMBER OF PROFILES FOR OUTPUT

C NPOINT : NUMBER OF POINTS FOR OUTPUT

C EWMA : WEIGHTING FACTOR IN MOVING AVERAGE

C

NDTPRT = 200

MIDSTART = 1

C TPARM = 0.6

NPROF = 8

NPOINT = 5

IPHASE = 1

EWMA = 0.7

AMWE = (1-EWMA)

IPHASE = 1

C

c -------------------

c call getvar to find the variable number for the scalar array

c so that I may calculate the gradient of the array

CALL GETVAR(’USRTRN’,’SCAL ’,I1)

c get the scalar numbers for the scalars

c remember to include the new scalars in the command file

c first the scalars for the averages that were set up in usrtrn_1

CALL GETSCA(’USRDCC U AVERAGE’,ISC1,CWORK)

CALL GETSCA(’USRDCC V AVERAGE’,ISC2,CWORK)

CALL GETSCA(’USRDCC W AVERAGE’,ISC3,CWORK)

CALL GETSCA(’USRDCC K AVERAGE’,ISC4,CWORK)

CALL GETSCA(’USRDCC LES EPS AVG’,ISC15,CWORK)



B.3. SUBROUTINE FOR AVERAGING VARIABLES 201

c

c now the numbers for the fluctuating componennts

c that are used in this routine

c

CALL GETSCA(’USRDCC U FLUCT’,ISC5,CWORK)

CALL GETSCA(’USRDCC V FLUCT’,ISC6,CWORK)

CALL GETSCA(’USRDCC W FLUCT’,ISC7,CWORK)

CALL GETSCA(’USRDCC K FLUCT’,ISC8,CWORK)

CALL GETSCA(’USRDCC LES EPS INST’,ISC16,CWORK)

c space must be allocated to put the values of the gradients in

CALL SETWRK(’USRTRN’,’WORK ’,’UGRAD ’,3*NCELL,JUGRAD)

CALL SETWRK(’USRTRN’,’WORK ’,’VGRAD ’,3*NCELL,JVGRAD)

CALL SETWRK(’USRTRN’,’WORK ’,’WGRAD ’,3*NCELL,JWGRAD)

c find scalar numbers for the fluctuating component that

c is to have the gradient found

IEQN_UF = I1+ISC5

IEQN_VF = I1+ISC6

IEQN_WF = I1+ISC6

C---- COMPUTE VELOCITY GRADIENTS

CALL GRADV(’USRTRN’,IPHASE,U(1,IPHASE),V(1,IPHASE),

+ W(1,IPHASE),WORK(JUGRAD),WORK(JVGRAD),WORK(JWGRAD),

+ XP,YP,ZP,VOL,AREA,

+ IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB,

+ WORK,IWORK,CWORK)

C--------------------

c open a file so that the information about

c each cell can be written there

OPEN(UNIT=50,STATUS=’UNKNOWN’,FILE=’VIS.TXT’,FORM=’FORMATTED’)

C----------------------------------------------------------------------

c calculation of the courant number which will give an

c indication of the stability of the problem

IF (KSTEP.EQ.1) THEN

c to IPALL to calculate for all of the blocks

CALL IPALL(’*’,’*’,’BLOCK’,’CENTRES’,IPT,NPT,CWORK,IWORK)

COURMAX=-999

COURMIN=999

c WRITE(NWRITE,*)’SMALL’,SMALL

c WRITE(NWRITE,*)’DT ’,DT

DO 120 I =1,NPT

INODE = IPT(I)

INODEX1 = IPNODN(NCELL,1)

INODEZ1 = IPNODN(NCELL,2)

INODEY1 = IPNODN(NCELL,3)
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DX = ABS(XP(INODEX1)-XP(INODE))

DY = ABS(YP(INODEY1)-YP(INODE))

DZ = ABS(ZP(INODEZ1)-ZP(INODE))

IF(DX.LE.SMALL)THEN

WRITE(NWRITE,*)’DX’,DX

ENDIF

IF(DY.LE.SMALL)THEN

WRITE(NWRITE,*)’DY’,DY

ENDIF

IF(DZ.LE.SMALL)THEN

WRITE(NWRITE,*)’DZ’,DZ

ENDIF

COURX = DX/(ABS(U(INODE,1))+SMALL)/DT

COURY = DY/(ABS(V(INODE,1))+SMALL)/DT

COURZ = DZ/(ABS(W(INODE,1))+SMALL)/DT

IF(COURX.LT.SMALL)THEN

WRITE(NWRITE,*)’COURX’,COURX

COURX = 1.0

ENDIF

IF(COURY.LT.SMALL)THEN

WRITE(NWRITE,*)’COURY’,COURY

COURY = 1.0

ENDIF

IF(COURZ.LT.SMALL)THEN

COURZ = 1.0

WRITE(NWRITE,*)’COURZ’,COURZ

ENDIF

COURMIN = MIN(COURMIN,COURX)

COURMIN = MIN(COURMIN,COURY)

COURMIN = MIN(COURMIN,COURZ)

IF(COURMIN.LT.SMALL)THEN

WRITE(NWRITE,*)’COURMIN’,COURMIN

ENDIF

COURMAX = MAX(COURMAX,COURX)

COURMAX = MAX(COURMAX,COURY)

COURMAX = MAX(COURMAX,COURZ)

IF(COURMAX.LT.SMALL)THEN

WRITE(NWRITE,*)’COURMAX’,COURMAX

ENDIF

120 CONTINUE

WRITE(NWRITE,*) ’MAX COURANT NUMBER= ’, 1/COURMIN

WRITE(NWRITE,*) ’MIN COURANT NUMBER= ’, 1/COURMAX

ENDIF

c---------------------------------------------------------------------

c write(*,*)’LES STATISTICS’

c WRITE(NWRITE,*)’IDOMNO’,IDOMNO,’ < ’
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c Julian 10/01/02

c call Ipall to get the variables for all of the cell centres

c This will allow the variables to be used

c

CALL IPALL(’*’,’*’,’BLOCK’,’CENTRES’,IPT,NPT,CWORK

& ,IWORK)

IF (KSTEP .EQ. MIDSTART) THEN

DO 246 K = 1, NPT

INODE = IPT(K)

SCAL(INODE,IPHASE,ISC1) = U(INODE,IPHASE)

SCAL(INODE,IPHASE,ISC2) = V(INODE,IPHASE)

SCAL(INODE,IPHASE,ISC3) = W(INODE,IPHASE)

SCAL(INODE,IPHASE,ISC4) = TE(INODE,IPHASE)

SCAL(INODE,IPHASE,ISC5) = U(INODE,IPHASE)/20

SCAL(INODE,IPHASE,ISC6) = V(INODE,IPHASE)/20

SCAL(INODE,IPHASE,ISC7) = W(INODE,IPHASE)/20

SCAL(INODE,IPHASE,ISC8) = TE(INODE,IPHASE)/20

SCAL(INODE,IPHASE,ISC15) = ED(INODE,NPHASE)

SCAL(INODE,IPHASE,ISC16) = ED(INODE,NPHASE)

246 CONTINUE

WRITE(NWRITE,*)’USER SCALARS INITIALISED’

ENDIF

c

c-------------------

c now if the value is higher and I wish to start averaging

c then I use my averaging algorithms here

IF (KSTEP .GE. MIDSTART) THEN

DO 15 I=1,NPT

INODE = IPT(I)

c-----------------

c Calculate the fluctuating u v and w vwlocities, as the difference

c between the instantaneous and the mean

c

SCAL(INODE,1,ISC5) = U(INODE,IPHASE) - SCAL(INODE,1,ISC1)

SCAL(INODE,1,ISC6) = V(INODE,IPHASE) - SCAL(INODE,1,ISC2)

SCAL(INODE,1,ISC7) = W(INODE,IPHASE) - SCAL(INODE,1,ISC3)

c

c-----------------

c Calculate the new average velocity as from the EWMA algorithm

c

SCAL(INODE,1,ISC1) = EWMA*SCAL(INODE,1,ISC1)+

& AMWE*U(INODE,IPHASE)

SCAL(INODE,1,ISC2) = EWMA*SCAL(INODE,1,ISC2) +

& AMWE*V(INODE,IPHASE)

SCAL(INODE,1,ISC3) = EWMA*SCAL(INODE,1,ISC3) +

& AMWE*W(INODE,IPHASE)
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c WRITE(NWRITE,*)’CALCULATED NEW AVERAGE VELOCITY’

c WRITE(NWRITE,*)’IDOMNO’,IDOMNO,’ <<’

c

c-----------------

c Calculate k from the instantaneous velocities

c This is valid for the LES region

c

TKE_INSTANT = 0.5*(SCAL(INODE,1,ISC5)**2 +

& SCAL(INODE,1,ISC6)**2 +

& SCAL(INODE,1,ISC7)**2 )

c

c----------------

c Calculate k fluctuating and k average as before

c

SCAL(INODE,1,ISC4) = EWMA*SCAL(INODE,1,ISC4) +

& AMWE*TKE_INSTANT

SCAL(INODE,1,ISC8) = TKE_INSTANT - SCAL(INODE,1,ISC4)

c

c----------------

c Calculate the average value for epsilon

SCAL(INODE,IPHASE,ISC15) = EWMA* SCAL(INODE,IPHASE,ISC15)

& + AMWE* SCAL(INODE,IPHASE,ISC16)

c-----------------

c Overwrite the value of TE and ED in the LES region only

c

IF(IDOMNO.GE.2)THEN

TE(INODE,IPHASE)=MAX(TE(INODE,IPHASE),SCAL(INODE,1,ISC4))

ED(INODE,IPHASE)=MAX(ED(INODE,IPHASE),SCAL(INODE,IPHASE,ISC15))

c endif for IDOMNO

ENDIF

c

c

15 CONTINUE

C--overwrite the average values of velocity for the fluctuating

C value of velocity at the interface

c CALL IPREC(’SOLID 1’,’BLOCK’,’CENTRES’,IPT

c & ,ILEN,JLEN,KLEN,CWORK,IWORK)

c IF(IDOMNO.EQ.3)THEN

c ICC = 50

c DO 103 KCC = 1,KLEN

c DO 102 JCC = 1,JLEN

c INODE = IP(ICC,JCC,KCC)

c U(INODE,IPHASE) = 0.5
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c V(INODE,IPHASE) = 1

c W(INODE,IPHASE) = 0

c ICC=40

c INODE = IP(ICC,JCC,KCC)

c U(INODE,IPHASE) = 0.5

c V(INODE,IPHASE) = 1

c W(INODE,IPHASE) = 0

c 102 CONTINUE

c 103 CONTINUE

C endif for: IF(IDOMNO.LE.1)THEN

c ENDIF

c----------------

C endif for: IF(KSTEP.GT.MIDSTART)

ENDIF

***********************************************************************

c call IPALL again and this time use the results to write out values

c to the file UNIT=50

CALL IPALL(’*’,’*’,’BLOCK’,’CENTRES’,IPT,NPT,CWORK,IWORK)

WRITE(50,499)’VIS’,’XP’,’YP’,’ZP’

c WRITE(NWRITE,*)’in IPALL’

DO 206 I=1,NPT

INODE=IPT(I)

WRITE(50,500)VIS(INODE,1)

& ,XP(INODE),YP(INODE),ZP(INODE)

206 CONTINUE

499 FORMAT(A6,A16,A16,A16,A16)

500 FORMAT(F12.8,4X,F12.8,6X,F10.6,6X,F10.6,6X,F10.6)

c IF(IDOMNO.EQ.1)THEN

c close the file used for writing to

CLOSE(UNIT=50)

c ENDIF

C----------------------------------------------------------------------

C

c----------

c delete the space created fro the gradients

CALL DELWRK(’USRTRN’,’WORK ’,’UGRAD ’)

C

c WRITE(NWRITE,*) ’----------EXITING USRTRN----------’
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C++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++

C

RETURN

END
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B.4 Subroutine to add body forces

SUBROUTINE USRSRC(IEQN,ICALL,CNAME,CALIAS,AM,SP,SU,CONV

+ ,U,V,W,P,VFRAC,DEN,VIS,TE,ED,RS,T,H,RF,SCAL

+ ,XP,YP,ZP,VOL,AREA,VPOR,ARPOR,WFACT,IPT

+ ,IBLK,IPVERT,IPNODN,IPFACN,IPNODF,IPNODB,IPFACB

+ ,WORK,IWORK,CWORK)

C

C**********************************************************************

C

C UTILITY SUBROUTINE FOR USER-SUPPLIED SOURCES

C

C >>> IMPORTANT <<<

C >>> <<<

C >>> USERS MAY ONLY ADD OR ALTER PARTS OF THE SUBROUTINE WITHIN <<<

C >>> THE DESIGNATED USER AREAS <<<

C

C**********************************************************************

C

C THIS SUBROUTINE IS CALLED BY THE FOLLOWING SUBROUTINES

C CUSR SCDF SCDS SCED SCENRG SCHF SCMOM SCPCE SCSCAL

C SCTE SCVF

C

C***********************************************************************

C CREATED

C 08/03/90 ADB

C MODIFIED

C 04/03/91 ADB ALTERED ARGUMENT LIST.

C 28/08/91 IRH NEW STRUCTURE

C 28/09/91 IRH CHANGE EXAMPLE + ADD COMMON BLOCKS

C 10/02/92 PHA UPDATE CALLED BY COMMENT, ADD RF ARGUMENT,

C CHANGE LAST DIMENSION OF RS TO 6 AND IVERS TO 2

C 03/06/92 PHA ADD PRECISION FLAG AND CHANGE IVERS TO 3

C 23/11/93 CSH EXPLICITLY DIMENSION IPVERT ETC.

C 07/12/93 NSW INCLUDE CONV IN ARGUMENT LIST AND CHANGE IVERS

C TO 4

C 03/02/94 PHA CHANGE FLOW3D TO CFDS-FLOW3D

C 03/03/94 FHW CORRECTION OF SPELLING MISTAKE

C 08/03/94 NSW CORRECT SPELLING

C 09/08/94 NSW CORRECT SPELLING.

C MOVE ’IF(IUSED.EQ.0) RETURN’ OUT OF USER AREA.

C INCLUDE COMMENT ON MASS SOURCES.

C 19/12/94 NSW CHANGE FOR CFX-F3D

C 02/07/97 NSW UPDATE FOR CFX-4

C

C***********************************************************************

C

C SUBROUTINE ARGUMENTS



208 APPENDIX B. CFX4.4 SPECIFIC FILES USED

C

C IEQN - EQUATION NUMBER

C ICALL - SUBROUTINE CALL

C CNAME - EQUATION NAME

C CALIAS - ALIAS OF EQUATION NAME

C AM - OFF DIAGONAL MATRIX COEFFICIENTS

C SU - SU IN LINEARISATION OF SOURCE TERM

C SP - SP IN LINEARISATION OF SOURCE TERM

C CONV - CONVECTION COEFFICIENTS

C U - U COMPONENT OF VELOCITY

C V - V COMPONENT OF VELOCITY

C W - W COMPONENT OF VELOCITY

C P - PRESSURE

C VFRAC - VOLUME FRACTION

C DEN - DENSITY OF FLUID

C VIS - VISCOSITY OF FLUID

C TE - TURBULENT KINETIC ENERGY

C ED - EPSILON

C RS - REYNOLD STRESSES

C T - TEMPERATURE

C H - ENTHALPY

C RF - REYNOLD FLUXES

C SCAL - SCALARS (THE FIRST ’NCONC’ OF THESE ARE MASS FRACTIONS)

C XP - X COORDINATES OF CELL CENTRES

C YP - Y COORDINATES OF CELL CENTRES

C ZP - Z COORDINATES OF CELL CENTRES

C VOL - VOLUME OF CELLS

C AREA - AREA OF CELLS

C VPOR - POROUS VOLUME

C ARPOR - POROUS AREA

C WFACT - WEIGHT FACTORS

C

C IPT - 1D POINTER ARRAY

C IBLK - BLOCK SIZE INFORMATION

C IPVERT - POINTER FROM CELL CENTERS TO 8 NEIGHBOURING VERTICES

C IPNODN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING CELLS

C IPFACN - POINTER FROM CELL CENTERS TO 6 NEIGHBOURING FACES

C IPNODF - POINTER FROM CELL FACES TO 2 NEIGHBOURING CELL CENTERS

C IPNODB - POINTER FROM BOUNDARY CENTERS TO CELL CENTERS

C IPFACB - POINTER FROM BOUNDARY CENTERS TO BOUNDARY FACESS

C

C WORK - REAL WORKSPACE ARRAY

C IWORK - INTEGER WORKSPACE ARRAY

C CWORK - CHARACTER WORKSPACE ARRAY

C

C SUBROUTINE ARGUMENTS PRECEDED WITH A ’*’ ARE ARGUMENTS THAT MUST

C BE SET BY THE USER IN THIS ROUTINE.

C

C NOTE THAT WHEN USING MASS SOURCES, THE FLOWS THROUGH MASS FLOW
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C BOUNDARIES ARE UNCHANGED. THE USER SHOULD THEREFORE INCLUDE AT

C LEAST ONE PRESSURE BOUNDARY FOR SUCH A CALCULATION.

C

C NOTE THAT OTHER DATA MAY BE OBTAINED FROM CFX-4 USING THE

C ROUTINE GETADD, FOR FURTHER DETAILS SEE THE VERSION 4

C USER MANUAL.

C

C***********************************************************************

C

LOGICAL LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP

+ ,LRECT,LCYN,LAXIS,LPOROS,LTRANS

C

CHARACTER*(*) CWORK

CHARACTER CNAME*6, CALIAS*24

C

C+++++++++++++++++ USER AREA 1 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS EXPLICITLY DECLARED VARIABLES

C

REAL USRSOLID11(400),USRSOLID12(400)

C+++++++++++++++++ END OF USER AREA 1 ++++++++++++++++++++++++++++++++++

C

COMMON

+ /ALL/ NBLOCK,NCELL,NBDRY,NNODE,NFACE,NVERT,NDIM

+ /ALLWRK/ NRWS,NIWS,NCWS,IWRFRE,IWIFRE,IWCFRE

+ /ADDIMS/ NPHASE,NSCAL,NVAR,NPROP

+ ,NDVAR,NDPROP,NDXNN,NDGEOM,NDCOEF,NILIST,NRLIST,NTOPOL

+ /CHKUSR/ IVERS,IUCALL,IUSED

+ /DEVICE/ NREAD,NWRITE,NRDISK,NWDISK

+ /IDUM/ ILEN,JLEN

+ /LOGIC/ LDEN,LVIS,LTURB,LTEMP,LBUOY,LSCAL,LCOMP

+ ,LRECT,LCYN,LAXIS,LPOROS,LTRANS

+ /MLTGRD/ MLEVEL,NLEVEL,ILEVEL

+ /SGLDBL/ IFLGPR,ICHKPR

+ /SPARM/ SMALL,SORMAX,NITER,INDPRI,MAXIT,NODREF,NODMON

+ /TRANSI/ NSTEP,KSTEP,MF,INCORE

+ /TRANSR/ TIME,DT,DTINVF,TPARM

C

C+++++++++++++++++ USER AREA 2 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS TO DECLARE THEIR OWN COMMON BLOCKS

C THESE SHOULD START WITH THE CHARACTERS ’UC’ TO ENSURE

C NO CONFLICT WITH NON-USER COMMON BLOCKS

C

COMMON

& /UCUSRSOLID/ USRSOLID11,USRSOLID12

COMMON

+ /USRPIP/ PIPER,PIPEL

+ /USRWAL/ JWALLO

+ /USRMID/ MIDSTART
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+ /USRSPC/ JYPLUS,JTAUX,JTAUY,JTAUZ,JTAU,JUWALL,JVWALL

+ ,JWWALL,JPRESS

+ ,JNODPL,JNODPT,JIUW,NMAX,NIUW

COMMON

& /UCAVERAGE/ EWMA,AMWE

& /DOMRUN/ IDOMNO,NPCHDO

C+++++++++++++++++ END OF USER AREA 2 ++++++++++++++++++++++++++++++++++

C

DIMENSION AM(NCELL,6,NPHASE),SP(NCELL,NPHASE),SU(NCELL,NPHASE)

+,CONV(NFACE,NPHASE)

C

DIMENSION

+ U(NNODE,NPHASE),V(NNODE,NPHASE),W(NNODE,NPHASE),P(NNODE,NPHASE)

+,VFRAC(NNODE,NPHASE),DEN(NNODE,NPHASE),VIS(NNODE,NPHASE)

+,TE(NNODE,NPHASE),ED(NNODE,NPHASE),RS(NNODE,NPHASE,6)

+,T(NNODE,NPHASE),H(NNODE,NPHASE),RF(NNODE,NPHASE,4)

+,SCAL(NNODE,NPHASE,NSCAL)

C

DIMENSION

+ XP(NNODE),YP(NNODE),ZP(NNODE)

+,VOL(NCELL),AREA(NFACE,3),VPOR(NCELL),ARPOR(NFACE,3)

+,WFACT(NFACE)

+,IPT(*),IBLK(5,NBLOCK)

+,IPVERT(NCELL,8),IPNODN(NCELL,6),IPFACN(NCELL,6),IPNODF(NFACE,4)

+,IPNODB(NBDRY,4),IPFACB(NBDRY)

+,IWORK(*),WORK(*),CWORK(*)

C

C+++++++++++++++++ USER AREA 3 +++++++++++++++++++++++++++++++++++++++++

C---- AREA FOR USERS TO DIMENSION THEIR ARRAYS

C

C---- AREA FOR USERS TO DEFINE DATA STATEMENTS

C

C+++++++++++++++++ END OF USER AREA 3 ++++++++++++++++++++++++++++++++++

C

C---- STATEMENT FUNCTION FOR ADDRESSING

IP(I,J,K)=IPT((K-1)*ILEN*JLEN+(J-1)*ILEN+I)

C

C----VERSION NUMBER OF USER ROUTINE AND PRECISION FLAG

C

IVERS=4

ICHKPR = 1

C

C+++++++++++++++++ USER AREA 4 +++++++++++++++++++++++++++++++++++++++++

C---- TO USE THIS USER ROUTINE FIRST SET IUSED=1

C

IUSED=1

C
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C+++++++++++++++++ END OF USER AREA 4 ++++++++++++++++++++++++++++++++++

C

IF (IUSED.EQ.0) RETURN

C

C---- FRONTEND CHECKING OF USER ROUTINE

IF (IUCALL.EQ.0) RETURN

C

C---- ADD TO SOURCE TERMS

IF (ICALL.EQ.1) THEN

C

C+++++++++++++++++ USER AREA 5 +++++++++++++++++++++++++++++++++++++++++

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

C Julian 20/09/02

C

C Adding a source term to overwrite the value of the instantaneous

C velocity with the value of the average velocity.

C This is only to happen in the last cell of the LES domain next to

C the RANS Domain

C

C 20/09/02

C First attempt

C What I am trying to do:

C At the boundary between two domains on a parallel run, I would

C like to overwrite the value of the velocity with the value

C of the average velocity.

C I have been advised that this will not work just by overwriting

C the node values in USRTRN as the internal CFXroutines would

C overwrite my overwriting. This I have tested and found to

C be true. The overwriting of cells in the middle of the domain

C is possible but that on the edge is not.

C Now comes the role of USRSRC. What I am going to do is to

C add on to the source term the difference between the average

C and the instantaneous value and this will then put the average

C into the RANS domain.

C I have been keeping a moving average of the velocities so these

C are ready to be used.

C The geometry has changed so that the U velocity is aligned

C along the K direction in the last two blocks where I want to

C do the averaging. I am changing the code to reflect the

C change in alignment of the blocks. eg the upstream cell

C is no longer INODE-1 but rather INODE-(ILEN*JLEN)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c WRITE(NWRITE,*)’-----ENTERING USRSRC-----’

C-----

C Get the scalars and the variables that I will need.
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C The values of the averages are calculated on a

C moving average with a timescale of one large eddy turnover time.

C

CALL GETVAR(’USRSRC’,’U ’,IU)

CALL GETVAR(’USRSRC’,’V ’,IV)

CALL GETVAR(’USRSRC’,’W ’,IW)

CALL GETSCA(’USRDCC U AVERAGE’,ISC1,CWORK)

CALL GETSCA(’USRDCC V AVERAGE’,ISC2,CWORK)

CALL GETSCA(’USRDCC W AVERAGE’,ISC3,CWORK)

C------

C Things to initialise on the first timestep only.

C I need to find the node numbers of the cells where the values are

C to be overwritten. From the geometry file and my PRL file I

C know that it is the high I face of the High I cells in

C solids 1 & 8.

C I am using IPREC to gather the node numbers and then write

C them into a 1D array. I will then be able to move through

C this array later and modify the velocities without having

C to loop through all of the cells

C QUESTION - Do I need to allow space for the dummy nodes as well?

C I think not but have left space for them just in case.

IF(KSTEP.EQ.1)THEN

C Find out which cells are required to be overwritten.

C Call IPREC for blocks 1 and 8 and get the node numbers.

CALL IPREC(’SOLID 11’,’BLOCK’,’CENTRES’,IPT

& ,ILEN,JLEN,KLEN,CWORK,IWORK)

KCC = 1

DO 102 JCC = 1,JLEN

DO 101 ICC = 1,ILEN

INODE = IP(ICC,JCC,KCC)

C Write the node numbers to an array

USRSOLID11(((KCC-1)*JLEN)+JCC) = INODE

101 CONTINUE

102 CONTINUE

CALL IPREC(’SOLID 12’,’BLOCK’,’CENTRES’,IPT

& ,ILEN,JLEN,KLEN,CWORK,IWORK)

KC = 1

DO 106 JC = 1,JLEN

DO 105 IC = 1,ILEN

INODE = IP(IC,JC,KC)

C Write the node numbers to an array

USRSOLID12( (((KC-1)*JLEN)+JC) ) = INODE

105 CONTINUE

106 CONTINUE
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C Put the array in a common block

C End the work that has to be done on the first timestep

ENDIF

C-----

C For successive timesteps,

IF(KSTEP.GT.(MIDSTART+79))THEN

C Call the array

c - it is in a common block so available.

C ? Should I do k as well?

C Add the source term Su = Su + AM() * (AVG - INST)

C

C Now I loop through the 1D arrays that were created with the node

C mumbers of the High I cells in blocks 1 and 8. When the equation

C number is equal to the equation number then the source term is

C added.

DO 220 KOUNT = 1,300

KNODE = USRSOLID11(KOUNT)

C First add the source terms to the U velocity

If(IU.EQ.IEQN)THEN

SU(KNODE,1) = SU(KNODE,1) +

c & ( AM(KNODE,4,1) * (2 - U(KNODE-1,1) ) )

& ( AM(KNODE,4,1) * (SCAL(KNODE-300,1,ISC1)-U(KNODE-300,1)))

c WRITE(NWRITE,*)’MODIFIED U SOLID11’

ELSEIF(IV.EQ.IEQN)THEN

SU(KNODE,1) = SU(KNODE,1) +

c & ( AM(KNODE,4,1) * ( 1 - V(KNODE-1,1) ) )

& ( AM(KNODE,4,1) * (SCAL(KNODE-300,1,ISC2)-V(KNODE-300,1)))

c WRITE(NWRITE,*)’MODIFIED V SOLID 11’

ELSEIF(IW.EQ.IEQN)THEN

SU(KNODE,1) = SU(KNODE,1) +

c & ( AM(KNODE,4,1) * (1 - W(KNODE-1,1) ) )

& ( AM(KNODE,4,1) * (SCAL(KNODE-300,1,ISC3)-W(KNODE-3001,1)))

c WRITE(NWRITE,*)’MODIFIED W SOLID 11’

ENDIF

220 CONTINUE

DO 230 JON = 1,300

JNODE = USRSOLID12(JON)

C First add the source terms to the U velocity

If(IU.EQ.IEQN)THEN
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SU(JNODE,1) = SU(JNODE,1) +

C & ( AM(JNODE,4,1) * (2 - U(JNODE-1,1) ) )

& ( AM(JNODE,4,1) * (SCAL(JNODE-300,1,ISC1)-U(JNODE-300,1)))

C WRITE(NWRITE,*)’MODIFIED U SOLID12’

ELSEIF(IV.EQ.IEQN)THEN

SU(JNODE,1) = SU(JNODE,1) +

C & ( AM(JNODE,4,1) * ( 1 - V(JNODE-1,1) ) )

& ( AM(JNODE,4,1) * (SCAL(JNODE-300,1,ISC2)-V(JNODE-300,1)))

C WRITE(NWRITE,*)’MODIFIED V SOLID12’

ELSEIF(IW.EQ.IEQN)THEN

SU(JNODE,1) = SU(JNODE,1) +

C & ( AM(JNODE,4,1) * (1 - W(JNODE-1,1) ) )

& ( AM(JNODE,4,1) * (SCAL(JNODE-300,1,ISC3)-W(JNODE-300,1)))

C WRITE(NWRITE,*)’MODIFIED W SOLID12’

ENDIF

230 CONTINUE

C Endif for: IF(KSTEP.GE.MIDSTART)THEN

ENDIF

c WRITE(NWRITE,*)’-----LEAVING USRSRC-----’

C+++++++++++++++++ END OF USER AREA 5 ++++++++++++++++++++++++++++++++++

ENDIF

C

C---- OVERWRITE SOURCE TERMS

IF (ICALL.EQ.2) THEN

C

C+++++++++++++++++ USER AREA 6 +++++++++++++++++++++++++++++++++++++++++

C+++++++++++++++++ END OF USER AREA 6 ++++++++++++++++++++++++++++++++++

C

ENDIF

RETURN

END
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