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ABSTRACT  

The present work is conducted within the context of air to air refuelling 

technologies and aims at the development of an understanding of a typical 

refuelling tanker wake like that of an A330 [54] and the A400M [54]. The wake is 

particularly investigated within the near field and extended near field wake 

regions in close vicinity to the rear fuselage. Moreover, the interaction between 

the wake and the refuelling hose is studied including the resulting hose 

characteristics. A number of refuelling conditions and aircraft models are 

considered for the investigation of the wake. Moreover, an arbitrary hose fairing 

model is considered to study the effect of the fairing on the flow field and the 

refuelling hose. Different refuelling configurations are taken into account for the 

investigation of the hose characteristics. Various hose exit positions were 

studied within the near field wake to assess the impact on the hose 

characteristics.  

The probe hose engagement with the associated hose whip phenomenon is a 

major topic within this work. The hose whip is a highly undesired phenomenon 

and is amplified by a specific hose shape which is characterised through an 

inflection point along the hose. The present research reveals that the rear 

fuselage wake has a crucial impact on the hose characteristics. In particular, the 

rear fuselage upwash is the primary cause for formation of the undesired hose 

inflection point. The findings obtained from the present research are used for 

the suggestion of palliatives to avoid undesirable hose characteristics. In 

particular, there is one approach recommended which aims at the avoidance of 

a hose-upwash interaction. It leads to the suggestion of a circumferentially 

shifted and radially displaced hose exit and deployment of the refuelling hose. 
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1 INTRODUCTION 

In aviation the application of unmanned aircraft systems (UAS) is becoming 

more important, both in the defence and civil domain. Even though these 

technologies are still relatively new some of them already contribute 

substantially to safety and reliability. The UAS industry is a growing market with 

a high potential for research. In the UK the relevance of these technologies is 

reflected in the £62 million ASTRAEA program [1]. The ASTRAEA program is a 

consortium of several universities and industrial partners, with the aim to enable 

the routine use of UAS in all classes of airspace [1]. In particular it is planned 

that this is achieved without the need for restrictive or specialised conditions of 

operation [1].  

The need for UAS arises due to various reasons. Figure 1-1 shows two drones 

during automated refuelling in formation and close proximity. In this case the 

automated refuelling system can be regarded as an UAS and enables the 

drones to travel greater distances and over longer continuous time spans for 

intelligence or reconnaissance of targets.  

 

Figure 1-1 Two unmanned drones during in-flight refuelling with a drogue and probe 

system [60]  

 

 

 



 

22 

Figure 1-2 shows an A330 [54] refuelling tanker with an A400M [54] transport 

aircraft during in-flight refuelling. In the case of a transport aircraft, in-flight 

refuelling enables more goods to be loaded since the aircraft can be refuelled in 

the air after take-off.  

 

Figure 1-2 An A330 [54] refuelling tanker with an A400M [54] receiver aircraft during in-

flight refuelling with a drogue and probe system [64] 

However, manually operated in-flight refuelling is hazardous and requires a lot 

of exercise by pilots and has led to accidents in the past [2]. It is reported that 

refuelling manoeuvres with a hose and drogue system suffered a 2.5% failure 

rate [2]. This is a typical example where a properly applied UAS can contribute 

to increased safety. Up to now the routine use of these technologies has not yet 

been achieved. In fact, automated in-flight refuelling capabilities are a great 

limitation of current UAVs [20] and are therefore a subject of research.  

The overall aim of the ASTRAEA programme [1] is to enable the wider use of 

UAVs in all airspaces. Part of this is to look at the technologies required for air 

to air refuelling using autonomous air systems.  Within this context the research 

reported here focuses on the investigation of the tanker wake and the refuelling 

hose characteristics.    
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The principle of in-flight refuelling technology for a UAV is the same as today’s 

conventional probe and drogue systems, where a hose and drogue is deployed 

from the wings or from the rear part of the fuselage. Figure 1-3 shows 

schematically a typical assembly.  

a) 

 

b) 

 

 

 

Figure 1-3 a) Hose and drogue system schematic refuelling configuration [55] b) 

Zoomed hose-drogue-probe configuration [56] 

The hose simply delivers fuel from the tanker to the receiver aircraft. The 

drogue is mounted at the end of the hose and has two main functions. It acts as 

an aerodynamic device which stabilises the hose during flight and provides a 

funnel to aid insertion of the approaching receiver aircraft probe into the hose 

[3]. 

Unlike the flying boom which is shown in Figure 1-4 where an operator in the 

tanker aircraft adopts the insertion of the tube into the receptacle of the receiver 

aircraft, the hook-up with the hose and drogue system is completely dependent 

Tanker 

Hose 

Receiver  

Probe Drogue Hose 
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on the pilot of the receiver aircraft. The position of the hose and drogue is 

determined by the physical circumstances and cannot be manipulated in any 

way. 

a) 

 

b) 

 

Figure 1-4 a) Flying boom system schematic refuelling configuration [57] b) Photograph 

of an F16 during in-flight refuelling with a flying boom system [58] 

This is illustrated in Figure 1-5 where the approach of the receiver to the tanker 

with the trailed hose is shown. 

Tanker 
Flying Boom 

Tube 

Receptacle 
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Figure 1-5 Approaching receiver aircraft for hose probe engagement [59]  

The only feedback the pilot has is his optical perception. The pilot leads the 

probe close to the drogue and tries to hook-up with a short acceleration of the 

aircraft. The procedure must be conducted as smooth and skilfully as possible. 

A too strong collision of probe and hose induces a wave which can lead to a 

dramatic whipping of the drogue. This is an unwanted phenomenon as it can 

cause severe damage like a hose-drogue separation [19] or supporting 

structure damage of the receiver aircraft [21]. This delicate procedure is 

envisaged to be supported by an autonomous system which will be realized 

through the use of control and feedback technology. Since the position of the 

drogue must be by definition within a certain spatial range, the reliable 

prediction of the static hose shape and drogue position is a crucial factor for the 

development of the system. Furthermore, the hose can assume different static 

shapes, which affects the dynamic response to perturbations associated with 

the hook-up [74]. Both parameters, position and shape, are notably influenced 

by the local flow field of the tanker. The rear fuselage shape of the tanker in 

turn, is one major parameter which forms the characteristic of the wake within 

which the refuelling hose is exposed. Therefore, the determination of 

representative tanker aircraft is a vital step for the validity of the conclusions 

regarding the hose characteristics. The present study considers two tanker 
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types. A conventional civil aircraft like the A330 [54] modified for military 

purposes and a typical transport aircraft like the A400M [54]. Both fuselages are 

of different type and will generate wakes of different nature. For the 

investigation of the wake-hose interaction mainly the A330 [54] is considered. 

The A400M [54] wake is also predicted, but is investigated qualitatively and 

without the hose.  There are no previous studies available of the wake-hose 

interaction for different fuselages under multiple conditions. The present work 

explores this research topic intensively. It generates valuable information for 

further research, and could lead to novel in-flight refuelling designs for the 

future. 
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1.1 Aims and objectives 

The overall aim of the study is to develop an understanding of the rear fuselage 

wake through the use of computational fluid dynamics (CFD), as well as an 

understanding of the wake-hose interaction and the resulting hose 

characteristics. To achieve this, the following research and modelling strategy 

has been defined. 

1.1.1 Research and modelling strategy 

Setting up the research and modelling strategy involves  

1. Review on rear fuselage flows and assessment of different tanker 

fuselage types 

2. Clear definition of the research object which is represented by the wake 

and the wake-hose interaction 

3. Data and information collection for inflight-refuelling cases  

4. Assessment and selection of tools and methods suitable to model and 

simulate the inflight-refuelling cases 

5. Build-up, simulation and validation of the inflight-refuelling cases for 

different simulation scenarios  

6. Analysis of the calculation results  

7. Derivation of conclusions 

1.1.2 Outcome 

1) A clear understanding of the wake aerodynamics, in particular close to 

the rear part of the fuselage  

2) A correlation between the wake aerodynamics and the hose 

characteristics 

3) Formulation of generic rules for hose deployment 

4) Suggestion of palliatives 

5) Suggestions for further research 
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2 LITERATURE REVIEW 

The literature review comprises an assessment of the currently available 

literature on the subject as well as the identification of suitable experimental 

data for the CFD validation. Relevant fields include experimental and CFD 

studies about aircraft wakes, in particular near field wakes, as well as studies 

about upswept rear fuselages. Furthermore there is an interest in suitable full 

aircraft models and wind tunnel experiments as well as CFD methods in the 

present area of research. In addition to the CFD part, literature about the 

current state of research associated with autonomous in-flight refuelling is of 

interest. Particular attention is given to key difficulties of autonomous in-flight 

refuelling (AIR), how these were previously addressed as well as corresponding 

hose and drogue modelling approaches. The current work enables insights into 

a real world problem through the research with models and simulations. There 

are different approaches for research of this type. A sub chapter in Appendix 

A.1 discusses different research philosophies and introduces the philosophy 

and structure of the current study.       

2.1 Validation cases  

This section gives an overview of the aircraft types considered and the 

corresponding geometries used for the wake and hose predictions. The 

availability of original aircraft geometries is often restricted even for research 

purposes. For the present study no original geometries are available, neither for 

the A330 [54] nor for the A400M [54]. However, the AIAA provides public 

domain information from their drag prediction workshops (DPW) [4] [5]. These 

are wind tunnel experiments conducted with full aircraft configurations at model 

scale, which can be used as substitute geometries.  
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2.1.1 A330 substitute 

The second drag prediction workshop DPW-2 [4] used the DLR-F6 full aircraft 

model while for the DPW-4 [5] the NASA common research full aircraft model 

(CRM) was used (Figure 2-2 and Figure 2-3). Both experimental series focus on 

the prediction of drag. Experimental outputs are the main aircraft forces and 

moments. Both models are similar to a typical civil aircraft like the A330 [54] 

shown in Figure 2-1. For this current work they are considered as potential 

substitute configurations. The experiments along with the aircraft models have 

advantages and disadvantages. These will be discussed later in Section 3.1.1 

where the discussion on geometric modelling is conducted. 

 

 

Figure 2-1 General arrangement of an A330 shown in side, front and top view and 

quantities in full scale [50] 
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Figure 2-2 DLR-F6 wing body nacelle configuration in wind tunnel (top) [4] and top, 

front, side view sketch [4] (bottom) with dimensions in inch. 
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Figure 2-3 CRM wing body tail nacelle configuration in wind tunnel (top) [5] and top, 

isometric view sketch [5] (bottom) with dimensions in inch. 
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2.1.2 A400M substitute 

A suitable full aircraft substitute for a typical transport aircraft like the A400M 

[54] (Figure 2-5) could not be found. Since the investigations focus on the 

characteristics of the rear fuselage aerodynamics, a fuselage only configuration 

also suits the requirement of the study. Peake investigated the flow about 

upswept rear fuselages of typical transport aircraft [14] both experimentally and 

computationally. Figure 2-4 shows schematically the geometry used by Peake 

[14]. A photograph of the wind tunnel model can be observed in Figure 2-6. It is 

simply a cylinder with a semi-sphere at one end and a flattened cone at the 

other end. 

 

Figure 2-4 Symbolic sketch of the transport aircraft geometry used by Peake [14] with 

definitions for angle of attack α and upsweep angle β  

 

Three different experimental methods were conducted on this geometry – oil dot 

for the visualisation of surface streamlines and thus possible separation lines, 

forces and moments related to the rear part of the geometry as well as 

circumferential surface pressure distribution measurements. The pressure 

distributions are available for two angles of attack α and for one upsweep angle 

β of 5°. These are suitable for the validation of the CFD model at corresponding 

wind tunnel operating conditions. Therefore, this model has been considered for 

possible further research on hose characteristics in conjunction with the A400M 

[54] aircraft and may be regarded as an assessment of a suitable validation 

case. Hence, the CFD validation with the experimental data available is 

performed and the wake characteristics are qualitatively investigated, but hose 

simulations with this geometry are not conducted. 

�∞ 

α 
β 
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Figure 2-5 A400M [54] side view sketch with indicated upsweep angle β  [51] 

 

 

Figure 2-6 Transport aircraft wing body configuration with indicated upsweep angle β  

[14] 

2.2 Wake studies 

The review has shown that the investigation of an aircraft wake is a well-

developed research area. This is especially true for the investigation of the 

extended near field, mid- and far field wake shown in Figure 2-7, where plenty 

of information is available in the public domain [7] [8] [23] [43] [44] [45] [46] [47] 

[48] [49]. In contrast there are relatively few studies for the near field wake. 

Even less public domain information is available on the CFD based wake 

prediction in the immediate vicinity of the rear fuselage [8] [62]. However, the 

refuelling hose deployment from a tanker takes place in immediate vicinity to 

the aircraft, and therefore the wake region of interest is the near field and the 

β=10 ° 

β∼∼∼∼10° 

Semi-sphere Cylindrical body Flatted and upswept cone 
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extended near field region. Parts of both regions associated with hose 

deployment are investigated in the present work and are discussed in Section 

4.2.     

 

 

Figure 2-7 Definition of different aircraft wake regions from near field (left) to mid and 

far field, up to the region where the wake structure decays [50] [23]  

2.3 Rear fuselage studies 

Most of the public domain rear fuselage studies are either limited to 

experimental investigations or compared to results of a potential flow calculation 

[13]. Interestingly, most of the rear fuselage investigations that were found 

address the effect of the rear fuselage upsweep, also termed afterbody 

upsweep. Some of them correlate with the body characteristics of the A330 [54] 

aircraft, while others focus specifically on military transport aircraft [13] [14] like 

the A400M [54]. For this study the relevant geometrical differences are given 

through the afterbody shape. The afterbody cross sections of a transport aircraft 

tend to have high aspect ratio elliptical geometries, with a flattened lower 

surface. The afterbody cross sections of a typical modern civil aircraft are 

mostly circular. 

 

�D 
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2.3.1 Separation 

For the wake characteristics of a rear fuselage flow the geometry plays an 

important role. The geometry has a critical impact on whether separation occurs 

or not. There are several methods how separation can be visualised. Figure 2-8 

shows the oil dot method. It allows the visualisation of surface streamlines. 

 

Figure 2-8 Visualisation of surface streamlines on the beaver tail rear fuselage through 

the use of oil dots [14]  

 

The surface streamline path indicates the presence of separation. The 

streamlines converge towards the position where separation takes place and 

form a straight line – this is the separation line. The determination of separation 

and therefore the visualisation of separation lines and associated vortex 

formation is part of the wake analysis through the use of CFD. The CFD results 

will be compared graphically to oil dot visualisations from experiments.  

 

  

Oil dots Primary separation line 
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2.4 Rear fuselage wake characteristics 

This section discusses generically the wake characteristics of the two fuselage 

types of interest, which are that of a transport and a civil aircraft. Although both 

fuselage types show similar aerodynamic behaviour there are distinct 

differences that are particularly of interest for the calculation of the hose 

characteristics.   

2.4.1 Transport aircraft 

Figure 2-9 a) shows schematically the separated flow of a fuselage only 

configuration where the wake beneath the rear fuselage is typically 

characterised through two vortices which originate from the underside of the 

afterbody [14]. This is especially true for afterbody shapes similar to those of a 

transport aircraft like the A400M [54]. This can be observed in Figure 2-9 b) 

where the vortices are shown in a photograph taken during an experiment.  

 

a) 
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b) 

 

Figure 2-9 a) Schematic rear fuselage sliced at symmetry plane, with separated flow 

forming a vortex from underneath the body [14], b) Vortex visualised through addition 

of fluorescence to the flow [9] 

The vortices are typically of small scale; the vortex wake is steady and has low 

frequency time variations in the flow [14]. Moreover, the overall flow 

characteristics remain unchanged with increasing Reynolds number as well as 

the vortex strength [14]. The appearance of these vortices in the cross flow 

plane just downstream of the fuselage is similar in many respects to separations 

which usually occur on slender delta and rectangular wings [9]. Figure 2-10 a) 

shows, that for zero yaw there is also complete flow symmetry. This fact may be 

of interest for the determination of the hose exit position. For instance, from this 

point of view it appears favourable to choose the hose exit along the centreline 

of the fuselage due to existence of symmetrical conditions. A circumferential 

deployment of the hose may cause excitations on the hose due to vortex-hose 

interaction. Hose studies have investigated similar phenomena [36]. These are 

discussed later in this report in Section 2.5.4.2 
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a)  b)  

Figure 2-10 Visualised pair of vortices on cross flow plane x=    �� downstream the 

fuselage, a) with zero yaw and b) with non-zero yaw [9] 

2.4.2 Modern civil aircraft 

The purpose of a civil aircraft differs from that of a transport aircraft. The lower 

part of a transport aircraft rear fuselage tends to be flat and provides the 

prerequisites for a functional requirement - the loading ramp installation. The 

rear fuselage of a civil aircraft is designed differently. There is no special 

functional requirement and therefore there is the freedom for aerodynamically 

favourable design. Figure 2-11 shows the rear fuselage wake characteristics of 

a typical civil aircraft with wing box indicated as a red surface. At 7° angle of 

attack it can be observed that separation occurs on the upper side of the rear 

fuselage [62]. The separation causes the formation of a vortex pair. The number 

of generated vortex pairs depends on the amount of vortex generation sources. 

The wing box acts also as a vortex generator and produces a pair of vortices 

which are shed into the rear fuselage wake [62]. This is illustrated in Figure 2-

11. 

Cross flow plane 

�� 

D� 
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a) 

 

 

 

b) 

 

Figure 2-11 a) Two pairs of vortices at cross flow plane x/Df=0.37 which is right behind 

the fuselage in figure b) along with the further downstream development [62]. 
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2.4.3 Summary 

The review on rear fuselage flows has shown, that the geometrical design of a 

civil aircraft like the A330 [54] is aerodynamically more favourable than that of a 

transport aircraft like the A400M [54]. For a typical civil aircraft the rear fuselage 

flow tends to stay attached at angles of attack close to the optimum design 

point, whereas for a typical transport aircraft the flow tends to separate [14] [9]. 

If separation occurs, the wake of a transport aircraft is characterised through a 

pair of vortices which shed into the flow underneath the rear fuselage. For the 

rear fuselage of a civil aircraft the flow tends to separate only as the angle of 

attack increases. Therefore, if separation occurs on the rear fuselage wake of a 

civil aircraft the wake is characterised through a pair of vortices above the rear 

fuselage which shed into the flow. Consequently, perturbations on the refuelling 

hose due to vortical flow are more likely, for a transport aircraft than for civil 

aircraft. The real fuselage flow of a civil aircraft however is expected to be 

benign. Computationally, both cases need to be treated differently. The gridding 

for the transport aircraft model needs special attention and effort in the near 

field wake region as well as in the extended near field wake region for the 

strong vortical structures to be resolved. Also special attention will probably be 

given to convergence strategies, as velocity and pressure gradients are high, 

especially radially from the vortex cores outward. Hence, the volume grid for a 

transport aircraft model needs to be much finer than that of a civil aircraft. Due 

to the benign nature of the near wake field underneath the fuselage of a civil 

aircraft, the grid can be coarser to obtain sufficiently valid results. In the present 

study this fact has been considered through the use of static meshes for the 

civil aircraft substitutes and adaptive meshes for the transport aircraft 

substitutes. The difference of both approaches is discussed later in the methods 

section.  
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2.5 Refuelling hose studies 

Several refuelling hose studies have been carried out in the last decade [19] 

[21] [26] [31] [37] [71] [72] [78]. Most of them were conducted recently which 

indicates that the topic is becoming more important. Most of the reviewed 

studies focus on the dynamic response of the hose after the probe-hose 

engagement and the associated hose whip effect [19] [21] [26] [31] [37] [71], or 

on the response on other excitation sources like wake vortices [36]. 

Interestingly, even though the initial static hose characteristic is expected to 

essentially affect the dynamic response [19] [78], all the studies that were found 

considered either one single hose shape [71] [78] or different hose positions 

derived from different flight conditions but all with the same characteristics [72]. 

Also, most of the hose characteristics considered have a benign effect on the 

hose whip phenomenon. The relation between hose characteristic and hose 

whip amplification is explained later in Section 3.5.3. Hence, no shape 

characteristic variations were made to study the impact of the initial curvature 

on the dynamic response of the hose. However, in real applications the hose 

may assume different static shapes for different refuelling conditions and 

different aircraft. Thus, the study of the dynamic response with one single initial 

shape is possibly only valid for one specific case. Since the hose whip effect is 

a significant load case during the aerial refuelling design and operation, a 

detailed dynamic load analysis accounting for hose whip for every particular 

system configuration is strongly recommended [21]. The present work focusses 

on the aspect of the initial static curvature and hose characteristics in 

dependence of different refuelling conditions and aircraft geometries. Thus, the 

results of the hose characteristics may enhance the investigation range for 

future studies on the dynamic response, since a number of different static hose 

characteristics for different system configurations are calculated.   

2.5.1 Influential parameters on hose  

As the static hose shape is determined all calculations are conducted using 

steady state models. Hence, only the steady tanker wake is considered and all 

transient effects like atmospheric turbulence and wind are neglected. This is a 
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valid assumption insofar as it is expected that the tanker wake has the most 

impact on the static hose shape and the final drogue position. Even though, for 

the present work, transient effects are not directly relevant, the context is of 

automated in-flight refuelling and is therefore considered within the literature 

review. It also enables the present work to be placed into the bigger context and 

to link it to previous studies as well as to possible future work. 

2.5.2 Unstable drogue position 

For the automated probe-hose engagement the behaviour of the drogue is of 

interest. This spawned a number of research topics like the prediction of the 

drag upon the drogue and drogue’s position, as well as the effects of turbulence 

and wind upon the drogue [26] [27] [28] [29] [30]. Studies on these aspects 

were carried out both experimentally [29] and computationally [30]. One finding 

is that the drogue is unable to maintain a steady-state position relative to the 

tanker in the presence of wind and atmospheric turbulence [26] which can be 

observed in Figure 2-12. A similar result was reported by a NASA flight test in 

which the motion was found to make it difficult for the receiver aircraft to engage 

with the refuelling system [26].  

 

 

Figure 2-12 The described trajectory of the drogue with view towards hose exit (left) 

due to atmospheric turbulence and the corresponding drag over 60 seconds [26] 

 

One of the reviewed studies included the approaching aircraft in the model and 

considered the flow field in front of the receiver aircraft [31] (Figure 2-13). It 
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revealed an additional source of disturbance regarding the stable drogue 

position. 

 

Figure 2-13 Computational model of two coupled flow fields, one from the approaching 

receiver aircraft (green box) and the wake field of the tanker (blue box) [31] 

An F/A-18D receiver aircraft is considered. As the receiver aircraft approaches 

the drogue, the drogue tends to move away from its forebody. Figure 2-13 

shows that the probe on the F/A-18D is located near the side of the canopy on 

the upper-starboard side. Hence, the drogue swings outward and upward during 

a coupling [31]. Depending on the canopy geometry and probe position the 

drogue behaviour is very likely to be influenced in different ways. These facts 

initiated studies about possible control of the drogue position in flight. In 

particular this was tried through the use of an active feedback control system 

[28]. 

Probe 
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2.5.3 Hose model concept  

All reviewed refuelling hose studies used the same conceptual approach for the 

hose modelling. Figure 2-14 shows the model concept, which consists of a 

towed mass connected through a cable to a travelling tow point. For the case of 

in-flight refuelling the tow point is represented by the nominal hose exit, the 

cable by the hose and the mass by the drogue.  

 

 

 

 

 

 

 

A general cable system may be divided into two main groups: the low tension 

cable systems and the high tension cable systems depending on whether the 

cable is used for load bearing or not. The in-flight refuelling system uses the 

hose to transfer fuel from one aircraft to another and can be classified as a low 

tension cable system [36]. In the context of in-flight refuelling such a low tension 

cable system suffers complex dynamic instabilities [73] from different sources.  

For investigations on the dynamic response to excitations of such a cable 

system the initial shape of the cable is of fundamental interest [19] [78]. 

Amongst others, one major source of dynamic instability is the perturbation 

which is associated to the engagement of the hose with the receiver aircraft 

probe. The perturbation occurs longitudinally since the drogue is pushed 

upstream by the probe. The longitudinal drogue displacement causes a hose 

slack and induces a wave onto the slacked hose as illustrated in Figure 2-15. 

The response of the hose is non-linear. Therefore, even for moderate closure 

rates below 3 m/s [73] [74] and small displacements the dynamic response can 

result into a dramatic hose whip. This is particularly the case for fuselage 

V 

Tow point 

Cable Mass 

Figure 2-14 Towed cable and mass system with travelling tow point 
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centreline deployed hoses which are affected by the afterbody upwash [74]. 

Close to the hose exit the hose is lifted by the upwash which causes an 

inflection point in the hose. This mechanism will be discussed later in the results 

section 4.2.1.1. As the hose is longitudinally perturbed the formation of a ‘sine’ 

wave is initiated [74] (Figure 2-18). Therefore, any static hose characteristic that 

favours the formation and propagation of a wave needs to be avoided.  

 

Figure 2-15 Result of a dynamic response calculation where an undisturbed hose 

under full tension (blue) is compared to a slacked hose due to drogue displacement 

(red) [78]. The slacked hose assumes the red shape after 0.5 s  

Figure 2-16 shows the first three modes on a string. The string can be 

substituted through the cable and represents the hose. Depending on the initial 

modal shape of the hose the dynamic response is different. The worst possible 

shape is the 3rd mode which corresponds to the vibration mode [78]. It favours 

the hose whip amplification because of two mechanisms. Firstly, this 

characteristic favours the formation of a wave as it describes a curvature similar 

to a sine wave. This shape is characterised through the inflection point, also 

indicated in Figure 2-16, and is an advantageous initial condition for a wave 

formation [74]. Secondly, it favours an amplification of the propagating wave 

due to interaction with the rear fuselage upwash as shown in Figure 2-17, 

Linear drogue displacement 

Slacked hose with non-linear 

response 



 

46 

because the part of the hose between hose exit at the tanker and the inflection 

point tends to be move in the amplification direction by the afterbody upwash.  

 

 

 

 

 

 

 

Figure 2-16 First three modal shapes [26] 

 

However, the wave propagation is influenced by the surrounding flow in 

different respects.  Depending on propagation velocity and propagation 

direction the wave is either damped or amplified.  As shown in Figure 2-17 a) 

the upstream travelling wave is always damped, due to the resetting effect of 

the aerodynamic forces [26] [37]. Figure 2-17 b) shows that the amplitude 

increases if the airflow speed �∞ is higher than the wave propagation speed 

����� but is slightly damped if the airflow speed is slower [36] [37]. The 

amplification effect can be observed in Figure 2-18, where the result of a 

dynamic response calculation is shown. The calculation has been made with a 

KC-10 full scale configuration for the Mach number of 0.63 at an altitude of 

25000 ft, a lift coefficient of 0.52 with a required angle of attack of 2.73° [74].  

 

 

 

 

Pendulum mode (1st) 

Bowing mode (2nd) 

Vibration mode (3rd) 

Inflection point 
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a) 

 

b) 

 

Figure 2-17 Schematic hose deformation due to a longitudinal perturbation at the hose 

end, a) always damped upstream travelling wave b) amplified downstream travelling 

wave if �∞ > �����  and slightly damped if  �∞ < ����� 

����� 

����� 

�∞ 

�∞ > ����� 

Damping 

Reset force 

Amplification force 

Fuselage 

Tow point 
Longitudinal 
perturbation 

Initial shape 
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Figure 2-18 shows, that the hose is longitudinally perturbed at t=0. At t=0.5s a 

hose slack with an initiated, upstream travelling wave can be observed. At 

t=0.75s the wake still travels upstream. Between t=0.75 and t=1s the wave is 

reflected at the tanker, travels downstream and is amplified through the 

surrounding flow. The amplitude at t=0.75 is notably lower than at t=1s. The 

amplitude increases even more from t=1s to t=1.25s. After t=1.3s the high wave 

energy results into a dramatic hose whip. An inflected hose favours the negative 

effect of a hose whip and needs to be avoided [74].  

 

 

 

 

 

t=0.5s 

t=0.75s t=1s 

t=1.25s t=1.3s 

Hose whip 

Amplification 

Amplification 

Upwash 

Longitudinal 

perturbation 

Figure 2-18 Calculated wake propagation along the hose (red) shown for different time steps with 

indicated travelling direction by the arrows, where the blue hose is the initial reference hose [74] 

t=0s 
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2.5.4 Modelling approach      

Three approaches have been identified for the hose to be modelled – analytical 

[37], finite element method (FEM) [21] [36] and finite segment [26].  

2.5.4.1 Analytical approach 

The analytical approach is a classical derivation of ordinary differential 

equations (ODE). The derived function describes the propagation of a 

perturbation induced wave along the hose. The application is limited due to 

assumptions made to derive the ODE`s. To keep the differential equations as 

ordinary it is assumed that the wave propagates into two spatial dimensions. 

Figure 2-19 shows schematically a 2D wave with vertical amplitudes in Z and no 

horizontal amplitudes in Y.    

 

 

 

 

 

 

 

The 2D approach is sufficient if the lateral forces on the hose neutralize each 

other, which is the case when the hose is deployed at the centreline of the 

fuselage and the aircraft flies at zero yaw. Furthermore transient effects like 

atmospheric turbulence and wind have to be neglected [37].  However, for the 

analytical solution the initial cable shape is predefined as straight, and as stated 

previously, the initial shape is fundamental to the wave propagation [78]. 

Furthermore, in the analytical study the flow is assumed to be uniform [37]. To 

consider a non-uniform line as the initial condition, an analytical approach can 

be applied if the cable is subdivided into straight lines which approximate the 

curved parts of the cable. The result of each solution is then considered as the 

Y 

X 

Z 

Figure 2-19 Sketch of a 2D wave with propagation direction in X, amplitudes in Z 

and no amplitudes in Y 
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initial condition for the next straight line and so on. This approach could be of 

interest for fundamental studies on the dynamics of the hose, where a uniform 

flow can be sufficient as a boundary condition. 

2.5.4.2 Finite element approach 

The finite element approach has been used for the whip phenomenon 

investigation which occurs in association with the probe-drogue engagement 

[21] and the excitation of the hose through vortices [36]. The dynamic FEM 

stability analysis was carried out by Zhu [36] with the approach of a 

conventional modal and spectrum analysis. Figure 2-20 shows that Zhu [36] 

investigated the system imposing an excitation at the tow point. 

 

Figure 2-20 Modelling approach by Zhu [36] and its idealisations for the disturbances, 

left mechanically from tow point and right aerodynamic excitation through a vortex   

In the case of in-flight refuelling the first disturbance originates from the drogue 

due to the engagement with the receiver aircraft. The generated wave first 

travels upstream and is then reflected at the tanker fuselage. The conditions 

under which the FEM studies were made correspond to the wake propagation 

phase after reflexion at the rear body and could therefore be relevant to future 

research of the present study. It was found that this approach is inappropriate 

for towed cable systems [36]. The cause of instability is not the resonance of 
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the system but the excitation through the absorption of energy from the 

surrounding flow [36] [37]. 

2.5.4.3 Finite segment model 

The finite segment method models the hose by a series of joint connected rigid 

cylindrical bars (Figure 2-21).  

 

 

Figure 2-21 Connected single rigid cylindrical beams as a finite segment approximation 

for a cable [26] 

This approach allows the gravitational forces to be taken into account, as well 

as aerodynamic forces for the impact of the tanker wake on the hose. This 

leads to a set of differential equations of motion with six degrees of freedom.  

The present study makes use of this model. As extension to the forces which 

originate from the tanker wake flow field, atmospheric turbulence and wind 

effects may be considered as well through the use of appropriate models. The 

present studies consider the wake forces, turbulence intensity and surface 

roughness of the hose, which have a notable impact on the drag coefficient of 

the hose [6]. Wind and atmospheric turbulence are neglected. 
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2.6 Summary 

Autonomous in-flight refuelling typically means a manoeuvre where a receiver 

aircraft automatically finds a tanker aircraft with a following engagement of 

drogue and probe in order to transfer fuel from the tanker to the receiver. The 

behaviour of hose and drogue plays an important role for the success of the 

manoeuvre. In terms of wake propagation along the hose the ideal scenario of a 

drogue-probe engagement is that the introduced collision energy is lower than 

the dissipated energy of the upstream travelling wave. If this is the case no 

reflection at the tanker will occur and thus no amplification of the wave will take 

place. However, as this is an ideal scenario the wave propagation effect has 

been investigated extensively. For these studies the initial static shape of the 

hose before coupling is of fundamental interest, as it has a crucial impact on the 

dynamic response of the hose [78]. The initial shape in turn is notably affected 

by the local flow field of the tanker. No studies were found which focussed on 

the particular correlation of tanker wake and initial hose shape. In most cases 

the studies considered one shape as initial condition for the hose response. The 

present work particularly addresses the impact of the tanker wake on the hose. 

The wake is predicted with CFD methods and representative tanker geometries 

at representative refuelling conditions. This enables the development of a 

generic understanding of the tanker wake, but also the derivation of hose 

characteristics related to the refuelling conditions. The results of the study will 

provide a base for a broader investigation of the hose response effect since 

more than one initial shape can be considered. Furthermore the initial shape 

can be tracked back to specific in-flight refuelling conditions. This in turn can 

lead to rules for design purposes for in-flight refuelling systems.
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3 METHODS 

This chapter introduces the methods and methodologies used to address the 

problem and to achieve the objectives. This comprises an explanation of the 

simulation tools used and how the tools are interrelated, in particular the CFD 

predicted wake with the hose modelling.   

3.1 Aircraft geometry modelling 

3.1.1 A330 Substitute 

In the present case the A330 [54] and A400M [54] are the main aircraft of 

reference. The in-flight refuelling simulations are carried out by consideration of 

substitution geometries similar to the A330 [54]. Through the use of surrogate 

geometries the fidelity of the geometrical modelling becomes limited. However, 

the present work focusses on the general behaviour of a refuelling hose 

exposed to the tanker wake. For this purpose the use of a similar geometry is 

still acceptable, because it still allows generic conclusions to be drawn about 

the behaviour of the hose. Nevertheless, it is desirable to keep the highest 

possible fidelity as this strengthens the validity of the conclusions. Therefore, 

special attention is given to the selection of the A330 [54] substitute. For the 

selection process pertinent comparison parameters have been defined. As the 

present study focusses on the rear fuselage part of the aircraft, most of the 

parameters are related to that region and are defined as follows. Figure 3-1 

shows the outline of the DLR-F6 [4] fuselage on the symmetry plane with the 

definition of the fuselage length �- and the fuselage diameter  -. 

 

Figure 3-1 DLR-F6 [4] fuselage outline normalised by the fuselage diameter 	
 and 

indicated fuselage length �
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Figure 3-2 shows the outline of the rear fuselage part with the definition of all 

other geometrical parameters. The chart dimensions are normalised by the 

fuselage diameter  -. The coordinate system origin lies at the intersection point 

of the ordinate with the horizontal tangent on the lower part of the outline. γ is 

the positive angle between abscissa and the extension of the longest straight 

distance along the lower part of the fuselage symmetry outline. β is the positive 

angle between a straight line which intersects the ordinate at 0.5 and goes 

through the maximum X-value of the fuselage outline.  

 

Figure 3-2 Definition of upsweep angle β and rear fuselage angle γ along with definition 

of fuselage diameter 	
 and rear fuselage length ��
.  

Table 3-1 presents the geometric parameters for the DLR-F6 [4] and the CRM 

[5] models in comparison with the A330 [54] geometry [39]. 

 

 

Parameter 

 

A330 

 

CRM 

 

DLR 330A

CRM

 
330A

DLR
 1-

330A

CRM
 1-

330A

DLR
 

1  -/�- [-] 0.10 0.12 0.10 1.11 1.33 0.11 0.33 

2 �+-/ - [-] 3.27 3.60 3.54 1.08 1.10 0.08 0.10 

3 β [°] 7.00 3.20 5.70 0.46 0.81 0.54 0.19 

4 γ [°] 18.00 13.00 15.0 0.72 0.83 0.28 0.17 

Table 3-1 CRM [5] and DLR-F6 [4] geometric parameters in direct comparison to the 

A330 geometry [39] in model scale with ratios and differences ∆ in absolute values  
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Row five and six contain non-dimensional values for the corresponding aircraft 

model relative to the absolute value of the A330 [54]. Row seven and eight 

contain the differences of the non-dimensional values relative to the A330 [54]. 

The data from row five and six is plotted in Figure 3-3. 

 

Figure 3-3 Polar plots for the ratios related to the A330 with circumferentially indicated 

parameter index 1 -4 from Table 3-1 

The non-dimensional values CRM/A330 and DLR-F6/A330 in column five and 

six are plotted radially in comparison to the non-dimensional value of 1 for the 

A330 [54], while the parameter index 1 - 4 in row one is indicated 

circumferentially. It can be observed, that the blue line for the DLR-F6 [4] 

indicates good agreement with those of the A330 [54] except to parameter 

 -/�-, where the CRM is in better agreement. This parameter is related to the 

overall length of the fuselage.  However, as the study focusses on the rear part 

of the fuselage the other parameters related to that part are considered as more 

important.  In good agreement are the upsweep angle β and above all the rear 

fuselage angle γ. This angle is considered as the most important shape 

parameter, as it has the highest geometrical impact on the rear fuselage 

upwash, and therefore on a flow region where the hose is exposed. Figure 3-4 

shows the differences relative to the A330 [54] in direct comparison. The 

differences for all parameters are higher for the CRM apart from parameter 
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 -/�-and �+-/ -, where the difference of �+-/ -(2) is 20%. Hence, the 

parameters indicating similarity to the A330 [54] outnumber those for the DLR-

F6 [54] 

 

Figure 3-4 Differences in percentage of CRM and DLR-F6 relative to A330, data from 

Table 3-1 row seven and eight   

 

A further distinction point is on the experimental conditions. The configurations 

and experimental range differ between the aircraft models. The experiments for 

the DLR-F6 [4] were carried out with a wing body (WB) configuration whereas 

for the CRM [5] there was both a WB and wing body tail (WBT) configuration 

(Figure 3-5). The operation conditions for the DLR-F6 range from a lift 

coefficient (��) of 0 to 0.68 and a maximum Mach number of 0.75  whereas for 

the CRM from 0 to 0.95 and a Mach number up to 0.87.  
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          DLR-F6 WB   CRM WB   CRM WBT 

 

Figure 3-5 WB configuration of the DLR-F6, WB configuration of CRM and WBT 

configuration of CRM, from left to right 

For the CFD approach evaluation both models are considered. In particular this 

means that for both models a CFD validation is performed. For the hose 

calculations also both models are considered. The influence of hose exit fairing 

(HEF) is also investigated in this work, but in conjunction with one aircraft 

geometry. For this purpose the DLR-F6 is taken into account, due to the rear 

fuselage similarity to the A330 [54]. 
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3.1.2 Hose fairing modelling 

The location on the fuselage where the hose is deployed is usually equipped 

with a fairing. The fairing is a cover for the hose trailing mechanism and slot for 

the drogue. Figure 3-6 shows a hose exit fairing (HEF) on an A330MRT [54].  

 

 

Figure 3-6 Rear fuselage of A330 with mounted hose exit fairing [53] 

The fairing is fitted onto the fuselage and projects into the airflow around the 

fuselage. Hence, the fairing is expected to have an influence on the wake field. 

The effects on the wake as well as on the hose are therefore of interest. In the 

present work this is investigated through the use of an arbitrary hose exit fairing 

in conjunction with the DLR-F6 [4]. Figure 3-7 shows the surface model of the 

designed HEF with indicated quantities length �6,-, width E6,- and height 56,-. 

In Table 3-2 the quantities are shown normalised by the DLR-F6 [4] fuselage 

diameter  -. Figure 3-8 shows the attached hose fairing model onto the DLR-F6 

[4] geometry. 

  

Hose exit fairing 
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   Side view      Front view 

 

        

Bottom view         Perspective 

 

 

 

Parameter Unit Value 

 - m 7.5 

�6- -  
- 0.18 

E6- -  
- 0.1 

E6- -  
- 0.06 

Table 3-2 Hose exit fairing quantities normalised by DLR-F6 [4] fuselage diameter 	
 

 

�6- E6- 

56- 

Figure 3-7 Surface model of an arbitrary hose exit faring 
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Figure 3-8  Side view of the DLR-F6 [4] CAD model with attached hose exit fairing 
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3.1.3 A400M substitute 

A digital model for the transport aircraft body was not available; therefore, for 

the CFD simulations a new model has been built. The geometric information 

has been taken from Peake’s report on his studies about upswept rear 

fuselages [14]. The drawings from the report are presented in Appendix B1. For 

the rear fuselage wake studies of the transport aircraft model five different 

upsweep angles are considered. Figure 3-9 shows all five models from lateral 

view with upsweep angle β from 0° to 20° in steps of 5°, as well as the fuselage 

diameter  - and fuselage length �- as a function of  -.  
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Figure 3-9 Transport aircraft model with upswept rear fuselage in 5° steps from 0° to 
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3.2 Wake prediction 

This chapter comprises a general introduction to computational fluid dynamics 

(CFD) as well as an overview on how the method was particularly used in this 

work. Furthermore it explains how the wake field is linked to the actual hose 

modelling. 

3.2.1 CFD introduction 

Computational fluid dynamics (CFD) means the calculation based modelling of 

fluid flow. Fluid flow is a highly complex physical process, which is fully 

described through the Navier Stokes equations. However, there are many 

approaches for fluid flow to be predicted. Some approaches deal with 

simplifications, which allow shorter calculation times but still provide sufficient 

validity for a specific application. The direct numerical simulation (DNS) solves 

the full Navier Stokes equations without any simplifications. However, this 

method is not suitable for industrially relevant engineering problems, as the 

computational costs are too high [61]. Instead the turbulence is simplified 

though the use of turbulence models. The need for turbulence models arises 

through the use of the Reynolds Averaged Navier Stokes method (RANS), 

which is a statistical approximation of the full Navier Stokes equation. The 

governing equations are time averaged and describe a mean flow. The 

approximation introduces a mathematical closure problem, associated with the 

Reynolds stress terms, which have to be determined. This is solved through the 

application of turbulence models. 

3.2.1.1 Turbulence  

There are different approaches to model turbulence. The classes of turbulence 

models are typically determined by the number of equations which describe the 

turbulence. For instance, there are one- and two equation models. A common 

model used in aerospace is the Spalart Almaras (SA) model which was 

specifically developed for aerodynamics applications [40]. The turbulence is 

modelled through the determination of turbulent viscosity. Two further 

commonly used models are the k-epsilon or the k-omega model [40] [41]. Both 
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are two equation models and describe turbulence through the consideration of 

turbulent energy and scale. Both have advantages and disadvantages. In 

particular the k-epsilon model works better in the free stream region whereas 

the k-omega is better close to the boundary. The Shear Stress Transport model 

(SST) combines k-epsilon and k-omega in order to benefit from the advantages 

they offer [40] [41]. For flows similar to those of the present study, both 

turbulence models, SST and SA, show good agreement with experimental 

results [62]. Hence, for the present study the SA model and the SST model 

have been applied. 
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3.2.2 CFD validation and approach 

The credibility of any CFD result can be strengthened through an appropriate 

validation. Validation is defined as the process of determining the degree to 

which a model is an accurate representation of the real world from the 

perspective of the intended uses of the model [66]. This chapter introduces the 

process approach and the tools used for the CFD simulation. 

3.2.2.1 Software 

The CFD simulations are carried out with ANSYS CFX v12.1 [42], which is a 

well-established computational code in industry. CFX [42] originates from and 

was developed for turbo machinery applications. Today CFX [42] is also applied 

in many other industries like automotive and aerospace. CFX [42] uses the 

Reynolds Averaged Navier Stokes (RANS) equations for the flow solver. The 

software is very comprehensive as it offers a number of turbulent models, for 

compressible and incompressible turbulent flows as well as heat transfer.  

3.2.2.2 Solver settings 

The following solver settings were used for the CFD simulations 

• Solver type: Segregated (SIMPLE algorithm) 

• Linear system solver: ILU 

• Ideal gas model for compressible flow as free stream Mach number > 0.3 

• Discretisation order for p-mass and momentum: High resolution which 

corresponds to 2nd Order (CFX [42] specific algorithm) 

• Order turbulence: High resolution which corresponds to 2nd Order (CFX 

[42] specific algorithm) 

 

3.2.2.3 Convergence strategies and criterion 

In numerical calculations convergence means the approach of the residual 

values to the value of 0. A numerical residual in turn represents the error which 

originates from the discretisation of the continuous equations. Thus, the smaller 

the residuals are the smaller is the error. The target of any convergence 

strategy is to obtain the smallest possible residual value. Residuals are closely 
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related to discretisation. For instance, one approach to get better convergence 

is to first solve the flow field with a 1st order scheme discretisation. The solution 

for a 1st order scheme is obtained linearly since the discretisation is only made 

up to 1st order. Therefore, the solution converges much better. As a second 

step, the calculated flow field can be used as initial condition for the 2nd order 

scheme which is non-linear and more valid results are obtained. It is also a 

suitable strategy to calculate the flow field first with a transient solver. A high 

resolution time stepping allows high pressure or velocity gradients within the 

flow domain to be solved. The obtained flow field can also be used as an initial 

condition for a further steady state calculation. The target residuals for 3D CFD 

applications are typically in the order of 10-4
 and 10-5 depending on the 

complexity of the flow. Convergence strongly depends on the gradients within 

the domain. The higher the gradients the more difficult it is to obtain a 

converged solution. An illustrative example is the variation of the angle of attack 

(AOA) for an aircraft. With the same mesh at very high AOA, which can be 

regarded as off design points, the flow field is more complex compared to the 

flow obtained from lower AOA. Off design flow fields show higher pressure and 

velocity gradients than near design optimum flow fields. Hence, it is always 

more difficult to obtain convergence for off design flow fields, which in the case 

of an aircraft are caused through higher angles of attack.  

The code development of commercial codes like Ansys CFX [42] involves major 

effort on convergence strategies. Therefore, one of the most outstanding 

features of CFX [42] is the convergence ability. For most cases in the current 

study the solution converged very quickly up to the order of 10-5, which is the 

defined convergence criterion for mass and momentum. This was typically the 

case for AOA close to the design point of the aircraft. For AOA far away from 

the design point a criterion in the order of 10-4 has been accepted. Figure 3-10 

illustrates the convergence history for a case with high angle of attack and it 

shows that convergence is obtained in the order of 10-4 after only 50 iterations.   

Hence, due to the convergence strategies implemented in CFX [42], the 

application of manual convergence strategies was not necessary. In addition to 

convergence of mass and momentum, both lift coefficient �� and drag 
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coefficient �d were considered as convergence criteria. Both are integral 

comparison parameters to the wind tunnel experiments and therefore relevant. 

For all calculations �� and �d have reached a consistent level of convergence.  

 

Figure 3-10 Mass and momentum residuals as a function of iterations for a solution in 

CFX [42] 

3.2.2.4 Comparison parameters 

The experimental data provided from DPW-2 [4] and DPW-4 [5] is forces and 

moments for the main aircraft. Hence, comparison parameters to the 

experiments are lift coefficient �� and drag coefficient �d, which are both a 

function of the angle of attack α (AOA). To obtain a target ��, in a calculation α 

is varied until a nominal �� value is met. The final AOA can be regarded as a 

calculation result. Thus, the computed correlation between α and �� is also a 

comparison parameter to the experiments. 
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3.2.2.5 Mesh dependency study 

Ideally, the target of any mesh dependency study is to find the coarsest 

possible mesh with the minimal induced numerical error due to insufficient mesh 

resolution. Therefore a number of meshes with different resolutions are made. A 

parameter which has to be a result of the calculation is plotted as a function of a 

mesh convergence index (GCI). The parameter value converges asymptotically 

to a constant value with increasing mesh resolution. The coarsest mesh which 

shows a convergence value very close to the asymptotic value would typically 

be chosen. 

For the present work a mesh convergence study has been carried out for both 

the DLR-F6 [4] and CRM [5] model. As shown in Figure 3-11 three meshes with 

three different densities were considered for each model at model scale. The 

following approach proposed by Roache has been used [38] 

                                                � = W
XY                       Eq. (3-1)                           

Where  

• C is a convergence parameter (result of the calculation) 

• E is the error 

• N is the amount if mesh points 

• P is an exponent which can be obtained considering the grid 

refinement ratio  

 

C can be any result of the calculation. The experimental data provide �1 and ��. 
Hence, the convergence study is made for �1 as the converging parameter at a 

constant �� for a coarse, medium and fine mesh [38] as shown in Figure 3-11.  
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Figure 3-11 Surface meshes of CRM WBT with different mesh resolutions 

 

  

Coarse – 3.5 Million 

volume cells 

Fine – 35.8 Million 

volume cells  

Medium – 10.8 Million 

volume cells 
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3.2.2.6 Adaptive mesh refinement 

For the transport aircraft body geometry (TAB) high gradients due to separation 

on the rear part of the fuselage are expected. Therefore, to keep the numerical 

error as low as possible, an adaptive mesh refinement (AMR) approach has 

been chosen. The principle of this approach is a local refinement of the initial 

mesh in dependence of an adaption criterion specified. The initial mesh is an 

unstructured tetra mesh, which has the advantage that no hanging nodes are 

produced. Figure 3-12 shows the principle of the AMR technology in CFX [42]. 

The mesh is not adapted to the geometry but in the free stream. This requires a 

good resolution of the initial surface mesh. To avoid a too high resolution of the 

free stream mesh a minimum cell edge length must be specified. This depends 

on the scale of the flow features that are expected and on the wanted resolution 

of the flow features.  

 

 

Figure 3-12 Initial mesh on the top and result after adaption on lower left side, which 

shows that only the volume mesh is considered for adaption. 

Figure 3-13 shows the residual response on the adaption. A rapid increase of 

two orders of magnitude for the residuals can be observed after the adaption. A 

residual is basically a solution comparison between the latest two solutions. 

Therefore, the rapid increase originates from the difference between the 

solution on the old coarse mesh and the solution on the new fine mesh. The 

refinement result is illustrated in Figure 3-14 b), where the density for the 

refined mesh is much higher around the body as well as in the wake region 

where separation vortices are expected to develop. The illustrated density is 

No adaption to geometry,  Adaption to geometry 

Initial mesh 



 

70 

achieved after 3 refinement steps with vorticity as refinement criterion, through 

which the strength and direction of a vortex can be described. The mesh density 

in the wake region is not fine enough for an adequate resolution of the vortices. 

A finer initial volume mesh and more refinement steps were required for proper 

resolution. However, as the wake of the model shown is investigated 

qualitatively rather than quantitatively, the resulting mesh resolution is 

considered as a proper compromise between computational cost and numerical 

uncertainty.  

 

Figure 3-13 Residual peaks due to mesh adaption 

 

 

 

 

 

 

 

 

 

Residual response on mesh adaption 
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a) 

 

 

 

Figure 3-14 a) Initial unstructured mesh for the transport aircraft model [14] 20° 

upsweep configuration and b) the refined mesh after adaptive mesh refinement 

  

b) 
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3.2.2.7 Transition to full scale inflight refuelling conditions 

The experiments were carried out at model scale, which means that the 

validation is made at model scale. However, the hose predictions are made at 

geometrical full scale as well as at full scale Reynolds number. Hence, a wake 

from a full scale model with full scale Reynolds number is required. The 

validation for the full scale inflight refuelling simulations has been made in three 

steps. 

Step 1: CFD Validation at model scale at wind tunnel conditions � model scale 

Reynolds number 

The Reynolds number (Re) as a dimensionless quantity is the determining 

magnitude for a fluid flow as it describes the ratio between inertial and viscous 

forces. The definition is  

 <� = Z∙\]∙^_`a
b                            Eq. (3-2)                            

Where  

• Re is the Reynolds Number [-] 

• ρ is the density [kg/m^3] 

• V is the velocity [m/s] 

• �+,-  is the chord [m] (reference length) 

• µ is the dynamic viscosity [Pa*s] 

 

The Reynolds number can be used to compare the flow similarity of different 

experimental cases. For example the difference between the cases can be the 

geometrical scale. 
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Step 2: CFD Validation at geometrical full scale at wind tunnel conditions by 

keeping the Reynolds number constant � still model scale Reynolds number 

In the present case, the determining up-scaling parameter is given through the 

chord which is the reference length. To keep Re constant, the increased chord 

is compensated through a smaller density and therefore a higher operation 

pressure. To obtain the desired density, the pressure has to be changed 

accordingly. 

 

c;,? = <� ∙ d
� ∙ �+,- ∙ e/��fgh ��/ij= 

 
9;,? = k <� ∙ d 

� ∙ �+,- ∙ e/��fgh ��/ij=l ∙ < ∙ > 

 

Where  

• P is the pressure 

• R is the universal gas constant in  J/kg*K 

• T is the temperature in K 

 

The density results according to the new operation pressure of the simulation. 

The decision to choose the density rather than the viscosity is based on the fact 

that both drag prediction workshop (DPW) experiments [4] [5] provide 

information about the temperature but not about the pressure. Viscosity is 

mainly affected by the temperature. Therefore, the clearly defined parameters 

are conserved. If the comparison parameters, �1 and the correlation between 

�� and α in step 2 correlate with those from step 1, the validation of the 

geometrical full scale model can be considered as successful. This is the basis 

for the in-flight refuelling simulations at full scale because it shows that the 

results are reproducible also at full scale. This is crucial since the Reynolds 

number for the inflight refuelling simulations are much higher. 
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Step 3: CFD Validation at geometrical full scale at real inflight refuelling 

conditions � full scale Reynolds number 

In case of a resultant deviation of the dimensionless comparison parameters ��, 
�1 the scaling method of the model can be excluded as a cause. This would 

then typically lead to the assumption that the deviation of the dimensionless 

comparison parameters ��, �1 is caused by Reynolds number effects.     

3.2.3 Data extraction 

In the present study the tow point of the towed cable system corresponds to the 

nominal hose exit (NHE), which is a predefined spatial position within the CFD 

computational domain (Figure 3-11). However, the hose modelling and 

prediction is not directly performed in real time with the CFD calculation. Instead 

there is a separate modelling for which the wake data of the CFD simulation is 

required.  For the hose predictions a 3D section of the entire CFD domain is 

needed which can be regarded as a CFD sub-domain. The extents of the 3D 

sub-domain are defined as spatial distances relative to the nominal hose exit. 

  

Figure 3-15 DLR-F6 [4] geometry within CFD domain with nominal hose exit and 

defined sub-domain 

The wake data for the hose prediction consists of the velocity components �B, �: 

and �C. Furthermore, the velocity components have to be addressed to the 

coordinates of an equidistant mesh. Therefore a 3D interpolation from the 

original CFD domain on an equidistant mesh is performed. 

Nominal hose exit 

Sub-domain 
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3.2.3.1 Procedure 

1. Conversion of  any CFD results file to CGNS format 

2. Import the CGNS file to Tecplot [77] 

3. Define a rectangular subdomain and generate an equidistant mesh within 

the subdomain 

4. Perform a 3D interpolation from CGNS data set onto equidistant mesh 

5. Write file with XYZ and �B, �:,  �C. values in ASCII format 

3.3 Hose modelling 

The theoretical basics for the hose model are derived from the Engineering 

Sciences Data Unit (ESDU), document number 80025 [6]. The document 

suggests a method for the estimation of mean forces induced by flow on 

cylindrical structures of circular cross sections [6]. This accounts to the 

aerodynamic forces. Along with gravitation these are the externally acting 

forces. The inner forces which originate from the hose elasticity are considered 

through the application of a bending moment 7m between the single beams. 

The beams in contrast are assumed to be rigid. 

 

3.3.1 Applicability and limitations 

The approach applies the laws which describe a uniform 2D flow around a circle 

(Figure 3-16).  

     

Figure 3-16 Attached flow around a circle left and laminar separation with Karman 

vortex street right [6] 
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Figure 3-17 Beam with finite dimensions (left), attached 2D flow around a cylindrical 

beam of infinite length (middle) and laminar 2D separation with Karman vortex street 

around a cylindrical beam of infinite length (right) [6] 

For an extruded circle (Figure 3-17), which represents a cylindrical beam and 

thus a 3D body, these conditions only apply if the beam length is long enough 

that the three dimensional flow around the ends of the beam can be neglected. 

This would typically be the case for an infinitely long beam where the impact of 

the tip flow on the resulting forces is much lower than the impact of the flow 

over the entire beam length. Furthermore it is stated that for finite beams the 

approach is still applicable in the presence of endplates at the ends of the beam 

if the beam length and diameter ratio �0/ 0 is greater than 6 [6]. As shown in 

Figure 3-18 the approach for the present work is the use of a joint connected 

beams array. Therefore, the tip flow problem disappears as the single bars are 

connected.    
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Figure 3-18 Joint connected rigid beams and imposed bending moment which 

accounts to the elasticity of the hose [26] 

The outer forces on the hose which are the aerodynamic as well as the 

gravitational forces are calculated separately for every beam. Every single 

beam must satisfy the ratio restriction between the beam length �0 and the 

beam diameter  0. The outer hose diameter corresponds to  0 and is given 

through the employed hose, as well as the overall length of the hose �6. The 

number 80 of beams in which the overall hose length is subdivided determines 

the beam length �0. Hence, with an appropriate segmentation of the entire hose 

it can be accounted to the ratio and therefore the 2D approach is applicable for 

the present work.  

  

Rigid beams 

Joints 

Z 

Y 

X Bending moment 7m 
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3.3.2 Drag modelling  

The drag coefficient of a bluff body like a circular cylinder is primarily 

determined by the flow pattern around the body. In the present case the 

separation points determine the wake region behind the cylinder which in turn 

accounts for the drag. As shown in Figure 3-19 the location of the separation 

points is predominantly determined by the Reynolds number (Re), where the Re 

reference length is the cylinder diameter. However, the turbulence 

characteristics of the approaching flow and the cylinder surface roughness also 

have a significant impact on the separation point locations, as they affect the 

boundary layer [6].   

       

<� < 5      5 < <� < 40 

   

40 < <� < 150    150 < <�, < 3E^5 

     

3E^5 < <�, < 1E^6    <�, > 3E^6 

 

Figure 3-19 2D flow separation point locations on a circular geometry for different 

Reynolds numbers [6] 
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3.3.2.1 Surface roughness and approaching turbulence 

The hose model takes into account the boundary layer effects on the drag 

coefficient. The higher the kinetic energy in the boundary layer, the more 

downstream the separation takes place. A turbulent boundary layer (BL) has 

more kinetic energy than a laminar BL. Hence, if the boundary layer is turbulent 

the separation point is shifted downstream and the drag decreases. At a critical 

Reynolds number <�, the BL transitions from laminar to turbulent. This can be 

observed in Figure 3-19 bottom left, where the turbulent flow separation point 

indicated by a ”T”  is more downstream than the laminar one indicated by an 

“L”.  The transition can be initiated through small disturbances in the flow, for 

instance through irregularities on the surface as well as high turbulence 

intensity in the approaching flow. Hence, the critical Reynolds number is a 

function of the surface roughness and the free stream turbulence intensity [6]. 

Figure 3-20 shows how the drag force acts on a cylinder normal to the flow.   

 

 

Figure 3-20 Cylinder normal to the flow with drag force coefficient [6] 

 

Where  

• �D is the free stream velocity 

• �X is the velocity normal to the flow 

• �no is the cylinder drag coefficient normal to the flow 

• �X is the cylinder drag coefficient normal to the cylinder 
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�no = �[<�,,  ε

nq]            Eq. (3-3) 

<�, =  st ∙ su ∙ <�        Eq. (3-4) 

Where  

• �no is the cylinder drag coefficient normal to the flow   

• <�, is the effective Reynolds number considering turbulence 

intensity and surface roughness  

• st the surface roughness parameter 

• su the turbulence intensity parameter 

• ε is the effective roughness height of surface 

•  0  is the cylinder diameter 

 

Figure 3-21 shows �no dependent on the Reynolds number. It can be observed 

that the notable drop of �no for the rough surface takes place at a much lower 

Reynolds number (curve 2) than for the smooth surface. This is because the BL 

becomes turbulent earlier due to the rough surface. In the calculation this is 

considered by su which is the ratio between <�1/ <�2 

 

 

Figure 3-21 Drag coefficient as a function of Reynolds number for a cylinder normal to 

the flow and the influence of the surface roughness (dashed curve) on the drag 

coefficient [6] 
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The approaching turbulence has the same effect on the drag. Higher free 

stream turbulence intensity provokes a notably earlier transition of the laminar 

BL to a turbulent one. This can be seen in Fig 3-22 where the drop in �no takes 

place at a lower Reynolds number for a turbulent free stream (curve 2) 

compared to the free stream with lower turbulence. 

 

Figure 3-22 Drag coefficient 	� as a function of Reynolds number for a cylinder 

normal to the flow and the influence of higher turbulence intensity (dashed curve) on 

	� [6] 

The implemented model takes both effects into account. The critical Reynolds 

number <�, is calculated based on both the given roughness as well as the 

estimated free stream turbulence which is computed.  The value is compared to 

the free stream Reynolds number (Re). If the free stream Re number is equal or 

higher than <�, the boundary layer is considered as turbulent and �no is lower. 

If the free stream Re number is smaller than <�, the boundary layer is 

considered as laminar and �no is higher. In the calculation this is considered by 

st which is the ratio between <�,1/<�,2.  
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3.3.2.2 Cylinder inclination 

�no is the drag coefficient for a cylinder normal to the flow. The drag coefficient 

changes with the inclination of the cylinder. A distinction is made between sub- 

and supercritical Reynolds numbers [6].  

Subcritical ($ww< 3x105) 

For subcritical Reynolds numbers experimental data show that the force 

coefficients are dependent on the component of free-stream velocity normal to 

the cylinder axis, i.e. on �X = �D/jex and on the stream wise component of 

Reynolds number [6]. Thus, as shown in Figure 3-23 for inclined cylinders the 

normal force is given by 

�X = �no ∙ /jeyΦ            Eq. (3-5) 

 

Figure 3-23 Inclined cylinder with acting force coefficients [6] 

Where  

• �X is the drag force coefficient normal to the cylinder 

• �no is the cylinder drag coefficient normal to the flow   

•  �noΦ is drag force coefficient in free stream direction and a 

function of the inclination angle Φ. 

• �zoΦ is lift force coefficient normal to free stream direction and a 

function of the inclination angle Φ. 

•   Φ  is the inclination angle between the free stream velocity �D  

and the velocity component normal to the cylinder �X 
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Supercritical ($ww> 3x105) 

With the use of the simple cross-flow theory for supercritical Reynolds numbers 

�X tends to be underestimated [6]. The reason for this is that while the laminar 

boundary layer (and the associated pressure distribution) tends to depend only 

on the cross-flow velocity, when the transition to turbulent flow in the boundary 

layer has occurred the subsequent development and separation of the 

boundary layer are adversely affected by the three dimensional nature of the 

turbulent wake flow. This exerts a considerable influence on the pressure 

distribution and increases the flow-induced forces over those predicted using 

simple cross-flow theory [6]. Hence, the tangential force can be ignored. 

The force coefficients are estimated as follows 

�X = �no ∙ �Φ           Eq. (3-6) 

�noΦ = �X ∙ /jeΦ         Eq. (3-7) 

�zoΦ = �X ∙ efgΦ           Eq. (3-8) 

Where �Φ is given by a function like that shown in Figure 3-24. 

 

 

Figure 3-24 Drag coefficients � or 	�Φ  as a function of Reynolds number for a 

cylinder normal or inclined to the flow [6] 

Equation 3-5 

Equation 3-6 or 3-7 
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3.4 Drogue modelling 

The drogue is modelled as a conical body with a specified cone length �* and 

cone diameter  *. Figure 3-25 shows the cone normal to the free stream flow 

�D and the resulting direction of the cone drag force coefficient  �no*. 

a) 

 

b) 

 

Figure 3-25 a) Cone normal to flow and b) cone inclined to flow 

 

The magnitude of the drag force coefficient �no* is assumed to be constant both 

for the cone normal to the flow and for the inclined cone. The drag force 2* is 

calculated as follows 

�D = �X 

�no* = �X*  

�D 

�X 

Φ 

�X 
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2* = �X* ∙ {
y ∙ c ∙ �Xy ∙ )*         Eq. (3-9) 

)* = n|}~
�           Eq. (3-10) 

Where  

• �X* is the normal drag force coefficient of the drogue  

• c is the density, which is assumed to be constant 

• �X is the velocity normal to the cone and a function of free stream 

velocity �D and cone inclination angle Φ 

• Φ  is the inclination angle between the free stream velocity �D  and 

the velocity component normal to the cone �X 

•  )* is the reference area for the calculation of 2*  
3.5 Hose model implementation in MATLAB 

The basic code was inherited from Bristol University and written with the high-

level programming language of MATLAB [75]. The capability of the code was 

limited to the static hose shape simulation based on a 3D Rankine body flow 

pattern. The flow field is generated within the code and in real time with the 

calculation of the static hose shape. However, the current work requires the 

static hose shape to be calculated based on the near field wake of two different 

aircraft models and not in real time. Hence, the code’s capabilities were 

required to be extended for static hose shape simulations based on a generic 

external flow field. An interface between the aircraft wake data and the hose 

model has been implemented which allows the generic wake data to be 

processed. 

3.5.1 Flow field interface 

The wake flow field extracted from the CFD domain is available for the program 

as an ASCII file which contains the X Y Z space coordinates with index i j k and 

the corresponding velocity components �B, �:, �C. Hence the file consists of six 

rows and n columns where n is the product of i j k and thus the number of cells 

of the equidistant mesh. For a faster processing the ASCII file is converted into 
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a binary file with the extension .mat. The local flow field velocities are 

determined through a 3D interpolation. The interpolation is performed by a 

function implemented in MATLAB termed interp3.  The hose predictions have 

been carried out with MATLAB version R2012a [67]. 

3.5.2 Convergence strategies 

The dependent variables for the spatial position prediction of the hose are 

solved explicitly. The hose predictions are all carried out steady state. 

Therefore, a pseudo time stepping with an artificial time step is required. 

However, the time step does not represent the real behaviour of the physical 

problem. Hence, the determination of the required time step is not based on the 

expected motion of the hose over time. Instead the time stepping has to be 

chosen in dependence of nodal points along the hose, which corresponds to a 

discretisation in space. The relationship between the number of nodal points 

and the required time step is inversely proportional - the more nodal points 

along the hose the smaller the required time step. Figure 3-26 shows on the left 

side the initial condition for the hose position as a horizontally arranged array. 

On the right side the final solution is shown where all attacking forces are in 

equilibrium. 

 

         

Figure 3-26 Arbitrary example of an initial condition for hose position with 10 nodal 

points (left) and final static hose position on the right 

X [m] X [m] 

Y
 [

m
] 

Nodal points 
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The new position of every nodal point is calculated iteratively until equilibrium is 

obtained between the acting aerodynamic and gravitational forces. This is the 

equilibrium of forces and moments and thus the steady state hose shape as 

shown in Figure 3-26 on the right.  

3.6 Determination of hose characteristics  

The hose characteristics are defined through the static hose shape and the 

spatial drogue position. The static hose shape is important for the dynamic 

response to perturbations associated to the hose-probe engagement [73] [74]. 

The spatial drogue position is important for design purposes, as the drogue 

must fulfil a specific catenary requirement.   

3.6.1 Definition of hose shape 

The result of a hose calculation is the spatial position of 10 nodal points in X, Y 

and Z. The number of nodes is inversely proportional to the artificial time step 

used in the calculation. Hence, the more nodal points used the smaller the 

required time step becomes and the solution takes longer to converge. A 

sensitivity study on how the number of nodal points affects the result of the 

static hose characteristics has been conducted, as well as the effect of the 

subdomain discretisation and the associated 3D interpolation from the CFD 

domain onto the subdomain. For the current hose length of approximately 30 m 

the amount of 10 nodal points with equidistant subdomain spacing of 0.25m has 

been assessed as a reasonable compromise between calculation effort and 

discretisation error.  However, for an accurate analysis of a possible inflection 

point the hose is approximated by a polynomial function. Although the hose 

results are available for a 3D Cartesian coordinate system, as shown in Figure 

3-27, the post processing is always made in a 2D Cartesian coordinate system 

on the XZ and the XY planes.  
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Figure 3-27 Hose result with definition of coordinate system 

The polynomial function is of degree 4 and satisfies the course of the 10 nodal 

points in the 2D planes with a minimum least square error of <y=0.997. The 

inflection point is then determined through the evaluation of the 2nd derivation. 

The derivation is set to zero through which the value of the abscissa can be 

obtained where the inflection point takes place. The inflection point position 

along the ordinate is the function value of the original curve evaluated with the 

ordinate value for the inflection point. An example of the procedure is explained 

as follows: 

 

1. Determine a polynomial function f(x) of degree 4 to approximate the hose 

shape as shown in Figure 3-28 the red line 

2. Perform two derivations f’(x), f’’(x) for f(x)    

3. Evaluate x for f’’(x)=0 and obtain x1 and x2 

4. Evaluate y1 for f(x1) and y2 for f(x2) 

The value pairs x1,y1 and x2,y2 obtained from this procedure are the positions 

of the inflection points along the hose, which is illustrated in Figure 3-28 with the 

black circle. 

 

y 

z 

x 
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Figure 3-28 Arbitrary example of a calculated hose shape defined by 10 nodal points 

(black dots) approximated through a polynomial function of degree 4 (red line) and the 

calculated inflection point position (black circle)   
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3.6.2 Definition of spatial drogue position  

The second evaluation parameter for the hose characteristics is whether the 

final static drogue position satisfies Cobham’s refuelling systems catenary 

requirement. The catenary requirement is defined as the vertical spatial range 

within which the drogue must be positioned at fully trailed hose as listed in 

Table 3-3. 

Parameter Unit Value 

Upper limit relative to hose exit feet 5 

Lower limit relative to hose exit feet 25 

Table 3-3 Catenary requirement defined through an upper and lower vertical spatial 

limit 

The requirement is graphically considered through two horizontal dashed lines 

which indicate the upper and the lower limit of the vertical spatial hose range 

SDR_z as can be observed in Figure 3-29. The values are normalised by the 

the fuselage diameter  -. 

 

Figure 3-29 Arbitrary example of a calculated hose shape (black dots) and the dashed 

lines which indicate the upper and lower limit of the vertical spatial drogue range 
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3.6.3 Summary 

The methods used for the in-flight refuelling simulations are computational fluid 

dynamics (CFD) for the wake prediction and a finite segment model for the hose 

calculations. The wake and hose prediction are not made in real time. Hence, 

the wake is first computed and is then used as an input for the hose 

calculations. The post processed result of a hose calculation within the CFD 

domain is presented in Figure 3-30 as a yellow line along with the blue lined 

subdomain. 

 

Figure 3-30 Calculated hose shape (yellow curve) included into the CFD domain of the 

CRM [5] WB configuration and the CFD sub-domain indicated in bright blue 

Two different full aircraft models similar to modern civil aircraft were used as 

A330 [54] substitutes. These are the common research model (CRM) wing body 

and wing body tail configuration from drag prediction workshop 4 (DPW-4) [5] 

and the DLR-F6 wing body configuration from DPW-2 [4]. Experimental data 

from the public domain is available for both aircraft models. The data is used for 

the CFD validation. To study the impact of the hose exit fairing on the flow field 

and on the hose the DLR-F6 aircraft has been equipped with an arbitrary hose 

exit fairing. Furthermore, a fuselage only geometric model has been built up for 

the wake prediction of a typical transport aircraft with different upsweep angles. 

These simulations are validated with wind tunnel experiments, where forces and 

moments as well as circumferential pressure distributions are available.  The 
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wake characteristics are analysed qualitatively. Hose characteristics with this 

geometry were not determined.  
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4 NUMERICAL RESULTS 

This chapter contains numerical results obtained both from the CFD simulations 

and the hose characteristics calculations. This comprises the validation of the 

CFD model at model scale and at full scale, the analysis of the wake 

characteristics of the A330 [54] and A400M substitutes, as well as the in-flight 

refuelling simulations with hose predictions. 

4.1 CFD validation  

The results of the CFD validation for all aircraft models used are presented. 

These are both full aircraft models - the DLR-F6 [4] and the CRM [5] as well as 

the fuselage only transport aircraft model TAB [14]. For the full aircraft models 

the results of the mesh convergence study is presented as well as the results of 

a turbulence model study.  

4.1.1 DLR-F6 aircraft geometry  

The DLR-F6 aircraft model was used for the 2nd drag prediction workshop DPW-

2 [4]. The experiments were carried out in a transonic wind tunnel at model 

scale. The model reference quantities and a sketch of the wind tunnel circuit are 

presented in chapter 2.1.1.  

 

Parameter Unit Input Calculated Calculation 
method 

<� - 3e^06    

7� - 0.75   

>+,- K 305   

�+,- in 5.56   

�+,- m  0.1412 Conversion 

9+,- Pa  134`238 Ideal Gas Law 

η kg/m*s  1.8951e-05 Sutherland 

ρ kg/m^3  1.5335  

/ m/s  350.1  

�D m/s  262.6  

Table 4-1 Wind tunnel experimental conditions with original input data and calculated 

data, including the calculation method for the DLR-F6 aircraft model [4] 
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Table 4-1 contains the wind tunnel experimental parameters. The values termed 

input in row three stem from the AIAA DPW-2 internet site [4] and provide the 

basis for the CFD simulations at wind tunnel conditions. The calculated values 

in row four derive from the input values through a specific method, which is 

listed in row five - the calculation method. The simulations for the DLR-F6 [4] 

were carried out in a rectangular CFD domain as shown in Figure 4-1. The 

extents specified through height 5 width E and length � are normalised by the 

wingspan EF. For the simulation of infinite free stream conditions the 

boundaries must be placed far enough from the aircraft. This requirement is 

considered through the extent of 17 times the wingspan in Z and Y direction and 

40 times in X direction. 

 

             

 

Figure 4-1 Rectangular CFD domain with DLR-F6 geometry and extensions normalised 

by wingspan ��         

 

DLR-F6 aircraft  

5
EF = 17 

E
EF = 17 

�
EF = 40 
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 Inlet Outlet Far Field Symmetry Aircraft 

CFX-Term Inlet Outlet Opening Symmetry Wall 

Type 1st Type 1st Type Mixed 2nd Type 1st Type 

Type-Name Dirichlet Dirichlet  Neumann Dirichlet 

      

�D m/s 262.6 calculated calculated calculated 0 

9F4@4  Pa calculated 134`238 134`238 calculated calculated 

>F4@4  K 305 305 calculated calculated 305 

Table 4-2 Boundary names, conditions and types DPW-2 experiments with DLR-F6 

WB geometry [4] 

The CFD domain has seven boundary patches from which one is specified as 

the inlet, one is specified as the outlet, three as far field, one as symmetry and 

one as aircraft. The corresponding boundary types along with magnitudes are 

specified in Table 4-2. The inlet is a boundary of type Dirichlet.  Fixed 

magnitudes are velocity and temperature. The direction of the velocity vector 

corresponds to the angle of attack. The outlet is also a Dirichlet boundary type. 

The pressure is set to a relative value of zero. At the far field boundary condition 

velocity and pressure is calculated according to the internal flow field. It allows 

infinite free stream conditions to be simulated. The symmetry boundary 

condition allows a half domain calculation. There is no yaw applied at the inlet. 

Hence, it is feasible to use a symmetrical approach which decreases the 

computational cost. The aircraft is also a Dirichlet with a no slip condition that 

means a fixed velocity of zero in all three spatial directions.    
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4.1.2 CRM aircraft geometry 

For the DPW-4 [5] the common research model CRM was used. The 

experiments were also carried out in a transonic wind tunnel at model scale. 

The model reference quantities and a sketch of the wind tunnel circuit are 

presented in chapter 2.1.1.  

 

Parameter Unit Input Calculated Calculation 
method 

<� - 5e^06    

7� - 0.85   

>+,- K 311   

�+,- in 7.45   

�+,- m  0.1892 Conversion 

9+,- Pa  150`985 Ideal Gas Law 

η kg/m*s  1.924e-05 Sutherland 

ρ kg/m^3  1.692  

/ m/s  353.5  

�D m/s  300.4  

Table 4-3 Wind tunnel experimental conditions with original input data and calculated 

data, including the calculation method for the common research model [5] 

 

The wind tunnel experimental parameters are listed in Table 4-3, where the 

values termed input in row three originate from the AIAA DPW-4 internet site [5] 

and provide the basis for the CFD simulations at wind tunnel conditions. 

Derivation and conversion methods are identical to those from the DLR-F6 [4]. 

For this simulations however, a semi-sphere domain has been used as shown 

in Figure 4-2. The extents specified through the diameter 1 are normalised by 

the wingspan EF. The infinite free stream condition requirement is considered 

through the extent of 20 times the wingspan for 1.  
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Figure 4-2 Spherical CFD domain with CRM geometry and extensions defined through 

diameter � and normalised by wingspan �� 

 

 Far Field Symmetry Aircraft 

CFX-Term Opening Symmetry Wall 

Type Mixed 2nd Type 1st Type 

Type-Name  Neumann Dirichlet 

    

�D m/s 300.4 calculated 0 

9F4@4  Pa 134`238 calculated calculated 

>F4@4  K 311 calculated 311 

Table 4-4 Boundary names, conditions and types, DPW-4 experiments with CRM WB 

and WBT geometry [4] 

In this case inlet and outlet boundary conditions are handled differently. There 

are no distinct inlets and outlets where the velocity, temperature and pressure 

are given at geometrically independent patches. There is one patch termed far 

field, on which the boundary conditions for inlet and outlet are applied. The 

symmetry boundary condition allows a half domain calculation. There is no yaw 

CRM aircraft  

1
EF = 20 

Far field  
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applied at the inlet. Hence, it is feasible to use a symmetrical approach which 

decreases the computational cost. The aircraft surface is also a Dirichlet with a 

no slip condition that means a fixed velocity of zero in all three spatial 

directions.    

4.1.3 TAB aircraft geometry 

The experimental data for the validation of the transport aircraft body only 

geometry TAB [14] stem from Peak’s experimental investigations on upswept 

rear fuselages of transport aircraft like geometries [14]. The forces and 

moments on the afterbody are provided as validation data over the entire 

upsweep angle range of β=0° to β=20°. For some configurations photographs of 

oil dot visualisations are available, which can be visually compared to surface 

streamlines plots of the CFD results. Also pressure distributions for one 

upsweep angle of β=5° is available. However, the validation has been made 

through comparison of the experimental forces and streamlines photographs. 

The experimental operation conditions are listed in Table 4-5, and the 

rectangular CFD domain is illustrated in Figure 4-3. 

 

Parameter Unit Input Calculated Calculation 
method 

<� - 3e^06    

7� - 0.73   

>+,- K 315   

�+,- in 40   

�+,- m  1.016 Conversion 

9+,- Pa  199`948 Ideal Gas Law 

η kg/m*s  1.9433e-05 Sutherland 

ρ kg/m^3  2.21  

/ m/s  356  

�D m/s  260  

Table 4-5 Wind tunnel experimental conditions with original input data and calculated 

data, including the calculation method for the transport aircraft model [14] 
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Figure 4-3 Rectangular CFD domain with transport aircraft geometry and domain 

extensions normalised by fuselage diameter 	
 in Z and Y direction, and to fuselage 

length �
 in X direction for the transport aircraft model [14] 

The simulations of the TAB [14] model were initially envisaged to be carried out 

with wind tunnel walls. Hence, the extensions correspond to the wind tunnel 

dimensions. However, the CFD results were of poor quality. The deviation from 

the experimental results of �*  and �. was too high. Therefore, the patches 

which were initially specified as walls were then specified as a far field patch 

which can be seen in Table 4-6. The free stream boundary condition 

requirement seems to be fulfilled and the CFD and the experimental results 

have been shown to accord with each other. The remaining boundaries are 

applied in the same manner as for the rectangular domain of the DLR-F6 [4] 

with the exception of the symmetry boundary condition. The wake of this aircraft 

model was to be analysed by considering the application of yaw. Due to time 

constraints the yaw simulations have been deferred. Hence, no symmetry 

boundary condition has been applied. 

 

 

Transport aircraft body 

5
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E
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 Inlet Outlet Far Field Body 

CFX-Term Inlet Outlet Opening Wall 

Type 1st Type 1st Type Mixed 1st Type 

Type-Name Dirichlet Dirichlet  Dirichlet 

     

�D m/s 260 calculated calculated 0 

9F4@4  Pa calculated 199`948    199`948    calculated 

>F4@4  K 315 315 calculated 315 

Table 4-6 Boundary names, conditions and types for the CFD simulations at 

experimental operation conditions with the transport aircraft geometry [14] 
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4.1.4 Mesh convergence 

A mesh sensitivity analysis has been performed both for the DLR-F6 [4] and the 

CRM [5]. The meshes used for the study originate from the second drag 

prediction workshop for the DLR-F6 [4] and from the fourth drag prediction 

workshop for the common research model [5]. All meshes are presented below 

in Table 4-7 as well as the result of the study in Figure 4-4. The detailed 

procedure of a mesh sensitivity analysis is outlined in reference “Procedure for 

Estimation and Reporting of Uncertainty Due to Discretization in CFD 

Applications” [64]. 

4.1.4.1 DLR-F6 and CRM 

Table 4-2 shows a summary of all DLR-F6 [4] and CRM [5] meshes with volume 

and surface densities for every wing body (WB) and wing body tail (WBT) 

configuration. The sensitivity analysis is performed based on coarse, medium 

and fine meshes. The meshes which were used for the sensitivity analysis are 

listed in Table 4-7 for all full aircraft configurations and the results are shown in 

Figure 4-4. 

 

Configuration Mesh 
density 

Number of nodes 
(Volume mesh) 

Number of nodes 
(Surface mesh) 

DLR – F6 WB Coarse 2 million 50`000 

 Medium 5.2 million 57`000 

 Fine 14 million 128`000 

CRM WB Coarse 2 million 48`000 

 Medium 5.2 million 55`000 

 Fine 14 million 122`000 

CRM WBT Coarse 3.5 million 32`000 

 Medium 11 million 58`000 

 Fine 36 million 152`000 

Table 4-7 Meshes for all DLR-F6 [4] and CRM [5] configurations with volume and 

surface densities 
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Figure 4-4 Convergence of representative parameter Cd as a function of GCI 1/N^p for 

all full aircraft configurations of A330 [54] substitutes DLR-F6 [4] and CRM [5] 

The results of the mesh sensitivity study in Figure 4-4 show that for all aircraft 

configurations the difference of the dependent parameter �* notably decreases 

from medium to fine compared to the difference from coarse to medium. For the 

DLR-F6 [4] ∆ �* coarse to medium is 0.01 whereas ∆ �* medium to fine is 

0.002. Hence, the differences of the numerical error from medium to fine is 5% 

relative to the medium mesh and much lower than that one from coarse to 

medium where the difference is 20% relative to the coarse mesh. For both CRM 

[4] configurations the WB and WBT ∆ �* coarse to medium is 0.004 whereas 

∆ �* medium to fine is 0.00. Hence, the differences of the numerical error from 

medium to fine is 3.7% relative to the medium mesh and much lower than the 

one from coarse to medium where the difference is 12.5% relative to the coarse 

mesh. All simulations for the CRM [5] are carried out with the medium mesh, 

since the error difference from medium to fine is 3.7% as well as all simulations 

for the DLR-F6 [4] with an error of 5% from medium to fine. Using the medium 

mesh was considered to be a good compromise between the available 

computational and time resources respectively and the numerical error. Using 
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the fine mesh for all configurations would have placed a too large risk on the 

project.    
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4.1.4.2 Transport aircraft body   

For the transport aircraft body (TAB) an adaptive mesh refinement approach 

has been adopted. A high density initial surface mesh was used in conjunction 

with the adaptive mesh refinement for the volume mesh. Table 4-8 contains a 

summary of all TAB [14] meshes with volume and surface densities for every 

upsweep angle configurations with densities for the initial meshes and those 

after adaption. As notable vortical flows were expected due to large separation 

regions on the rear body, vorticity has been chosen as the adaption criterion in 

conjunction with a minimal cell edge length to avoid volume mesh density which 

is too high. All present initial meshes fulfil the GH requirement for an adequate 

resolution of the boundary layer, which is a GH value not higher than 1 [40] [41].  

 

Configuration Mesh 
density 

Number of nodes 
(Volume mesh) 

Number of nodes 
(Surface mesh) 

TAB     

0° Medium 3 million 20`000 

 Fine 5.2 million 45`000 

 AMR 7.2 million 75’000 

5° Medium 3 million 20`000 

 Fine 5.2 million 45`000 

 AMR 7.5 million 75’000 

10° Medium 3 million 20`000 

 Fine 5.2 million 45`000 

 AMR 8 million 73’000 

15° Medium 3 million 20`000 

 Fine 5.2 million 45`000 

 AMR 8 million 75’000 

20° Medium 3 million 20`000 

 Fine 5.2 million 45`000 

 AMR 11 million 80`000 

Table 4-8 Meshes for all TAB [14] configurations with volume and surface densities, 

where coarse and medium are manually generated meshes and AMR the mesh after 

adaptive mesh refinement  
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Figure 4-5 Transport aircraft body only geometry with �H  contours on the surface and 

a legend with a range from 0 to 0.5  

The separation mechanism occurs in the boundary layer of a flow. Hence, to 

predict a separation as accurate as possible, which means within the capability 

and limitation of the used turbulence model, the boundary layer must be 

resolved accordingly. The measure for an adequate resolution of the boundary 

layer is the dimensionless wall distance  

GH = �∗ ∙ G
�  

which describes the nominal distance of the first cell from the wall according to 

the absolute cell distance G, the local friction velocity �∗ and viscosity �. For the 

present simulations the viscosity can be assumed as constant over the whole 

body since the calculation is carried out isothermally. Hence, for constant first 

cell spacing over the entire model, GH changes with the variation of the local 

friction velocity. For the Spalart Allmaras turbulence model used [40] GH needs 

to be approximately equal to 1 [70], which ensures that the first cell lies within 

the laminar sub layer. This requirement has been entirely fulfilled for the 

transport aircraft model as shown in Figure 4-5, since GH is well below 0.5 on 

the whole body. 

 

Eq. (4-1) 



 

106 

4.1.5 Validation results 

The CFD validation for the wing body WB configuration both for the DLR-F6 [4] 

and the CRM [5] have been carried out at wind tunnel operation conditions and 

at a target lift coefficient �� of 0.5. The wing body tail WBT configuration of the 

CRM has been validated for a broader range and therefore, a �� versus �d  polar 

diagram is available. The body only transport aircraft model TAB [14] has been 

validated for upsweep configurations 0° to 20° and through consideration of two 

angles of attack, 0° and 5°. For both experiments the comparison parameters 

are �� and �d . The validation results are summarized below. 

4.1.5.1 A330 substitutes 

Table 4-9 shows the validation results for the DLR-F6 [4] where two different 

turbulence models, the SST and SA turbulence model, were considered. It can 

be observed that for a constant target �� of 0.5 the resultant drag coefficient is 

over predicted by a value of 0.0105 for both turbulence models and that the 

resultant angle of attack α is over predicted by the SST turbulence model and 

under predicted by the SA turbulence model. In both cases the absolute 

difference value is the same, but with different polarity due to under and over 

prediction. 

DLR-F6 WB Experiment SST SA 

�� - 0.5 0.5 0.5 

�d - 0.0295 0.04 0.04 

α ° 0.25 0.31 0.2 

Table 4-9 Experimental lift, drag coefficient ��, �d and angle of attack α of DLR-F6 WB 

configuration compared to those from CFD calculation with SST and SA turbulence 

model 

Table 4-10 shows validation results for the CRM WB configuration [4] where the 

SST turbulence model was used. It can be observed that for a constant target �� 
of 0.5 the resultant drag coefficient is over predicted by a value of 0.0032 and 

that the resultant angle of attack α is under predicted by 0.69°. 
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CRM WB Experiment SST 

�� - 0.5 0.5 

�d - 0.0248 0.028 

α ° 2.79 2.1 

Table 4-10 Experimental lift, drag coefficient ��, �d and angle of attack α  of CRM [5] 

WB configuration for one operation point compared to those from CFD calculation with 

SST turbulence model 

Figure 4-6 shows a polar diagram with the validation results for the CRM WBT 

configuration [4] where the SST turbulence model was used. The validation has 

been carried out for a lift coefficient �� of 0 to 0.8. It can be observed that the 

resultant drag coefficient �d for the entire range of �� is either in excellent 

agreement (black arrows) or over predicted but never under predicted. 

 

 

Figure 4-6 Experimental lift coefficient �� as a function of drag coefficient �d of CRM 

WBT configuration compared to those from the CFD calculation with SST turbulence 

model, at Re=5E^6 and Ma=0.85 
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4.1.5.2 Transport aircraft body 

Figure 4-7 and 4-18 shows the validation results for the transport aircraft model 

body only configuration TAB [4] where the SA turbulence model was used. The 

lift and drag coefficients refer to the rear body section. The validation has been 

carried out for upsweep angles β of 0° to 20° at steps of 5° and for two different 

angles of attack α which are 0° in Figure 4-7 a) b) and 5° in Figure 4-8. For this 

model an adaptive mesh refinement approach has been used. The mesh was 

adaptively refined three times throughout the convergence history based on the 

refinement criterion specified, which is the vorticity in conjunction with a minimal 

cell edge size to avoid too much refinement. Figure 4-7 a) shows the results 

with the initial mesh and b) the results obtained with the adaptive mesh 

refinement approach. 

 

a) 
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b) 

 

Figure 4-7 Rear fuselage only lift coefficient �� and drag coefficient �d as a function of 

upsweep angle β from 0 to 20° at an angle of attack α of 0°, a) fine initial mesh b) after 

adaptive mesh refinement, Re=3E^6 Ma=0.73 

 

 

Figure 4-8 Lift and drag coefficient �� – �d as a function of upsweep angle β from 0 to 

20° at an angle of attack α of 5°. 
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Figure 4-7 a) and b) shows a maximum deviation of drag coefficient �1 with the 

experiments at an α of 0° of 0.011 for upsweep angle β =5° which corresponds 

to a deviation of 44% relative to the experimental value of 0.025. The maximum 

deviation for lift coefficient over the entire range of β is -0.043 for an upsweep 

angle of β =5° which corresponds to a deviation of 93% relative to the 

experimental value of -0.045. For both the fine mesh and the mesh after 

adaption the difference between the experiments and the calculation is in the 

same order. However, for an α of 5° in Figure 4-8 only �1 is in the order of the 

previous explained differences.  �� is except to a β of 0 and 20° over the entire 

range of β strongly deviated from the experimental values. However, for both 

angles of attack α the deviation has the same polarity for both �� and �1. �1 is 

always either in agreement or is over predicted and �� is either in agreement or 

is under predicted. The tendency for �1 to be over predicted is consistent with 

the validation results from the full aircraft models DLR-F6 [4] and CRM [5]. 

Although the CFD results with 5° angle of attack deviate from those of the 

experiments, they cannot be considered a priori as wrong. This would imply that 

the experiments were carried out methodically right and there is no evidence for 

it. Furthermore, no information is provided about the measurement uncertainty. 

Nevertheless, due to time constraints, only one angle of attack could be 

considered. The transport aircraft wake analysis is carried out at the angle of 

attack of 0°, where the agreement between CFD and experiments is 

considerably better.  For some of the experimental configurations there are 

photographs of the oil dot visualisations available. Figure 4-9 a) shows one of 

those photographs in comparison with surface streamlines from the CFD 

calculation in Figure 4-9 b) and illustrates the close similarities of the surface 

flow characteristics between the experiment and CFD as well as the agreement 

of the separation line position.  
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Figure 4-9 a) Oil dot flow visualisation  over after body for transport aircraft model TAB 

[14] 20° upsweep configuration in comparison with b) surface streamlines and shear 

strain rate contours from CFD simulation with SST turbulence model, which shows 

reasonable agreement of the separation line position  

  

Separation line 

Separation line 
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4.1.6 A330 substitutes transition to full scale 

The refuelling simulations for both the DLR-F6 [4] and CRM [5] are conducted 

under representative refuelling flight conditions which are at full scale. Therefore 

a geometrical scaling of both aircraft models is required. However, the CFD 

validation was performed at model scale and wind tunnel operation conditions. 

The scaling to full scale increases the Reynolds number by the scaling factor, 

which can introduce Reynolds number effects. For the same geometry at the 

same operation conditions a change in Reynolds number can result in a change 

in lift and drag. To exclude a misinterpretation of a possible change in lift and 

drag at refuelling conditions which are made at full scale and high Reynolds 

number an intermediate step is considered. As presented in chapter 3.2.2.7 the 

CFD model is first scaled at a constant Reynolds number, to ensure that the 

parameters of interest which are lift and drag remain constant with the 

geometrical scaling.  Table 4-11 shows the results of this intermediate step and 

compares the angle of attack α, lift coefficient �� and drag coefficient �1 

between experiments at model scale and low Reynolds number, CFD at model 

scale and low Reynolds number, and CFD at full scale and low Reynolds 

number. It can be observed that for a constant nominal �� of 0.5 both 

parameters α and �1 remain the same. Consequently the flow field 

characteristics should be the same for the model scale and the full scale 

simulations which is illustrated in Figure 4-10 and 4-11. In both cases similar 

flow field characteristics can be observed. Hence, the geometrical scaling can 

be regarded as correct and can be excluded as a cause for any deviation of the 

parameters of interest for the high Reynolds number simulations. 

 

Parameter 
 

Unit Model Scale 
Experiments 

Model Scale 
CFD 

Full Scale 
CFD 

AOA ° 2.79 2.1 2.08 

�� - 0.5 0.5 0.5 

Cd - 0.0248 0.028 0.026 

Table 4-11 Parameters of interest in comparison between experiments, model scale 

CFD and full scale CFD 
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Rear fuselage angle γ =13° 

 

 

Figure 4-10 Upwash angle ε normalised by the rear fuselage angle γ  in comparison on 

the symmetry plane at model scale left and full scale right for CRM [5] WB 

configuration 

 

Mach number Ma∞ = 0.85 

 

 

Figure 4-11 Mach number normalised by the free stream Mach number Ma∞ in 

comparison on the symmetry plane at model scale left and full scale right for CRM [5] 

WB configuration 
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4.1.7 Representative flight conditions 

The flight conditions provided by Cobham were speed and altitude. The total 

mass of the aircraft is based on an assumption and corresponds to the mean 

value of nominal mass (174’000 kg) and maximum mass (212’000 kg) of an 

A330 [54].  The lift coefficient �� is determined as follows 

�� = ���a�
�|���_`a       Eq. (4-2)

    

  

Where  

• The lift force 2.3-4  is a function of mass and gravity 

• The dynamic pressure 9*:; is a function of speed and density 

• The density is a function of the altitude 

•  )+,- is the reference area 

Table 4-12 shows the flight conditions with corresponding lift coefficient (��). 
Conditions 1 to 4 correspond to the flight conditions provided by Cobham, flight 

condition 5 corresponds to the cruise condition of an A330 [54]. The lift 

coefficient determination of this flight condition has been taken into account to 

double check the validity of the mass assumption. The resulting �� of 0.497 is a 

reasonable value, which indicates that the assumption is feasible.     

 
Flight 

Condition 
Speed  
kcas 

Speed  
m/s 

 

Mach  
- 

Altitude 
feet 

Mass  
kg 

� �   
- 

Reynolds 
Number 

- 

1 180 126 0.40 20`000 193`000 0.95 36.5E^6 

2 200 140 0.44 20`000 193`000 0.77 40.5E^6 

3 250 173 0.55 20`000 193`000 0.5 50.5E^6 

4 325 222 0.70 20`000 193`000 0.3 65.0E^6 

5 - - 0.82 36`000 193`000 0.497 - 

Table 4-12 Representative refuelling operation flight conditions 1 to 4, defined through 

speed, altitude and total mass of the aircraft along with required lift coefficient. Flight 

condition 5 corresponds to cruise condition of an A330  
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4.1.8 Turbulence model study 

A turbulence model study has been conducted at full scale. Comparison 

parameters are lift coefficient �� as a function of angle of attack α and vorticity 

ω. The strength of a vortex can be quantified through Vorticity ω which 

describes the spinning of the fluid. For an inviscid fluid, vorticity is defines as 

follows 

 

     Eq. (4-3) 

���� =  � ×  ��� = � �
�B , �

�: , �
�C�   ×  ��B , �: , �C� =  ��\�

�: −  �\�
�C , �\�

�C − �\�
�B , �\�

�B −  �\�
�:  �        

Where  

• ���� is the vorticity 

• � is the Nabla operator 

• �&, �G, �I are the vectorial velocity components 

As can be observed on the right hand side of equation 4-2, where the spatial 

velocity derivatives are outlined, vorticity is closely related to the shear within 

the fluid. Turbulence models determine the Reynolds stress terms. 

Furthermore, a 3D separation typically generates a vortex. The turbulence 

model plays an important role for the prediction of separation, as it determines 

the turbulence intensity in the boundary layer. The state of the boundary layer 

determines whether separation occurs or not. Therefore, if two turbulence 

models predict separation differently, this will be noted in the strength and scale 

of the developed vortices at a predefined spatial location. Hence, vorticity is a 

suitable measure to compare turbulence models. The vorticity is plotted two 

dimensionally on predefined cross flow planes along the fuselage.  Figure 4-12 

shows the definition of the cross flow planes 0 to 7. 
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Figure 4-12 Definition of cross flow planes 0 to 7 along and beyond rear part of the 

fuselage, where position 0 is at 25m rearward the fuselage end and corresponds to the 

length of a representative refuelling hose length Lh 

Figure 4-13 a) shows lift coefficient �� as a function of angle of attack α in 

comparison between SST and SA turbulence model. There is no difference 

between both models. Figure 4-13 b) shows �/��@B where  ��@B is the 

maximum vorticity within the considered flight conditions. The dashed arrows 

indicate the vortex core and it can be observed, that the SA model predicts a 

20% lower maximum vorticity. This is considered low and irrelevant as it not 

expected to change the overall characteristics of the flow. Hence, the 

conclusion of the turbulence study is that for the prediction of the expected flow 

features the choice of the turbulence model is not a determining factor.  
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a) 

b)   

 

  

Figure 4-13 a) comparison of �� as a function of AoA obtained from full scale 

simulations at flight conditions FC_1 to FC_4, b) vorticity ω  normalised by maximum 

ω of the entire operation range FC_1 to FC_4, where ���� = 115 1/s 
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4.1.9 A330 substitute with hose exit fairing  

The geometry of the DLR-F6 [4] WBF with hose fairing has been meshed with a 

medium and a fine mesh as shown in Table 4-13. The fine mesh is shown in 

Figure 4-14 along with a zoomed representation of the fairing surface mesh. 

There are no experimental results available for the geometry with fairing. 

Therefore, these CFD results are compared to those from the full scale DLR-F6 

[4] WB configuration, which is successfully validated.  

 

Configuration Mesh 
density 

Number of nodes 
(Volume mesh) 

Number of nodes 
(Surface mesh) 

DLR – F6 WBF Medium 5.5 million 150`000 

 Fine 8.5 million 300`000 

Table 4-13 Meshes for the DLR-F6 [4] WBF configuration which is with hose fairing, 

and volume as well as surface densities 

 

 

  

 

Figure 4-14 Fine surface mesh for the DLR-F6 [4] WBF configuration on top and the 

zoomed hose fairing mesh on the bottom 
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The GH criterion in Figure 4-15 has at the rear fuselage, which is the main zone 

of interest, a value not much higher than 1. This is suitable for the Spalart 

Allmaras turbulence model to resolve the low Reynolds number region near to 

the wall [70]. 

 

Figure 4-15 DLR-F6 [4] WBF geometry with �H contours on the surface and a legend 

which reaches from 0 to 1.4 

The comparison parameters for the DLR-F6 [4] WB configuration are surface 

streamlines on the rear fuselage as well as drag and lift coefficients �� – �d  at a 

representative flight condition in conjunction with the corresponding angle of 

attack α.  The parameters are presented in Table 4-14.  

 

Parameter 
DLR-F6 WB DLR-F6 WBF 

α ° 0.38 0.45 

�� - 0.5 0.52 

�d - 0.028 0.034 

Table 4-14 Lift, drag coefficient ��, �d and angle of attack α of DLR-F6 WBF 

configuration compared to those from DLR-F6 WB configuration at flight condition 3 
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The results of lift coefficient �� and drag coefficient �d  for the WB and the WBF 

configuration are both in the same order. Both parameters are higher for the 

WBF configuration but this is consistent with the higher angle of attack. Figure 

4-16 presents the surface streamlines on the rear fuselage. Both patterns are 

very similar to each other. No major separation can be observed on any of the 

rear bodies, which is typically characterised by a separation line.   

 

 

Figure 4-16 Surface streamlines on rear fuselage of the DLR-F6 [4] WB configuration 

on the top and WBF configuration on the bottom, where the solution is determined on 

two independently generated meshes  
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4.2 Full scale inflight refuelling simulations  

In this section the results of the inflight refuelling simulations with the A330 [54] 

full aircraft substitutes DLR-F6 [4] and CRM [5] are presented. Furthermore, a 

wake analysis is carried out followed by the analysis of the wake-hose 

interaction and the resulting effect on the hose characteristics. The simulations 

are all conducted at full scale and for representative flight conditions which are 

outlined in Table 4-15 including the corresponding angles of attack for the CRM 

WBT [5] and DLR-F6 [4] WB.  The corresponding figures for the DLR-F6 [4] and 

CRM [5] configurations at different flight conditions are presented Figure 4-17. 

The presented 2D plots all show the flow field features on the symmetry plane, 

as the hose is in a first step assumed to be exposed from the centreline of the 

aircraft. Therefore, circumferential effects on the hose eliminate each other and 

are not studied. All calculations are conducted steady state. 

 

Flight 

Condition 

Mach  

- 

Altitude 

feet 

Mass  

kg 

� �   
- 

α 
CRM 

WBT 

α 
DLR-F6 

WB 

1 0.40 20`000 193`000 0.95 8.5° 6.65° 

2 0.44 20`000 193`000 0.77 6.2° 3.85° 

3 0.55 20`000 193`000 0.5 3.2° 0.45° 

4 0.70 20`000 193`000 0.3 1° -1.9° 

Table 4-15 Representative full scale refuelling operation flight conditions 1 to 4 with 

required lift coefficients and resulting angles of attack for the CRM [5] WBT and DLR-

F6 [4] WB configurations 

 

FC_1 FC_2 

FC_3 FC_4 

Figure 4-17 Figure presentation order for flight conditions 1 to 4 
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4.2.1 A330 substitutes 

The complexity of the wake is studied through an investigation of the vortical 

structures in the near wake region where the hose is exposed. Figure 4-18 

shows the absolute value of vorticity �  normalised by the maximum vorticity 

value of the flight conditions 1 to 4 ��@B at different cross flow planes along the 

rear fuselage of the CRM [5] WBT configuration. Two pairs of vortices can be 

observed one of which develops underneath the body indicated through the red 

dashed arrows and one on top of the body. The upper vortices disappear with 

decreasing angle of attack α. They originate from a separation on the rear body 

which occurs as α increases. The lower vortices originate from a separation at 

the upstream edge of the wing box and persist for all four flight conditions. 

However, the vortex core path changes (∆y) and separation decreases towards 

the end of the fuselage with decreasing angle of attack. The vortex structures 

appear only around the fuselage. For the present grid resolution this indicates 

non-vortical flow with increasing distance from the rear underneath the rear 

fuselage where the hose is exposed. This is true for all flight conditions 

considered. 

Maximum vorticity ��@B = 115 
{
F 

 

α = 8.5 ° α = 6.2 ° 

����& 
����& 

∆y 
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Figure 4-18 Comparison of vorticity around rear fuselage of the CRM [5] WBT 

configuration, normalised by the maximum vorticity of 115 1/s of entire operating range, 

for all flight conditions and corresponding angles of attack α  FC_1: Mach=0.4, � = 0.9, 

FC_2: Mach=0.44, � = 0.77, FC_3: Mach = 0.55, � = 0.5, FC_4: Mach = 0.7, � = 0.3 

 

In a first step the hose is employed from the centreline of the aircraft. The 

circumferential position of the fully trailed hose is expected to be in line with the 

centreline of the aircraft, as the lateral forces are balanced. Hence, the flow 

characteristics on the symmetry plane predominantly determine the 

characteristics of the hose. Figure 4-19 shows surface streamlines on the 

symmetry plane coloured by upwash angle ε normalised by the rear fuselage 

angle γ. ε is defined as follows: 

� = atan �\�
\��       Eq. (4-4) 

Where  

•  �B and  �C  are the flow velocity components in X and Z direction, 

respectively    

The nominal hose exit is indicated with a red point (Figure 4-19). Furthermore, 

the grey rectangular box indicates the area on the symmetry plane where the 

hose is expected to be exposed.  

α = 3.2 ° α = 1 ° 

����& 
����& 
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Rear fuselage angle γ = 13° 

 

 

 

 

 
 

Figure 4-19 Comparison of streamlines on symmetry plane, coloured with upwash 

angle ε normalised by the rear fuselage angle γ of 13° for all flight conditions and for 

the CRM [5] WBT configuration, FC_1: Mach=0.4, � = 0.95, FC_2: Mach=0.44, � = 

0.77, FC_3: Mach = 0.55, � = 0.5, FC_4: Mach = 0.7, � = 0.3 

It can be observed that with decreasing angle of attack α the rear body upwash 

angle within the area of interest decreases as well. The flow direction relative to 

the hose changes with angle of attack. Hence, the angle of attack is expected to 

have an impact on the final hose shape and position. Figure 4-20 illustrates a 

contour plot of the same parameter ε/γ. 

 

 

 

 

 

 

α = 8.5 ° α = 6.2 ° 

α = 3.2 ° α = 1 ° 

�
� 



 

125 

 Rear fuselage angle γ = 13° 

 

 

 

  

Figure 4-20 Comparison of contour plots on symmetry plane, coloured with upwash 

angle ε normalised by the rear fuselage angle γ of 13° for all flight conditions and for 

the CRM [5] WBT configuration FC_1: Mach=0.4, � = 0.95, FC_2: Mach=0.44, � = 

0.77, FC_3: Mach = 0.55, � = 0.5, FC_4: Mach = 0.7, � = 0.3 

The parameter ε/γ considers the flow field direction which is a result of the angle 

of attack α and the shape of the rear fuselage. It is of interest to know the 

contribution of the rear fuselage shape to the flow direction as this could have 

an impact on the hose characteristics. To illustrate the impact of the fuselage 

shape onto the wake field, α should be as close as possible to zero. This is the 

case for flight condition 4 as the corresponding angle of attack is 1°.  In Figure 

4-20 the lower right contour plot shows that the rear upwash angle in close 

vicinity to the nominal hose exit (red dot – dashed ellipse) assumes, about a 

third of the rear fuselage angle. This is predominantly the impact of the rear 

fuselage shape on the flow field because of a low α of 1°. Within this area the 

relative flow direction onto the hose is for any flight condition, different than that 

α = 8.5 ° α = 6.2 ° 

α = 3.2 ° α = 1 ° 

�
� 
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beyond this area and is therefore expected to have significantly different impact 

on the hose. A further parameter which plays an important role is the dynamic 

pressure as it represents the aerodynamic force which acts on the hose. Figure 

4-21 shows the local dynamic pressure 9*:; normalised by the free stream 

dynamic pressure 9*:;∞  on the symmetry plane for all considered flight 

conditions. 

 

 

 
 

  

Figure 4-21 Comparison of local dynamic pressure ����∞ on the symmetry plane 

normalised by the free stream dynamic pressure ����∞ for all flight conditions and for 

the CRM [5] WBT configuration, FC_1: Mach=0.4, FC_2: Mach=0.44, FC_3: Mach = 

0.55, FC_4: Mach = 0.7 

The width of the dynamic pressure deficits is indicated through ∆z1 and the 

distance of the dynamic pressure deficits lower limit to the hose exit vertical 

position is indicated trough ∆z2 and the dashed black line. Both are qualitative 

parameters and are used to support the text. It can be observed that with 

decreasing angle of attack ∆z1 increases and ∆z2 decreases. At an angle of 

α = 8.5 ° 

Pdyn ∞= 5.2kPa 

α = 6.2 °  

Pdyn ∞= 6.4kPa 

 

α = 3.2 ° 

Pdyn ∞= 9.8kPa 

α = 1 ° 

Pdyn ∞ = 16.3kPa 

∆z1 
∆z2 

9*:;9*:;∞ 
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attack of α=1° ∆z2 is in the order of the fuselage diameter. However, 

underneath the vertical hose exit position where the hose trail is expected to 

take place almost no flow field changes can be observed. In this region the 

dynamic pressure ratio remains constant for flight condition 1 to 3 and 

decreases by approximately 5 – 10 % for flight condition 4 but is evenly 

distributed for all flight conditions. This leads to the conclusion that the 

parameter which varies most throughout the considered flight conditions is the 

rear fuselage upwash angle ε, which is a function of angle of attack α and the 

rear fuselage angle γ and which determines the direction of the flow onto the 

hose. The dynamic pressure in turn, which is the measure for the aerodynamic 

force on the hose, is evenly distributed along most of the hose. This is 

illustrated in a direct comparison of the upwash angle parameter ε/γ and the 

local dynamic pressure ratio for flight condition 3 in Figure 4-22. The hose 

experiences similar dynamic pressure in any position below the dashed line but 

considerable different relative flow angles in the same region 

 

γ = 13° 9*:;∞ = 9760 Pa 

  

Figure 4-22 Both predominant flow parameter, the rear fuselage upwash angle which is 

a function of α and ε (left) and the local dynamic pressure (right) within the interrogation 

area of interest for the CRM [5] WBT configuration, FC_3: Mach = 0.55, α = 3.2° 

 

 

�
� 

9*:;9*:;∞ 
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The final impact on the hose is illustrated in Figure 4-23 where it can be 

observed that the hose is pushed upward within the area where the upwash 

varies most and this is predominately the effect of the rear fuselage shape. The 

consequence is an inflection point of the hose which is an unwanted 

characteristic since it amplifies the unwanted hose whip phenomenon, but it is 

also typical for the deployment of the hose at the fuselage centreline [74]. The 

hose inflection point and the final spatial drogue position are the parameters 

through which the hose characteristics are determined.   

 

 

Figure 4-23 Calculated final hose shape coloured with the rear upwash angle in the 

background for flight condition 3 and for the CRM [5] WBT configuration, FC_3: Mach = 

0.55, � = 0.5, α = 3.2°, 
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Figure 4-24 Static hose characteristics for flight conditions 1 to 4 with the CRM [5] WBT 

configuration with required spatial drogue range indicated by the dashed lines, FC_1: 

Mach=0.4, � = 0.95, α = 8.5°, FC_2: Mach=0.44, � = 0.77, α = 6.2°, FC_3: Mach = 

0.55, � = 0.5, α = 3.2°, FC_4: Mach = 0.7, � = 0.3, α = 1° 

 

Figure 4-24 shows the calculated static hose characteristics for all considered 

flight conditions with the common research model CRM [5] wing body tail WBT 

configuration. It can be observed, that the flight condition (FC) has a significant 

impact on the final drogue position. The vertical variation from FC1 to FC4 is in 

the order of the required drogue position range which is indicated by the dashed 

black lines. It also shows that only FC3 and FC4 fulfil the spatial position 

requirement for the drogue. The hose shapes are characterised through either 

one or two inflection points as illustrated in Figure 4-25, where the hose for flight 

condition 1 and 2 shows two inflection points and that for flight condition 3 and 4 

one inflection point. Different behaviour can be observed for the calculations 

with the DLR-F6 [4] in Figure 4-26. 
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Figure 4-25 Hose characteristics for all flight conditions with inflection points indicated 

by the red circle and spatial drogue range indicated by dashed lines with CRM [5] 

WBT, FC_1: Mach=0.4, � = 0.95, α = 8.5°, FC_2: Mach=0.44, � = 0.77, α = 6.2°, 

FC_3: Mach = 0.55, � = 0.5, α = 3.2°, FC_4: Mach = 0.7, � = 0.3, α = 1° 

 

Figure 4-26 Static hose characteristics for flight conditions 1 to 4 with the DLR-F6 WB 

configuration with required spatial drogue range indicated by the dashed lines, FC_1: 

Mach=0.4, � = 0.95, α = 6.65°, FC_2: Mach=0.44, � = 0.77, α = 3.85°, FC_3: Mach = 

0.55, � = 0.5, α =0.45°, FC_4: Mach = 0.7, � = 0.3, α = −1.9° 
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The drogue position changes also notably with changing flight condition (Figure 

4-26). However, the range within which the drogue position changes for the 

DLR-F6 [4] WB configuration is smaller than for the CRM [5] WBT (Figure 2-24) 

configuration, and the drouge for all positions is within the required range. As 

illustrated in Figure 4-27 the behavior of the inflection point formation is also 

different. The static hose shape for flight condition 1 (FC 1) shows two inflection 

points, for FC 2 and FC 3 one inflection point, while for FC 4 no inflection point 

at all and above all it is almost a straight line.    

 

 

 

 

Figure 4-27 Hose characteristics for all flight conditions with inflection points indicated 

by the red circle and spatial drogue range indicated by dashed lines with DLR-F6 [4] 

WB, FC_1: Mach=0.4, � = 0.95, α = 8.5°, FC_2: Mach=0.44, � = 0.77, α = 6.2°, FC_3: 

Mach = 0.55, � = 0.5, α = 3.2°, FC_4: Mach = 0.7, � = 0.3, α = 1° 
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The most significant geometrical differences between the DLR-F6 [4] WB and 

the CRM [5] WBT configurations are the rear fuselage angle γ, which is 13° for 

the CRM [5] and 15° for the DLR-F6 [4] and the configuration, where a tail is 

included for the CRM [5] but not for the DLR-F6 [4]. But there is also an 

operational difference which is the angle of attack as shown in Table 4-16. The 

whole angular range is shifted towards smaller angles for the DLR-F6 [4] with a 

negative angle of -1.9° for flight condition 4.  

 

 FC 1 FC 2 FC 3 FC 4 

CRM WBT 8.5° 6.2° 3.2° 1° 

DLR-F6 WB 6.65° 3.85° 0.45° -1.9° 

Table 4-16 Angle of attack α for all considered flight conditions and the DLR-F6 [4] WB 

as well as the CRM [5] WBT configuration 

 

As previously stated for the CRM [5] and supported by Figure 4-22, the angle of 

attack, is along with the rear fuselage shape, one of the parameters for the 

formation of the rear upwash angle. The rear upwash angle in turn, has along 

with the dynamic pressure, a significant effect on the hose characteristics. To 

illustrate the effect of the rear fuselage shape and the angle of attack and to 

exclude the effect of the tail on the hose characteristics Figure 4-28 compares 

the static hose shapes for the DLR-F6 WB [4] and CRM [5] WB configurations 

at flight condition 3. The drogue position changes by 0.18 - which is indicated 

through Δz and corresponds to approximately 25% of the valid spatial drogue 

range.   
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Figure 4-28 Static hose shapes for CRM [5] WB and DLR-F6 [4] WB FC 3: Mach 0.55, 

� = 0.5, α CRM WB = 2.1° α DLR-F6 WB = 0.45°  

 

As illustrated in Figure 4-29 the hose shows two inflection points for the CRM 

and only one for the DLR-F6 [4]. Furthermore, the inflection point position for 

the DLR-F6 [4] is located very close to the hose exit which indicates a smaller 

effect of the upwash on the hose. As shown in Figure 4-21 the dynamic 

pressure deficits beneath the rear fuselage are a function of the angle of attack 

α. The smaller α the higher the deficits of 9*:;. α is smaller for the DLR-F6 [4] 

and thus the deficits of 9*:; are expected to be higher. Hence, the hose 

experiences less lift close to hose exit where the deficits of 9*:; occur. 
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Figure 4-29 Static hose shapes for CRM [5] WB (above) and the DLR-F6 [4] WB 

(bottom) with indicated inflection points FC 3: Mach 0.55, � = 0.5, α CRM WB = 2.1° 

α DLR-F6 WB = 0.45°  

Figure 4-30 shows a comparison between the hose characteristics obtained for 

the CRM [5] with and without tail at the same flight condition 3, Mach = 0.55, 

��=0.5. However, both models have different angles of attack to maintain the 

same lift condition. Thus, the effect shown is not exclusively the effect of the tail. 

Nevertheless, a significant effect on the final drogue position as well as on the 

characteristic of the hose can be observed, which leads to the conclusion that 

for a more realisic simulation an aircraft model with a tail should be preferred. 
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Figure 4-30 Effect of the tail on the hose shape and drogue position for CRM wing body 

tail configuration FC 3: Mach 0.55, � = 0.5, α CRM WB = 2.1° α  CRM WBT = 3.2°  

 

4.2.1.1 Summary 

The near field wake close to the rear fuselage of an aircraft which is broadly 

similar to the A330 [54] has a generally benign behaviour (Figure 4-18). The 

relevant parameters for the hose deployment through which the wake can be 

characterised are the local dynamic pressure and the rear fuselage upwash 

angle (Figure 4-22). For fuselage centreline deployed hose the rear fuselage 

upwash causes the unwanted inflection point (Figure 4-23) as long as the 

dynamic pressure deficits close to the hose exit are not too high. The flight 

condition has a significant impact on the final drogue position as well as on the 

hose shape characteristics. An important criterion for the selection of suitable 

substitute aircraft geometries is the range for angle of attack as well as the 

presence of the tail. The range for the angle of attack, within which the 

substitute geometry operates, should be as similar as possible to the operating 

range of the original aircraft. 
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4.2.2 Hose fairing effects 

The hose fairing effect is analysed in close vicinity to the fairing as well as on 

the overall wake. Furthermore, the effect on the hose characteristic is shown. 

4.2.2.1 Close vicinity flow pattern 

Figure 4-31 shows the left half of the hose fairing sliced through the symmetry 

plane, with 3D streamlines and surface streamlines on the symmetry plane. A 

separation bubble can be observed right behind the hose fairing.  

 

Figure 4-31 Streamlines in recirculation zone behind hose exit fairing 

Figure 4-32 shows the hose fairing outline on the symmetry plane with surface 

streamlines only and the corresponding pressure distribution along the outline. 

The flow direction is from left to right. In Figure 4-32 b) from x/�6-=-2 to x/�6-=-

0.5 a smooth slope the pressure ratio 9/9∞ can be observed with a following 

rapid increase in pressure with culminates at x/�6-=0. This is the point where 

the dynamic pressure is lowest and the static pressure highest, as the flow is 

decelerated to low velocity. After this point the flow is re accelerated until it 

reaches the geometrically sharp edge, which is the well-defined separation 

point. This is indicated with the red circle and the red dashed line and is 

characterised by a negative pressure peak, which comes from the inverse 

pressure gradient. As a consequence the flow now forms a recirculation zone 

behind the fairing.  
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a) 

 

b) 

  

Figure 4-32 a) Hose fairing outline with surface streamlines on the symmetry plane, b) 

corresponding pressure coefficient P/P∞ distribution - flow direction from left to right 

At approximately x/�6-=1.7 the flow reattaches which is characterised through a 

positive pressure plateau. Observation reveals that the location of the 

reattachment point is not as well-defined as the location of the separation point. 

Hence, the dashed lines indicate a range instead of a point. The configuration of 

a hose exit fairing on a fuselage is very similar to a backward facing step 
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problem. As the flow is separated in this region, the flow field will be unsteady. 

These unsteady aspects have not been evaluated in this work. Given the 

relative diameter, mass and length of the hose, any local unsteady flow aspects 

are considered as being unlikely to have a notable impact on the hose shape. 
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4.2.2.2 Overall wake effect 

Figure 4-33 shows the rear fuselage outline of the DLR-F6 [4] with hose exit 

fairing, HEF. The cross flow planes where the wake impact of the fairing is 

investigated are indicated by the dashed lines. The first cross flow plane is 

positioned right after the HEF followed by three further cross flow planes 

downstream. The heights of the cross flow plane follow the rear fuselage shape 

and reach their maximum at the fuselage end. This is the height which is used 

for normalisation of the vertical length scales. The distance from the first to the 

last cross flow plane is in the order of a representative refuelling hose length. 

The horizontal length scales are normalised by this length. The minimum height 

is in the order of the vertical drogue position of a fully trailed hose at a 

representative refuelling condition.  The parameters in Figure 4-34 and 4-35 are 

plotted along the intersection line of the symmetry plane. Hence, the flow 

pattern on the symmetry plane is shown.  

    

Figure 4-33 Rear fuselage outline with dashed line indicated cross flow planes. Vertical 

length scales are normalised by the maximum height ∆Zmax and horizontal length 

scales are normalised by the distance of the first to the last cross flow plane 

Figure 4-34 shows the total pressure distribution normalised by the free stream 

total pressure for all cross flow planes plotted along the intersection line of cross 

flow planes and symmetry plane. There is no significant change on any of the 

cross flow planes X/L=0 to X/L=1, which means that there are no major losses 
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due to the fairing which affect the overall wake field, on particular on the 

symmetry plane where the hose is exposed.  

 

 

 

 

Figure 4-34 Comparison of total pressure Ptot normalised by the rear fuselage Ptot∞ 

for all cross flow planes plotted along the intersection line of cross flow planes and 

symmetry plane at flight condition 3 for the DLR-F6 [4] WB, WBF configuration 

respectively, FC_3: Mach = 0.55, � = 0.5, α = 0.52° 

 

Figure 4-35 shows the upwash angle ε normalised by the rear fuselage angle γ 

of 15° for all cross flow planes also plotted along the intersection line of cross 

flow planes and symmetry plane. The normalised upwash angle is a measure 
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for the redirection of the flow due to the presence of the hose fairing. There is 

almost no redirection along the first two cross flow planes. At X/L=1 a 

redirection of 0.14ε/γ can be observed close to the maximum height Zmax, 

which corresponds to a redirection of the rear upwash angle of approximately 2° 

and is indicated through the red dashed arrow. For the wake-hose interaction 

this region is not of interest, as the fully trailed hose cannot be influenced at this 

height.  Therefore, there is almost no impact of the hose fairing on the hose 

characteristics, which can be observed in Figure 4-36 for two different flight 

conditions.  

  

  

  

Figure 4-35 Comparison of upwash angle ε normalised by the rear fuselage angle γ of 

15° for all cross flow planes plotted along the intersection line of cross flow planes and 

symmetry plane, at flight condition 3 for the DLR-F6 [4] WB, WBF configuration 

respectively, FC_3: Mach = 0.55, � = 0.5, α =0.52° 
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a) 

 

b) 

 

Figure 4-36 Hose characteristics in comparison with (blue line) and without (red line) 

hose fairing, a) FC_3: Mach = 0.55, � = 0.5, α =0.52° and b) FC_4: Mach = 0.7, � = 

0.3, α =-1.92° DLR-F6 [4] WB, WBF configuration respectively  
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4.2.3 Hose fairing ventilation 

To avoid recirculation behind the hose fairing a ventilated faring has been 

considered. A naturally ventilated fairing could physically be realised through a 

perforated, air-permeable fairing surface as schematically shown in Figure 4-37 

a). However, artificial ventilation could also be of interest, which could be 

realised through pressurised air ejection like that shown in Figure 4-37 b) or 

through the redirection of air around the fuselage as shown in Figure 4-37 c). A 

speculative study has been conducted to assess these options. 

 

 

 

 

Figure 4-37 a) Air-permeable, b) ejected, c) deviated air hose fairing ventilation 

a) Natural

b)           Actively ejected 

c)    Gathered and deviated air 
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For the CFD calculation the ventilation is modelled as a constant velocity inlet at 

the front face of the fairing, which is indicated through the red surface in Figure 

4-38 a). Density and static temperature correspond to the free stream 

conditions. Ventilation parameters are air velocity magnitude and direction. The 

direction is defined as the angle θ between a horizontal line and the velocity 

vector V as shown in Figure 4-38 b).  

  a) 

 

  b) 

 

Figure 4-38 a) Hose fairing with red patch used for ventilation boundary condition and 

b) the ventilation definition with velocity magnitude V and direction angle θ 

The calculated cases are listed in Table 4-17. Three different ventilation mass 

flows and five different ventilation angles  { to  ¡ have been applied. Case �{  

 {  corresponds to ideal natural ventilation as   is equal to the fuselage slope 

and the pressure drop caused by the perforated surface is not considered in a 

θ − 

� 
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first step. The mass flow based on �{ corresponds approximately to 10% of the 

mass flow through a representative propulsion engine of an A330 [54] at cruise 

condition [76].   

 ¢ �£      ¤%    ¤# ¤¥ ¤¦ ¤§ 

�{ �∞ 17.2 kg/s 10° 0° -10° -20° -30° 

�y 0.5�∞ 8.6 kg/s - - - - -30° 

�̈  0.25�∞ 4.3 kg/s - - - - -30° 

Table 4-17 Case matrix for all ventilation cases and ventilation angle θ with applied 

mass flows which are defined through ventilation velocity and free stream density, 

V∞=172 m/s  

 

4.2.3.1.1 Natural ventilation 

 

Figure 4-39 Setup for the simulation of ideal natural ventilation with ventilation angle 

θ parallel to fuselage slope and ventilation velocity V equal to free stream velocity 

Natural ventilation is considered as a potential flow control mechanism and 

avoids recirculation behind the fairing. A schematic sketch is presented in 

Figure 4-39 and the result can be observed in Figure 4-40 b) where the 

streamlines are straight and even compared to those from Figure 4-40 a) where 

a separation bubble is generated. 

  = 10°
� = �∞
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a) 

 

b) 

 

Figure 4-40 a) Recirculation zone behind fairing in comparison with ventilated fairing in 

Figure b) 

 

4.2.3.1.2 Artificial ventilation 

In Section 3.2.1 the sensitivity of the hose characteristic on the wake pattern 

has been presented. The rear fuselage upwash pushes the hose upward which 

is the primary cause for the unwanted inflection point in the hose shape. A 

manipulation of the rear fuselage upwash could therefore be an approach to 

control the position and shape of the hose and the drogue, where the possible 

potential is assessed through the application of artificial ventilation. As shown in 

Figure 4-41 the dynamic pressure deficits are associated to the rear fuselage 

upwash which in turn is characterised by the rear fuselage shape and the angle 

of attack. The dynamic pressure deficits increase with decreasing upwash and 
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with decreasing angle of attack. Therefore, through redirection of the local 

upwash a control of the hose could be achieved. 

γ = 13° 9*:;∞ = 9760 Pa Ma∞ = 0.55 

  

Figure 4-41 Both predominant flow parameter, the rear fuselage upwash angle which is 

a function of α and ε (left) and the local dynamic pressure (right) within the interrogation 

area of interest for the CRM [5] WBT configuration, FC_3: Mach = 0.55, � = 0.5, 

α = 3.2° 

The assessment of this approach has been made through a parametric study, 

where the ventilation angle θ varies from 10° to -30° in steps of 10° as shown in 

Table 4-18.   

  �£ % ¤%    ¤# ¤¥ ¤¦ ¤§ 

�{ �∞ 17.2 kg/s 10° 0° -10° -20° -30° 

Table 4-18 Case matrix for artificial variation of ventilation angle θ with constant mass 

flow based on ventilation velocity, free stream density and the hose exit area 

The effect of the ventilation angle   variation at a constant ventilation mass flow 

of �£ {= 17.2 kg/s is shown in Figure 4-42. The left column presents the local 

dynamic pressure 9*:; normalised to the free stream dynamic pressure 9*:;∞, 

and the right column the total pressure distribution 94ª4 normalised by the free 

stream 94ª4 ∞. The simulations are made at Mach 0.55 and α=0.52°. With 

decreasing ventilation angle   the dynamic pressure deficits increase above the 

vertical fairing position where the air is ejected. This is indicated with the 

�
� 

9*:;9*:;∞ 
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dashed line. The ejection of the air introduces air flow of high kinetic energy and 

creates a barrier between the air above the vertical ejection position and the air 

beneath. The flow cannot follow the rear fuselage shape anymore and the flow 

field in close vicinity to the rear fuselage is disrupted. The consequence is 

higher total pressure loss. This can be observed especially for   =
−30°. However, the overall performance of the aircraft is not affected. For all 

cases shown in Table 4-16 the drag coefficient remains at a constant value of 

�*= 0.034. This is a crucial finding since this is the prerequisite for the approach 

to be classified as potentially applicable or not – an excessive aerodynamic 

performance loss would eliminate the approach. The effect on the hose 

however is notable and can be observed in Figure 4-43.  

 

 

Ma∞ = 0.55, α=0.52°, 9*:; = 9.8kPa 

 θ =10°    

 θ =0°  

94ª494ª4∞ 
9*:;9*:;∞ 
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 θ =-10°  

 θ =-20°  

 θ =-30°  

Figure 4-42 Local dynamic pressure number normalised by the free stream dynamic 

pressure on the left and total pressure normalised by the free stream total pressure on 

the right for ventilation angles θ=10°  to −30° and the DLR-F6 [4] FC_3: Mach = 0.55, � 
= 0.5, α = 3.2°, the dashed line separates the area of total pressure losses and the 

area of hose deployment 
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Figure 4-43 Effect of ventilation angle θ on drogue position and hose shape for θ=10° 

to -30°  at a constant mass flow of 17.2 kg/s for the DLR-F6 [4] including the nominal 

vertical drogue position range SDR_z FC_3: Mach = 0.55, � = 0.5, α = 0.45° 

The difference of the vertical position between   = 10° and between   = −30°  
is more than 50% of the vertical drogue range and final drogue position is 

moved into the required range (Figure 4-43). Furthermore, through the lift of the 

drogue for   = −30°  the number of the unwanted inflection points is reduced 

from two to one as shown in Figure 4-44.   

 

Figure 4-44 Hose characteristics for θ=10° and θ=−30° with inflection points indicated by 

the circles and spatial drogue range indicated by dashed lines 
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However, the effectiveness of this approach does not depend predominantly on 

the kinetic energy of the ejected flow. This is investigated through the variation 

of the ventilation velocity. The applied parameters �y, �̈  at constant ventilation 

angle   = −30°  are listed in Table 4-19 and the results of the hose 

characteristics are presented in Figure 4-45. It can be observed that the hose 

tends to be notably lifted as the ventilation velocity decreases. A possible 

explanation is presented later in this section. 

 ¢ �£ % ¤%    ¤# ¤¥ ¤¦ ¤§ 

�y 0.5�∞ 8.6 kg/s - - - - -30° 

�̈  0.25�∞ 4.3 kg/s - - - - -30° 

Table 4-19 Case matrix for variation of ventilation mass flow at constant angle 

θ=−30° where the mass flow is based on the free stream density and the velocities V1, 

V2  

 

Figure 4-45 Effect of ventilation velocity variation on hose characteristic and position in 

comparison for 0.25V∞ (red), 0.5V∞(green), V∞(black) and no fairing (blue with dots) 

for a ventilation angle θ of -30° 
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The increase in total pressure loss with decreasing ventilation velocity can be 

explained as follows. The following flow field comparisons from Figure 4-46 are 

indicative of the cause of total pressure loss.  

 

 

�£ =17.2kg/s θ=−30° 

 

 

�£ =8.6kg/s θ=−30° 

 

 

�£ =4.3kg/s θ=−30° 

 

Figure 4-46 Total pressure ratio distributions Ptot/Ptot∞ along the rear fuselage 

centreline of the DLR-F6 [4] configuration showing the effect of ventilation mass flow 

for a fixed ejection angle θ= -30° with zoomed separation zone on the right 

94ª494ª4∞ 
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With decreasing mass flow the separation bubble grows and thus the loss in 

total pressure increases. The growth of the separation bubble is most probably 

caused by the velocity difference between the ejection velocity and the 

surrounding velocity. The higher the difference the bigger the separation bubble 

becomes. The notable effect on the hose is presented in Figure 4-47 a), where 

the red line is the hose shape obtained for the case �£ = 17.2«h/e at θ=-30° and 

the blue line is that for the case �£ = 4.3«h/e at θ=-30°.  A clear lifting effect can 

be observed for the case �£ = 4.3«h/e at θ=-30°. However, for both cases the 

rear upwash angle as well as the dynamic pressure level within the interrogation 

area is very similar as illustrated in Figure 4-47 b) and 4-48 b). The cause for 

the lift is most probably the different boundary layer properties on the hose 

surface.   
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Figure 4-47 a) Hose characteristics in comparison Blue: �£ =17.2 kg/s θ=-30°, Red: 

�£ =4.3 kg/s θ=-30, b) Comparison of upwash angle ε normalised by the rear fuselage 

angle γ of 15°, FC_3: Mach = 0.55, � = 0.5, α =0.52 
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Figure 4-48 a) Hose characteristics in comparison red: �£ =17.2 kg/s θ=-30°, blue: 

�£ =4.3 kg/s θ=-30, b) Comparison of dynamic pressure ���� normalised by the free 

stream pressure ����∞, FC_3: Mach = 0.55, � = 0.5, α =0.52 

As studied in the literature review in Section 3.3.2 the drag force on the hose 

strongly depends on the state of the boundary layer. Depending on the critical 

Reynolds number in close vicinity to the hose, the separation points are located 

differently – either more downstream or more upstream as illustrated in Figure 

4-49 [6].  

                

150 < <�, < 3E^5    3E^5 < <�, < 1E^6 

Figure 4-49 2D flow separation point locations on a circular geometry for different 

Reynolds numbers [6] 

Hence, depending on where the separation points are located the drag force 

varies with the downstream facing area and the associated pressure behind the 

hose. As shown in Figure 4-50, within the transcritical Reynolds number range, 

even small differences in Reynolds number between two different flow fields 

can yield notable differences in shape and position of the hose, due to rapid 

drop of drag.  
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Figure 4-50 Drag coefficient �no as a function of Reynolds number for a cylinder normal 

to the flow and the influence of higher turbulence intensity (dashed curve) on �no [6] 

The local Reynolds number distribution on the cross flow planes can be 

observed in Figure 4-51 b) on the left row and the differences between case 

�£ = 17.2«h/e at θ=-30° (Figure 4-51 a) red line) and case �£ = 4.3«h/e at θ=-

30° (Figure 4-51 a) blue line) in Figure 4-51 b) on the right row. The reference 

length for the Reynolds number is the hose diameter. The Reynolds number 

differences between the two cases are along cross flow plane x/L=0 in the order 

of 10^4, for x/L=0.33 in the order of 6*10^4, for x/L=0.66 in the order of 2*10^4 

and for x/L=1 in the order of 4*10^3. If the variation takes place within the 

transcritical range, these differences can result in notably different hose 

characteristics. The most direct and precise way to compare the local critical 

Reynolds number associated to the static hose position is to plot the local 

Reynolds number along the hose.  However, this couldn’t be performed due to 

time constraints. 
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Figure 4-51 a) a) Hose characteristics in comparison red: �£ =17.2 kg/s θ=-30°, blue: 

�£ =4.3 kg/s θ=-30,b) Comparison of the local Reynolds number related to the hose 

diameter (left) and the differences of the local Reynolds number of both flow fields 

(right) , FC_3: Mach = 0.55, � = 0.5, α =0.52 
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4.2.4 Hose exit position variation 

For current conventional hose and drogue systems with hose deployment from 

the fuselage the hose exit is usually located on the fuselage and at the 

centreline of the fuselage. This configuration has been considered for all 

hitherto conducted hose calculations. The analysis of the hose-wake interaction 

in Section 4.2.1 revealed that the hose shape characteristics are strongly 

associated with the wake characteristic, with respect to the hose inflection point 

predominantly by the rear fuselage upwash. The wake analysis in turn revealed 

a longitudinal and vertical variation of the rear fuselage upwash. In particular, 

the upwash decreases with increasing vertical distance from the fuselage as 

well as in longitudinal direction as shown in Figure 4-52 by the white arrows. A 

shifting of the hose exit towards these directions means a shifting out of the 

critical upwash zone. The study of different hose exit positions along the 

fuselage is studied independently and does not refer to any of the previously 

presented results. Thus, the reference or baseline cases for the hose exit 

variation study are provided within the study itself.  

 

Figure 4-52 Typical near field wake of an aircraft similar to the A330 [54] on symmetry 

plane with randomly chosen hose exit positions along the fuselage, which shows the 

potential to take the hose out of the critical upwash areas vertically and longitudinally 

CRM_Fuse Exit position 1 Exit position 2 Exit position 3

1 Decreasing upwash  

longitudinally 

Decreasing upwash  

longitudinally Decreasing upwash  

vertically 

2 

3 
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In Figure 4-52 the longitudinal shift is indicated through exit position 1, 2, and 3. 

The vertical shift is indicated through the black dashed arrows, which means an 

off fuselage deployment. Technically this could be realised through the use of a 

rigid telescopic device as shown in Figure 4-53, similar to a flying boom.  

 

Figure 4-53 Off-fuselage hose deployment with telescopic device 

So far both approaches, the longitudinal (x) shift and the vertical (z) shift, are 

discussed for a deployment on the fuselage centreline. However, an additional 

circumferential shift on and off fuselage, as shown in 4-54, could also be an 

approach. The technical solution for a circumferential deployment on the 

fuselage could simply be a circumferentially shifted hose fairing (red arrow), and 

for off-fuselage also a telescope like for the centreline deployment shown above 

in Figure 4-53. 

 

Figure 4-54 Circumferential on and off fuselage hose deployment view from back of 

fuselage 

Telescope

Hose 

On fuselage 

deployment 

Off fuselage 

deployment 

Fuselage 
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4.2.4.1 Variation with DLR-F6 

To investigate the effect of the hose exit position on the hose characteristics a 

variation of the hose exit has been conducted both with the DLR-F6 [4] and the 

CRM WBT [5] geometry. The considered hose exit positions are explained in 

2D by means of the DLR-F6 [4] geometry in Figure 4-55.  

a)  

 

 

 

Figure 4-55 a) Schematic side view of the DLR-F6 [4] fuselage with indicated 

longitudinal hose exit positions, on (blue arrows) and off fuselage (black dashed 

arrows), including off fuselage displacement �� and pivoting angle "# , b) schematic 

rear view of an arbitrary fuselage, with circumferentially shifted hose exit positions, 

including off fuselage displacement ��, radial off fuselage displacement $�, and 

azimuthal angle "% 
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The hose exit variation is conducted longitudinally on and off fuselage and at 

regular distances (4 longitudinal positions Figure 4-55 a). The separations 

correspond to fuselage diameter  -. The longitudinal variation starts with 

position 9{ at x/Lh=0 which corresponds to the same height as the wing trailing 

edge of the DLR-F6 [4].  A circumferential variation on and off fuselage is also 

considered as schematically shown in Figure 4-55 b). Every hose calculation 

result for any of the positions presented below is supported by similar 2D 

figures which indicate the position of the hose exit along the fuselage. 
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The variation has been conducted at flight condition 3 at a Mach number of 0.55 

and an angle of attack α=0.45°. The results for the longitudinal variation on the 

centreline and on the fuselage are presented in Figure 4-56 which shows that 

for all positions, 9{ to 9¡, the hose assumes a shape with one or two inflection 

points. Furthermore it can be observed, that the hose curvature between the 

origin and the inflection point increases notably form 9{ to 9y. This is due to 

stronger upwash at position 9y. The results also reveal that the drogue height 

relative to the vertical hose exit position decreases as the longitudinal position is 

placed more downstream.  

 

 

  

Figure 4-56 Hose shape results for longitudinal exit variation on centreline and on 

fuselage with inflection point positions indicated by the red circles, for the DLR-F6 [4] 

FC_3: Mach = 0.55, � = 0.5, α =0.45°, hose exit positions are always shifted to X, Z 

origin 0, 0 for graphical representation 
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For the configurations in Figure 4-56, this makes the crucial difference on 

whether the drogue is within the required spatial drogue range or not. A 

comparison between hose exit position 9{ and 9¡  makes this clear. Hence, for a 

fixed flight condition the position of the hose exit along the centreline and on the 

fuselage the hose characteristics change notably, and can make a crucial 

difference in terms of the catenary requirement.   
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Exactly the same behaviour can be observed for the configurations presented in 

Figure 4-57 where the hose exit is still on the centreline but off fuselage. There 

is no improvement regarding the inflection point and the hose curvature 

between the origin and the inflection point increases notably from position 9{ to 

9y. Moreover, the hose exposed form 9{ is within the required vertical drogue 

range whereas all other drogue positions are either on the lower limit or outside 

the range. Hence, an off fuselage deployment on the centreline yields no 

improvement relative to the same longitudinal position on the fuselage.  For the 

next variation the hose exit is shifted circumferentially and therefore off 

centreline. 

 

 

 

Figure 4-57 Hose shape results for longitudinal exit variation on centreline and off 

fuselage, with inflection point positions indicated by the red circles, for the DLR-F6 [4] 

FC_3: Mach = 0.55, � = 0.5, α =0.45°, hose exit positions are always shifted to X, Z 

origin 0, 0 for graphical representation  
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The hose exit is on the fuselage and varied longitudinally throughout 4 positions 

which are shown in Figure 4-58 a) at a constant azimuthal angle ϕ of 45° 

(Figure 4-58 b)). Figure 4-58 c) illustrates that the vertical drogue position meets 

the range requirement for all longitudinally varied hose exit positions. However, 

regarding the inflection point no improvement has been achieved as the hose 

assumes an inflected shape for all positions 

a)                                                                    b)  

            

 

 

Figure 4-58 a) Longitudinal hose exit positions, b) circumferential hose exit positions, c) 

hose shape results for longitudinal exit variation off centreline and on fuselage, with 

inflection point positions indicated by the red circles, for the DLR-F6 [4] FC_3: Mach = 

0.55, � = 0.5, α =0.45°, hose exit positions are always shifted to X, Z origin 0, 0 for 

graphical representation 
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For the deployment on the centreline it could be assumed that the lateral forces 

on the hose are balanced. No plots were required to show the lateral hose 

displacement since the hose is in line with the fuselage centreline. However, 

with the circumferential displacement of the hose exit the lateral forces on the 

hose are not balanced anymore. Furthermore, the effect of an inflected hose 

shape on the dynamic response of the hose has been studied for the case 

where the inflection point takes place vertically. The effect of a horizontally 

aligned inflection point has not been studied. Nevertheless, the hose 

characteristics obtained for the circumferential hose exit positions are 

investigated for possible inflection points as shown in Figure 4-59 where the 

response of the hose on the circumferential displacement can be observed. 

            

 

Figure 4-59 Hose shape results for longitudinal exit variation off centreline and on 

fuselage, view from above, which shows the lateral displacement normalised by the 

fuselage diameter 	
 and the inflection points indicated by the red circles, for the DLR-

F6 [4] FC_3: Mach = 0.55, � = 0.5, α =0.45°, hose exit positions are always shifted to 

X, Y origin 0, 0 for graphical representation 
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The ordinate shows the lateral displacement of the hose normalised by the 

fuselage diameter  -. The hose which is deployed from position 9{ shows the 

highest displacement and two inflection points as indicated by the red circles. 

The hose deployed from 9� shows the lowest displacement and only one 

inflection point. In terms of lateral displacement this makes sense, insofar as 

downstream of 9� the hose approaches flow field characteristics with almost 

symmetrical conditions. The highest displacement is 0.02 - which is a value of 

0.148m. This value can be regarded as very low as it is lower than the lateral 

grid spacing of 0.25m within which the hose shape has been calculated and it is 

also in the order of the diameter of a representative refuelling hose. The 

variation within the grid spacing originates form the 3D interpolation, which 

allows spatial values lower than the grid spacing to be considered. Also, the fact 

that the maximum displacement is in the order of the refuelling hose diameter, 

has no practical relevance. All hitherto applied hose exit position variations do 

not show any significant improvement of the hose characteristics. None of the 

positions can be regarded to be of direct benefit for a favourable hose shape, 

since all hose shapes show the unwanted inflection point.  
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The next and final hose exit position variation is again a longitudinal variation 

(Figure 4-60 a)) from circumferential positions but off fuselage, at a constant 

azimuthal angle ϕ of 45° and two different radial distances of 1m and 3m from 

the fuselage (Figure 4-60 b) and 4-61 b)). The results are presented in Figure 4-

60 c) for a displacement of 1m and 4-61 c) for 3m.  

 

a)                                                               b) 
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d) 

 

Figure 4-60 a) b) Definition of hose exit positions, c) Hose shape results for longitudinal 

exit variation off centreline and off fuselage with inflection point positions indicated by 

the red circles d) lateral hose displacement for all positions, DLR-F6 [4] FC_3: Mach = 

0.55, � = 0.5, α =0.45°, hose exit positions are always shifted to X, Z origin 0, 0 or X, Y 

origin 0, 0 respectively for graphical representation 

 

Figures 4-60 c) and 4-61 c) illustrate that all hoses show an inflection point, but 

the distinct difference is that the inflection point is very close to the hose exit, 

which is less than 15% of the hose length. For the dynamic response 

calculations presented in Section 2.5.3 the inflection point was placed 

approximately in the middle of the hose length. Most likely, this allows higher 

amplitudes to be built up and above all to be reflected with a stronger 

consequent hose whip. The bending moment within the hose has a resetting 

effect to hose deflections caused by a wave. Generally, the force required to 

deflect a hose is inversely proportional to the distance of two defined points 

along the hose, which can be defined as hose exit and inflection point position. 

Hence, an inflection point close to a hose exit is likely to result in a lower 

amplitude and thus in a lower amplification through the surrounding flow as the 

wave travels back downstream. Furthermore, for both cases, 1m and 3m 

displacement, the drogue is well within the required spatial range which is 

indicated through the dashed lines. Additionally, from X/Lh=0.7 to X/Lh=0.8 the 
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engagement as the hose and the probe are similarly aligned. The lateral 
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displacement shown in Figure 4-60 d) and 4-61 d) is for all configurations below 

0.01  - as well as lower than the grid spacing of 0.25m within which the hose 

shape has been calculated. Furthermore, it is in the order of the diameter of a 

representative refuelling hose. In terms of the inflection point, for the 1m case, 

only the hose deployed from 9� assumes an inflected shape, all other are free of 

inflection points as well as all those in the 3m case. 

 

a)                                                               b) 
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d) 

 

Figure 4-61 a) b) Definition of hose exit positions, c) Hose shape results for longitudinal 

exit variation off centreline and 3m off fuselage with inflection point positions indicated 

by the red circles d) lateral hose displacement for all positions, DLR-F6 [4] FC_3: Mach 

= 0.55, � = 0.5, α =0.45°, hose exit positions are always shifted to X, Z origin 0, 0 or X, 

Y origin 0, 0 respectively for graphical representation 
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To show the benefit for a circumferential, off fuselage deployment in Figure 4-62 

the resulting hose characteristic is directly compared to the hose characteristic 

of a centreline on fuselage configuration. The longitudinal position corresponds 

to positions 9̈ , since this is approximately the representative position for current 

inflight refuelling systems. 

 

Figure 4-62 Hose charcteristics of a centerline on fuselage (red) and a circumferential 

off fuselage (green) deployment at longitudinal position P3, DLR-F6 [4] FC_3: Mach = 

0.55, � = 0.5, α =0.45°, hose exit positions are always shifted to X, Z origin 0, 0 for 

graphical representation 

 

The hose exit position variation study has predominantly been made with the 
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the A330 [54]. This is especially the case with the rear fuselage angle γ, which 
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close to that of the A330 [54] with 18°. The common research model (CRM)  

rear fuselage angle γ is 13° and thus 5° lower than that of the A330 [54]. 

However, the CRM provides a configuration with a tail section. In Section 4.2.1 

the effect of the tail was investigated and illustrated with Figure 4-30 and 

reveals that there is a difference of the vertical drogue position due to the 

presence of a tail of approximately 50% of the required spatial drogue range.  
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Figure 4-63 Hose shape results for longitudinal exit variation off centreline and off 

fuselage, with inflection point positions indicated by the red circles, for CRM [5] WBT 

FC_3: Mach = 0.55, � = 0.5, α =3.2°, hose exit positions are always shifted to X, Z 

origin 0, 0 for graphical representation 

Hence, it is of interest to see whether the promising results of a circumferential 

deployment can be confirmed through the use of aircraft geometry with tail. The 

results are presented in Figure 4-63, where the hose calculations were 

conducted with the CRM [5] WBT configuration, and where the hose is 

positioned circumferentially and off fuselage. It can be observed, that the hose 

exposed from position 9{ and 9̈  assumes a shape with two inflection points 

where one is close to the hose exit and one approximately at half hose length. 

The hose started at 9y  instead has one inflection point only and the inflection 

point is located very close to the hose exit. The inflection point takes place at 

approximately 15% of the hose length. Furthermore, in Figure 4-64 it can be 
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observed that there is almost no lateral displacement of the hose, as the 

maximum value is approximately 0.005 - which is in the order of the hose 

diameter of a representative refuelling hose.  

 

 

Figure 4-64 Lateral hose displacement for positions P1 to P3, CRM [5] WBT FC_3: 

Mach = 0.55, � = 0.5, α =3.2°, hose exit positions are always shifted to X, Y origin 0, 0 

for graphical representation 

To show that a circumferential, off fuselage deployment is also beneficial for an 

aircraft configuration with tail, in Figure 4-65 the resulting hose characteristic is 

directly compared to the hose characteristic of a centreline on fuselage 

configuration. The longitudinal position corresponds to positions 9y, and is in the 

vicinity of a representative position for current inflight refuelling systems. The 

inflection point of the circumferentially deployed hose (green) is notably shifted 

towards the hose exit and the drogue is aligned horizontally, whereas the 

inflection point of the hose deployed on the centreline is almost located in the 

middle of the hose.   
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Figure 4-65 Hose charcteristics of a centerline on fuselage (red) and a circumferential 

off fuselage (green) deployment at longitudinal position P2,  CRM[5] WBT FC_3: Mach 

= 0.55, � = 0.5, α =3.2°, hose exit positions are always shifted to X, Z origin 0, 0 for 

graphical representation 

 

4.2.5 Comparison with Cobham hose model 

A comparison of the results obtained from Cobham’s hose model has been 
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hose model used for this work differ compared to those obtained by the hose 
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∆ *+ª®¯, is 7.5% relative to the position obtained with the hose model used by 

Cobham. The maximum vertical difference ∆ �@B is approximately between 

14% and 20% relative to the position obtained with the hose model used by 

Cobham. Moreover, the hose model used in this thesis predicts an inflection 

point whereas the hose model used by Cobham does not. Given the fact, that 

the inflected hose is a known phenomenon [74] for tanker aircraft like the A330 
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[54], it is likely that the hose model used in this thesis may rather better reflect 

the situation of a real application than the hose model used by Cobham. 

Nevertheless, since the overall positions are similar, the results obtained within 

this work may be considered as plausible, in particular regarding the static 

drogue position.  

 

Figure 4-66 Hose characteristic result obtained with hose model from Cobham (red) in 

comparison with that from hose model used in this thesis (black), hose deployed on the 

centerline and on fuselage with CRM[5] WBT FC_3: Mach = 0.55, � = 0.5, α =3.2°  

 

4.2.6 Summary 

The hose fairing effect on the wake field as well as on the hose characteristics 

has been investigated.  The investigation revealed that there is almost no 

impact both on the overall near field wake (Figure 4-34, 4-35) and on the hose 

characteristics (Figure 4-36). The size of the recirculation zone behind the 

fairing is in the order of the hose fairing shape (Figure 4-32). The unsteady 

aspects of the recirculation have not been evaluated in this work, but are 

considered as being unlikely to have a notable impact on the hose. 

Furthermore, a speculative study on the effect of a naturally as well as artificially 

ventilated hose fairing has been conducted. The purpose for the natural 

ventilation was primarily to assess a potential flow control mechanism whereas 
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the artificial ventilation was investigated to assess the potential for a hose 

control through the manipulation of the near wake field. The investigations 

show, that the hose responds sensitively on a wake manipulation through the 

ejection of air (Figure 4-43, 4-44). The aircraft in turn does not show any 

negative effect in terms of aerodynamic performance since the drag coefficient 

remains constant for all air ejection configurations. The ejection of air into the 

near field wake could theoretically be an option to control the hose, in particular 

the hose position. The potential to control the hose shape in turn is much lower. 

The maximum applied mass flow of 17.2 kg/s corresponds to approximately 

10% of a representative engine flow rate of an A330 [5] engine. Hence, the 

mass flow of 17.2 kg/s is most probably too high to be delivered by the engines. 

The applied minimum mass flow of 4.3 kg/s in turn corresponds to 2.5% and 

might be more realistic to be delivered by the engines. However, this method is 

complex and needs more thorough investigation. The variation of the hose 

deployment within the near field wake has been also studied, with the purpose 

to avoid the negative impact of the rear fuselage upwash onto the hose (Figure 

4-52). Hence, the hose exit position has been varied along the rear fuselage. 

Different configurations along the fuselage centreline and with circumferential 

displacement have been considered as well on and off fuselage. The study 

revealed that for all positions along the centreline the hose assumed the 

unwanted inflected characteristic with either two or one inflection points. The 

inflection point was mostly located approximately at mid hose length, which is 

expected to be more critical to the hose dynamic response than an inflection 

point located close to a hose exit. The inflection point at mid hose length 

occurred both for on and off fuselage configurations (Figure 4-56, Figure 4-57). 

The circumferential displacement of the hose exit positions in turn showed high 

potential for the inflected hose shape to be avoided, or at least to be 

considerably shifted towards the hose exit. This is particularly likely if the 

configuration is circumferentially shifted and off fuselage (Figure 4-60, Figure 4-

63). A radial distance from the fuselage of <*=1m shows a better effectiveness 

than for a distance of 3m, since the inflection points for the 3m configurations 

are shifted more downstream and therefore further from the hose exit. Hence, 
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there is a notable sensitivity regarding the radial distance. However, an ideal 

radial distance to achieve the most positive effect on the hose, which is a non-

inflected hose within the spatial drogue range, has not been assessed. 

Moreover, for this configuration, circumferentially shifted and off fuselage, the 

longitudinal position plays an important role, especially for the case with tail 

(CRM [5] WBT configuration). A more desirable hose characteristic with the 

inflection point close to the hose exit was obtained at one position only (Figure 

4-63). However, it was not possible to obtain a shape which was free of  

inflection points for any of the considered hose exit positions.  

4.2.7 Conclusion 

The study of the naturally ventilated hose exit fairing revealed that the natural 

ventilation can be an option for the purpose of flow control. The idea of the 

artificially ventilated fairing is interesting as it provides a wide spectrum of 

parameter variation. For example it could be an approach to support the 

automated engagement of probe and hose, through the specific ejection of air 

into the wake, through which the position of the drogue could be influenced. 

However, there are also other techniques available which are simpler to handle, 

like a controllable drogue [28]. Furthermore, the installation effort and control for 

this method is likely to be highly complex. Therefore, this approach is 

considered to be technically realisable, but unreasonable with respect to effort 

and cost.  The highest potential for the inflection point to be avoided or shifted 

towards the hose exit and for the drogue to be positioned well within the 

required spatial range has a circumferentially shifted and off fuselage hose exit 

position configuration. This is also the approach with the smallest constructive 

complexity compared to the approach with the ejected air. An installation of the 

trailing mechanism towards the end of the fuselage is difficult. However, it 

doesn’t look as if this would be necessary, since the best results in terms of 

hose inflection point were obtained on a longitudinal position similar to the 

position of current inflight refuelling systems. A circumferential hose exit shift of 

a current system with additional radial displacement seems reasonable and 

technically realisable.     
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4.3 Wake analysis transport aircraft  

The wake analysis for the transport aircraft body only geometry TAB [14] is 

conducted at model scale and at wind tunnel operating conditions which are at 

a Mach number of 0.73 and a Reynolds number of 3E^6. Furthermore, the wake 

analysis is made qualitatively and not quantitatively. This means that the 

analysis focusses on the overall wake characteristics and the wake formation 

mechanisms rather than on the exact determination of aerodynamic data. The 

aim of the study is to underline the distinction which was derived in the literature 

review chapter between the wake of the A330 [54] and the A400M [54]. This is 

considered as essential since both aircraft are of interest to be equipped with an 

inflight refuelling system, but probably require different consideration of the near 

field wake aerodynamics. Moreover, this study can be regarded as an 

assessment for a suitable test case for further hose calculations.  

4.3.1 Introduction to figure notation 

The literature review Section 2.4.1 revealed that a transport aircraft wake is 

typically characterised through two vortices within the wake which originate from 

the underside of the afterbody [14]. The flow separates at the circumferential 

edges of the rear body through which the vortices are developed. Hence, the 

separation is the wake formation mechanism and the following vortex is the 

phenomenon through which the wake is characterised. To illustrate the flow 

features, four pertinent plots are shown throughout the wake analysis as 

introduced in Figure 4-67.  

 

 

Streamlines 

side view 

  

 

 

Streamlines 

bottom view 

 

Vortices on cross 
flow planes 

Vortices shown in 
iso-surface plot 

Figure 4-67 Plot types pertinent to expected flow features of transport aircraft near field 

wake 
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The 3D separation on the after body is expected to form a separation line, 

which can be visualised through surface streamlines. Therefore, in Figure 4-67 

the first two plots from left to right illustrate surface streamlines and the shear 

strain rate on the surface, both as side and bottom view. The shear strain rate is 

useful to identify the areas on the surface where the separation takes place and 

where the flow on the areas is fully separated. Attached flow produces high 

strain rates whereas separated flow notably lower rates. The related contours 

are plotted onto the surface of the rear body. Depending on the size of the 

separation, the strength and size of the vortices change as well. This is 

illustrated through plot three and four in Figure 4-67, where the vortices are 

visualised by means of vorticity onto equally distant cross flow planes, which 

are introduced in Figure 4-68. Plot four shows the iso- surface of a single 

vorticity value to illustrate radial and longitudinal growth of the vortex with 

changing configuration. The spinning convention is as follows:  

• clockwise and in flow direction  = positive (red) 

• counter clockwise and in flow direction  = negative (blue) 

 

 

 

 

Figure 4-68 Definition of cross flow planes 0 to 5 along and beyond rear part of the 

transport aircraft fuselage, where &/ - =0 is at the joint of fore and rear body and the 

distance between the planes corresponds to fuselage diameter  - 

 - 

z 

x 

&/ - = 
 -

 0    1      2         3            4   5 

Cross flow planes 



 

182 

For upsweep angle γ = 0°, the body shows smooth aerodynamic behaviour. The 

flow remains attached over the entire body which can be observed in Figure 4-

69 on the top. The streamlines are evenly distributed and no vortices shed into 

the wake. This can be seen on the cross flow plane plots, where the vorticity 

value is predominantly around zero.     

 

 

 

β = 0 ° 

 °�@B = 9.3²³1/e 

 

 

 

β = 0 ° 

��@B = 1²¨1/e  

 

 

 

 

Figure 4-69 Surface streamlines on rear body for upsweep angle β=0° (top) with 

associated wake field (bottom) 
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The wake assumes a different characteristic as the upsweep angle increases. 

Figure 4-70 shows the 5° upsweep configuration and illustrates that the flow 

starts to separate. The wake is now characterised through two counter rotating 

vortices indicated by the dashed arrows and the plus and minus symbols. 

However, the overall wake underneath the rear fuselage remains benign. The 

vortical structures are compared to the fuselage diameter of relatively small size 

and above all far away from a possible hose trailing zone. 

 

 

 

β = 5 ° 

 °�@B = 9.3²³1/e 

 

 

 

β = 5 ° 

��@B = 1²¨1/e  

 

 

 

 

Figure 4-70 Surface streamlines on rear body for upsweep angle β=5° (top) with 

starting separation and associated counter rotating vortices which shed into the wake 

field (bottom) 
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As the upsweep increases, the separation and the vortices increase as well. 

The vortex diameter grows with increasing upsweep which can be observed in 

Figure 4-71. Also, through the higher induced rotating energy the vortex 

dissipates later downstream. However, in reality the vortex would dissipate even 

more downstream. The mesh is made to see the basic characteristics of the 

wake. Therefore, the mesh density behind the body where the vortices dissipate 

is too coarse for a higher resolution of the vortex structures.  

  

 

 

β = 20 ° 

 °�@B = 9.3²³1/e 
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Figure 4-71 Surface streamlines on rear body for upsweep angle β=20° (top) with 

starting separation and associated counter rotating vortices which shed into the wake 

field (bottom)  
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In Figure 4-71 the 20° configuration shows an additional separation on the edge 

from fore to rear body which forms two asymmetric separation bubbles 

underneath the fuselage even if there is no yaw applied and therefore 

symmetrical conditions. The asymmetry can also be observed on the shear 

strain rate contour plot with view to the underside. However, symmetrical 

conditions do not necessarily generate symmetrical flow pattern. It can be 

assumed that the flow field is highly unstable and therefore transient. This 

steady state solution represents one moment in time. This is why the steady 

state solution is asymmetric.  Beyond the vortices the wake remains benign also 

for this high upsweep angle of β=20°. 

 

4.3.2 Summary 

For the transport aircraft model the flow already separates for relatively low 

upsweep angles, in the present case at an upsweep angle of 5°. The 

consequent vortices are of small scale and do not influence the benign overall 

wake characteristic underneath the rear fuselage, where a possible hose trailing 

takes place. With growing upsweep angle the separation line moves from 

underneath the fuselage outwards onto the outer edges of the fuselage. This 

can be observed in Figure 4-72. 

 

β = 0 ° 
 

 β = 5 °  

°°��& °�@B = 9.3²³1/e 
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 β = 10 ° 

 

 β = 15 ° 

 

 β = 20 ° 

 

 

Figure 4-72 Surface streamlines on rear body for upsweep angle β=0°  to β=20°, side 

view in the left column and view under the fuselage in the right column 

For an upsweep angle of 10°, which corresponds to that of the A440M [54], the 

flow separates within the second half of the after body. This is illustrated by 

Figure 4-73 a). Figure 4-73 b) shows an A400M and a zoomed part of the rear 

fuselage. A circumferentially mounted strake can be observed in the same 

region where the separation occurs on the transport aircraft model with 10° 

upsweep. This can be regarded as an indication that the transport model used 

for this study is suitable to generically investigate the wake characteristics of the 

A400M.  

 

β = 10 ° 

 

a) 
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b)  

 

 

 

 

 

Figure 4-73 a) Separation area on rear fuselage of 10° configuration, b) strake on 

A400M rear fuselage potentially used to avoid separation [68] 

 
5 DISCUSSION 

This chapter comprises a summary of the whole thesis, discusses key results 

and findings in a generic manner, puts them into a bigger context and derives 

conclusions and consequences. Furthermore, different palliatives are suggested 

as well as recommendations for the most suitable approach to tackle one of the 

main problems, the inflection point of the hose, as well as the reliable 

positioning of the drogue within the required spatial range. Also discussed are 

possible research scenarios for the future. This is split into two parts. The first 

part outlines the potential for further research with the findings and results 

obtained in this study which can be directly used for further processing. The 

second part gives an overview about research topics which can be derived from 

this work. These are parts of the present work related to the suggested 

palliatives, which need to be investigated more thoroughly if the palliative is 

Strake 
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considered to have enough potential to be converted into a real technical 

solution.   

5.1 Summary  

The aim of the present work was to develop an understanding of a typical 

refuelling tanker wake like that of an A330 [54], in particular the near field wake 

close to the rear fuselage, the wake-hose interaction as well as the resulting 

hose characteristics. Furthermore, the wake characteristics of a typical transport 

aircraft like the A400M [54] was required to be analysed and understood, but 

not in conjunction with resulting hose characteristics. To achieve this, a number 

of steps were necessary. A literature review on current inflight refuelling 

systems has been conducted with an emphasis on automated inflight refuelling 

for unmanned aircraft systems (UAS) and the associated technological 

challenges. Furthermore, a theoretical understanding about rear fuselage flows 

in general but with focus on fuselages similar to pertinent tanker aircraft has 

been developed during the literature review. The acquired knowledge related to 

both aspects, automated inflight refuelling challenges and rear fuselage flows, 

could directly be adapted to the present work. In terms of automated inflight 

refuelling the literature review revealed that one major challenge is the 

appearance of a hose perturbation associated to the probe-hose engagement 

[19] [21] [26] [31] [37]. The initial hose shape characteristic plays an important 

role in this context [72] [74]. The dynamic response to perturbations is a 

function of the initial hose shape and becomes critical through specific hose 

shape characteristics. In particular there is one hose shape that needs to be 

avoided, which is characterised through an inflection point along the hose. This 

characteristic favours the formation of a wave after a perturbation as it 

describes a curvature similar to a sine wave [74]. It also favours an amplification 

of the propagating wave due to the interaction with the rear fuselage upwash 

because the hose part between hose exit at the tanker and the inflection point 

tends to move in the amplification direction. The literature review also revealed, 

that there is a distinct difference between the near field wake of a civil aircraft 

like the A330 [54] and that of a transport aircraft like the A400M [54]. The 
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fuselage of a civil aircraft is not critical regarding separation and associated 

vortex build up [62], whereas the fuselage of a typical transport aircraft shows 

significant tendency to flow separation and thus to vortex shedding into the near 

field wake [9] [14]. Either wake characteristics could be reproduced through the 

use of CFD simulations and confirmed the characteristics obtained from 

experimental studies which were studied in the literature review. It was 

expected that the near field wake of the tanker has a major impact on the 

formation of the hose shape. However, the detailed mechanisms between the 

wake characteristics and hose shape formation were not clear. The assumption, 

that the wake has a major impact on the hose shape formation has been 

confirmed through this work and the mechanisms on how the wake affects the 

hose are also presented. The results regarding the hose shape formation 

mechanisms refer all to the wake of a civil aircraft similar to the A330 [54].  

 

5.2 Key conclusions 

• The wake underneath the rear fuselage of modern civil aircraft similar to 

the A330 [54] is, where the refuelling hose is exposed, generally of 

benign nature. 

• The wake underneath the rear fuselage of modern transport aircraft 

similar to the A400M [54] is also generally benign in nature. However, the 

wake is characterised by two counter rotating separation vortices, which 

are strengthened with increasing upsweep angle ´. The vortices develop 

above the hose deployment space and are unlikely to interact with the 

exposed refuelling hose, as long as the hose is exposed from the aircraft 

centreline. 

• The aerodynamic parameters which predominantly determine the 

refuelling hose characteristics, shape and position, are  

 

1. The dynamic pressure 9*:; in conjunction with flow direction 

relative to the hose, where 9*:; and flow direction are a function 
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of altitude, speed, aircraft angle of attack µ and rear fuselage 

shape, in particular the rear fuselage angle �.  

2. The drag over the entire hose length, which is predominantly form 

drag and a function of the local effective Reynolds number close 

to the hose, since it determines whether the boundary layer is 

laminar or turbulent. The effective Reynolds number in turn is a 

function of the local free stream Reynolds number, approaching 

turbulence properties and hose surface roughness.  

• The undesirable refuelling hose shape, which is characterised through at 

least one inflection point is formed by the rear fuselage upwash. 

• The inflection point tends to be shifted towards hose exit position with 

decreasing upwash. 

• The presence of a tail has a considerable effect on the hose 

characteristics, which implies, that the vertical tail position is likely to 

have an effect of the hose characteristics too.   

• For the hose deployment it is generally recommended to avoid an 

interaction between refuelling hose and the rear fuselage upwash, since 

this favours the formation of an inflected hose shape. 

 

5.3  Palliatives 

Two different approaches have been studied as possible palliative against the 

formation of an undesirable hose shape. One aims at the control of the wake 

characteristics and one at the avoidance of an upwash-hose interaction. It is 

recommended avoiding the interaction of the hose with the rear fuselage 

upwash. This can be achieved through a circumferentially shifted hose exit with 

additional radial displacement from the fuselage. The results obtained for this 

configuration revealed a notable shift of the inflection point towards the hose 

exit (Figure 5-1, Figure 5-2), which is expected to have a beneficial effect on the 

hose whip phenomenon. 
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a) 

 

b) 

 

Figure 5-1 Hose charcteristics of a centerline on fuselage (red) and a circumferential off 

fuselage (green) deployment at longitudinal positions for FC_3: Mach = 0.55, � = 0.5 

a) DLR-F6 [4], α =0.45°, b) CRM[5] WBT α =3.2° 
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Technically this could be realised through the use of an incorporated 

mechanism that can be swivelled from a lateral position of the fuselage, similar 

to the mechanism of a refuelling probe as illustrated in Figure 5-2. 

 

Figure 5-2 Hydraulically activated refuelling probe mechanism [69] 

The use of a lateral strake with encapsulated mechanism similar to a hose 

fairing could also be an approach. This solution doesn’t require any swivelling 

mechanism. The realisation could be possible with minor constructive and 

economic effort. In particular this solution is interesting for fuselages where 

separation is expected. This is the case for a transport aircraft like the A400M 

[54].  
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5.4 Future work 

This chapter suggests a few ideas for further research based on the current 

work. 

5.4.1 Refuelling hose dynamic response 

The recommendation for a circumferentially shifted hose deployment is based 

on the static hose shape, in particular on the fact, that the inflection point is 

shifted towards the hose exit. This is expected to have a beneficial effect on the 

hose whip phenomenon, but has not been proved within this work. Further 

research could investigate the effect on the dynamic response for the 

recommended configuration. However, the hose characteristic results obtained 

within this work also represent a data base for general investigations on the 

dynamic response of a refuelling hose for different positions along a 

representative tanker aircraft like the A330 [54]  

5.4.2 Transport aircraft model 

The wake of the transport aircraft model [14] has been studied qualitatively and 

without hose. Hence, a further research topic could be a quantitative analysis of 

the transport aircraft rear fuselage wake. The transport aircraft model is a body 

only configuration. However, within this work the effect of the wings on the static 

hose shape has not been investigated. The hose calculations have revealed a 

high sensitivity of the hose characteristics on small changes of the flow. Hence, 

for a determination of the hose characteristics associated to the wake of the 

transport aircraft model [14] it is recommended to first study the effect of the 

wings, or to directly choose a wing body configuration if available.  
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APPENDICES 

Appendix A Literature Review 

A.1 Research philosophies 

A case study typically simulates and models a real life situation [32] aiming at 

the identification and solution of problems. According to Thomas [33] case 

studies are analyses of [...] or other systems that are studied holistically by one 

or more methods. The case that is the subject of the inquiry will be an instance 

of a class of phenomena that provides an analytical frame — an object — within 

which the study is conducted and which the case illuminates and explicates. 

The present work fulfills all points of Thomas’ definition of a case study. The 

case focus and thus the object is the wake-hose interaction. The subject of the 

inquiry is a refuelling situation with a representative aircraft at representative 

flight conditions. This provides the analytical frame within which the study is 

conducted and through which the object can be illuminated and explicated. 

Furthermore Yin [34] states, that a case study design should be considered 

when: (a) the focus of the study is to answer “how” and “why” questions, (b) you 

cannot manipulate the behaviour of those involved in the study, (c) you want to 

cover contextual conditions because you believe they are relevant to the 

phenomenon under study or (d) the boundaries are not clear between the 

phenomenon and context.  According to Yin [34] there is a justification for a 

case study if any of these points apply. For the present work at least three 

points apply: (a) one focus of the study aims at “how” the tanker wake 

influences the hose characteristics, (b) it involved an aircraft and a refuelling 

hose – the behavior of the hose cannot be manipulated due to the underlying 

physics, (c) the contextual conditions are the different refuelling conditions and 

are believed to be relevant to the wake-hose interaction. Thus, the present work 

can and is embedded into the structure of a case study.  
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A.2 Case study types 

One suggestion for the definition of different case study types was made by Yin 

[34]. Six different types are outlined in Table 5-1. 

 

Type of Structure Purpose of Case Study 

Exploratory Descriptive Explanatory 

Linear Analysis ✗ ✗ ✗ 

Comparative ✗ ✗ ✗ 

Chronological ✗ ✗ ✗ 

Theory-building ✗  ✗ 

Suspense    

Un-sequenced  ✗  

Table 5-1 Different case study types with their typical features and purposes [34] 

 

The current study is a blend of linear and comparative analysis. The linear 

analysis is typical for scientific research and is suggested to be organized in the 

IMRAD style. It consists of Introduction, Methods, Results and Discussion. The 

present structure is the same, but with an additional chapter termed literature 

review. A comparative study investigates the same object from different points 

of view. There are two objects in the current study, the wake-hose interaction 

and the specific wake of rear fuselage flows. Both objects are studied from 

different points of view, involving the comparison of different hose 

configurations and different fuselage types under different conditions. Both 

types are exploratory, descriptive and explanatory. There is also a distinction 

between an analytical approach and problem oriented approach. The analytical 

approach aims at the understanding and the reason of an event. No solution to 

a problem is required. The problem oriented approach aims at the identification 

of problems and at the suggestion of solutions to the problems. The present 

work is clearly a problem oriented case study. 
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Appendix B Wind tunnel experiments 

B.1 TAB geometry 

 

Figure 5-3 Afterbody geometry of transport aircraft model 
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Figure 5-4 Afterbody cross sections of transport aircraft model 

 

 

 

 

 

 


