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Abstract

A tensor product (TP) model transformation is a recently proposed technique for transforming
a given linear parameter-varying (LPV) model into polytopic model form for which there are many
methods that can be used for controller design. This paper proposes an alternative approach to de-
sign a gain-scheduled output feedback H∞ controller with guaranteed L2-gain parameter-dependent
performance for a class of TP type polytopic models using parameter-dependent Lyapunov func-
tions where the linear matrix inequalities (LMIs) need only to be evaluated at all vertices of the
system state-space model matrices and the variation rate of the scheduled parameters. In addition,
a construction technique of the intermediate controller variables is also proposed as a matrix-valued
function in the polytopic coordinates of the scheduled parameters. The performance of the proposed
approach is tested on a missile autopilot design problem. Furthermore, nonlinear simulation results
show the effectiveness of these proposed techniques.

1 Introduction

Although most real plants are nonlinear, they can often be modelled as linear parameter varying (LPV)
plants [29] whereby their dynamic characteristics vary, following some time-varying parameters whose
values are unknown a priori but can be measured in real-time and lie in some set bounded by known
minimum and maximum possible values. An LPV plant was first introduced by Shamma and Athans [29]
from which a number of algebraic manipulation techniques exist for deriving an LPV model from the orig-
inal nonlinear model such as Jacobian linearisation [26], function substitution [30] or state transformation
[29].

In practice, the resulting LPV models from these methods are often nonlinearly dependent on the
time-varying parameters whereby the system matrices are known functions and depend nonlinearly on
the scheduled parameters [15]. To synthesize an LPV controller from such an LPV model, Becker [12]
has introduced a grid LPV model [26, 37, 38] whereby the system matrices are functions of the scheduled
parameters at all grid points over the entire parameter space. Hence, an infinite number of linear matrix
inequality (LMI) constraints have to be evaluated at all points over the entire parameter space in order
to determine a pair of positive definite symmetric matrices (X,Y ) that is required for the solution for
the LPV control problem. However, in practice, (X,Y ) can be determined from a finite number of LMIs
by gridding the entire parameter space with a non-dense set of grid points. Having determined (X,Y ),
a more dense grid points set can be tested with this (X,Y ) to check whether the LMIs are still satisfied
[37, 38]. If not, the process is repeated with a denser grid until an (X,Y ) that satisfies the LMIs for all
points over the entire parameter space is obtained [37, 38].
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In general, the result of such a heuristic gridding technique is not necessarily reliable and the anal-
ysis result is dependent on the choice of gridding points [35]. In addition, the resulting gain-scheduled
controller has high computational on-line complexity at the gain-scheduling level [36, 37]. An alternative
LPV model which has been introduced by Apkarian et al. [3] is an affine LPV model [1, 2, 3] whereby the
system matrices are known functions and assumed to depend affinely on the scheduled parameters. Unlike
the grid LPV model case, to synthesize an LPV controller from an affine LPV model, a finite number
of LMI constraints have to be evaluated only at all vertices points of the system matrices. However, as
discussed earlier, many LPV models do not depend affinely on the scheduled parameters [15].

A tensor product (TP) type polytopic model, proposed by Baranyi [5], provides another approach
for which a polytopic model form can be obtained from an LPV model that depends nonlinearly on the
scheduled parameters. The TP model transformation [6] is a recently proposed technique for transforming
given LPV models into polytopic model form in which the interesting features of a TP type polytopic
model are it is applicable to represent nonlinear parameter dependent LPV models and it is a polytopic
model form.

The TP model transformation is an automatically executable numerical method and has three key
steps [5, 6, 11]. The first step is the discretization of the given system matrices over a large number of
points. The discretized points are defined by a dense hyper-rectangular grid of the scheduled parameters.
The second step extracts the linear time invariant (LTI) vertex systems of the given (discretized) system
matrices from a higher order singular value decomposition (HOSVD) based canonical form [8, 9, 31]. The
TP model transformation directly leads to the HOSVD based canonical form of the TP type polytopic
models by decomposing a given n-dimensional tensor into a full orthonormal system in a special ordering
of higher order singular values that express the rank properties of the given LPV model for each element
of the parameter vector in the L2-norm. The third step defines the continuous weighting functions to
the vertex systems. In the literature, there are many approaches that have been proposed for designing
a controller based on TP model transformation [5, 6, 10, 11, 32] since the TP type polytopic model has
various advantages for complexity trade-off and convex hull manipulation, all relying on the power of the
HOSVD [8, 9, 11, 31].

In this paper, we propose an alternative approach for designing a gain-scheduled controller with
guaranteed L2-gain parameter-dependent performance [25, 13], γ(θ), for a class of TP type polytopic
models using parameter-dependent Lyapunov functions where the LMIs need only to be evaluated at all
vertices of the system state-space model matrices and the variation rate of the scheduled parameters. In
addition, the intermediate controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ), are proposed to be
constructed as a matrix-valued function in the polytopic coordinates of the scheduled parameters; this
reduces the computational burden and eases controller implementation. Furthermore, they are applicable
to both regular and singular problems without the need for constraints on the D12 and D21 matrices of
TP type polytopic models. The performance of the proposed approach is tested on a missile autopilot
design problem [37] which is suitable test problem for advanced control design due to fast and wide
parameter variations during its operation.

The organisation of the paper is as follows. A mathematical background of TP model transformation
is briefly introduced and elaborated in the next section. In section 3, a vertex-type stability analysis tech-
nique for TP type polytopic systems based on parameter-dependent Lyapunov functions is summarised.
In section 4, a gain-scheduled output feedback H∞ control synthesis method for TP type polytopic
systems using parameter-dependent Lyapunov functions is proposed. An LPV controller synthesis tech-
nique on the missile autopilot design problem using the proposed method is presented in section 5, where
nonlinear simulation results are also presented. This paper concludes with some comments.

2 Tensor Product Model Transformation

2.1 Linear parameter-varying state-space model

Following Baranyi [6, 10], a linear parameter-varying state-space model is given by

ẋ(t) = A (θ(t)) x(t) +B (θ(t)) u(t),

y(t) = C (θ(t)) x(t) +D (θ(t)) u(t), (1)
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where t ∈ R is time, x ∈ R
p is the state vector, u ∈ R

m2 is the control input vector, y ∈ R
q2 is the

measurement output vector, θ(t) = [θ1(t), . . . , θN (t)]
T
∈ R

N is a time-varying N -dimensional parameter
vector which is assumed to be measured in real-time andN is the total number of time-varying parameters.

The system matrices A (θ(t)) , B (θ(t)) , C (θ(t)) and D (θ(t)) are the continuous mapping matrix
functions A : RN → R

p×p, B : RN → R
p×m2 , C : RN → R

q2×p and D : RN → R
q2×m2 , respectively. We

also assume that each parameter θi(t), i = 1, . . . , N lies between known minimum θi and maximum θi
possible values, θi(t) ∈

[

θi, θi
]

, and θ(t) is an element of the closed hypercube Θ = [θ1, θ1]× [θ2, θ2]× . . .×

[θN , θN ], θ(t) ∈ Θ. θ(t) can also include some elements of x(t). The rate of variation θ̇i(t), i = 1, . . . , N
is well defined at all times and satisfies θ̇i(t) ∈ [vi, vi] and θ̇i(t) is an element of the closed hypercube
Φ = [v1, v1]× [v2, v2]× . . .× [vN , vN ], θ̇i(t) ∈ Φ.

Note that an LPV system (1) is considered in the class of nonlinear dynamic models.

2.2 TP type polytopic models

Following Baranyi [5, 11], the system matrix of an LPV system (1) can also be written as:

S (θ(t)) =

(

A (θ(t)) B (θ(t))
C (θ(t)) D (θ(t))

)

∈ R
(p+q2)×(p+m2) . (2)

Assume that the system matrix S (θ(t)) can be approximated for any parameter θ(t) ∈ Θ as the convex
combination of LTI system matrices S1, S2, . . . , SR which Sr, r = 1, . . . , R are also called vertex systems.
That is

S (θ(t)) ∈

{

R
∑

r=1

αrSr : αr ≥ 0,
R
∑

r=1

αr = 1

}

. (3)

If values αr become weighting functions wr (θ(t)) ∈ [0, 1] ⊂ R, r = 1, . . . , R, θ(t) ∈ Θ such that matrix
S (θ(t)) can be expressed as convex combination of vertex systems Sr then we obtain the TP form [5]

S (θ(t)) ≈
R
∑

r=1

wr (θ(t))Sr, (4)

with
{

∀r, θ(t) : wr (θ(t)) ≥ 0, ∀θ(t) :

R
∑

r=1

wr (θ(t)) = 1

}

. (5)

When the weighting functions wr (θ(t)) are decomposed for all dimensions of θ(t), we get a higher order
structure as [11]

wr (θ(t)) =

N
∏

n=1

wn,in (θn(t)) . (6)

That is

w1 (θ(t)) = w1,1 (θ1(t)) × · · · × wN,1 (θN (t)) ,

w2 (θ(t)) = w1,1 (θ1(t)) × · · · × wN,2 (θN (t)) ,

...

wR (θ(t)) = w1,I1 (θ1(t)) × · · · × wN,IN (θN (t)) ,

where R = I1 × I2 × · · · × IN is the total number of vertex systems, In, n = 1, . . . , N, is the index upper
bounds of the weighting functions used in the n-th dimension of the parameter vector θ(t), wr : RN → R

is a continuous mapping weighting function, wn,j (θn(t)) , j = 1, . . . , In, n = 1, . . . , N is the j-th one-
dimensional parameter weighting function defined on the n-th dimension of Θ, and θn(t) is the n-th
element of the parameter vector θ(t). The equation (4) becomes [5]

S (θ(t)) ≈

I1
∑

i1=1

I2
∑

i2=1

· · ·

IN
∑

iN=1

N
∏

n=1

wn,in (θn(t))Si1,i2,...,iN , (7)
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with
{

∀i, n, θn(t) : wn,i (θn(t)) ≥ 0, ∀n, θn(t) :

In
∑

in=1

wn,in (θn(t)) = 1

}

. (8)

Note that the subscripts r = 1, . . . , R, R =
∏N

n=1 In and ordering(i1, i2, . . . , iN ) of vertex systems S in
(4) and (7) are the same, respectively [5, 11]. That is

Sr =

(

Ar Br

Cr Dr

)

= Si1,i2,...,iN . (9)

The explicit form (7) can be reformulated in terms of tensor algebra as [5]

S (θ(t)) ≈

(

S
N

⊠
n=1

Wn (θn(t))

)

, (10)

where the row vector Wn (θn(t)) ∈ R
In contains the one-dimensional parameter weighting functions

wn,in (θn(t)) , in = 1, . . . , In, n = 1, . . . , N . The (N+2) dimensional tensor S ∈ R
I1×I2×···×IN×(p+q2)×(p+m2)

is constructed from vertex systems Si1,i2,...,iN ∈ R
(p+q2)×(p+m2)

Therefore, an LPV system (1) can be approximated for any parameter θ(t) ∈ Θ as a TP type polytopic
model in terms of tensor product as [11]

(

ẋ(t)
y(t)

)

≈ S
N

⊠
n=1

Wn (θn(t))

(

x(t)
u(t)

)

, (11)

for which
∥

∥

∥

∥

S (θ(t))− S
N

⊠
n=1

Wn (θn(t))

∥

∥

∥

∥

≤ ǫ, (12)

where ǫ symbolizes the approximation error.
Note that the TP model transformation is capable of finding the exact TP type polytopic model

representation, and in well-defined cases (when the exact representation does not exist), the TP type
polytopic model is an approximation and a trade-off is supported via the singular values [34, 33].

For convenience, in the following sections, we will henceforth often drop the dependence of θ on t.

3 Stability Analysis Using Parameter-Dependent Lyapunov Func-

tions

Following Gahinet et al. [20], the TP type polytopic system (11) is said to be parameter-dependent
stable if there exists a continuously differentiable parameter-dependent Lyapunov function V (x, θ) =
xTP (θ)x whose derivative, V̇ (x, θ), is negative along all state trajectories and is given by V̇ (x, θ) =

xT
(

AT(θ)P (θ) + P (θ)A(θ) + Ṗ (θ)
)

x. This is equivalent to the existence of a P (θ) = PT(θ) such that

[20]
P (θ) > 0, AT(θ)P (θ) + P (θ)A(θ) + Ṗ (θ) < 0, ∀(θ, θ̇) ∈ Θ× Φ . (13)

Although an exact parameter-dependent function for a continuously differentiable parameter-dependent
Lyapunov variable P (θ) is still not established, a basis parameter-dependent function for the parameter-
dependent Lyapunov variable is suggested in [2, 37, 38] and is to copy the plant’s parameter-dependent
function. Therefore, we can constrain the basis parameter-dependent function for the parameter-dependent
Lyapunov variable to vary in a TP type polytopic fashion

P (θ) =

R
∑

r=1

wr (θ)Pr

= w1(θ)P1 + w2(θ)P2 + · · ·+ wR(θ)PR (14)

Note that the weighting functions wr(θ) can be determined using (6) and Pr are the matrix vertices.
And also, note that obtaining Ṗ (θ) by differentiating (14) with respect to time gives an expression with
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a large number of terms. Hence we propose to convert (14) into an affine form using an equation-error
method (least-squares method) [24, 16] in order to achieve a simpler form of Ṗ (θ).

The least-squares problem for the P (θ) in an affine form is formulated as

wtpPtp = θaffPaff + υ (15)

where

wtp =











w1 (θ1(1), θ2(1), . . . , θN (1)) w2 (θ1(1), θ2(1), . . . , θN (1)) · · · wR (θ1(1), θ2(1), . . . , θN (1))
w1 (θ1(2), θ2(2), . . . , θN (2)) w2 (θ1(2), θ2(2), . . . , θN (2)) · · · wR (θ1(2), θ2(2), . . . , θN (2))

...
w1 (θ1(L), θ2(L), . . . , θN (L)) w2 (θ1(L), θ2(L), . . . , θN (L)) · · · wR (θ1(L), θ2(L), . . . , θN (L))











Ptp =
[

P1 P2 · · · PR

]T
(16)

θaff =











1 θ1(1) θ2(1) · · · θN (1)
1 θ1(2) θ2(2) · · · θN (2)
...
1 θ1(L) θ2(L) · · · θN (L)











Paff =
[

P̌0 P̌1 · · · P̌N

]T

υ =
[

υ(1) υ(2) · · · υ(L)
]T

(17)

The best estimator of Paff minimizes the sum of squared error υTυ, and is given by [24, 16]

Paff =
(

θTaffθaff
)−1

θTaffwtpPtp (18)

That is

P (θ) = w1(θ)P1 + w2(θ)P2 + · · ·+ wR(θ)PR

≈ P̌0 + θ1P̌1 + θ2P̌2 + · · ·+ θN P̌N (19)

Note that P̌i, i = 0, . . . , N , map to Pr, r = 1, . . . , R, using (18). Differentiating (19) with respect to time
gives

Ṗ (θ) ≈ θ̇1P̌1 + θ̇2P̌2 + · · ·+ θ̇N P̌N (20)

The affine equation (20) can also be written in terms of a convex combination of the matrix vertices
as

Ṗ (θ) ≈ β1(θ̇)P̃1 + β2(θ̇)P̃2 + · · ·+ βM (θ̇)P̃M , (21)

where M = 2N is the total number of matrix vertices and














P̃1

P̃2

P̃3

...

P̃M















=















0 v1 v2 . . . vN−1 vN
0 v1 v2 . . . vN−1 vN
0 v1 v2 . . . vN−1 vN
...
0 v1 v2 . . . vN−1 vN

























P̌0

P̌1

...
P̌N











. (22)

Following [28], in order to compute βi(θ̇), i = 1, . . . ,M , we first compute the normalised coordinates

β(θ̇j) =
vj − θ̇j
vj − vj

, j = 1, . . . , N . (23)

Then, for each vertex Φi, i = 1, . . . ,M , the corresponding polytopic coordinates are calculated by

βi(θ̇) =

N
∏

j=1

β̃(θ̇j), (24)

5



where

β̃(θ̇j) =

{

β(θ̇j), if vj is a coordinate of Φi;

1− β(θ̇j), if vj is a coordinate of Φi.

Lemma 3.1 [14, 17] A given symmetric matrix polytope, N(θ) ∈ R
p×p, for which N(θ) =

∑M

i=1 αi(θ)N̂i,
where αi(θ) is determined using (23) and (24), is a negative definite symmetric matrix for all possible
parameter trajectories, N(θ) < 0, ∀θ ∈ Θ, if and only if N̂i < 0, i = 1, . . . ,M .

The plant state matrix A(θ) of the TP type polytopic system (11) can also be written in terms of a
convex combination of the matrix vertices as

A(θ) =

R
∑

r=1

wr(θ)Ar

= w1(θ)A1 + w2(θ)A2 + · · ·+ wR(θ)AR, (25)

Substituting (14), (21) and (25) into (13), and recalling that
∑R

r=1 wr(θ) = 1 and
∑M

j=1 βj(θ̇) = 1,
we get

R
∑

r=1

wr(θ)Pr > 0,

R
∑

r=1

M
∑

k=1

w2
r(θ)βk(θ̇)

(

AT
r Pr + PrAr + P̃k

)

(26)

+ 2

R−1
∑

i=1

R
∑

j=i+1

M
∑

k=1

wi(θ)wj(θ)βk(θ̇)

(

1

2

(

AT
i Pj + PjAi +AT

j Pi + PiAj + 2P̃k

)

)

< 0,

∀
(

θ, θ̇
)

∈ Θ× Φ (27)

As
w2

r(θ)βk(θ̇) ∈ [0, 1], r = 1, . . . , R, k = 1, . . . ,M, (28)

and
2wi(θ)wj(θ)βk(θ̇) ∈ [0, 0.5], i = 1, . . . , R− 1, j = i+ 1, . . . , R, k = 1, . . . ,M, (29)

and
R
∑

r=1

M
∑

k=1

w2
r(θ)βk(θ̇) + 2

R−1
∑

i=1

R
∑

j=i+1

M
∑

k=1

wi(θ)wj(θ)βk(θ̇) = 1, (30)

by Lemma 3.1 solving (27) for parameter-dependent Lyapunov variable P (θ) =
∑R

r=1 wr(θ)Pr need only
to be done at all vertices. Hence we get the following proposition.

Proposition 3.2 The TP type polytopic system (11) is parameter-dependent stable whenever there exist
a positive definite symmetric matrix Pr, r = 1, 2, . . . , R, such that the following LMI conditions hold

Pr > 0, (31)

AT
r Pr + PrAr + P̃k < 0, (32)

AT
i Pj + PjAi +AT

j Pi + PiAj + 2P̃k < 0, (33)

for r = 1, . . . , R, k = 1, . . . ,M and 1 ≤ i < j ≤ R .

Note that P̃k, k = 1, . . . ,M , map to P̌i, i = 0, . . . , N , using (22) and P̌i, i = 0, . . . , N , map to Pr,
r = 1, . . . , R, using (18). In addition, the numbers of LMIs for (31)-(33) are R, RM and RM(R− 1)/2,
respectively. Therefore, the total number of LMIs to be solved is R(RM +M + 2)/2.
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4 Controller Synthesis Using Parameter-Dependent Lyapunov

Functions

In the previous section, a sufficient condition to guarantee the stability property of the TP closed-
loop system using parameter-dependent Lyapunov functions has been presented in which the analysis
conditions can be represented in the form of a finite number of LMIs. Next, we consider the problem of
designing a gain-scheduled output feedback H∞ control with guaranteed L2-gain parameter-dependent
performance [25, 13], γ(θ), for a class of TP type polytopic systems for which the proposed techniques in
the previous section can be directly extended to synthesizing a gain-scheduled H∞ controller.

Consider a generalised form of an LPV system (1) with state-space realisation taken from Apkarian
et al. [3]:

ẋ = A(θ)x +B1(θ)w +B2u,

z = C1(θ)x +D11(θ)w +D12u,

y = C2x+D21w, (34)

where x ∈ R
p is the state vector, w ∈ R

m1 is the generalised disturbance vector, u ∈ R
m2 is the control

input vector, z ∈ R
q1 is the controlled variable or error vector, y ∈ R

q2 is the measurement output
vector, θ ∈ Θ, θ̇ ∈ Φ, and continuous mapping matrix functions A : RN → R

p×p, B1 : RN → R
p×m1 ,

C1 : RN → R
q1×p and D11 : RN → R

q1×m1 .
Assume the LPV system (34) can be approximated for any parameter θ(t) ∈ Θ as a TP type polytopic

model in terms of the tensor product as




ẋ
z
y



 ≈ S
N

⊠
n=1

Wn (θn)





x
w
u



 , (35)

where the approximation error ǫ can be determined using (12), and





A(θ) B1(θ) B2

C1(θ) D11(θ) D12

C2 D21 0



 ≈

R
∑

r=1

wr (θ)





Ar B1r B2

C1r D11r D12

C2 D21 0



 , (36)

where the weighting functions wr(θ) are determined using (6). The gain-scheduled output feedback
H∞ control problem using the parameter-dependent Lyapunov functions is to compute a dynamic LPV
controller, K(θ), with state-space equations

ẋk = Ak(θ, θ̇)xk +Bk(θ)y,

u = Ck(θ)xk +Dk(θ)y, (37)

which stabilises the closed-loop system, (35) and (37), and minimises the closed-loop quadratic H∞

parameter-dependent performance [25, 13], γ(θ), ensures the induced L2-norm of the operator mapping
the disturbance signal w into the controlled signal z is bounded by γ(θ)

∫ t1

0

zTzdt ≤ γ2(θ)

∫ t1

0

wTwdt, ∀t1 ≥ 0, (38)

along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ × Φ. The assumed dimensions of the controller
matrices are Ak : RN × R

N → R
p×p, Bk : RN → R

p×q2 , Ck : RN → R
m2×p, and Dk : RN → R

m2×q2 .
Note that A and Ak have the same dimensions, since we restrict ourselves to the full-order case.

The closed-loop system, (35) and (37), is described by the state-space equations

[

ẋ
ẋk

]

= Acl(θ, θ̇)

[

x
xk

]

+Bcl(θ)w,

z = Ccl(θ)

[

x
xk

]

+Dcl(θ)w, (39)
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where

Acl(θ, θ̇) =

[

A(θ) +B2Dk(θ)C2 B2Ck(θ)

Bk(θ)C2 Ak(θ, θ̇)

]

,

Bcl(θ) =

[

B1(θ) +B2Dk(θ)D21

Bk(θ)D21

]

,

Ccl(θ) =
[

C1(θ) +D12Dk(θ)C2 D12Ck(θ)
]

,

Dcl(θ) = D11(θ) +D12Dk(θ)D21 . (40)

Based on the parameter-dependent Lyapunov functions, V (x, θ) = xTP (θ)x, there is an LPV controller
K(θ) of the form of (37) that stabilises the closed-loop system, (35) and (37), if and only if there exists
P (θ) = PT(θ) such that [20]

P (θ) > 0,
d

dt

(

xTP (θ)x
)

+ zTz − γ2(θ)wTw < 0, (41)

along all possible parameter trajectories, ∀(θ, θ̇) ∈ Θ× Φ. The inequality (41) leads to [20]





AT
cl(θ, θ̇)P (θ) + P (θ)Acl(θ, θ̇) + Ṗ (θ) P (θ)Bcl(θ) CT

cl(θ)
BT

cl(θ)P (θ) −γ(θ)I DT
cl(θ)

Ccl(θ) Dcl(θ) −γ(θ)I



 < 0 . (42)

We introduce intermediate controller variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ), as [2, 18]

Ak(θ, θ̇) = N−1(θ)
(

X(θ)Ẏ (θ) +N(θ)ṀT(θ) + Âk(θ)

−X(θ) (A(θ)−B2Dk(θ)C2)Y (θ) −B̂k(θ)C2Y (θ)−X(θ)B2Ĉk(θ)
)

M−T(θ), (43)

Bk(θ) = N−1(θ)
(

B̂k(θ)−X(θ)B2Dk(θ)
)

, (44)

Ck(θ) =
(

Ĉk(θ)−Dk(θ)C2Y (θ)
)

M−T(θ), (45)

where N(θ) = −X(θ)+Y −1(θ), Ṅ(θ) = −Ẋ(θ)−Y −1(θ)Ẏ (θ)Y −1(θ), M(θ) = Y (θ) and Ṁ(θ) = Ẏ (θ). A
pair of positive definite symmetric matrices (X(θ), Y (θ)) are taken from the structure of the parameter-
dependent Lyapunov variable, P (θ), which is defined as [35]

P (θ) =

[

X(θ) −
(

X(θ)− Y −1(θ)
)

−
(

X(θ)− Y −1(θ)
)

X(θ)− Y −1(θ)

]

=

[

Ip X(θ)
0p×p −

(

X(θ)− Y −1(θ)
)

] [

Y (θ) Ip
Y (θ) 0p×p

]

−1

, (46)

Ṗ (θ) =

[

Ẋ(θ)

−Ẋ(θ)− Y −1(θ)Ẏ (θ)Y −1(θ)

−Ẋ(θ) − Y −1(θ)Ẏ (θ)Y −1(θ)

Ẋ(θ) + Y −1(θ)Ẏ (θ)Y −1(θ)

]

, (47)

P−1(θ) =

[

Y (θ) Y (θ)

Y (θ)
(

X(θ)− Y −1(θ)
)

−1
X(θ)Y (θ)

]

=

[

Y (θ) Ip
Y (θ) 0p×p

] [

Ip X(θ)
0p×p −

(

X(θ)− Y −1(θ)
)

]

−1

, (48)

where the positive definite symmetric matrices

(X(θ), Y (θ)) ∈ R
p×p, X(θ)− Y −1(θ) ≥ 0, (49)

and [27]
rank

(

X(θ)− Y −1(θ)
)

≤ p. (50)
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Following Chumalee and Whidborne [17], the intermediate controller variables, i.e. Âk(θ), B̂k(θ),
Ĉk(θ) and Dk(θ), including (X(θ), Y (θ)) and γ(θ), are proposed to be varied in a TP type polytopic
fashion as

Âk(θ) = w1(θ)Âk1
+ · · ·+ wR(θ)ÂkR

, (51)

B̂k(θ) = w1(θ)B̂k1
+ · · ·+ wR(θ)B̂kR

, (52)

Ĉk(θ) = w1(θ)Ĉk1
+ · · ·+ wR(θ)ĈkR

, (53)

Dk(θ) = w1(θ)Dk1
+ · · ·+ wR(θ)DkR

, (54)

X(θ) = w1(θ)X1 + · · ·+ wR(θ)XR

≈ X̌0 + θ1X̌1 + · · ·+ θN X̌N , (55)

Y (θ) = w1(θ)Y1 + · · ·+ wR(θ)YR

≈ Y̌0 + θ1Y̌1 + · · ·+ θN Y̌N , (56)

Ẋ(θ) ≈ θ̇1X̌1 + θ̇2X̌2 + · · ·+ θ̇N X̌N

≈ β1(θ̇)X̃1 + · · ·+ βM (θ̇)X̃M , (57)

Ẏ (θ) ≈ θ̇1Y̌1 + θ̇2Y̌2 + · · ·+ θ̇N Y̌N

≈ β1(θ̇)Ỹ1 + · · ·+ βM (θ̇)ỸM , (58)

γ(θ) = w1(θ)γ1 + w2(θ)γ2 + · · ·+ wR(θ)γR . (59)

Note that X̃i and Ỹi, i = 1, . . . ,M , map to X̌j and Y̌j , j = 0, . . . , N , using (22) and X̌j and Y̌j ,

j = 0, . . . , N , also map to Xr and Yr, r = 1, . . . , R, using (18). In addition, βi(θ̇), i = 1, . . . ,M can be
determined using (23) and (24).

In contrast with the explicit controller formulae [2, 18], this proposed technique offers obvious advan-
tages in reducing computational burden and ease of controller implementation because the intermediate
controller variables can be constructed as a matrix-valued function in the polytopic coordinates of the
scheduled parameters. Define

P1(θ) =

[

Y (θ) Ip
Y (θ) 0p×p

]

. (60)

Following Apkarian and Adams [2], by pre-multiplying the first row and post-multiplying the first column
of (42) by PT

1 (θ) and P1(θ) respectively and substituting (40) and (43)–(47) in (42), we get













Ẋ(θ) +
(

X(θ)A(θ) + B̂k(θ)C2(θ) + (⋆)
)

⋆

ÂT
k (θ) +A(θ) +B2(θ)Dk(θ)C2(θ) −Ẏ (θ) +

(

A(θ)Y (θ) +B2(θ)Ĉk(θ) + (⋆)
)

BT
1 (θ)X(θ) +DT

21(θ)B̂
T
k (θ) BT

1 (θ) +DT
21(θ)D

T
k (θ)B

T
2 (θ)

C1(θ) +D12(θ)Dk(θ)C2(θ) C1(θ)Y (θ) +D12(θ)Ĉk(θ)

⋆ ⋆
⋆ ⋆

−γI ⋆
D11(θ) +D12(θ)Dk(θ)D21(θ) −γI









< 0, (61)

where the notation ⋆ represents a symmetric matrix block. Moreover, substituting (36) and (51)–(59) in
(61), we have (62), shown at the top of the next page, in which the inequality (62) can be also rewritten
as

R
∑

r=1

M
∑

k=1

w2
r(θ)βk(θ̇)

(

Ψclr +QTK̂T
r P + PTK̂rQ

)

+ 2

R−1
∑

i=1

R
∑

j=i+1

M
∑

k=1

wi(θ)wj(θ)βk(θ̇)

(

1

2

(

Ψclij +QTK̂T
j PPTK̂jQ+Ψclji +QTK̂T

i P + PTK̂iQ
)

)

< 0

(63)
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R
∑

r=1

M
∑

k=1

w2
r(θ)βk(θ̇)









X̃k +
(

XrAr + B̂krC2 + (⋆)
)

⋆ ⋆

ÂT
kr

+ Ar +B2DkrC2 −Ỹk +
(

ArYr + B2Ĉkr + (⋆)
)

⋆

BT
1r

Xr +DT
21
B̂T

kr
BT

1r
+DT

21
DT

kr
BT

2
−γrI

C1r +D12DkrC2 C1rYr +D12Ĉkr D11r +D12DkrD21

⋆
⋆
⋆

−γrI






+ 2

R−1
∑

i=1

R
∑

j=i+1

M
∑

k=1

wi(θ)wj(θ)βk(θ̇)













X̃k + 1

2

(

XjAi + B̂kj
C2 +XiAj + B̂ki

C2 + (⋆)
)

1

2

(

ÂT
kj

+Ai + B2Dkj
C2 + ÂT

ki
+Aj + B2Dki

C2

)

1

2

(

BT
1i
Xj +DT

21
B̂T

kj
+ BT

1j
Xi +DT

21
B̂T

ki

)

1

2

(

C1i +D12Dkj
C2 + C1j +D12Dki

C2

)

⋆ ⋆ ⋆

−Ỹk + 1

2

(

AiYj +B2Ĉkj
+AjYi + B2Ĉki

+ (⋆)
)

⋆ ⋆

1

2

(

BT
1i

+DT
21
DT

kj
BT

2
+ BT

1j
+DT

21
DT

ki
BT

2

)

−

1

2
(γi + γj) I ⋆

1

2

(

C1iYj +D12Ĉkj
+ C1jYi +D12Ĉki

)

1

2

(

D11i+D12Dkj
D21 +D11j +D12Dki

D21

)

−

1

2
(γi+γj) I











< 0

(62)

where

Ψclr =









X̃k +XrAr + (⋆) ⋆ ⋆ ⋆

Ar −Ỹk +ArYr + (⋆) ⋆ ⋆
BT

1rXr BT
1r −γrI ⋆

C1r C1rYr D11r −γrI









,

K̂r =

(

Âkr
B̂kr

Ĉkr
Dkr

)

,

Ψclij =









X̃k +XjAi + (⋆) ⋆ ⋆ ⋆

Ai −Ỹk +AiYj + (⋆) ⋆ ⋆
BT

1iXj BT
1i γiI ⋆

C1i C1iYj D11i −γiI









,

Ψclji =









X̃k +XiAj + (⋆) ⋆ ⋆ ⋆

Aj −Ỹk +AjYi + (⋆) ⋆ ⋆
BT

1jXi BT
1j γjI ⋆

C1j C1jYi D11j −γjI









,

Q =
[

C, D21, 0(p+q2)×q1

]

,

P =
[

B̃T, 0(p+m2)×m1
, DT

12

]

,

B̃ =

[

Ip 0
0 B2

]

, C =

[

0 Ip
C2 0

]

,

D12 =
[

0 D12

]

, D21 =

[

0
D21

]

. (64)

By Lemma 3.1 and knowing the matrix vertices (Xr, Yr), r = 1, 2, . . . , R, the system matrix vertices
K̂r can be determined from (63), that is an LMI in K̂r, at all vertices for which (K̂1, K̂2, . . . , K̂R)
have to satisfy all of R(RM +M + 2)/2 LMIs. Furthermore, knowing Âkr

, B̂kr
, . . . , Dkr

, the controller
system matrices Ak(θ, θ̇), . . . , Dk(θ) can be computed on-line in real-time using (43)–(45) and (54) with
instantaneous measurement values of θ and θ̇, where the proposed intermediate controller variables Âk(θ),
B̂k(θ), Ĉk(θ) and Dk(θ), and (X(θ), Y (θ)) are varied in a TP type polytopic form and they can be
computed on-line in real-time using (51)–(56). Hence, the proposed method reduces computational
burden and eases controller implementation compared to the explicit controller formulae [2, 18].

However, usually, the parameter derivatives either are not available or are difficult to estimate during
system operation [2]. To avoid using the measured value of θ̇, we can constrain either X(θ) or Y (θ) to

depend on θ. This yields Ẋ(θ)Y (θ)+Ṅ(θ)MT(θ) = −
(

X(θ)Ẏ (θ) +N(θ)ṀT(θ)
)

= 0 [2], hence equation
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



X̃k +XrAr + AT
r Xr XrB1r CT

1r

BT
1r
Xr −γrI DT

11r

C1r D11r −γrI



− σ





CT
2

DT
21

0





[

C2 D21 0
]

< 0, (69)





−Ỹk + YrA
T
r + ArYr YrC

T
1r

B1r

C1rYr −γrI D11r

BT
1r

DT
11r

−γrI



− σ





B2

D12

0





[

BT
2 DT

12 0
]

< 0, (70)





2X̃k +XjAi + AT
i Xj +XiAj + AT

j Xi XjB1i +XiB1j CT
1i

+ CT
1j

BT
1i
Xj +BT

1j
Xi − (γi + γj) I DT

11i
+DT

11j

C1i + C1j D11i +D11j − (γi + γj) I



− σ





CT
2

DT
21

0





[

C2 D21 0
]

< 0, (71)





−2Ỹk + YjA
T
i + AiYj + YiA

T
j + AjYi YjC

T
1i

+ YiC
T
1j

B1i +B1j

C1iYj + C1jYi − (γi + γj) I D11i +D11j

BT
1i

+BT
1j

DT
11i

+DT
11j

− (γi + γj) I



− σ





B2

D12

0





[

BT
2 DT

12 0
]

< 0, (72)

[

Xr I

I Yr

]

> 0, for r = 1, . . . , R, k = 1, . . . ,M and 1 ≤ i < j ≤ R. (73)

(43) becomes

Ak(θ) = N−1(θ)
(

Âk(θ)−X(θ) (A(θ) −B2(θ)Dk(θ)C2(θ)) Y (θ)

−B̂k(θ)C2(θ)Y (θ)−X(θ)B2(θ)Ĉk(θ)
)

M−T(θ) . (65)

Lemma 4.1 [23, Finsler’s Lemma] Given an inequality problem of the form

Ψ+QTKTP + PTKQ < 0, (66)

where Ψ ∈ R
m×m is a symmetric matrix, Q and P are matrices with column dimension m. Let σ be any

real number σ ∈ R; the above problem is solvable for a matrix K of compatible dimensions if and only if

Ψ− σQTQ < 0, (67)

Ψ− σPTP < 0 . (68)

Note that Gahinet and Apkarian’s projection lemma [19] is also equivalent to Finsler’s Lemma [23].
By Lemmas 3.1 and 4.1, the LMIs of (63) are solvable at all vertices for K̂r, r = 1, . . . , R if and only if

there exist a pair of positive definite symmetric matrices (X(θ), Y (θ)) that satisfy the following theorem.

Theorem 4.2 There exists an LPV controller K(θ) guaranteeing the closed-loop system, (35) and (37),
quadratic H∞ parameter-dependent performance, γ(θ), along all possible parameter trajectories, ∀(θ, θ̇) ∈
Θ × Φ, if and only if the LMI conditions (69)–(73), shown at the top of the page, hold for some real
number σ and some positive definite symmetric matrices (X(θ), Y (θ)), which further satisfy

rank
(

X(θ)− Y −1(θ)
)

≤ p.

Note that X̃k and Ỹk, k = 1, . . . ,M , map to X̌j and Y̌j , j = 0, . . . , N , using (22) and X̌j and Y̌j ,
j = 0, . . . , N , also map to Xr and Yr, r = 1, . . . , R, using (18). The inequality (73) ensuresX(θ), Y (θ) > 0
and X(θ)− Y (θ)−1 ≥ 0.

Note also that Theorem 4.2 provides a new approach for designing a gain-scheduled H∞ controller
with guaranteed L2-gain parameter-dependent performance [25, 13], γ(θ), for a class of TP type polytopic
models using parameter-dependent Lyapunov functions.
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5 Missile Autopilot Design

5.1 Missile pitch-axis LPV model

The quasi-LPV model of a missile pitch-axis dynamic system, taken from Wu et al. [36, 37], is:

[

α̇
q̇

]

=

[

KαM
(

anα
2 + bn |α|+ cn

(

−M
3 + 2

))

cos(α) 1
KqM

2
(

amα2 + bm |α|+ cm
(

8M
3 − 7

))

0

] [

α
q

]

+

[

KαMdn cos(α)
KqM

2dm

]

δ,

[

η
q

]

=

[

KzM
2
(

anα
2 + bn |α|+ cn

(

−M
3 + 2

))

0
0 1

] [

α
q

]

+

[

KzM
2dn

0

]

δ, (74)

where the various plant variables are:

α Angle of attack in degrees,
q Pitch rate in degrees per second,
δ Actual tail deflection angle in degrees,
η Actual normal acceleration in g’s,
M Mach number,

and also, the numerical constants in the plant model are:

an = 0.000103 deg−3, am = 0.000215 deg−3,

bn = −0.00945 deg−2, bm = −0.0195 deg−2,

cn = −0.1696 deg−1, cm = 0.051 deg−1,

dn = −0.034 deg−1, dm = −0.206 deg−1,
Kα = 1.18587, Kq = 70.586,
Kz = 0.6661697.

5.2 Missile pitch-axis TP model

One can see from the missile pitch-axis quasi-LPV system (74) that it is nonlinearly dependent on the
scheduled parameters (α,M). The model is valid for the missile travelling between Mach number 2 and
4 at an altitude of 20,000 ft. The missile flight conditions, taken from Wu et al. [37], are that α and M
vary from −25◦ to 25◦ and 2 to 4 respectively. However, it is observed that the state-space entries of the
quasi-LPV system (74) are symmetric in terms of parameter α, therefore only positive α values need to
be considered.

Hence, we defined the transformation space as Θ = [0, 25]×[2, 4] and let the dimension of the sampling
grid be 400× 200. Next, we applied the MATLAB Tensor Product Model Transformation Toolbox from
Baranyi et al. [7] to determine the vertex systems Sr, r = 1, . . . , R and the weighting functions wr(θ).
In addition, we used the weighting type [11, 21, 22] of cno convex hull during the transformation in order
to have a tight hull representation. We received the size of tensor S as 5 × 4 × 4 × 3 with the singular
values in α dimension as 20.6260× 103, 15.4510× 103, 3.6796, 25.7095× 10−3 and 227.9305× 10−6, and
in M dimension as 21.6549× 103, 13.5573× 103, 3.3806× 103 and 820.7544× 10−3.

Note that the weighting function type strongly influences the controller and observer design, thus,
convex hull manipulation could be very important in finding the best control performance.

This means that the missile pitch-axis quasi-LPV system (74) can be approximated for any parameter
(α,M) ∈ [−25, 25] × [2, 4] as a convex combination of 5 × 4 = 20 vertex systems from which, for this
missile autopilot design example, the 5 × 4 vertices is an approximate representation of the quasi-LPV
system (74). After comparing the decomposed TP type polytopic model with the quasi-LPV model (74)
over 4,000 test points of randomly selected parameter values (i.e. α and M), the maximum and mean
errors, ǫ, in L2 matrix norm were obtained as 7.5160× 10−12 and 3.8402× 10−12 respectively.

However, in practice, a small number of vertices is preferred for synthesising and implementing an
LPV controller in real applications. Therefore, we kept only the three largest singular values for both α
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and M dimensions. The vertex systems (Sr or Si1,i2,...,iN ) was reduced to 3× 3 = 9, as shown below

S1 = S1,1 =









−1.2029 1.0000 −0.1176
−236.9920 0 −135.6698
−2.2717 0 −0.2113

0 1.0000 0









, (75)

S2 = S2,1 =









−1.1471 1.0000 −0.1287
−174.0876 0 −135.6698
−1.9797 0 −0.2113

0 1.0000 0









, (76)

...

S9 = S3,3 =









−0.5306 1.0000 −0.1610
211.1934 0 −232.6514
−1.2050 0 −0.3624

0 1.0000 0









. (77)

Theoretically, the maximum error in the L2 matrix norm approximation is the sum of the discarded
small singular values, that is, 25.7095× 10−3+227.9305× 10−6+820.7544× 10−3 = 0.8467. However, we
have compared the decomposed TP type polytopic model with the quasi-LPV model (74) over 4,000 test
points of randomly selected parameter values, i.e. α and M , in the ranges given by Θ. We received the
maximum and mean error, ǫ, in L2 matrix norm as 0.0198 and 0.0103 respectively. One can see from the
approximation error ǫ that the ǫ from the 3× 3 vertices case is much larger than the one from the 5× 4
vertices case. However, the decomposed TP type polytopic model can be reduced to a system of half the
complexity while it is still accurate enough for real world experiments. Hence, the missile pitch-axis TP
model can be written as

[

α̇
q̇

]

≈

3
∑

i=1

3
∑

j=1

w1,i (α)w2,j (M)

(

Ai,j

[

α
q

]

+Bi,jδ

)

,

[

η
q

]

≈
3

∑

i=1

3
∑

j=1

w1,i (α)w2,j (M)

(

Ci,j

[

α
q

]

+Di,jδ

)

, (78)

where the one-dimensional parameter weighting function wn,k (θn) , k = 1, . . . , In, n = 1, 2, are presented
in figure 1 and the system matrices Ai,j , Bi,j , Ci,j , and Di,j are taken from the vertex systems Sr or
Si1,i2,...,iN , i.e. (75)–(77).

5.3 Missile LPV autopilot design

The performance requirements for designing an LPV autopilot taken from Wu et al. [36, 37] are: (i)
robust stability is over the operating range (α,M) ∈ [−25, 25]× [2, 4] (ii) the step response settling time
is no more than 0.35 sec, the maximum overshoot is no greater than 10%, and the steady-state error is
less than 1% and (iii) the maximum tail deflection rate should not exceed 25 deg/sec for a 1g normal
acceleration step command.

Thus, an LPV controller is synthesized with the criterion
∥

∥[W1S, W2KS]T
∥

∥

∞
< 1 where S =

[I + GK]−1 and KS = K[I + GK]−1 are the sensitivity function and the control sensitivity function,
respectively. The objective of this mixed-sensitivity function is to shape the sensitivity function and
control sensitivity function frequency responses with performance weighting functions W1 and robustness
weighting functions W2 respectively.

The model weighting, Wmodel, sensor noise weighting, Wsnoisη and Wsnoisq , performance weighting,
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Table 1: QuadraticH∞ parameter-dependent performance
[25, 13]

γ(θ)a (X,Y ) b (X(θ), Y ) c (X,Y (θ)) c (X(θ), Y (θ)) c

γ1 1.8347 1.8691 0.8822 0.8104
γ2 1.7621 1.7869 0.7193 0.5656
γ3 1.7851 1.8075 0.7268 0.6007
γ4 3.7391 3.7053 1.5119 1.4599
γ5 3.3374 3.3092 1.5035 1.4458
γ6 4.3685 4.3166 1.8382 1.7991
γ7 2.6063 2.6773 0.8719 0.8175
γ8 1.9678 2.0114 0.7134 0.5233
γ9 2.5370 2.5833 0.9153 0.8304
a Equation (59).
b Single quadratic Lyapunov function (SQLF) [15].
c Parameter-dependent Lyapunov function (PDLF)
(Theorem 4.2).

W1, and robustness weighting, W2, taken from Wu et al. [36, 37] are

Wmodel(s) =
144 (−0.05s+ 1)

s2 + 2× 0.8× 12s+ 144
, Wsnoisη(s) = Wsnoisq (s) = 0.001,

W1(s) =
0.5 (s+ 34.642)

s+ 0.057735
, W2(s) =

s

25 (0.005s+ 1)
,

Wpre−filter(s) =
1500

s+ 1500
, Wpost−filter(s) =

( 1000
s+1000 0

0 1000
s+1000

)

. (79)

The model weighting Wmodel represents a desired ideal model for the closed-looped system for which it
reflects the step response of less than 0.35 sec and also incorporates the non-minimum phase characteristics
of missile plant. The right-half zero ranges from 19 to 46, then, the slowest zero (s = 20) was put in
the desired command response filter [36, 37]. The sensor noise weightings, Wsnoisη and Wsnoisq , represent
frequency domain models of sensor noise from which their gains 0.001 (-60 dB) were selected for all
frequencies.

In addition, W1 has a low frequency gain 300 (49 dB), a -3 dB frequency around 0.06 rad/sec, which
corresponds to 1/3% tracking error, and high frequency gain 0.5 (-6 dB) to limit overshoot less than 5%
while W2 has a small low frequency gain, a high frequency gain of 8 (18 dB), and a -3 dB frequency of
around 200 rad/sec, which corresponds a penalty on the high frequency response of the control signals,
and 200 rad/sec desired bandwidth of control sensitivity function. Hence, we should get a controller that
has good command following and disturbance attenuation, low sensitivity to measurement noise, has
reasonably small control efforts and that is robustly stable to additive plant perturbations. Moreover,
Wpre−filter and Wpost−filter are required in order to make B2, D12, C2 and D21 matrices of LPV models
to be parameter-independent and also to make D22 = 0 [3].

After the missile pitch-axis TP model (78) was augmented with all weighting functions (79), Theorem
4.2 was applied to compute a missile LPV autopilot with the minimum and maximum variation of
parameters (α, M) and (α̇, Ṁ), taken from Wu et al. [37], as [0, 25]× [2, 4] and [−200, 200]× [−0.5, 0.5]
respectively where the LMIs are solved using the MATLAB Robust Control Toolbox function [4], mincx,
in which the resulting parameter-dependent performance [25, 13], γ(θ), is presented in Table 1. One
can see from Table 1 that, the obtained γ(θ) by using single quadratic Lyapunov function, (X,Y ) case,
is more conservative than by using parameter-dependent Lyapunov function, (X(θ), Y ), (X,Y (θ)) and
(X(θ), Y (θ)) cases. In addition, the γ(θ) results that are obtained by (X,Y (θ)) and (X(θ), Y (θ)) cases
are similar. Thus, the (X,Y (θ)) case was selected for synthesising a missile LPV autopilot in order to
demonstrate the transient response to a sequence of step acceleration commands.
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Figure 1: The cno type convex weighting functions in one-dimensional parameter, i.e. wn,k (θn), of the
missile pitch-axis TP model.

5.4 Nonlinear simulation results

For simulation purposes, Mach number is generated by [36, 37]

Ṁ(t) =
1

Vs

(

−|η(t)| sin(|α(t)|) +AxM
2(t) cos(α(t))

)

,

M(0) = 3.0, (80)

where Ax = −6.4330 lbs/slugs and Vs = 1036.4 ft/s is a speed of sound at 20, 000 ft, to provide a
reasonably realistic Mach profile. The actuator dynamics model for the tail deflection, that was used for
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simulation, are [36]
[

δ̇

δ̈

]

=

[

0 1
−ω2

a −2ζωa

] [

δ

δ̇

]

+

[

0
ω2
a

]

δc, (81)

where ζ = 0.7, ωa = 150 rad/s and

δc Commanded tail deflection angle in degrees,
δ Actual tail deflection angle in degrees,
ζ Actuator damping ratio,
ωa Actuator undamped natural frequency.

Although the scheduled parameters of an LPV system are assumed to be measurable in real-time, an
angle of attack α is not available for this missile plant. Thus, an estimated angle of attack αe was used
for simulation from which αe was computed using [36, 37]

αe =− 1.396− 0.33421MN − 3.7653δN − 0.91681δNMN

+ ηN
(

−46.03 + 21.26MN − 8.8362M2
N − 0.33564δN + 0.385δNMN + 0.32892δNM2

N

)

+ η3N
(

61.367− 69.756MN + 30.44M2
N + 3.9589δN − 15.668δNMN + 11.498δNM2

N

)

+ η5N
(

−54.655 + 94.381MN − 48.212M2
N − 4.7973δN + 18.807δNMN − 13.871δNM2

N

)

, (82)

where ηN = η/60, δN = (δ − 10)/25 and MN = M − 30.
Figure 2 shows the tracking performance of normal acceleration η, estimated angle-of-attack αe, tail-

deflection δ and tail-deflection rate δ̇ to a series of step commanded acceleration. One can see from the
simulation results that the performance goals are satisfied and the missile LPV autopilot synthesized using
parameter-dependent Lyapunov function, (X,Y (θ)) case, is less conservative than the one synthesized
using single quadratic Lyapunov function, (X,Y ) case.

6 Conclusion

In this paper, new sufficient conditions for gain-scheduled H∞ performance analysis and synthesis for a
class of TP type polytopic systems using parameter-dependent Lyapunov functions with quadratic H∞

parameter-dependent performance [25, 13], γ(θ), are as proposed in Theorem 4.2. The analysis and
synthesis conditions are represented in the form of a finite number of LMIs. The intermediate controller
variables, i.e. Âk(θ), B̂k(θ), Ĉk(θ) and Dk(θ), are proposed to be constructed as a matrix-valued function
in the polytopic coordinates of the scheduled parameters without the need for constraints on the D12 and
D21 matrices. Hence, this reduces the computational burden and eases controller implementation.

The approach was then applied to synthesise a missile LPV autopilot where it was tested with the
missile pitch-axis nonlinear model taken from [37]. The nonlinear simulation results show the effectiveness
of the proposed approach.
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