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Abstract 

Existing approaches for modelling maintenance rely on oversimplified 

assumptions which prevent them from reflecting the complexity found in 

industrial systems. In this paper, we propose a novel approach that enables the 

modelling of non-identical multi-unit systems without restrictive assumptions on 

the number of units or their maintenance characteristics. Modelling complex 

interactions between maintenance strategies and their effects on assets in the 

system is achieved by accessing event queues in Discrete Event Simulation 

(DES). The approach utilises the wide success DES has achieved in 

manufacturing by allowing integration with models that are closely related to 

maintenance such as production and spare parts systems. Additional 

advantages of using DES include rapid modelling and visual interactive 

simulation. The proposed approach is demonstrated in a simulation based 

optimisation study of a published case. The current research is one of the first 

to optimise maintenance strategies simultaneously with their parameters while 

considering production dynamics and spare parts management. The findings of 

this research provide insights for non-conflicting objectives in maintenance 

systems. In addition, the proposed approach can be used to facilitate the 

simulation and optimisation of industrial maintenance systems. 

Keywords: simulation, maintenance, Discrete Event Simulation, rapid 

modelling 
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DES: Discrete Event Simulation 

METBF: Mean Elapsed Time Between failures 

OM: Opportunistic Maintenance 

PM: Preventive Maintenance 

TTF: Time To Failure 

SA: Simulated Annealing 

1 Introduction 

Maintenance aims to retain assets in their operational states. It has emerged as 

a fundamental success ingredient in the modern industry. Enhancing the 

performance of maintenance systems through modelling and optimisation has 

been the focus of a large volume of published studies. 

Analytical modelling of maintenance prevailed for a long time. The foundations 

were laid by researchers such as Barlow and Proschan [1]. This was later 

developed extensively to include a large number of maintenance optimisation 

models [2]. In general, most of these models are developed for a specific 

system compromising of a single unit or several identical components [3]. 

However, maintenance systems in the industry are becoming much more 

complex which limits the applicability of analytical modelling techniques [4; 5]. 

The use of simulation to model maintenance systems is on the rise [6]. 

Simulation enables the modelling of complex behaviour and requires fewer 

assumptions compared to analytical modelling [7]. Although simulation is well-

established in manufacturing in general, it appears to be still developing for 

maintenance [8]. 

Few researchers presented conceptual frameworks for modelling maintenance 

using simulation [9; 10]. These frameworks were developed for specific systems 

without detailing the modelling approach or providing numerical examples. 



 

 

Figure 1-1 shows a popular approach used in several DES studies [11-13]. The 

maintenance strategy and its parameters are entered manually in the simulation 

model. The simulation then samples a Time To Failure (TTF). If the scheduled 

maintenance intervention will occur before the failure, maintenance will be 

conducted resulting in updating the cost function, scheduling the next 

maintenance intervention and sampling a new TTF. However, if the breakdown 

occurred before the maintenance intervention, a CM will be conducted. The 

process continues running for the simulation run length. However, such 

approaches have a number of limitations. The maintenance system is modelled 

separately from other inter-related systems such as production and spare parts 

logistics. This in turn limits the utilisation of the dynamic feature of DES since 

interactions between machines and the effect of maintenance on production are 

not modelled. In addition, these approaches are used to model one 

maintenance strategy only. As a result, the choice of maintenance strategies 

cannot be optimised using frameworks such as the one suggested by Alrabghi 

and Tiwari [14].  

 

Figure 1-1 An existing modelling approach used in simulation studies. Adapted 

from [11-13] 

Arab et al. [15] modelled both maintenance and production systems. However, 

they used manual DES calculations without utilising the strengths of available 

DES softwares such as rapid modelling and visual interactive simulation. On the 

other hand, Oyarbide-Zubillaga et al. [16] used an external tool to model the 

maintenance system and used that as an input to the DES model. 



 

 

The examination of surveys in the field [4; 7; 17; 18] reveals a number of 

common research gaps relating to the modelling of maintenance systems: 

1- Modelling the maintenance system in isolation of other significant and 

inter-related systems such as production and spare parts management. 

2- Modelling various maintenance strategies and policies simultaneously. 

3- Making over-simplifying assumptions resulting in a model that cannot be 

implemented in real-world systems. Such assumptions include perfect 

maintenance/ inspections, immediate maintenance actions and a single-

unit system. 

It appears as if these gaps are a result of the limitations present in the existing 

modelling approaches. Despite the potential of simulation to model complex 

maintenance systems, there remains a paucity of studies outlining adequate 

modelling approaches. 

The present study fills a gap in the literature by proposing a modelling approach 

that can be used to model and optimise maintenance systems in practice. In 

addition to addressing the abovementioned limitations, the approach further 

exploits the advantages of DES such as rapid modelling and visual interactive 

simulation. As a result, the proposed approach is expected to pave the way for 

more advanced maintenance applications. 

2 Methodology 

2.1 Modelling Maintenance Strategies  

The degradation of operational assets is inevitable. Maintenance actions are 

designed to improve the condition of assets to keep it in a functional state. 

Often maintenance strategies can be categorised into CM, PM and CBM. In 

CM, the asset degrades until it breaks down unexpectedly. In some cases, the 

asset can breakdown suddenly without warnings. PM was introduced to 

minimise the effect of unscheduled breakdowns by interfering in a planned 

manner. CBM is an advanced strategy that aims to ensure maintenance 

intervention is conducted only when needed based on an analysis of the asset’s 

condition. Predictive maintenance is seen as a part of CBM. The condition of 



 

 

assets is analysed to plan future maintenance actions. OM is closely related to 

both PM and CBM. Essentially, opportunities such as shutdowns are seized to 

preventively maintain an asset.   

A considerable amount of literature has discussed the details of modelling each 

maintenance strategy and its implications on assets in the system. This includes 

the modelling of assets degradation, the degree to which a maintenance action 

can successfully detect a failure and the degree to which a maintenance action 

can restore the asset to as good as new [19; 20]. 

However, in this paper we are considering a holistic view. Table 1 illustrates 

how the actions of a given maintenance strategy might affect assets in the 

system in different ways assuming the probability of occurrence of all failure 

modes does not change. The proposed approach enables the modelling of 

interactions amongst various maintenance strategies and their effects on the 

assets in the system. Thanks to the flexibility of DES, the proposed approach 

enables the construction of various maintenance systems based on models that 

appear in the literature. Classic examples include perfect/imperfect 

maintenance, perfect/imperfect inspections, dependencies amongst assets, 

effect of maintenance on product quality, effect of maintenance on production 

speed, various approaches to modelling asset degradation and inclusion/ 

exclusion of maintenance resources such as maintenance equipment, spare 

parts and technicians. 

Table 1 Interactions amongst maintenance strategies 

 CM PM OM CBM 

Might affect other maintenance 
strategies on the same asset? 

No Yes No Yes 

Might affect other maintenance 
strategies on the other assets? 

Yes No No No 

2.2 Discrete Event Simulation 

The term DES refers to a modelling technique where only changes in system 

states are represented. Essentially, it creates a queue of events that affect the 

system state. These events are arranged based on their timings. The simulation 

then moves through these events and apply the changes on the system without 



 

 

modelling the time between any two events. Examples of such events in a 

typical manufacturing system include the arrival of a part, the start and finish of 

cycle times on machines and the occurrence of breakdowns. Therefore, it is a 

dynamic simulation technique where changes in the system are represented 

over time. The reader is referred to [21] for more details on DES. 

DES has been applied successfully in a wide range of business and 

manufacturing applications. In fact, it is the most popular technique to model 

manufacturing systems [22]. The main features of typical DES software include 

modelling variability in statistical or empirical distributions and rapid modelling 

by providing built-in modules that accelerate the modelling process. In addition, 

a typical DES software enables visual interactive simulation where changes in 

the system are animated and users can interact during the simulation. Benefits 

of visual interactive simulation include better understanding of the model by 

visualising, interactive experimentation, improved communications to all 

stakeholders and the facilitation of model verification [23]. 

3 A Novel Approach for Modelling Complex 

Maintenance Systems 

Notations: 

MA: A single maintenance action resulting from a maintenance strategy. 

SMA: A scheduled maintenance action resulting from a maintenance strategy. 

n: Total number of assets in the system. 

i: A single asset in the system where i = 1…n 

T: simulation run length 

A novel generic approach for modelling maintenance strategies is presented in 

Figure 3-1. The approach assumes the availability of a valid DES model for the 

manufacturing system in interest as well as the availability of required 

maintenance data. There are no restrictions on the number of assets in the 

manufacturing system or the number of maintenance strategies defined for 

each asset. The assets can be either identical or non-identical. Similarly, 



 

 

maintenance strategies can be the same for all machines or each asset can 

have its unique maintenance strategy.  

 

Figure 3-1 A generic approach for modelling maintenance strategies 
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The approach consists of three steps as follows: 

1. Develop the simulation model 

The approach begins with modelling the manufacturing system. For example 

this might include assets, buffers and rules governing machine cycle times and 

movement of parts within the system. 

The required maintenance strategies and policies are then identified for each 

asset. This includes defining parameters for statistical distributions required by 

each maintenance strategy to facilitate the modelling of variability in 

Maintenance Actions (MA) whenever they occur. For example, CM strategy 

requires the sampling from a statistical distribution to obtain Mean Elapsed 

Time Between Failures (METBF) each time the asset fails. In addition, a 

sampling from a statistical distribution is required to obtain the repair time. Other 

variables can be defined if required such as the cost of conducting each MA.  

Other maintenance characteristics and assumptions can be modelled to reflect 

the required behaviour in the maintenance system. Examples include failure 

detection, effect of failures on production, administrative delays, safety rules 

and periodic tests. In addition, other aspects can be modelled as well such as 

spare parts, work shifts, repair teams and maintenance equipment. 

When the simulation is run, the simulation clock is advanced to the next 

scheduled event. If a MA is due on one of the assets in the system, the effects 

on the asset is managed in the next step.  

2. Manage the effects of Maintenance Actions on the same asset 

Whenever a MA is due on asset i in the system, a check is conducted to confirm 

that the criteria is met for the MA to be executed. For instance, CBM requires 

the current relevant condition indicator to exceed a specific threshold in order 

for the MA to be conducted. Likewise, some PM policies will be skipped if the 

asset was broken down when the MA is due. Other criteria can be added 

depending on the maintenance system and its assumptions. Some examples 

include: availability of repair teams, availability of repair tools and availability of 

spare parts. If the criteria is not met, the current MA will be skipped, costs will 



 

 

be updated if required and the next MA of that maintenance strategy for asset i 

will be scheduled. 

However, if the criterion of conducting the MA is met, a check will be conducted 

to determine if the current MA was initiated by a maintenance strategy that 

affects other maintenance actions on the same asset. As illustrated in Table 1, 

maintenance strategies such as PM and CBM affect CM actions. The 

interactions between maintenance strategies can be implemented by accessing 

the event queue for asset i and altering the timing of the relevant SMA. The 

effects of the current MA on other assets in the system are managed in the next 

step. 

The current MA will be conducted on asset i after scheduling the next MA. 

Whenever a MA is conducted, costs are updated and samples are taken from 

the relevant distributions to schedule the new timing of an activity or define the 

repair time for a MA.  

3. Manage the effects of Maintenance Actions on other assets 

The current MA might affect SMA on other assets in the system. In that case, a 

check is conducted to confirm the criteria are met for the effects to take place. 

The event queue for these assets is accessed in order to apply the required 

changes. Steps 2 and 3 are repeated during the simulation every time a MA is 

due on any asset in the system. 

The next section presents detailed approaches for modelling common 

maintenance strategies namely Time-Based PM, OM and CBM with periodic 

inspections. These detailed approaches are special cases from the generic 

approach described in this section. 

3.1 Common Cases  

3.1.1 Time-Based Preventive Maintenance 

In time-based PM, the asset is maintained periodically to minimise unexpected 

breakdowns. Figure 3-2 illustrates the approach for modelling a manufacturing 

system where time-based PM is applied.  



 

 

 

Figure 3-2 An approach for modelling time-based PM 

1. Develop the simulation model 

As assets can still breakdown unpredictably, both CM and PM are defined as 

possible maintenance strategies for each asset. Variables related to CM include 

METBF, repair times and CM costs whereas variables related to PM include PM 

frequency, repair times and PM costs. As the simulation clock advances, two 

maintenance strategies are possible on each asset, either CM or PM. 

2. Manage the effects of Maintenance Actions on the same asset 

When machines have an unscheduled breakdown, a CM duration is sampled to 

set the CM repair time, CM cost is added for asset i, and METBF is sampled to 

schedule the next CM. In addition, CM will be conducted on asset i which 

means it will not be available for production. 

However, when PM is due on asset i, PM duration is sampled to set the PM 

repair time and PM cost is added for asset i. Additionally, a sample from the 

METBF distribution will be drawn and the next CM breakdown will be changed 

to reflect the fact that PM has occurred. Finally, PM will be conducted on asset i 

making it unavailable for use in the production system. Nonetheless, if the time 

of PM coincidentally occurred when asset i is broken down, the current PM will 

be skipped and the next PM will run as scheduled.  
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In this case, the third step of the approach is not required since none of the 

maintenance strategies considered for asset i might have an effect on other 

assets in the system. 

3.1.2 Opportunistic Maintenance 

As a strategy, OM utilises the breakdown of as asset to maintain another asset. 

The approach for modelling OM is illustrated in Figure 3-3.  

 

Figure 3-3 An approach for modelling OM 

1. Develop the simulation model 

CM and OM are identified as maintenance strategies for each asset. Variables 

related to CM include METBF, repair times and CM costs whereas variables 

related to OM include repair times and OM costs. When the simulation starts, 

the clock will advance running the simulation model until a CM becomes due to 

an asset in the system. The effects of CM on the same asset are managed in 

the next step.  

2. Manage the effects of Maintenance Actions on the same asset 

The asset subjected to CM will be made unavailable to conduct the required 

maintenance activities. Additionally, CM costs will be incurred and the next 

breakdown will be scheduled. 
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All other machines on OM strategy in the system will be stopped for OM during 

which an OM cost will be incurred and a sampling for OM duration will take 

place. In addition, the next breakdown will be rescheduled according to the 

METBF sampling. If OM coincidentally occurs while the asset has broken down 

it will be skipped without incurring any costs. 

3.1.3 Condition Based Maintenance with Periodic Inspections 

CBM strategy aims to further enhance the overall performance of assets by 

ensuring maintenance interventions are conducted only when needed. This is 

achieved by monitoring the condition of the asset and intervening when the 

condition exceeds a pre-set threshold. Figure 3-4 shows a modelling approach 

for CBM where the condition of assets is monitored by periodic inspections. 

 

Figure 3-4 An approach for modelling CBM with periodic inspections 

1. Develop the simulation model 

Both CM and CBM are defined as maintenance strategies for each asset. CM 

variables include METBF, repair times and CM costs whereas CBM variables 

include inspection frequencies, inspection costs, CBM thresholds, CBM repair 

times and CBM costs. CM and CBM effects are managed in the next step. 
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The path of CM is similar to the one discussed above in time-based PM. 

However, in this case, the degradation level for asset i is set to the normal 

operation level after each CM.  

If the MA was periodic inspection as part of the CBM strategy, a check is made 

to ensure the current wear level of asset i exceeds the CBM threshold. A 

sampling from CBM duration will then take place to conduct CBM on asset i in 

addition to updating CBM costs. The degradation level for asset i is set to the 

normal operation level and the next CM will be rescheduled according to the 

sampling of METBF.  

If an inspection reveals a value of degradation level less than the CBM 

threshold then CBM will be skipped and the next inspection will run as 

scheduled. However, CBM costs will be updated to add the incurred inspection 

cost. 

In this case, the third step is not required as the considered strategies do not 

affect other assets. 

4 Case Study Application 

Notations: 

MSi Maintenance strategy for machine i 

PMfreqi Preventive maintenance frequency for machine i 

Qi Order quantity for SPi 

si Reorder level for SPi 

SPi Spare part for machine i 

In this section, we demonstrate the application of the modelling approach 

through a simulation optimisation study of a published case [24]. In order to 

optimise the maintenance system, we follow the simulation-based optimisation 

framework suggested by Alrabghi and Tiwari [14]. 



 

 

4.1 Simulation-Based Optimisation Framework for Maintenance 

Systems 

Alrabghi and Tiwari [14] suggested a framework for simulation based 

optimisation of maintenance systems (See Figure 4-1). It provides a systematic 

methodology that details the steps required to connect the simulation model to 

an optimisation engine. Not only it provides guidance in terms of formulating the 

optimal problem for the maintenance system at hand but it also provides 

support and assistance in defining the optimisation scope and investigating 

applicable maintenance strategies. Additionally, it considers current issues 

relating to maintenance systems both in research and in practise such as 

uncertainty, complexity and multi-objective optimisation. 

 

Figure 4-1 Simulation-Based Optimisation Framework for Complex Maintenance 

Systems on a High Level. Source: [14]. 

In addition to the first level shown in Figure 4-1, instructions for each step of the 

framework are provided in two more levels. 

4.2 Simulation Modelling 

Main assumptions include perfect maintenance where assets become as good 

as new following maintenance interventions and constant maintenance costs. 

As shown in Figure 4-2, Mean Elapsed Time Between Failures (METBF) is 

defined as the mean time between the start of any two consecutive failures. 
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Figure 4-2 Mean Elapsed Time Between Failures (METBF) and Mean Time To 

Repair (MTTR) Notations 

A Discrete Event Simulation model was developed using Witness 14 as it is 

already available within the research group. Each simulation is run for a number 

of replications to account for the variability arising from stochastic maintenance 

and production processes. A graphical method [23] is adopted to define a 

sufficient number of replications. It involves plotting the cumulative mean of the 

simulation output over a number of replications. The line becomes flat gradually 

which suggests that sufficient replications have been reached. 

4.3 Optimisation Technique 

Single objective optimisation was run using a Witness plug-in, Witness 

Optimizer which provides a number of optimisation algorithms including 

Simulated Annealing (SA), Hill Climb and Random Solutions. SA comes from 

the concept of the annealing process in metallurgy to harden metals. Metals are 

melted in high temperature at the start and then cooled gradually in a controlled 

environment to obtain desired attributes. It can be used to solve various types of 

problems including continuous, discrete and mixed-integer problems. Hill Climb 

is a local search heuristic algorithm that changes a single element in each 

iteration depending on the objective function performance. Random Solutions is 

simply randomising the values of decision variables without a structured 

algorithm to guide it to better solutions. This method can search globally but 

without the capability to learn from evaluations. 
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Preliminary analysis was conducted by running the optimisation several times 

while changing the number of evaluation for each algorithm and monitoring the 

performance. It is observed that all three algorithms struggle to improve the 

objective function after around 150 evaluations. Therefore the maximum 

number of evaluations without improvements was set to 200 for all algorithms. 

4.4 Description of the Manufacturing System 

As illustrated in Figure 4-3, the manufacturing system consists of six non-

identical machines. There are buffers after each machine with the exception of 

machine 6 where processed parts are shipped out of the system. Spare 

provision policy is under continuous review and it includes (s, Q) where Q units 

are ordered each time the stock level reaches s. Lead times are stochastic and 

follow a uniform(72, 168) distribution. Only three technicians are available in the 

maintenance crew. Both Corrective Maintenance (CM) and Preventive 

Maintenance (PM) are applicable. The case study data was taken from [24]. 

 

Figure 4-3 The Manufacturing System Layout. Source [24]. 

Cycle times follow Triangular distribution and vary between machines. 

Degradation patterns for machines are assumed to follow Weibull and 

Exponential distributions and vary between machines. Repair times for CM and 

PM tasks follow a Uniform distribution and vary between machines as well. All 

related distributions along with their parameters are shown in Table 2. 

Table 2 Cycle times, breakdown patterns and repair times for the manufacturing 

system. Source [24]. 

Machine Cycle time Degradation CM duration PM duration 

Mc1

Mc6Mc5

Mc4

Mc3

Mc2



 

 

pattern 

Mc1 Triangle(3, 6, 12) Weibull(2, 3) IUniform (1,3) IUniform (0.2,1) 

Mc2 Triangle(4, 5, 11) Weibull(4, 2) IUniform (1.2,3.5) IUniform (0.8,2.5) 

Mc3 Triangle (3,9,10) Weibull(2, 2.5) IUniform (1.7,2.3) IUniform (1,1.5) 

Mc4 Triangle (5,9,10) Weibull (3,1) IUniform (1.5,3) IUniform (1,1.5) 

Mc5 Triangle (7,9,13) NegExp (2.5) IUniform (0.7,2.5) IUniform (0.5,1.6) 

Mc6 Triangle (5,10,14) NegExp (3) IUniform (1,2.2) IUniform (0.4,1.8) 

The costs are constant during the simulation and are as follows: 

 Corrective maintenance = 2000/task 

 Preventive maintenance = 750/task 

 Holding cost = 2/unit/hour 

 order cost = 100/order 

 Unavailability penalty = 300/ unavailable machine hour 

4.5 Results 

The simulation-based optimisation framework for maintenance systems is 

followed step by step as follows: 

1. Define the scope of the optimisation: The assets in interest are assumed 

to be already identified. These are machines 1, 4 and 6. In this example, it is 

possible to alter the spare management policy. However, it is not possible to 

alter any production measures. Therefore the optimisation scope will include 

both maintenance and spare parts policy. Spare parts policy parameters for 

each machine, namely s and Q will be considered as decision variables. 

2. Identify applicable maintenance strategies and policies: CM will be set 

as a possible maintenance strategy for all three machines. In addition, time-

based PM is applicable in all three machines. Therefore, PM frequencies will 

be considered as decision variables. However, neither CBM nor self-

maintenance are applicable to any machine in this manufacturing system. 



 

 

The proposed approach described in section 3.1.1 is used to model the 

maintenance system. 

3. Formulate the objective function: Production schedules are mostly stable 

and this optimisation does not aim to improve quality initiatives. Both 

minimising the cost and maximising the availability are considered important 

in this case. Machine unavailability incurs cost and can be incorporated in 

the cost function. Therefore, minimising the total cost will be the only 

objective. We consider the optimisation scope when detailing the cost 

function. As we are optimising maintenance and spare parts jointly, spare 

parts costs including the order and holding costs will be part of the cost 

function. In addition, both CM and PM maintenance costs will be detailed 

and added to the cost function. Hence, the objective function ‘Total Cost’ 

can be formulated as follows: 

Minimise Total Cost= maintenance cost+ spare parts cost+ unavailability cost 

Where,  

Maintenance cost = PM cost + CM cost, and, 

Spare parts cost= order cost+ holding cost 

4. Define the decision variables: Nine decision variables have been identified 

in the previous steps. These are the spare parts policy parameters (s, Q) as 

well as the preventive maintenance frequency PMfreq for the selected 

machines (i): 1,4 and 6. Three additional decision variables (MSi) are 

required to reflect the choice of maintenance strategy, either CM or PM. No 

more decision variables are required in this problem. 

5. Define constraints: The maintenance system is well-known and therefore 

there is sufficient knowledge to define bounds for all decision variables. The 

reorder level si can range between 0 to 15 while the order quantity Qi can 

range between 1 and 15. PM frequency for all machines (PMfreqi) can range 

between 1 and 3 weeks. MS will be either 0 if the selected maintenance 

strategy is CM and 1 if the selected maintenance strategy is PM. In addition, 

MS will be incorporated in the variable bounds for PMfreq to ensure it results 

in 0 if the selected maintenance strategy is CM [25]. No other constraints are 



 

 

required at this problem. Therefore the problem can be formulated as 

follows: 

Minimise Total Cost= maintenance cost+ spare parts cost+ unavailability cost 

1 week * (MSi) <PMfreqi< 3 weeks * (MSi) 

MSi= 0 for CM or 1 for PM 

0 <si< 15 

1 <Qi< 15 

Where i= 1, 4 and 6 

6. Select the optimisation algorithm: The current optimisation problem is 

single objective and requires a global search. Simulated Annealing (SA) 

suits the nature of the problem and it is available within the simulation 

software (WITNESS). The results of SA will be compared to two other 

optimisation algorithms available in WITNESS, namely Hill Climb and 

Random Solutions. Most of the algorithm settings are left to be set 

automatically including SA parameters such as splitting large variables, 

initial parameters, cooling rate and cooling steps, which control the rate at 

which the temperature is reduced. The maximum number of scenarios is set 

based on the number of possible solutions for the optimisation problem. As 

illustrated in Table 3 the solution space is vast which requires a large 

number of evaluations. Simplifying the problem may be possible which will 

be investigated in the next step. The maximum number of evaluations for all 

algorithms is set to 1,000 whereas up to 200 moves are allowed without 

improvement. 



 

 

Table 3 Possible solutions for the optimisation 

Variables Ranges Current possible choices 

possible choices 

after 

simplification 

Remarks 

PMfreq1 168 504 336 14 changed from hour to day 

PMfreq4 168 504 336 14 changed from hour to day 

PMfreq6 168 504 336 14 changed from hour to day 

s1 0 15 16 8 changed from step 1 to step 2 

s4 0 15 16 8 changed from step 1 to step 2 

s6 0 15 16 8 changed from step 1 to step 2 

Q1 1 15 15 8 changed from step 1 to step 2 

Q4 1 15 15 8 changed from step 1 to step 2 

Q6 1 15 15 8 changed from step 1 to step 2 

M1 0 1 2 2 changed from step 1 to step 2 

M4 0 1 2 2 no change 

M6 0 1 2 2 no change 

Possible solutions 4,195,092,529,152,000 5,754,585,088  

7. Set the simulation optimisation: Variability analysis is conducted in order 

to set the required number of replications. As shown in Figure 4-4, the 

simulation is run repeatedly while the objective function (Total Cost) is 

recorded for each replication. In addition, a moving average is calculated. 

The moving average line seems to stabilise around the 16th replication and 

hence the number of replications will be set to 16 to ensure we obtain a 

better estimate of (Total Cost) mean. Warm-up period is set to five days to 

avoid the initialisation bias since the manufacturing system starts with no 

parts in machines or buffers.  The run length is set to one year to reflect the 

fact that the maintenance department plans annually for its operations. The 

cost baseline in the model before optimisation is 1,520,508 cost units. 



 

 

 

Figure 4-4 Variability analysis 

One simulation run requires an average of 1:17 minutes on a PC with Intel Core 

i7-2600 CPU @ 3.40 GHz. At least several thousand evaluations are required 

for a problem with similar search space which consumes a long time. A 

thousand evaluations using SA are run with the current optimal formulation 

before attempting to simplify the problem. As shown in Figure 4-5, the 

optimisation resulted in cost reduction of 16.6% compared to the base model. 

The whole simulation optimisation required 18:45 hours to run. It is observed 

that small changes in the variables PMfreqi
 have insignificant effect on the total 

cost. Therefore it seems that simplifying the problem by discretising the decision 

variables will reduce the solution space with possibly minimal effect on the 

objective function. 
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Figure 4-5 Optimisation results before simplifying the problem 

The problem can be simplified by planning the PM for each machine by day 

instead of hour which reduces the possible values for each PMfreq from 336 to 

14. However, the number of conflicts might increase where several events 

occurr at the same time within the simulation. In addition, both order quantity 

and order level can change two values at a time halving the number of their 

possible values. The solution space is reduced drastically as shown in Table 3. 

In addition to cost, the production throughput is considered an important 

measure to be taken into account when planning maintenance. 

Table 4 presents a comparison of the best results achieved by each 

optimisation algorithm for the simplified problem along with computation time 

and number of evaluations. SA achieved the best result with 16.7% reduction in 

the total cost compared with the base model. The optimisation was terminated 

after 684 evaluations because it did not achieve an improvement in the 

objective function for 200 consecutive evaluations. The total computation time 

was 15 hours. It is interesting to note that by simplifying the problem, SA 

achieved a slightly better result consuming much less computation expenses. 
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Table 4 Computation time and best results for different optimisation algorithms 

Optimisation algorithm Number of 

evaluations 

Computation 

time 

(hh:mm) 

Best result 

(cost reduction 

%) 

1 Random Solutions 1,000 21:56 -14.5% 

2 Hill Climb 459  09:48 -12.9% 

3 Simulated Annealing 684 15:00 -16.7% 

8. Decision making: Figure 4-6 compares the performance of the three 

optimisation algorithms. Hill climb converged rapidly but it struggled to 

achieve significant improvements after the 28th evaluations and it could not 

achieve any improvement after the 259th evaluation. This result may be 

explained by the fact that Hill Climb is not capable of conducting global 

search and therefore is bound to be trapped in a local minimum. This is 

further supported by the fact that both Random Solutions and SA were able 

to find better solutions. 

 

Figure 4-6 Comparison of the algorithms' performance  

The firm’s management might consider spending up to 10% more on 

maintenance if that will result in achieving higher productivity defined by the 

total throughput of the manufacturing system. Figure 4-7 below provides the 

outcomes obtained from plotting throughput vs. cost for the best 10% of the 
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optimisation results. From the chart, it is apparent that the minimum cost 

corresponds with the maximum throughput. Therefore the firm’s management 

would not have to attempt to balance throughput and maintenance cost for this 

problem. 

 

Figure 4-7 Plotting Cost vs. Throughput for the best 10% of the results 

Nonetheless, the optimisation resulted in more than 100 solutions where the 

cost is in the range of 1% more than the minimum cost achieved while the 

throughput is 1080 which is the maximum value reached. Table 5 presents the 

top ten optimal solutions. From this data, we can see that the optimal 

maintenance strategy is PM for all machines. In addition, PM frequency does 

not change for the top ten solutions. Some spare management policy 

parameters such as Q4 and Q5 change resulting in a slight change in the cost 

function. Other considerations that were not taken into account in this study 

might affect the choice of the optimal solution such as quantity discounts. 
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Table 5 Top ten optimal solutions 

Scenario A B C D E F G H I J 

Cost 1,266,117 1,266,142 1,266,261 1,266,273 1,266,286 1,266,292 1,266,317 1,266,404 1,266,417 1,266,417 

PMFreq1 384 384 384 384 384 384 384 384 384 384 

PMFreq4 216 216 216 216 216 216 216 216 216 216 

PMFreq6 216 216 216 216 216 216 216 216 216 216 

MS1 1 1 1 1 1 1 1 1 1 1 

MS4 1 1 1 1 1 1 1 1 1 1 

MS6 1 1 1 1 1 1 1 1 1 1 

Q1 5 5 5 5 5 5 5 5 5 5 

Q4 5 5 3 5 3 5 3 11 11 11 

Q6 11 7 11 7 7 15 11 5 11 11 

s1 4 4 4 4 4 4 4 4 4 4 

s4 2 2 2 2 2 2 4 2 4 2 

s6 4 4 4 6 4 4 4 4 4 4 

Throughput 1080 1080 1080 1080 1080 1080 1080 1080 1080 1080 

5 Discussion 

This study set out with the aim of developing an approach for modelling 

complex maintenance systems using DES. A generic approach as well as 

approaches for common maintenance strategies were presented. 

The proposed approach enables the modelling of the complexity found in real 

maintenance systems. In particular, the approach enables the modelling of the 

following: 

 Multi-unit manufacturing systems. Without restrictions on the number of 

units. 

 Non-identical units. Without restrictions placed on the manufacturing or 

the maintenance characteristics of the units. In other words, each unit in 

the system can have its own stochastic manufacturing behaviour as well 

as its own stochastic maintenance behaviour. 

 Several maintenance strategies and policies simultaneously. For the 

purpose of optimisation, each unit can have several applicable 

maintenance strategies. A variable can dictate the selection of a 

maintenance strategy. Therefore, the optimisation can result in a different 

strategy and different parameters for each unit in the system. 

 Maintenance integrated with inter-related systems such as production 

and spare parts management. The proposed approach was designed for 

easy integration with already developed manufacturing systems. This 



 

 

enables the utilisation of the maturity stage DES has reached in 

production and logistics. 

 Complex maintenance systems without over-simplified assumptions such 

as instantaneous repair, perfect maintenance or perfect inspection. 

A typical DES software provides additional features that facilitate and speed up 

the modelling process. For example, machines, labour and breakdown modules 

are built in most of DES software packages. In addition, visual animation is 

displayed which enhance the communication between stakeholders and 

facilitate the validation process. 

Accessing the event queue appeared to be the most suitable approach for the 

context of this approach. Other approaches were explored during the 

development of the proposed approach including forced breakdowns and using 

dummy machines to trigger machine actions. However, the alternative 

approaches resulted in much more complexity compared to the proposed 

approach. 

The modelling approach was used in solving a simulation optimisation of 

maintenance in a published system. The current research is one of the first to 

optimise maintenance strategies simultaneously with their parameters while 

considering production dynamics and spare parts management. CM and PM 

were considered as possible maintenance strategies for selected assets in the 

manufacturing system. In addition, PM frequency was optimised in the same 

problem. 

The findings of this research provide insights for non-conflicting objectives in 

maintenance systems. Minimising maintenance cost might in fact lead to 

maximum availability or maximum production throughput.  

6 Conclusions and Future Work 

Existing approaches for modelling maintenance rely on oversimplified 

assumptions which prevent them from reflecting the complexity found in 

industrial systems. Such assumptions are related to the scope of the simulation 



 

 

model, the number of assets, the manufacturing and maintenance 

characteristics of assets or the number of applicable maintenance strategies in 

the model. 

In this paper, we develop a novel approach for modelling complex maintenance 

systems. The proposed approach enables the modelling of non-identical multi-

unit manufacturing systems without restrictions on either the maintenance or 

manufacturing characteristics. The approach can be integrated with DES 

manufacturing and spare parts models making it possible to build on the 

success DES achieved in these fields.  

The case study application is one of the first to optimise maintenance strategies 

simultaneously with their parameters while considering production dynamics 

and spare parts management. The findings of this research provide insights for 

non-conflicting objectives in maintenance systems. This would be a fruitful area 

for further work. 

This research will serve as a base for future maintenance optimisation studies. 

The ability of modelling simultaneous maintenance strategies makes it possible 

to conduct simulation-based optimisation studies where maintenance strategies 

are optimised for each asset in the system. In other words, the optimisation 

engine will explore various maintenance strategies along with its parameters for 

each asset.  

Further research can be undertaken to implement the approach to industrial 

case studies. Additionally, more approaches can be developed for more 

common cases such as CBM with on-line monitoring and predictive 

maintenance. Furthermore, the modelling of aged-base models using the 

proposed approach needs to be investigated.  
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