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Abstract— The detection of degradations and resulting failures
in electronic components/systems is of paramount importance for
complex industrial applications including nuclear power reactors,
aerospace, automotive, and space applications. There is an
increasing acceptance of the importance of detection of failures
and degradations in electronic components and of the prospect of
system-level health monitoring to make a key contribution to
detecting and predicting any impending failures. This paper
describes a Parametric System Identification based health-
monitoring method for detecting aging degradations of passive
components in switch-mode power converters (SMPC). A Non-
Parametric system response is identified by perturbing the
system with an optimized multi-tone sinusoidal signal of the order
of mVs. The parametric system model is estimated from non-
parametric system response using recursive weighted least square
algorithm. Finally, the power-stage component values, including
their parasitics, are extracted from numerator and denominator
coefficients based on the assumed Laplace system model. These
extracted component values provide direct diagnostic
information of any degradation or anomalies in the components
and the system. A proof of concept is initially verified on a simple
point-of-load (POL) converter but the same methodology can be
applied to other topologies of SMPC.

Index Terms— Aging, Digital Control, Parametric Estimation,
Switched Mode Power Supplies.

I. INTRODUCTION

he detection of degradations and resulting failures in

electronic components/systems is of paramount importance
for industrial applications, including nuclear power reactors [1],
aerospace [2-3], automotive [4], and space applications. From
an economic perspective, it is recognized that with the use of
complicated electronic industrial systems, every product
manufacturer wants to increase the lifetime of their product
with the objective of reducing unscheduled maintenance, in-
service costs and improving the availability of their product [5].
More importantly, addressing the issues of how to detect,
diagnose, and predict degradation and failures has been
identified as a potential requirement by many industrial
organizations [6].

In recent years, the high current and increased performance
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demands of highly integrated Programmable Logic Devices
(PLD) have led to miniaturization of these devices down to
nanometer and sub-micron scale [7]. Consequently, these
advancements in the semiconductor industry have required that
the input voltage of these devices be reduced from 5V and 3.3V
to below 3.3V. These technological advances in PLD and
networking microprocessors empowered the power supply
industry to advance from a basic four output voltage (12.0V,
9.0V, 5.0V, 3.3V) DC-DC power converter to more than twenty
output voltage (3.3V, 2.5V, 1.8V,1.5V, 1.2V, 1.0V, 0.9V, 0.8V
etc.) converters [8]. This led to the use of POL converters in
distributed power architecture to minimize power losses and
increase efficiency. The tolerance of these low-voltage power
supplies is dependent on the load. In traditional power supplies,
the tolerance requirement on a typical low-voltage power
converter is £5%. However, with the advent of sub-micron
technology as mentioned, the tight tolerance requirement on
low-voltage converters has been tightened to +3% [9]. This
prerequisite inadvertently results in increased stress on the
power converter and contributes towards degradation of the
components and failure of the system.

The majority of power supply failures aggregate from
degradations and failures in the capacitor C [10]. An electrolytic
capacitor is a passive electronic component, which degrades
and fails significantly in power converters [11-13]. The
Equivalent Series Resistance (ESR) of the electrolytic capacitor
is a prominent precursor to degradation that provides
knowledge of anomalies in the capacitor and the overall
performance of the power converter. Now, the question arises
as to how these degradations in the capacitor and the overall
system performance can be detected through global system
parameters. The aging or degradation detection in electrolytic
capacitors has been studied using on-line and off-line
techniques. The off-line technique interrupts normal operation
of the circuit, however, is accurate and simpler to implement
[14-16]. The on-line detection monitors aging performance
while the circuit is in operation. In [12], ESR deterioration has
been extrapolated by measuring input current and output
voltage ripple in time domain. Similarly, [13] also use output
voltage ripple and [17] propose capacitor voltage measurement
to estimate the ESR and hence, capacitor degradation.
However, the above method does not provide understanding of
anomalies in the entire system.

In the frequency domain, the control-to-output transfer
function of the power converter describes the dynamic behavior
of the system/power converter [18]. In the transfer function or
system response of a basic DC-DC POL converter, the —
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20dB/decade asymptote provides knowledge of the inductor
and the output filter capacitor. Similarly, the—40dB/decade
asymptote reveals information about the ESR of the output filter
capacitor. This knowledge of the power-stage network ensures
that the degradations and failures of power-stage network
elements (inductor and capacitors) can be detected, diagnosed,
and prognosticated from the control-to-output transfer function
response. From a system-level failure perspective, degradation
in any of the power supply components due to uncertainties in
the component’s tolerances or aging of components with time
will affect the performance of the entire electronic system.
Therefore, this research aims to study and implement system-
level health monitoring of DC-DC power converters to detect
anomalies in discrete components and mitigate long-term
failures in the operation of power supplies.

II. SYSTEM IDENTIFICATION TECHNIQUES

System identification is an interdisciplinary practice used to
characterize the behavior of a dynamic system, usually in the
form of a mathematical model [19]. Parametric and non-
parametric methods outline two different identification
techniques. The user excites/perturbs the system with a
deterministic or random excitation signal to achieve non-
parametric identification of the system [20]. A possible source
of excitation in the system is the inherent noise of the system,
such as analogue noise. This ambient system noise is best for
real-time health monitoring as it eliminates the impact of initial
conditions (time-domain) and leakage errors (frequency-
domain), and reduces the burden of designing external
perturbation. Nevertheless, different load conditions affect the
behavior of the inherent noise and lead to low Signal-to-Noise
Ratio (SNR) of the extracted system response. Therefore,
researchers prefer external perturbation signals, such as an
impulse signal, chirp, pink noise, random noise, and single
sinusoid.

The general class of perturbation signals, for instance, Dirac-
Delta with a single pulse amplitude spectrum, is not suitable to
measure the response of the system across the pass-band of the
system between 10Hz and 200kHz. This is because the power
of a single pulse at high frequencies close to the ESR 7,
frequency Fggr = 1/2mCr¢ is not high enough to measure the
output signal and will result in poor SNR. The high-frequency
measurement is essential because the zero introduced by the
ESR of the output filter capacitor lies at the high-frequency
region of the converter response between the cut-off frequency
of the output filter Fyr = 1/2nVL C (L is the inductance of the
output filter) and the switching frequency Fgy,. Therefore,
accurate measurement of the attenuation and the phase of the
system requires the frequency sweep to excite the pass-band of
the system.

The unity crest factor of Pseudo Random Binary Sequence
(PRBS) used by Roinila et al. [21], Shirazi et al. [22], Miao et
al. [23] and Barkley and Santi [24], which is identical to the
crest factor of the delta function, is ideal for extracting the
signal buried in the system noise. However, the amplitude
spectrum of PRBS for the Band-Limited (BL) inter-sample

assumption decreases inversely with the frequency, limiting the
signal-extracting capability up to a certain frequency of the
entire spectrum. Moreover, Pintelon and Schoukens [25]
corroborate that the amplitude spectrum for increasing the
length of the PRBS sequence decreases with frequency and
hence, is undesirable for extracting signal information at high-
frequency spectra of the power converter. The use of a single
frequency sinusoid signal incorporated in the Frequency
Response Analyzer (FRA) and described by Gonzalez-Espin et
al. [26] accurately measures the system response, but it
consumes a significant amount of time to measure the system
response. This is the reason why the majority of general
excitation signals, such as pseudo-random white noise, impulse,
and Dirac-Delta, is rejected because the amount of power
available in the signal at high frequencies is not high enough to
accurately measure the gain and phase of the system. Therefore,
none of the above excitation signals is appropriate in this study.

The present research proposes a multi-tone sinusoid signal as
an energy-rich excitation to extract a closed-loop frequency
response of the power converter. A multi-tone sinusoidal is a
periodic, deterministic broadband excitation with full flexibility
to define the amplitude spectrum and frequency resolution. It
enables optimizing the amplitude spectrum for desired
frequencies of interest before performing any measurements,
saving significant post-processing and computational time.
Recently, a similar phase shifted excitation has been proposed.
However, the proposed method uses only ten frequencies to
perform non-parametric system response identification across
wide frequency range 10Hz — 100kHz, compared to 30kHz to
80kHz specified in [27].

From a signal-processing perspective, excitation of the
system with inadequate energy in the perturbation signal will
provide a low SNR or high uncertainty of the measurements.
Therefore, based on the required SNR, the optimized multi-tone
sinusoid perturbation excites the system at the required
frequencies of interest. The system identification of such a
system, wherein knowledge of both high and low frequency
dynamics is required, is not only complex but also challenging.

Moreover, the research employs the concept of synchronous
In-phase and Quadrature-phase (IQ) demodulation used in
radio-frequency communication for frequency response
measurements. The non-parametric estimate of the system
model using quadrature demodulation extracts even the
smallest amplitude of the in-phase and the quadrature phase
signal and provides an initial estimate of the characteristics,
complexity, and the order of the system.

Once the non-parametric model of the system is available,
different model estimators, such as least mean squares and
recursive least square [19], [28], recursive Dichotomous
Coordinate Descent (DCD)-Infinite Impulse Response IIR
adaptive filter [29], can be used to estimate a parametric model
of the system. In parametric identification, the user assumes the
system model, such as a black-box model, a grey-box model, or
a transfer function model, and refines this model from the non-
parametric measurements.

Since, the digital control systems have been used to
accomplish the majority of the system identification process,
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the characteristic of the perturbation signal between the
consecutive sampling instants, i.e. inter-sample behavior
largely influences the selection of the identification model [30].
The researchers across the system identification community
formulate two assumptions: Zero-Order Hold (ZOH) and Band-
Limited. The ZOH criterion assumes that the sampled signal is
constant between the consecutive samples. The spectra of the
reconstructed signal, Sinc function, generate dominant
frequency component at the sampling frequency Fsp along with
its harmonics at the higher frequencies2Fgp, 3Fsp... and so on.
When the inter-sample behavior of the sampled signal is band-
limited, the power spectrum of the reconstructed signal is zero
above a frequency w,,,, (usually half the sampling frequency).
Mathematically, when ®(w) =0 forV |w|> wnq the
spectra of the reconstructed band-limited signal only produce a
fundamental sampling frequency without any harmonics.

The research on system identification of power converters
assumes ZOH as the characteristic of the perturbation signal
[23], [31], [32], and uses discrete time models to identify the
system model. Since the reconstructed signal is not the exact
replica of the signal itself, the ZOH assumption of the signal
can introduce errors and may not be suitable for detecting
anomalies in the system. On the other hand, the band-limited
assumption of the signal ensures that an exact replica of the
signal is reconstructed and enables identifying the continuous-
time model in frequency domain. Therefore, in this paper, a
continuous-time system model in the form of a Laplace rational
fraction is assumed.

Recently, several data-driven frameworks have gained
attention in fault diagnosis and model extraction. This includes
statistical and non-statistical analysis based methods. For
instance, Weighted Least Square, Partial Least Square (PLS)
[33-36], total projection to latent structures (T-PLS) [37-38],
Principal Component Analysis (PCA) [39-41], Independent
Component Analysis (ICA) [42] etc. are some of the statistical
methods which utilize input and output data to diagnose faults
in the system.

Neural Networks (NN), on the other hand, describe non-
statistical data-driven tool that has been extensively used in
industrial applications for fault diagnosis. NN based tools can
be further categorized into supervised and unsupervised based
learning. In supervised learning, the data set is labelled as
healthy or faulty and the algorithms learn from variations
among the labelled data. The data set in unsupervised learning
does not include any labelled data, instead the algorithm finds
clusters from its own data. Well-established algorithms such as
Fuzzy Logic [43], support vector machine (SVM) [44-45],
Kalman Filter [46-47] etc. are some of the learning
methodologies that assist in non-statistical fault diagnosis.

A weighted recursive least square algorithm that minimizes
relative error is used to extract the system model in frequency
domain. The power-stage component values, including their
parasitics are then extracted from the numerator and
denominator coefficients based on an equivalent Laplace
model. This extraction requires the knowledge of the output
load, which implies the knowledge of the output (or the input)
current. These extracted component values allow drift/aging
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Fig. 1. Block Diagram of Parametric Identification Based Health-Monitoring
on Digitally-Controlled DC-DC Buck Converter

measurement of relevant component electrical characteristics
and permit diagnostics and end-of-life prognostics.

III. PARAMETRIC IDENTIFICATION OF DC-DC CONVERTER IN
FREQUENCY DOMAIN

The proposed system identification based health-monitoring
methodology is executed on a basic DC-DC buck converter, as
shown in Fig.1.

The block diagram includes the power-stage network or the
DC-DC power converter regulated by a digital controller in the
feedback network. In digital control of power converters using
either a Digital Signal Processor (DSP) or a Field
Programmable Gate Array (FPGA), the Analog to Digital
Converter (ADC) discretizes the output voltage signal v, (t)
into a sequence of n samples v,(n) and computes the error
between the digital reference and the digital signal. The digital
corrector, usually a Proportional-Integral-Derivative (PID)
controller or 3p3z digital filter, compensates the error to
provide a digital sequence d(n). The Digital Pulse-Width
Modulator (DPWM) then commands a Pulse Width Modulation
(PWM) duty signal d(t) to regulate the control loop. The
perturbation signal, which is digitized in the digital controller
p(n), excites the control loop and provides a small-signal AC
response of the system at the injected frequency of the
perturbation. It is worth mentioning that the control loop is not
broken and the frequency response is measured in a closed-loop
condition.

A. Design of Perturbation Signal

Ideally, the frequency sweep at every integer frequency up to
half the switching frequency provides accurate frequency
response measurement. This is similar to the operation of an
FRA. However, the memory and computational power of the
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digital controller limits the feasibility of this approach. Instead,
the equally spaced frequency sweep of ten or eleven integer
frequencies provides maximum system information at the
frequencies of interest without restricting the computational
power consumption of the digital controller. This multi-tone
frequency sweep excites the system at the user-defined
frequencies and minimizes power leakage in the adjacent
harmonics. Therefore, frequency response measurements by
perturbing and linearizing the system with a user-defined
frequency sweep provide better insight of anomalies and
degradation of the system. More importantly, the selection of
integer frequencies close to the ESR frequency and the cut-off
frequency of the power converter enable extracting and
understanding the degradation of the ESR and the capacitance
of the output filter capacitor. Prior to the selection of the
perturbation frequencies, periodic perturbation is considered as
it reduces measurement noise and enables the spectrum of the
signal measured over an integer number of periods to be
calculated precisely by the Discrete Fourier Transform (DFT).

The perturbation frequency sweeps logarithmically by
octaves from the start to the end frequency to generate a multi-
tone signal. Mathematically, the frequency sweep Fp is defined
by

Fs

pmzl_z—m,m=2,3,...12;1=1 (N
where m and [ are integers. [ can be modified to values 3, 5, or
7 to generate different frequency sweeps. The selection of [
generates different logarithmic sweeps by octaves. Using (1),
Fs=200kHz and /=1, the start and end frequency tones can be
calculated. This equates to different frequency sweeps as shown
in Table I. For /=7, eleven tones from 85.44922Hz to 87500Hz
excite the pass band of the converter (zero until half the
switching frequency). Similarly, for /=5, eleven tones from
61.035Hz to 62500Hz can describe the entire response of the
system, including the ESR frequency. For lower values of /,
more frequency sweeps are available, for instance, twelve for
[=3 and thirteen for /=1.

However, the intention is firstly to excite the system with the
minimum number of sweeps to reduce measurement time and
secondly to sweep only the frequencies that add knowledge to
health monitoring. This results using the frequency sweeps
either for /=3, 5, 7. Nevertheless, the sweep frequencies are far
apart for the above cases, as shown in Fig. 2.

For /=1, on the contrary, 13 frequency sweeps can be reduced
by eliminating the lower frequencies, such as 12.207Hz,
24.414Hz, and 48.828Hz as they do not provide significant

10

Integer /

—

10 100 1000 10000 100000
Frequency (Hz)
Fig. 2. Comb Spectrum for /=1, 3, 5, and 7

system information for this application. Therefore, for /=1 and
a power converter switching at 200kHz, a maximum of ten
equidistant discrete tones once every octave provides extensive
information about the entire system response. This frequency
scaling is essential because it enables proper representation of
the power-stage frequency response and it includes the power-
stage cut-off frequency and the zero introduced by 7¢.This
comb spectrum injects the maximum energy at the specified
frequency and eliminates spectral spurs that originate at
frequencies other than the frequency associated with the
discrete tones.

The amplitude of the perturbation signal must be greater than
ambient system noise to measure the system response precisely
but small enough to keep the system linear and stable.
Moreover, the amplitude of the perturbation signal governs the
SNR of the non-parametric frequency response measurements
and hence, the SNR of the system response. Therefore, to
achieve a desired SNR at all the frequencies of interest, it is
necessary to optimize the amplitude of the perturbation with
respect to the gain of the power converter. In order to achieve a
given SNR and minimum uncertainty on the measured system
response, different aspects of the digital controller and the
power converter need to be analyzed.

The control-to-output characteristics of the POL converter
[17] signify that the amplitude of the output voltage is high at
lower frequencies compared to the duty signal.
Correspondingly, the amplitude of the duty signal is high at
higher frequencies, compared to the output voltage. From the
above analysis and assuming the presence of additive white
Gaussian noise introduced by samplers, it is not feasible to
maintain a constant SNR across the frequency spectrum by
injecting a constant amplitude perturbation. This would mean
injecting large signals at high frequencies leading to saturation
of the duty signal.

In addition, it follows that variations/ripple on the output
voltage can be measured up to a certain frequency, typically
crossover frequency Fy = (1/20%"),F; = 10kHz and two
more octaves. However, for higher frequencies, typically
25 kHz and 50 kHz, the control loop has to be disturbed to
measure a significant amount of variation of output voltage
from the ambient noise while maintaining the SNR. For
instance, assuming the entire loop noise is due to ADC

TABLE I
SELECTION OF FREQUENCY SWEEP BASED ON THE VALUE OF /

Perturbation Frequency

m =1 /=3 =5 =7

2 50000 150000 250000 350000
3 25000 75000 125000 175000
4 12500 37500 62500 87500
5 6250 18750 31250 43750
6 3125 9375 15625 21875
7 1562.5 4687.5 7812.5 10937.5
8 781.25 2343.75 3906.25 5468.75
9 390.625 1171.875 1953.125 2734375
10 195.3125 585.9375 976.5625 1367.188
11 97.65625 292.9688 488.2813 683.5938
12 48.82813 146.4844 244.1406 341.7969
13 24.41406 73.24219 122.0703 170.8984
14 12.20703 36.62109 61.03516 85.44922

0278-0046 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2016.2535104, IEEE

Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

quantization noise, injecting more than 100mV of perturbation
amplitude would clamp the duty signal. This dictates that to
achieve a given SNR at higher frequencies, averaging a large
number of measurements is essential. Consequently, if the SNR
across the band of frequencies is not constant compared to the
limited amplitude of the perturbation, which is certainly the
case for frequencies greater than the crossover frequency,
averaging over large measurements will yield a given SNR.
This would certainly increase the measurement time at the
expense of a constant SNR across the frequency spectrum.

Moreover, the quantization noise introduced during analogue
to digital conversion diminishes the SNR on the transfer
function. This can be resolved by using a high-bit ADC.
However, if this not feasible, it must be guaranteed that the
amplitude of the perturbation signal is greater than the voltage
resolution of the ADC at all frequencies of interest. In other
words, the perturbation amplitude must be greater than single
Least Significant Bit (LSB) of the ADC. Otherwise, the signal
will be buried in the digital quantization noise and will remain
undetected during the frequency response measurements. Based
on the above analysis, the following boundary conditions
decide the amplitude of the perturbation signal:

a) For frequencies below the crossover frequency, low-
perturbation amplitude satisfies a high SNR on the transfer
function. However, high gain of the integrator necessitates
superimposing a large AC perturbation of the order of 100mV
to measure the small-signal response of the output voltage,

b) For frequencies above the crossover frequency, a high
SNR on the duty signal, i.e. a large signal on the duty
necessitates superimposing a small amplitude of the
perturbation to achieve a given SNR on the transfer function,

c¢) For intermediate frequencies, the perturbation amplitude
must be relatively low to avoid clipping of the output signal.

The multi-tone sinusoid reduces measurement time, as the
transients that appear at each frequency sweep will only be
present at the first perturbation frequency. The periodic and
harmonically-related perturbation signal defined by the
amplitude A, and frequency F,describes

p(n) = Zf_; Ay, -sin (5225 + 6, ) @)

where F defines number of frequency domain data samples,
N defines the length of the sequence as in power of two and 8,
is the phase between the different sinusoids. The phase is
defined zero for initial measurements.

A similar multi-

B. Non-Parametric System Identification

It is recognized that frequency-domain identification in
continuous-time systems with the BL assumption associates the
system model coefficients with the power-stage components.
Therefore, frequency domain identification is best suited to
perform detection of anomalies in the components and the
power converter.

The Fourier transform of a finite-length N of a sequence
x(n), i.e.

5
_( O0forn<0
x(n) = {x(n) fOT'n >N (3)
is
X(w) = IN=t x(n)e jon 4)

where 0 < w < 2m is the angular frequency and N is the
total number of integer samples in a single period. The DFT of
a real-valued sequence x(n) sampled at equally spaced

frequencies w = 27Tk/N where k= 0,1,2..N—1 has a
complex spectrum defined by

X(k) = SN x(n)e AT 5)

Generally, the length of the sequence N is fixed and an
integer power of two. The rationale behind this selection is
because memory address in the majority of digital controllers is
byte-addressable rather than decimal-addressable, which
minimizes leakage errors in DFT computation.

The above complex-valued discrete-time sequence can also
be represented as the sum of the in-phase and quadrature
components, i.e. the X (k) = X;(k) + j X, (k) where X; (k) and
Xo(k) represent real-valued discrete quadrature sequences
representing real and imaginary components. These quadrature
components are the replicas of the sampled sequence multiplied

by the sine and cosine of the perturbation frequency w;, = %
yields
X, (k) = %Zﬁ;})x(n) sin (% n) (6)
Xo(k) = % N=1x(n) cos (% n) (7)
Similarly, the sampled output sequence gives
_ . K
Y00 = 25825 y(n) sin (2 n) ®)
_ k
Yo(k) = 23N=3 y(n) cos (25 n) ©)

The sampled complex in-phase and quadrature sequence at a
specific perturbation frequency finally provides the magnitude
and phase response of a sequence at that frequency

(Y1G0)*+ (ro))”

|H (k)| = 10)
(x:00)°+ (xq@0)”
— et (Y1004 YQ(k))
arg(H(k)) = tan (—Xz Ot %o (11)

The Frequency Response Function (FRF) algorithm based on
the concept of synchronous IQ demodulation accurately
demodulates the quadrature phase signals by multiplying the
sampled output voltage and duty signal by sine and cosine
signals. The sine and cosine signals are initialized at the
beginning of the algorithm. The algorithm stores steady state,
quadrature output voltage and duty signals in six separate
column vectors of size Acq X F, where the first F rows of a
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column vector contain data of a single acquisition for all the
perturbed frequencies and Acq as the number of acquisitions.
For example, if the column vector length is 6410, the first ten
rows correspond to data for 10 perturbation frequencies of a
single acquisition. The six column vectors comprise IV, (k)—the
in-phase component of the output voltage, QV,(k)—the
quadrature phase component of the output voltage, ID (k)—the
in-phase component of the duty signal, QD (k)-the quadrature
phase component of the duty signal, SumVout — the steady state
value of the output voltage and SumDuty — the steady state
value of the duty signal. The four quadrature phase sequences
are

1,(k) = X425 vy () sin (55 n) (12)
Qo) = = EN=h v, (n) cos (5% ) (13)
D() = 23N=hd()sin (57 n) (4)
QD (k) = 23N=bd(n) cos (2 n) (15)

The data from these four vectors (IV, (k),QV,(k),ID(k), and
QD(k)) is re-arranged to construct the output voltage matrix
Vo(Acqxp) (16) and duty signal Digcqxry (17) matrix of size
Acq X F where the rows Acq define the number of acquisitions
= 64 and the columns define the number of perturbation
frequencies = 10. The first column represents the start

frequency 97.65Hz and last column represents the end
frequency 50kHz.

VO (AcqXxF) =

IVZ’(OXFko) + jQVO(OXFko)

IVO(ACQXFko) +jQV°(ACq><Fk0)
(16)

D(Acqu) =
ID(oxFyp) + JQD(oxFyo) ID(oxFyp) + J'QD(ome
ID(Acquko) + jQD(Acquko)
(17)

The complex division of I/, and Dgcqxry matrix then

(AcqXxF)
constructs the complex transfer function matrix

H(OXFko) H(OXFkF)
H(AchF) = : : (18)
(AcqxFo) HacqxFyp)
1v, +jQV,
Where H(OkaO) — O(OXFRO) O(OXFkO)

ID(oxFyp) * TP (0xF )

From the above analysis, a non-parametric estimate of the
continuous-time system model Hyp(sy) expressed as the ratio

IVO(OXFkF) + jQVO(OXFkF)

Vo acqxrr) +jo ocaxrin Hyp (51| = J (H1(50) + (Ho(s)’

6
TABLE II
RECURSIVE WEIGHTED LEAST SQUARE ALGORITHM
Step Equation
1 Define numerator and denominator vectors
D=[dy di dp]'.N=[no m]"
» Define frequency column vector freq; =
[freqo freqy)” wherek=0,1,2 .. F

3 Initializei=0..20,W=0,dy=1,d;,dy, ...dg =0,N=0
4 Calculate weighingmatrix Wi, = ml

Calculate statevariable vectorS;, = Nj,, — Dy, Hyp,

where N;, and D;, define the column vector based on the
5 order of numerator and denominator vectors

=[s° S0, =K st s
6 Relative error function is estimated V. = S;, W
7 Caleulate Py, = £5_oVi, Vi
8 Calculate Q;, = W; Hyp,,
F 1/ F
9 Bw, = Z ZVikT~ Vip ZQikVikT
i k=0 k=0
10 Go back tostep 1
of output to input response
Vo(sk) .
Hyp(sp) = ;(—Sk) = H(sy) +j Hq(sk) (19)

calculates the system magnitude and phase response i.e.
magnitude and phase matrices for all the perturbation
requencies defined by (20) and (21)

(20

@(H(sy)) = tan™* (M)

Hi(sk)

2]

where s, = j w; defines the Laplace transform variable

ID (acqxrp) + JQD (acqxry ) [evaluated along the imaginary axis at DFT frequency k.

From these FRF measurements at different perturbation
frequencies, a non-parametric system model is estimated prior
to parametric identification of the model. This identification
enables understanding the source of different uncertainties and
nonlinear distortions in the system and ultimately, extracting a
non-parametric noise model.

C. Parametric Identification of DC-DC converter

The process of parametric model identification is dependent
on the non-parametric FRF measurements. The uncertainties in
the measured data, such as quantization noise, switching noise,
measurement errors, and errors including DFT noise, etc.,
influence accurate identification of the system model. These
uncertainties further lead to inaccurate estimation of model
parameters, extraction of component values, and erroneous
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interpretation of degradation. Therefore, it is emphasized
throughout the development of the health monitoring method
that uncertainties introduced by the digital control and the
measurement process must be minimized. In this study, the
majority of these uncertainties are eliminated by using a
periodic excitation and synchronous demodulation of system
dynamical characteristics.

For parametric identification, the model estimator targets
reducing the error between the measured transfer function
Hyp(sy) and the assumed system model Hp(sy). The method
assumes the ratio of frequency-dependent complex polynomials
N(si)and D(sy), i.e. Laplace rational fraction in continuous-
time domain as the system model.

The identification process states the system model as a
solution to the normal equation of the form

Bwi =

5| (oS )" (55#)) " (SheolW: Hey) (.|
(22)

where By represents the best model fit of the model
coefficients, W states the real-value diagonal weighing matrix.
The individual weights of the weighing matrix are strictly
positive w;; = 0. S represents the state variable vector
containing bias function and coefficients as its elements. The ‘-’
denotes the dot product, ~ denotes the complex conjugate, and
T denotes the transpose. Hyp,is a column vector containing
non-parametric FRF measurements.

The parametric model identification algorithm based
Recursive Weighted Least Square (WLS) is executed in
MathCAD. In steps 1 and 2, the algorithm defines and
initializes the denominator, the numerator, and the frequency
vectors. The elements of the weighing matrix, the numerator
and denominator vectors are initialized to zero except d, is
constrained to 1.0 in the next step. The WLS estimator takes the
non-parametric FRF measurement column vector and
denominator vector as the input to evaluate the weighing
matrix, i.e. for i=0, the unknown weighing function is defined
based on prior analysis of the measured transfer function in step
4. Consequently, the algorithm estimates the state variable
vector and the cost function based on the selected order of the
numerator and the denominator vectors in step 5. The next step
entails estimating the relative error function. This modifies to
matrix P to obtain the first part of the said normal equation. In
step 8, the second part of the normal equation is approximated
by weighing the individual experimental data points. Finally,
the best estimate of the system model is evaluated in step 9. The
entire process recursively minimizes the relative error instead
of the absolute error on the model estimates. This algorithm is
limited to only one iteration. However, the number of iterations
can be increased for an optimum result. This relative error
criterion combined with a weighing and iterative process yields
best fit for the system model. The estimated best-fit model
defined in the form of a Laplace rational fraction enables
extracting the model coefficients and the component values

thereafter.

D. Parameter Extraction

The majority of the research on system identification of
power converters identify non-parametric system response.
However, they fail to estimate the model (numerator and
denominator) coefficients and the subsequent power-stage
component values that give a clear indication of the deviation
of the circuit components from their actual values. The
identification of model parameters and subsequent circuit
components is essential as it detects drift in the system and the
components from its healthy state and enables accurate
detection of degradation.

Reproducing the results, the identified model defines an n-
order system depending on the power-stage network. Using the
equivalent Laplace model of a power-stage network defined by

Ng+Sy Ny +SE Ny +.
do+ skdy+ sida+.

H(si) = (23)

where the model coefficients no, ni, do, di and d, represent the
power-stage network elements.

For a basic DC-DC buck converter, the power-stage network
(Fig.1) forms a second-order system as it contains two energy
storing passive components. Therefore, the equivalent Laplace
model of a second-order is defined by

nog+sk nq
do+ sids + sidy

H(sy) = (24)

where the model coefficients can be evaluated from the
transfer function equivalent to

= Y0 _ o (_Zout
H(s) = aes) K(zout+ z) (25)
where
K= vy, + Us2(Kknee) (26)
_ Rroad* (TC"'%)
Zout B Rroad* (TC"'%) (27)
and
Z = sL+ s (28)

where the combined resistance of 17, 154, 75, and the shunt
resistancersy,,,; is defined by
rL+s=rL+D rg;+(1 — D)rsz+ Ishunt (29)
and Vg; gnee) defines the knee voltage of the switch S2.

Substituting (26) and (27) in (25) evaluates second-order
transfer function to

Rioad +S( Rpoadrc® )
RLoad*TL+S \Rpoad*TL+s
i+

H(s) =K

(30)

S((C(RLoadrC+rL+SRLoad+rL+SrC)+L))+
RLoadt I'L+s
52 (LC(RLoad‘”C))
RLoad*+ TL+S
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Therefore,
— k—_ Rioad

Mo = K (RLoad + IL+S) (3 1)
— Rioad

M (RLoad *+ I'L+s) Cre (32)

dg=1 (33)
_ T'L+s C(Rpoad + rc)+ CRipadlc +1L

d1 - (RLoad + I'L+s) (34)

dZ =1 (Rpoad +rc) (35)

(RLoad *T'L+s)

IV. EXPERIMENTAL INVESTIGATION

Fig. 1. provides a block diagram of a synchronous POL
converter which is powered from input v;, (t)=3.3V to provide
a regulated low-voltage output v, (t) = 1.2V. The power-stage
circuit component inductor L, output filter capacitor C and its
ESR 1, resistance of the switching devices, and the output load
R;oqq are defined as L = 150uH, C = 220uF, 1. = 90mQ
(measured at 8 kHz), 1,5 = 840mQ and R, .4 = 10Q. Sland
S§2 are the synchronous switching devices. The switching
frequency of the converter is 200 kHz.

The rationale for using a low-voltage converter is to emulate
the power supply rail of the digital load, such as FPGA
constrained by the tight voltage tolerance. The typical tolerance
requirement of the low-voltage power rail is 2-3%, compared to
5-6% of a high-voltage power rail (for instance, 15V). This
restriction on the selection of the low-voltage power converter
enables recognizing the implementation of the method on low-
voltage industrial applications.

A DSP-based microcontroller including 32-bit floating-point
arithmetic and an integrated ADC, PWM, and an embedded
Random Access Memory (RAM), is used to regulate the control
loop and act as an embedded sensor for data acquisition. The
digital controller Piccolo™F2806x from Texas Instruments (TT)
interfaces to the POL converter via 16-pin connector and PC via
an on-board USB as shown in Fig. 3. The Code Composer
Studio (CCS) development tool from TI provides on-board
JTAG emulation, access to peripherals such as ADC and PWM,
and real-time debug to the control algorithm [48]. The CCS
Integrated Development Environment (IDE) controls and
monitors the power converter wholly via software re-
programmability and flexibility.

The 12-bit Successive Approximation Register (SAR) ADC

Fig. 3. Experimental Test Module
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Fig. 4. Perturbation Signal and its Comb Spectrum

with an integrated Sample and Hold (S/H) circuit samples the
output voltage v,(t) at a sampling frequencyFsp. The timer-
based PWM module generates a pulse width modulated duty
signal d(t) after the addition of an excitation signal to the
compensated control voltage. The voltage resolution of the
timer module, defined as the ratio of the system clock period
and the user-defined switching periodTs, governs the resolution
of the duty signal. The Piccolo PWM timer module provides a
duty signal resolution of 2.5mV, given the system period is
12.5ns and a switching period is Sus [49]. To avoid limit
cycling [50], Micro Edge Positioning (MEP) integrated in the
controller provides a much finer PWM resolution of the order
of 36uV. The CCS Integrated Development Environment (IDE)
provides the selection of the reference signal for the integrated
ADC, the design of discrete 3pole-3zero digital IIR filter, and
the configuration of the digital pulse-width modulator. It is
necessary to acknowledge that the input filter modifies the
control-to-output system response. However, for initial
assessment of the proposed methodology, the study does not
consider its design and implications.

The design of the low-voltage AC perturbation is such that
the maximum variation on the output voltage is within £1.0%
of the nominal value and the maximum variation on duty is
+3.0% - £5.0% of the nominal to achieve a constant SNR across
the desired frequency spectrum. Fig. 4(a) illustrates the outline
of the digital perturbation written in C++ and programmed in
the digital controller. The amplitude of the perturbation is
greater than the voltage resolution of the ADC, ensuring the
signal will not be buried in the quantization noise and the
analogue noise of the system.

Since the perturbation signal is the sum of harmonically
related sinusoids, the frequency spectrum of the signal
represents a comb spectrum as shown in Fig. 4(b). The discrete
tones are synchronized with the switching frequency of the
digital controller to largely minimize leakage errors and the
effect of harmonics. Moreover, the factor of two between each
frequency gives a programming advantage where the variable
‘frequency’ is right shifted every time to obtain the next
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Fig. 5. Relative Standard Deviation on output voltage and duty signal

frequency thereby saving a lot of computational time. The comb
spectrum only injects ten frequency sweeps to obtain the
frequency response of the entire system.

The relative standard deviation on the output voltage and the
duty signals in Fig. 5(a) and (b) reveal that the injected multi-
tone perturbation limits the duty signal within 3% of its nominal
value and the output voltage signal within 2%, i.e. 24mV for a
1.2V signal, for all the frequencies of interest. Superimposing
an optimized multi-tone signal at frequencies of interest does
not disturb the steady state response of the converter. There is
low noise on the output voltage and the duty signal, considering
there are other uncertainties in the system, such as quantization
noise of the samplers, measurement noise, and the inherent
analogue noise of the system. Consequently, this low
percentage of the relative standard deviation on the input
(output voltage) and the output (duty) indicates low variability
on the data set, and hence a high SNR on the transfer function.

The uncertainty on the magnitude and phase response
describes how the SNR is preserved across the defined
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frequencies of interest as depicted in Fig. 6(a) and (b). The high
variability at low frequencies, compared to higher frequencies
on both magnitude and phase indicate more noise at the lower
frequencies. This noise can be the quantization noise of the
ADC, DPWM or the analogue noise of the system. However,
the origin of this variability on the response is not known.

The non-parametric system model in Fig. 7 depict that the

amplitude response asymptotically decays by -20 dB/decade at
frequency 1 kHz and further rolls off by -20 dB/decade at 5
kHz. This graphical interpretation allows assuming a second-
order parametric system model with numerator and
denominator polynomial of the order of two and three
respectively. The close match between the non-parametric
response of the system and the assumed parametric second-
order model of the system in Fig. 8 indicates that minimizing
relative error using a Recursive WLS estimator provides a good
fit of the model over a wide frequency range from 10Hz to
10kHz. However, the model is verified against a third-order
system with N=2 and D=4. The response evidently signifies the
difference in phase response with a second and a third-order
system at the higher frequencies.
For parameter extraction of power-stage component values, the
inductance L and the output load R;,,; are assumed to be
150uH and 10€, similar to the experimental test module and as
assumed in [12]. Inductors are reliable than capacitors,
however, they show large tolerance in their values. The method
presented herein does not take into account these tolerances for
parameter extraction. The actual component values on
experimental test module are measured using an RLC meter.
Using (31)-(35), the capacitance, ESR of the output filter
capacitor, and the resistance of the inductor including the
switches are extracted. The extracted capacitance value is
within the 20% tolerance of the actual value as shown in Table
III. Similarly, the extracted ESR shows a consistent result with
the actual ESR on the board. It is important to mention that the
equivalent Laplace model considers a simple model of the
capacitor against a realistic RC ladder model of the electrolytic
capacitor.

The parametric identification of the system model with
relative minimization of the cost function across the logarithmic
frequency range provides accurate extraction of the power-
stage component values of the power converter, compared to
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Fig. 8. Convergence of System Model Coefficient with number of iterations

the actual component values on the buck converter. The
above results signify that the proposed parametric identification
can be used to detect degradations in switch-mode power
supply topologies whilst proper care is taken for the design of
perturbation selection, non-parametric FRF measurements, and
extraction of model coefficients to minimize the variance on the
transfer function.

An important result of the model coefficients in Fig. 8
demonstrates that all model coefficients converge within one or
a maximum of two iterations with an accuracy of + 1 %. This
reduces the complexity of the model and provides fast
identification of the system.

V. AGING DETECTION CAPABILITY FOR SWITCH-MODE
CONVERTERS

The majority of the health-monitoring research community
performs different acceleration tests such as HAST or apply
environmental or operational stress to the system to predict the
end of life of the system and/or its components. Subsequently,
the continuous monitoring and measurement of certain system
parameters along with their theoretical models provide
knowledge of anomalies in the system and the components.
These predictions are formulated when the system is
functioning outside its normal operating conditions. The
knowledge of degradation of a system and its components
functioning within its operating conditions is not available. By
contrast, this study proposes detecting anomalies in passive
components by operating the system under normal working
conditions.

One method could be to increase the circuit component value
and recognize that the health-monitoring methodology detects
the system change. For example, an external capacitor
connected in parallel with the output capacitor would increase
the overall capacitance of the output filter. It follows from here
that if the health-monitoring technique detects the increased
external capacitance, it can be argued that the methodology can
be used to detect anomalies or aging degradations in passive
electronic components.

The above hypothesis is experimentally validated by
implementing the same methodology on the modified circuit
illustrated in Fig. 9 without changing the design and
implementation of the ADC, digital compensator, and the
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Fig. 9. Modified Block Diagram of Parametric Identification Based Health-
Monitoring on Digitally-Controlled DC-DC Buck Converter for Aging
Detection on Power-Stage Network Elements

DPWM. The measurement algorithm is encoded in the
Piccolo™F2806x while system identification and the parameter
extraction algorithm is implemented in MathCAD.

The modified power-stage depicts the addition of external
capacitance Cgyr in parallel to the output capacitor. Twelve
ceramic capacitors with values ranging from 2uF to 30uF are
added sequentially as external capacitance in the circuit. The
tolerance of selected ceramic capacitors is low, 1%, compared
to 20% tolerance of the output electrolytic capacitor. In
addition, the ESR of ceramic capacitors is trivial in comparison
to the ESR of the electrolytic output capacitor. The selection of
the external capacitor assures that the transfer function will be
stable and within its operating conditions.

The non-parametric frequency response measurements by
perturbing the modified system followed by parametric system
identification and parameter extraction using WLS, extracts
Laplace rational fraction coefficients and the associated power-
stage component values. The rational fraction coefficients and
the value of total capacitance (with Cryxr) is extracted assuming
inductance L and the output load R;,,4 are 150puH and 10Q,
similar to the experimental test module.

The results describe that the overall capacitance on the
modified experimental test module follows a rising trend

TABLE III
COMPARISON OF ACTUAL AND EXTRACTED
POWER-STAGE COMPONENT VALUES

Actual Component Value on
Experimental Test Module

Extracted Component Value

Power Stage Component from the Proposed Algorithm

C (uF) 220.0 217.8

Te (mQ)

(measured at 8kHz) 90.0 108.0
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indicating an increase in overall capacitance of the circuit as
shown in Fig. 10. Evidently, the extraction algorithm accurately
estimates the overall capacitance across the output of a buck
converter, taking into consideration the tolerance of the
components and the uncertainty associated with the
measurements, modelling, and component extraction.

VI. CONCLUSION

In this paper, aging detection capability for a switch-mode
power converter is developed. Prior to detecting aging
degradations, a parametric system identification based health
monitoring methodology is developed and presented. The
health monitoring technique involved i) non-parametric
identification of the system by injecting small multi-tone
sinusoidal perturbation (of the order of few mVs) at only ten
frequencies within the closed loop; ii) Parametric identification
of the system using a Recursive Weighted Least Square
estimator; and 1iii) parameter extraction of power-stage
component values assuming a Laplace rational function of the
system. The effectiveness of the health monitoring technique is
observed by accurate estimation of the parametric model and
extraction of the component values. Finally, the aging detection
capability of the proposed technique is established by inserting
additional capacitance across the output. The detection
procedure involves the use of different capacitance values to
recognize its effect on the overall capacitance of the circuit. The
overall capacitance illustrates an increasing trend with
increased  external  capacitance  demonstrating  the
implementation of an accurate detection methodology and
demonstrating its usefulness for predicting end-of-life of
power-supply components. This methodology is tested and
validated on a basic POL converter but can be generalized to
other power converter topologies.
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