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Abstract. This paper describes the application of a new multi-objective
integrated turbomachinery blade design optimisation system. The sys-
tem combines an existing geometry parameterisation scheme, a well-
established CFD package and a novel multi-objective variant of the Tabu
Search optimisation algorithm. T'wo case studies, in which the flow char-
acteristics most important to the overall performance of turbomachinery
blades are optimised, are investigated. Results are presented and com-
pared with a previous (single-objective) investigation of the problem.

1 Introduction

The optimisation of airfoil designs is a challenging, computationally expensive,
highly constrained, non-linear problem. As with most real-world problems, there
are multiple (usually conflicting) performance metrics that an engineer might
seek to improve in optimising, for example, the design of turbomachinery blades,
wings or other aerodynamic surfaces. This suggests a multi-objective approach, a
notion that is reinforced by the recognition that any consideration of robustness
— the retention of performance over a range of operating conditions, in the face of
geometry changes (e.g. through creep) etc. — must also inevitably entail multiple
objectives.

Despite this obvious motivation, multi-objective aerodynamic optimisation
seems to have been somewhat overlooked. However, two recent studies in partic-
ular have embraced multi-objective optimisation and show the possible benefits
compared to single-objective optimisation with a composite objective function.

Gaiddon et al. [9] perform multi-objective optimisation on a supersonic mis-
sile inlet. They compare a number of optimisation algorithms using both compos-
ite and multiple objective functions, and conclude that “performing real multi-
objective optimization and finding a Pareto front is the only effective way to find
a set of designs satisfying several performance criteria in an industrial context”.

Nemec et al. [17] perform multi-objective optimisation on both a single and
a multi-element 2-D aerofoil. Their integrated approach combines a Newton-
Krylov adjoint CFD code, a b-splines-based parameterisation scheme and both
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a gradient-based optimiser and a Genetic Algorithm (GA). They obtain good
results on some simple test problems.

The multi-objective integrated design system used in the present work has
been developed and described by Kipouros et al. [16] building on the single-
objective integrated design optimisation system (BOS3D) developed by Harvey
[11] and described by Dawes et al. [6]. The system combines an existing, efficient
and flexible geometry parameterisation scheme, a well-established CFD package
and a novel multi-objective variant of the Tabu Search (TS) optimisation algo-
rithm for continuous problems [13]. The system can readily be run on parallel
computers, which can substantially reduce wall-clock run times — a significant
benefit when tackling computationally demanding design problems.

In previous work [16] the performance of this system has been investigated
considering a compressor blade design test case. The effectiveness of the multi-
objective optimisation procedure was verified and the expected trade-offs be-
tween the chosen objectives confirmed. In the work presented in this paper we
use our system to tackle more realistic turbomachinery design test cases, taking
advantage of the greater computational power offered by exploiting its parallel
processing capabilities.

2 Description of the Integrated System

Fig. 1 presents a flow diagram showing the stages of the process executed by
our integrated multi-objective turbomachinery blade design optimisation sys-
tem. The first stage is the parameterisation of the initial blade design, input
through an initial CAD geometry together with boundary conditions for the
flow solution. The geometry is parameterised using a Partial Differential Equa-
tion approach [3], giving a compact but flexible representation of the design, in
a design vector comprising 26 variables. This design vector is the input to the
main loop of the design system, which consists of the flow simulation and op-
timisation processes. On receipt of a new design vector, a computational mesh
is automatically generated from the geometry specification, and then a detailed
CFD analysis (blade to blade) is performed. The mesh is a 3D structured grid
consisting of 21x87x23 nodes in each direction. The flow simulation is performed
by a CFD code solving the 3D Navier-Stokes equations, and this routine returns
all the necessary metrics that describe the flow around the blade [5]. Based on
this evaluation, the optimisation routine generates a new design vector that is
meshed and evaluated, and this process continues until a stopping criterion is
met.

At the end of the optimisation process, the best design vectors identified and
their associated flow solutions are converted into a single file, in the final stage
of representation. This stage is accomplished by using Non-Uniform Rational B-
Splines (NURBS) [18]. The optimal geometries can then be examined in detail
through, for instance, contour plots.

At the heart of our system is a multi-objective variant [13] of the well-
established Tabu Search optimisation algorithm [10]. There has been substantial
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Fig. 1. The structure of the integrated design optimisation system

recent interest in developing multi-objective optimisation algorithms — the vast
majority of which concerns multi-objective GAs [7]. GAs have been applied to
aerodynamic design problems, but, although able to locate optimal designs, the
method proved to be sensitive to constraint handling schemes and required sig-
nificantly more computational time than a gradient-based method [1]. This is
not surprising. The highly constrained nature of most aerodynamic design opti-
misation problems suggests that algorithms, like GAs, that routinely make large
changes to solutions may experience difficulties in trying to negotiate feasible
space on such problems, and that optimisation algorithms which progress by
making small changes are likely to be more effective. Harvey attributes the local
search paradigm at the heart of TS as being one of the reasons for its effectiveness
in his work [11]. The execution of a local search at each iteration of the algo-
rithm also offers the potential benefit of being able to estimate the robustness
of the current design to variations in geometry without the need for additional
flow solutions [2]. For these reasons we have opted to use a multi-objective TS
variant in our work.

Our multi-objective TS variant takes as its starting point the single-objective
TS implementation of Connor and Tilley [4]. This uses a Hooke and Jeeves local
search algorithm (designed for continuous optimisation problems) [12] coupled
with short, medium and long term memories to implement search diversification
and intensification, as prescribed by Glover and Laguna [10]. This algorithm and
analysis of its performance on benchmark constrained optimisation problems
from the literature are described in detail in a companion paper [14].



3 Case Studies

The most important flow parameters that affect the performance of a turboma-
chinery blade are:

— flow separation (blockage),
— losses (any flow feature that reduces the efficiency of the turbomachine), and
— deviation in flow turning.

Here we seek to find, starting from a gas turbine compressor guide vane
specification, a blade geometry that efficiently gives a good pressure rise at a
particular flow coefficient. Thus, a global performance measure of a given blade
geometry is needed for the optimisation process. Efficiency is only one of a num-
ber of possible design objectives when undertaking detailed aerodynamic shape
optimisation. A good design must also respect mechanical and manufacturing
constraints while achieving the required aerodynamic performance (with respect
to flow turning, separation and good off-design performance etc.).

The design optimisation of compressor blade geometries has previously been
studied by Harvey [11] from a single-objective perspective. In our multi-objective
test cases we retain Harvey’s objective function (equation 1) as an essential
1D (throughflow) measure of blade performance. This is a normalised function
including penalty function terms for specific flow characteristic and geometry
constraints. This objective function considers the span-averaged blockage for a
given mass flow rate:

)

fi= B% +250( m0)2 +0.4maz? (0,1 - }ifo) (1)
+ 500maz® (0, 1- AA—;O) + 0.5maz® (0, 1-— &)

In equation 1, B represents the blockage, the extent to which viscous forces
restrict the effective flow area in a blade passage, which is probably the most
critical quantity in high-speed compressor design. Then, 712 is the mass flow rate;
Rpg is the minimum radius of the leading edge of the blade; A# is the mass-
averaged flow turning; and C' measures the tip clearance of the blade. The zero
subscripts identify the equivalent quantities for the datum blade geometry, the
initial design in the optimisation — a real compressor blade design shown in Fig.
2. Harvey established suitable values for the weightings for each of the penalty
terms through extensive testing [11].

In highly loaded compressors, the flow tends to separate from the blade under
conditions of low mass flow. Flow separation acts as a blockage in the flow path,
which limits pressure recovery.

The mass flow associated with the design should be equality constrained for
two reasons. First, if it was not, the inlet dynamic head from the rotor would
vary, which is not modelled by the boundary conditions. Second, if the axial
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Fig. 2. The datum blade geometry showing its axial velocity distribution

velocity drops, then the inlet static pressure must be higher (since inlet pressure
and flow angles are prescribed), so that the static pressure rise across the stator
will be lower (outlet pressure is fixed), and the blade row will not be an effective
diffuser. Equally, it is important that, if the mass flow is fixed, the flow turning
in the stage should not be reduced during optimisation, otherwise the static
pressure recovery will not be sufficient. Therefore, control of the flow turning is
achieved by treating it as a penalty term.

In addition, there are two terms in equation 1 describing the geometrical
constraints on the blade. The first limits the sharpness of the blade’s leading
edge, while the second allows a weighted penalty factor to trade off aerody-
namic performance against mechanical proximity. The objective function value
is penalised when the blade design has less than 1.5 cm clearance. Both these
penalty terms reflect a concern for robust aerodynamic performance from the
design, since these geometric characteristics are closely related to the off-design
performance of the blade:

1. A sharp leading edge produces a high velocity profile at the front of the
blade and, in addition, such a design may well have a flat section at its
front. Such a geometry results in a velocity peak at off-design conditions,
which means that the velocity distribution produced has a high probability
of early transition, laminar or turbulent separation, and consequently poor
off-design performance.

2. The tip clearance is responsible for the deviation created on the end walls.
In particular, the secondary flows are known to create over-turning very
close to the end walls and a region of under-turning some distance away
from them. The effects of this deviation on the exit velocity profile and on
the inlet incidence angles to the next blade row can be very large and can
substantially increase the incidence losses on the next blade row.

Harvey [11] found that it was necessary to use a penalty function approach
with these constraints in order to successfully navigate the highly constrained,



nonlinear search space characteristic of aerodynamic design optimisation prob-
lems. Other constraints, such as those on the geometric feasibility of blade de-
signs and on their operational feasibility (a design which produces unsteady flow
patterns is not acceptable), are handled as hard constraints — designs violating
them are not accepted.

3.1 First Multi-objective Test Case

In our first test case, we introduce a second objective Brms (the RMS variation
in blockage), which provides an additional representation of the spatial variation,
and hence homogeneity, of the blockage — effectively a 2D measure of blade
performance (equation 2), subject to the same set of penalty function constraints:
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The same penalty terms are included in the formulation of each objective in
order to ensure that the final Pareto front identified contains only designs that
are (near-)feasible.

3.2 Second Multi-objective Test Case

In our second test case, we introduce an objective function which quantifies
losses associated with the design. This is defined in terms of the rate of entropy
generation [8], subject again to the same set of penalty function constraints:
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In a turbomachine the isentropic efficiency is defined as the ratio of the ac-
tual work to the isentropic work for a work-producing device (such as a turbine)
and the ratio of the isentropic work to the actual work for a work-absorbing
device (such as a compressor). The only factors that change this efficiency are
departures from isentropic flow. These may arise due either to heat transfer
or to thermodynamic irreversibility. For most turbomachines the flow is close
to adiabatic (no heat transfer) and so only entropy creation by irreversibilities
contributes significantly to the loss of efficiency, which means that entropy gen-
eration rate is the only rational measure of overall loss in an adiabatic machine.



Any irreversible flow process creates entropy and thus reduces the isentropic ef-
ficiency. The sources of loss in a turbomachine can be categorised as profile loss,
secondary (or end wall) loss, and tip leakage loss. In many machines the three
are comparable in magnitude, each accounting for about 1/3 of the total loss.

4 Results

4.1 First Test Case

The optimisation was initiated from the datum geometry shown in Fig. 2. Fig.
3 shows the progress in objective-space of the search performed by our multi-
objective TS algorithm over the 1350 iterations of the run, using the control
parameters specified in Table 1. See [14] for a detailed explanation of these
parameters. The values of these control parameters were chosen based on ex-
perience, but it should be noted that studies in [14] show that the algorithm’s
performance is relatively insensitive to the control parameter settings.

Table 1. Tabu Search Parameter Settings

Parameter Value Description

intensify 25 Intensify search after intensify iterations without adding to the
Medium Term Memory (MTM)
diversify 75 Diversify search after diversify iterations without adding to the

MTM

reduce 95  Reduce step size and restart after reduce iterations without adding
to the MTM

n_stm 15 Short Term Memory size — the last n_stm visited points are tabu

n_regions 4 In the Long Term Memory each variable is divided into n_regions
to determine which regions of the search space have been under-
explored

SS 1% Initial step size as percentage of variable range

SSRF 0.5  Factor by which step sizes are reduced on restarting

The optimisation was run on an 8-node parallel PC cluster of 2.8GHz Pen-
tium 4 machines in order to reduce wall-clock run times by exploiting our sys-
tem’s parallel capabilities. The CFD flow solution required for evaluation of a
single candidate design takes 3 minutes on a single node of the cluster, and up
to 52 CFD evaluations (on average 32 evaluations) are required at each iteration
of the optimisation algorithm. Thus, on our cluster a 1350 iteration run takes
270 hours (just over 11 days).

Fig. 4 shows the set of Pareto-optimal solutions found during the search.
The geometry shown in Fig. 5 represents a compromise design from the middle
of the Pareto front, which is clearly quite different to the datum design. The
large changes made to the blade geometry during the search demonstrate the
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Fig. 3. The optimisation search pattern for the first blading test case

flexibility of the geometry management system used. A high twist along the span
is the main characteristic of this blade. Reassuringly, this optimised geometry
has a similar leading edge (LE) profile to the single-objective optimised design
found by Harvey, shown in Fig. 6 [11].

It can be seen that the performances of the optimised geometries lying at the
low blockage end of the Pareto front (Fig. 4) have matched or slightly exceeded
that of the optimised geometry found by Harvey (Fig. 6). This has been achieved
in an optimisation run that is actually shorter in terms of the number of CFD
flow solutions required than that reported by Harvey [11] (using the same initial
design), even though we are tackling a multi-objective optimisation problem. In
effect the additional information provided to the designer by revealing the trade-
off between the main objective (blockage) and the secondary objective (the RMS
variation in blockage) costs nothing because the quality of the best designs found
with respect to the primary objective have not been compromised at all by the
switch to multi-objective optimisation.

4.2 Second Test Case

Optimised geometries found for our second test case are presented in Figs. 7,
8, 9 and 10, which show respectively the lowest blockage design, lowest entropy
generation design and two compromise geometries from the trade-off surface
(Fig. 11). These blades are again quite different to the datum geometry used to
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Fig. 4. The Pareto front found for the first test case

initiate the optimisation, and in addition there are significant differences between
them. The LE of these geometries is similar, but differs from the LE of the
single-objective optimised blade (Fig. 6). Furthermore, there are considerable
differences in the trailing edge (TE) between the multi-objective and single-
objective designs.

It is worth remarking that compromise geometry A (Fig. 9) displays geo-
metrical characteristics from both the lowest blockage (Fig. 7) and the lowest
entropy generation (Fig. 8) designs. However, the big difference between these
blades is in the tip profiles. For the lowest blockage design (Fig. 7) and com-
promise design B (Fig. 10), for which the blockage is almost as low, there is a
rapid change in the tip camber, which results in a thick profile, whereas for the
geometries in Figs. 8 and 9 there is a smooth change in the camber of the tip
profile. This geometrical characteristic is shared with the blade in Fig. 6.

As regards aerodynamic performance, all the blades have good, i.e. smoothly
varying, axial velocity distributions. However, there is noticeable flow separation
along the TE of the blade optimised for lowest entropy generation.

The Pareto front shows that significant performance improvements are achiev-
able. For instance, compromise design B (Fig. 10) reduces the blockage signif-
icantly compared to the initial datum design (Fig. 2) with very little increase
in the rate of entropy generation. The lowest blockage design (Fig. 7) performs



Fig. 5. Test case 1: The optimised geometry for a compromise point on the Pareto
front (Fig. 4)
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Fig. 6. The optimised geometry for the single-objective test case [11]

comparably to Harvey’s blockage-optimised blade (Fig. 6) but has a significantly
lower entropy generation rate.

Interestingly the Pareto front also exhibits a sharp “elbow” around com-
promise design B. Relative to this design, it is possible to reduce the blockage
objective but only at the cost of quite large increases in entropy generation. It
is also possible to reduce the rate of entropy generation but only at the cost
of significantly increased blockage. In this case the designer might find it quite
straightforward to select a good compromise design.

i

5 Conclusions and Future Work

The foregoing test cases demonstrate that our multi-objective integrated turbo-
machinery design optimisation system can successfully tackle realistic real-world
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Fig. 7. Test case 2: The optimised geometry for lowest blockage (Fig. 11)

problems, negotiating the highly constrained, nonlinear search space, and pre-
senting the designer with a range of designs showing the trade-offs between the
objectives under consideration.

In both test cases the performance of the designs found match or exceed
the performance of the optimised blade identified in an earlier single-objective
study. The computational effort required to solve these multi-objective problems
was no more than that required to solve the single-objective problem and, in
addition to equally good or better designs, the designer is also presented with
helpful information about the trade-offs between the objectives of interest. This
demonstrates very clearly the value of multi-objective optimisation.

The factors influencing efficiency of turbomachinery blades and the trade-offs
between them are extremely complex and therefore this area needs further inves-
tigation. The next steps will be to define additional loss objectives for the design
problem examined above. Thus, new objective functions will evaluate individu-
ally the profile losses and the secondary losses in order to improve understanding
of the trade-offs between them in design. These investigations will require the
tackling of three- and four-objective problems and will therefore also allow us to
test the effectiveness of our multi-objective TS variant on these higher dimension
problems.

To improve further the effectiveness of our multi-objective TS variant a more
sophisticated system for selecting the design variables to be modified in search,
based on the work of Kellar [15], will be developed. This will seek to identify
the variables that have the greatest impact on the performance of the current
design and prioritise them at each local search iteration. It is hoped that this
will improve the wall-clock performance of the system substantially.



Trailing Edge
Tip

Hub

Leading Edge o
Flow Separation
(Darker shading)

Fig. 8. Test case 2: The optimised geometry for lowest entropy generation (Fig. 11)

Acknowledgements

The first author gratefully acknowledges the support of the Embiricos Founda-
tion and the Cambridge European Trust. The second author acknowledges the
support of the UK Engineering and Physical Sciences Research Council (EPSRC)
under grant number GR/R64100/01.

References

1. Aly, S., Ogot, M., Pelz, R.: Stochastic Approach to Optimal Aerodynamic Shape
Design. Journal of Aircraft. 33 (1996) 956-961

2. Asselin-Miller, C. S.: Robust 2D-Aerofoil Design: Proof of Concept. 4th Year Project
Report. University of Cambridge, Department of Engineering (2003)

3. Bloor, M. I. G., Wilson, M. J.: Efficient Parameterisation of Generic Aircraft Ge-
ometry. Journal of Aircraft. 32 (1995) 1269-1275

4. Connor, A. M., Tilley, D. G.: A Tabu Search Method for the Optimisation of Fluid
Power Circuits. IMechE Journal of Systems and Control. 212 (1998) 373-381

5. Dawes, W. N.: Development of a 3D Navier-Stokes solver for application to all
types of turbomachinery. ASME Conference Paper 88-GT-70. ASME Gas Turbine
Conference, Amsterdam. (1988)

6. Dawes, W. N., Kellar, W. P., Harvey, S. A., Dhanasekaran, P. C., Savill, A. M.,
Cant, R. S.: Managing the Geometry is Limiting the Ability of CFD to Manage the
Flow. 33rd ATAA Fluid Dynamics Conference, Orlando, Florida. ATA A-2003-3732.
(2003)

7. Deb K., Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons Ltd., Chichester UK (2001)

8. Denton, J. D.: Loss Mechanisms in Turbomachines. Journal of Turbomachinery. 115
(1993) 621-656

9. Gaiddon, A., Knight, D. D., Poloni, C.: Multicriteria Design Optimisation of a
Supersonic Inlet Based upon Global Missile Performance. Journal of Propulsion
and Power. 20 (2004) 542-558



N .
ip b Trailing Edge

Leading Edge

Fig. 9. Test case 2: The optimised geometry for compromise point A on the Pareto
front (Fig. 11)

10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston MA
(1997)

11. Harvey, S. A.: The Design Optimisation of Turbomachinery Blade Rows. Ph.D.
Dissertation. University of Cambridge (2002)

12. Hooke, R., Jeeves, T.: Direct Search Solution of Numerical and Statistical Prob-
lems. Journal of the ACM. 8 (1961) 212—229

13. Jaeggi, D. M., Asselin-Miller, C. S., Parks, G. T., Kipouros, T., Bell, T., Clarkson,
P. J.: Multi-objective Parallel Tabu Search. In: Yao, X., Burke, E., Lozano, J-A.,
Smith, J., Merelo-Guervos, J., Bullinaria, J., Rowe, J., Tino, P., Kaban, A., Schwefel,
H-P. (eds.): Parallel Problem Solving from Nature — PPSN VIII. Lecture Notes in
Computer Science, Vol. 3242. Springer-Verlag, Berlin (2004) 732-741

14. Jaeggi, D. M., Parks, G. T., Kipouros, T., Clarkson, P. J.: A Multi-objective Tabu
Search Algorithm for Constrained Optimisation. In: 3rd Int. Conf. Evolutionary
Multi-Criterion Optimization. Lecture Notes in Computer Science, Springer-Verlag,
Berlin (2005)

15. Kellar, W. N.: Geometry Modeling in Computational Fluid Dynamics and Design
Optimisation. Ph.D. Dissertation. University of Cambridge (2002)

16. Kipouros, T., Parks, G. T., Savill, A. M., Jaeggi, D. M.: Multi-objective Aerody-
namic Design Optimisation. In: Giannakoglou, K. C., Haase, W. (eds.): ERCOF-
TAC Design Optimization: Methods and Applications Conference Proceedings. On
CDRom (2004) Paper ERCODO02004_239

17. Nemec, M., Zingg, D. W., Pulliam, T. H.: Multipoint and Multi-objective Aero-
dynamic Shape Optimization. ATAA Journal. 42 (2004) 1057-1065

18. Rogers, D. F.: An Introduction to NURBS With Historical Perspective. Morgan
Kaufmann Publishers, San Francisco CA (2000)



Tip

Trailing Edge

Leading Edge

Fig. 10. Test case 2: The optimised geometry for compromise point B on the Pareto
front (Fig. 11)

3400 lterations

12 - - s

Lowest Entropy ve . LR
{ Generation Design (Fig. 8) , .. N L : it
Datum Resign, . . . et SO
1.0 - o . airie .37y i, =
0.8 4
o
(@)]
(“ -
X
Q
ol
= 06

Compromise
0.4 4 Design A (Fig. 9) f
]
_ Compromise \Lowest Blockage
Design B (Fig. 10) Design (Fig. 7)
0.2 T T L T v T z T x T v T T T J 1
0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

Entropy generation

Fig. 11. The optimisation search pattern and the Pareto front for the second test case



