
A New Kinetic Approach to the Shock Wave Problem 

It is indeed curious that such plausible expansion techniques as 

the Chapman-Enskog sequence for solving the Boltzmann equation, lead to higher 

order approximations which, on the basis of experimental evidence, fail to 

yield correct predictions in situations where they are expected to be valid. 

The present paper explores thu possibility of a solution based on an integral 

iteration technique, as distinct from an expansion technique, and its 

application to the normal shock problem. 

In reference (1) an attempt was made to iterate on the B.E. starting 

from the N.S. distribution function in order to determine shock wave structure; 

in the analysis, however, a wrong assumption was made and some incorrect 

conclusions ware drawn. 	In the present investigation the method is revised 

and generalised, and the convergence problem is studied. 

In the formulation of the method the hard sphere molecule assumption 

is Tade and the following form of B.E. is used as a basis for the proposed 

iteration scheme, 

Df 
+ f L(f) = G(f) 

where L and C are the familia/ loss and gain terms. The scheme is initiated 

by using a local naxwellian tc approximate these two terns and the B.G.K. model 

results as the first mode] equation whose approximate solution is known (2). 

This is similar to the N.S. distribution function which, by a similar argument, 

can also be obtained by departing from a:, approximate solution of the linearized 

B.E. Next fN.s., which may rightly be considered as the initial distribution 

function, is used to determine a second model equation; corrected expressions 

for the gain and loss terms are obtained, having additional terms depending on 

the original N.S. flow parameters 

	

d5a 	p dl5RT 

	

p dxa 	p dxa  

and their products, and on exponential and error-type functions of the peculiar 

velocity and its components. 	The derivation is made in 3-D. 

The suitability of the initial distribution function fN.s.  can be 

verified by studying the convergence of the scheme. 	On the assumption that 

squares of differences between two consecutive iterations of the distribution 
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function are negligible compared to the difference itself, a similar set of 

conditions for convergence as that of Willis (3) is obtained and the scheme 

is shown to converge at least at and in the neightbourhood of the free molecular 

flow and continuum flow r4gimes. 

In the second part of the paper the integral of the second model 

equation is formally applied to the steady plane shock wave problem and three 

integral equations for the macroscopic variables n, u and T are o2-,tained. 

To carry out the integration w.r.t. the molecular velocity components perpend-

icular to the flow direction, the loss term appearing in the exponential of 

these three moments is approximated by a function dependent on x only (but 

not on the peculiar velocity) and whose form, different for each moment, is 

determined by satisfying the conservation requirement. The final form of the 

three moment equations is a generalisation of but reduces to the B.G.K. model 

results. 	The computation of shock profiles based on N.S. solutions, though 

lengthy, should present no difficulties. 

As an illustration of the type of results obtained, the contributions 

of the gain term of the second model equation which appears in the integral 

equations of the flow vaAables n, a and T are GI, Cx  G1  and x  G1  + G2  

respectively, where 

Gi = Ai(U) + 9 Bi(U) + 3 Ci(U) +( 0Di(U) + (6 alEi(U) + e2 	ri(u) 
Txx 	Tx 	\Txx 	1-Tx/ 	txtxx 

= 1, 2 
and 

8 	2 p dU 	6 3 p diET 
p dx ' 	-Tx 	p dx 	' 

being the molecular speed in the flow direction, 171 the local macroscopic 

0 

speed and U the corresponding dimensionless peculiar speed component. 	A 

plot of the functions Ai ...., Fi is shown in fig.1 and 2, where the curves 

C1(U) and Fi(U) change sign as U becomes negative. 

For the B.G.K. model 

Gi = G2  = exp C- U2) 

which approl:imate the curves Al(U) and A2(U). 

According to the analysis of Liepmann et al (2) regarding 
6
— and 
txx 

the additional terms in Gi will yield a significant contribution, as the 
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Mach number increases, where the M.S. equations cease to be valid, i.e. 

particularly on the low density side of the shock ahead of the point of 

maximum stress. Liapmann et al show also that on the assumption of constant 

total enthalpy across the shock (correct to within less than 3%) 

14 
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t X 	
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where M is the Mach number. 

Hence, although — remains of order unity even for an infinite shock strength, 
0 	

t„ 
will become increasingly large upstream as the free stream Mach number 

tx  
increases. 

In cJnIusion, although the plane shock wave problem is characterised 

by a single par,ameter, the Much number, significant local rarefied effects 

occur as the shock strength increases. 	These effects, characterised by tile 

parameters -- and.: which arise naturally in the equations and which may be 
Tx 	Lxx 

regarded as local Knudsen nunbers, or Reynolds numbers, are intimately related, 

and a consequence, of the Mach number. 	The present investigation is an 

attempt to account for such rarefied effects and to shed light on the validity 

and limitations of the B.C.K. model. 

The method should be equally applicable to other fluid flow problems 

of linear or nonlinear nature. 
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