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Abstract 

Exotic animal diseases (EAD) are characterized by their capacity to spread global distances 

causing impacts on animal health and welfare with significant economic consequences.  We 

offer a critique of current import risk analysis approaches employed in the EAD field, 

focusing on their capacity to assess complex systems at a policy level.  To address the 

shortcomings identified, we propose a novel method providing a systematic analysis of the 

likelihood of a disease incursion, developed by reference to the multi-barrier system 

employed for the UK.  We apply the network model to a policy level risk assessment of 

classical swine fever (CSF), a notifiable animal disease caused by the CSF virus.  In doing so, 

we document and discuss a sequence of analyses that describe system vulnerabilities and 

reveal the critical control points (CCPs) for intervention, reducing the likelihood of UK pig 

herds being exposed to the CSF virus. 

 

KEY WORDS: exotic animal disease, network, risk, system, import, analysis, classical 

swine fever 

 

1 INTRODUCTION 

Expanding free markets and globalisation have increased countries’ exposure to exotic 

animal disease (EAD).  Prevention of EAD incursion is complex and requires the dynamic 

management of potential entry points, pathways and preventative barriers.  Understanding the 

interactions between these is a focus for governments managing EAD risks 
(1)

.  

Conventionally, risk assessments (RAs) in this field assess the likelihood and impact of an 

EAD so to inform risk management practice 
(2,3)

.  Both qualitative and quantitative methods 
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have been employed.  However, in seeking a synthesis of the knowledge on the system of 

disease incursion, these approaches are often limited.  Here, we evaluate current methods for 

assessing the risk of exposure to EAD and offer an analysis of the merits and limitations of 

established tools.  Building on this, we present an alternative method aimed at improving 

EAD risk assessments at the policy level.  The proposed framework adopts a systems 

approach and identifies vulnerabilities in the controls in place, presented as critical control 

points (CCP), across a country’s disease management plan.  This approach has been 

developed within the context of EAD protection within the UK. 

1.1 Exotic animal diseases 

EADs are transboundary hazards, given their capacity to spread substantial distances 

and cause significant impacts (e.g. direct and indirect economic loss to farmers and 

governments) at local, national and international scales 
(4,5)

.  Concern has been exacerbated 

by the intensification of agriculture and the expansion of global markets 
(6)

.  Recent examples 

of EADs in the UK include the 2001 and 2007 foot and mouth disease (FMD) and 2000 

classic swine fever (CSF) outbreaks 
(7-11)

, while avian influenza (AI) and the bluetongue (BT) 

pandemics represent international examples 
(12-14)

.  Prevention of EAD provides substantive 

economic benefit, and developed countries spend considerable effort preventing and 

mitigating EADs to maintain a favourable ‘disease-free’ status 
(15)

; much of this focused at 

the policy level and requiring intimate knowledge of systemic risk and its reduction.  The 

threat of an EAD incursion is relentless, requiring governments to maintain vigilant 

management practice.  Interaction between the pathways of introduction, the multiple stages 

of exposure, subsequent impacts and barriers of management is highly complex.  Preventative 

risk management requires a broad understanding of system risk in order to design and 

implement cost-effective programmes adapted to high-level protection for a heightened state 

of national preparedness 
(4,15)

. 
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1.2 The UK multi-barrier defence system and failure to prevent outbreak 

The UK framework for the prevention and control of exotic animal diseases combines 

the competences of multiple agencies (e.g. local authorities, Animal Health Agency, Meat 

and Hygiene Service, HM Revenue and Customs and the UK Borders Agency 
(1)

), each with 

specific management roles and responsibilities.  Mutually independent, the functions of these 

agencies create a complex network of protection barriers that operate as a whole system.  

Considering their risk management activities as a ‘multi-barrier system’, and taken in concert, 

these barriers protect against the imperfections that exist, even in the most effective of single 

barriers 
(16)

.  However, system failures still occur, and may be due to a rare coincidence of 

successive failures in multiple defences, which create pathways for hazardous agents to reach 

susceptible livestock.  The more robust the defence network, the more unlikely an incursion 

is.  Nonetheless, incursion remains theoretically possible 
(16)

, which is why understanding the 

complexity of the system is vital for the development of effective and risk-informed 

interventions 
(17)

. 

1.3 Key issues for improving prevention of exotic animal diseases 

Firstly, EAD outbreaks result from complex interactions between the host, the disease 

agent, and environmental conditions (e.g. human activities) 
(18)

.  Understanding the role each 

plays is central to identifying weaknesses in the system 
(17)

.  The introduction of an EAD is 

influenced by the agent’s unique characteristics influencing the route of import 
(19)

 and the 

complexity of interactions between the environment, hosts (e.g. wildlife and livestock), trade 

routes, and the level of biosecurity provided by animal production systems (e.g. extensive vs. 

intensive).  This generates a very large number of possible release and exposure pathways 
(17)

.  

Though multi-barrier systems harbour some redundancy that could improve protection, the 

efficacy of these systems remains vulnerable to human factors 
(16,18,20)

 (Figure 1).  Improving 

these systems is difficult, as evidenced by the investigation of past outbreaks, which are 
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frequently inconclusive on root causes 
(2,21)

.  Consequently, true system failures are difficult 

to detect and therefore, the performance levels for individual controls poorly documented 

(2,22)
.  Understanding the relationship between opportunities for transmission in the context of 

the efficacy of risk management controls is central to enhancing a nation’s level of 

preparedness. 

Secondly, the World Trade Organisation (WTO), under the sanitary and phytosanitary 

(SPS) agreement, requires the validated scientific rationale and data before increasing 

protective measures for EAD incursion 
(23)

. Thus, so that that protective measures are not 

used inadvertently as barriers to trade. Risk assessments provide an evaluation of the risk of 

introducing an EAD and guidance on the causes for failure, thus must be included in the 

package of evidence provided to justify the necessity for added measures 
(3,24,25)

. 

2 IMPORT RISK ASSESSMENTS: A CRITIQUE 

By convention, so-called import risk assessments (IRA) are used to assess the likelihood 

and consequence of an EAD incursion, playing a key role in the identification and 

classification of risks of introducing an EAD into a disease free country 
(3,24,25)

. Guided by 

international standards 
(23)

, IRAs employ a range of qualitative and quantitative methods, 

which can be applied under different scopes and objectives. Table II presents a summary of 

approaches to IRA and their respective strengths and weaknesses.  Though these methods are 

well established, we argue they present methodological limitations in the context of increased 

system complexity and may fail to provide a sufficiently comprehensive analysis of all the 

introduction mechanisms and subsequent threats of exposure to an EAD. 

IRA tools are divisible in two groups; expert- and scenario-based.  The majority of 

expert-based models are strictly qualitative, 
 (26)

 such as those applied by Australia and New 

Zealand 
(27)

, and rely on a process of hazard screening, identification and classification and 
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use descriptors to assess the likelihood and severity of the impact of EAD introduction 
(28-31)

.  

The Department for Environment, Food and Rural Affairs (Defra) in England and Wales 

adopts these techniques 
(32-34)

.  Expert-based methods rely on multiple sources of information, 

including expert opinion, to estimate risk 
(2)

.  Experts synthesise information from a range of 

possible events, often providing a single ‘score’ as a surrogate risk estimate.  The approach is 

suitable for a quick breakdown of the risks although limited in its ability to capture the 

complexity of the system, offering a pragmatic alternative for assessing events where data is 

sparse.  It enables rapid and inexpensive screening level assessment, allowing decision-

makers to discern priorities and design management solutions in short time frames.  Other 

expert-based assessments apply complex elicitation methods, such as conjoint analysis 
(35-37)

, 

or quantitative methods that rely on expert knowledge to support a fuller assessment.  These 

employ more complex and time-consuming processes to strengthen the accuracy of elicited 

values; though arguably, with limited improvements to the representation of system detail.  

As an example, Horst (1998) presented an exhaustive list of the importation release and 

exposure routes, in order to prioritise them according to importance.  Though extensive in 

analysis, the output was a ranked list of risk factors and sources with limited analytical depth.  

Expert-based models are flexible enough to allow the study of large systems 
(3,26)

.  

Nonetheless, their highly descriptive nature may fail to offer system oversight, reveal true 

complexity and/or the full extent of introduction scenarios.  Scenario based modelling 

includes end-point quantitative and mechanistic models, and event-trees 
(38)

.  The approach, 

used quantitative or qualitative, requires the detailed representation of the sequence of events 

responsible for exposure for source to receptors.  The complexity of models increases as 

analysis moves from single 
(39,40)

 to multiple introduction pathways 
(41-44)

 or receptors 
(25,45)

.  

Scenario-based models provide diagnostic detail but often at the cost of extensive preparatory 

work and input data.  This constrains the scale of these assessments 
(25,45)

, which can deliver 
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only a small portion of all available pathways, as acknowledged by their users.  This review 

demonstrates that when used individually, expert-based and scenario-based models have 

methodological limitations, which result in the development of an incomplete understanding 

of EAD import mechanisms. 

The consensus appears to be that the management of disease incursion combining the 

insights for expert- and scenario-based IRA perspectives provides an acceptable 

understanding of EAD import mechanisms and associated risks 
(3,26)

.  However, we challenge 

the extent of systems understanding claimed for.  These methods rely heavily on available 

information from past outbreaks and on predicted pathways of exposure to advise on the 

scope of the assessment.  They require the existence of prior knowledge of the mechanisms 

involved in creating introduction pathways and the behaviour of system barriers 
(46,47)

.  

However, for incidences such as the CSF 2000, FMD 2001 and HPAI 2007 outbreaks, Defra 

identified causal pathways resulting from a conjunction of unlikely events.  Such pathways 

are more difficult to predict and may provide the explanation for a high percentage of 

inconclusive epidemiological reports associated with EAD (Figure 2).  As prior knowledge is 

often unavailable, such pathways have remained outside the scope of conventional IRA, as 

has the identification and understanding of the mechanisms involved for creating an incursion 

opportunity. 

3 A SYSTEMS APPROACH TO IMPORT RISK ASSESSMENT 

An understanding of system properties and of how controls interact enables us to predict 

behaviour better 
(48-50)

.  We propose a method that integrates network analysis with the so-

called features, events and process (FEP) analysis.  By combining these approaches, we 

expand the assessment of potential events that may trigger a barrier failure, so initiating an 

EAD incursion.  Network analysis attempts to understand interactions between species and 
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the environment 
(51,52)

.  Examples exist in the epidemiological and disease transmission 

literature 
(53,54)

.  Functionally, a network is comprised of a number of nodes and the 

connections that exist between them (arcs).  FEPs analysis is used to define relevant exposure 

scenarios and has previously been applied to nuclear waste repositories and proposed for 

geological storage of carbon dioxide 
(55,56)

. When applied to a specified EAD, this approach 

intends provide an assessment of the entire system, unveiling interactions at play that may 

have historically been overlooked.  

3.1 Feature, events and processes list  

A FEPs list provides a set of system features, system events and system processes that 

when combined, generates an exposure scenario 
(55)

.  For our purposes, ‘features’, the 

components within the system (e.g. farms, fomites, border inspection posts, and human or 

livestock populations) are represented as network nodes (Figure 1).  Nodes include the source 

of EAD, countries without a disease free status, and receptors, e.g. livestock farms.  

‘Processes’ represent the opportunities for disease transmission between adjacent nodes, and 

are represented in the network as arcs.  Each arc represents a single process and nodes may be 

connected to several other nodes.  The extent of connectivity between two adjacent nodes is 

defined as an incidence and is assigned a value.  ‘Events’ are the potential root causes of 

barrier failure and are not represented graphically.  Barrier failure does not necessarily infer 

disease transmission; rather a situation where transmission is possible.  Events are assigned a 

value that describes the barrier failure rate, reflecting an expert’s confidence in barrier 

efficacy.  A complete FEPs list is a comprehensive record of all the values attributed to each 

process and arc in the network, and of all the description and assumptions associated with 

them. 
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3.2 Data collection and modelling challenges 

Risk assessment favours the use of quantitative data as a reliable and auditable source of 

information 
(3,26)

.  However, for the study of incursion and exposure of EAD to susceptible 

receptors, such data is often sparse, incomplete and/or unavailable in the quantities necessary 

to develop a comprehensive analysis of the mechanisms driving exposure (Figure 2).  In these 

circumstances, expert opinion presents an alternative source of information 
(3,26)

.  The 

systemic model relies on expert judgements to inform the model structure and assign values 

to the FEP network.  The experts provide information on the frequency of movements 

between nodes and the quality of the barriers preventing transmission.  Required from the 

experts is an evaluation of:  

 Incidence: the number of times a connection is attempted (frequency), with or without 

successful transmission during a predefined time interval.  The degree of ‘challenge’ in 

the system. 

 Barrier failure rate: the number of times a barrier actually fails to detect and/or 

eliminate a disease agent, as opposed to the number of times a connection is attempted. 

 Events: a description of the events provoking barrier failure and their classification 

according to error type - human and/or system error. 

3.3 Scenario simulation, pathway calculation and system properties 

A scenario is a described sequence of events; e.g. the sequence of events necessary to 

allow an EAD to contact a receptor, where a receptor represents an animal from a species 

susceptible to the EAD considered.  Multiple scenarios resulting in a system failure (i.e. 

disease incursion) may exist.  We simulate these using a pre-programmed Excel™ 

spreadsheet describing the network as an interaction matrix (IM; Figure 3).   Here, diagonal 

cells represent network nodes; off-diagonal cells (where full) represent a connection between 
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two nodes.  The off-diagonal cell [i, j]; with A being the row and B the column, represents 

the connection between the node [i, i] and the node [j, j], whereas cell [j, i] represents the 

inverse connection.  If an off diagonal cell is empty, there is no connection between two 

respective nodes.  When complete, the matrix represents every possible connection within the 

system.  Using the IM, a scenario simulation analysis (SSA) generates all possible outbreak 

scenarios, leading from a source node to a receptor.  A direct pathway contains two nodes and 

one arc, whilst indirect pathways contain   nodes and (  -1) arcs.  A pathway length   refers 

to the number of arcs present in the pathway (      .  (   represents the likelihood of a 

pathway being available for causing infection.  It results from the estimations of the 

likelihood of the sequences of transmission between any two adjacent nodes (   considered 

in pathways, where and  (     the likelihood of transmission between two random nodes 

within the network can be described.  For direct pathways, where      the value of   is 

equal to the value of   for the source and receptor node,  

     (      (     ; and     (Eq. 1) 

for indirect pathways, where        is calculated using the following equation, which 

considers a random sequence of adjacent connections from source to receptor node, 

   (    
   (       (        (         (          (     ;    (Eq. 2) 

Where,  (    
  is the likelihood of a pathway between a source node ( ) and a receptor node ( ) 

and   represent random adjacent nodes from n network nodes.  Therefore, (   depends on the 

likelihood of the adjacent connections.  This is calculated by  (    , where i and j are any two 

randomly selected nodes in the network,   (     represents the value for incidence associated 

with the process connecting nodes   and   and    (     is the value for barrier failure rate. 

Incidence provides a comparative assessment of the likelihood of the outgoing connections 
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from a node and the barrier failure rate how likely is failure to detect and eliminate a disease 

agent in a specific outgoing connection. 

   (     
  (    

∑   (     
   
   ∑   (    

 
     

    (     ; for        (Eq. 3) 

where        . 

The output of the model is a list of all pathways allowing exposure of susceptible receptors to 

the disease agent.  That list includes a description of all the nodes composing the pathways 

and a respective likelihood (   value. 

3.4 Sensitivity analysis 

System vulnerability is evaluated by considering the sum of the likelihoods of all 

pathways.  It represents the likelihood of system failure and defines a base case for system 

performance.  The value represents a snapshot of system vulnerability to the incursion of an 

EAD and allows the detection of which arcs and associated events promote barrier failure and 

so pose a greater influence to system vulnerability.  This can be achieved by the application 

of a local ‘one at a time’ sensitivity analysis to the model, targeting the behaviour of the 

barriers associated with each arc 
(57,58)

 and is valuable later for identifying risk management 

interventions that are likely to be most effective in times of risk reduction. 

4 MODEL APPRAISAL 

Clearly, historically high priority pathways for EAD incursion are understood and under 

active management.  However, an increase in system complexity is leading to the possibility 

of unexpected interactions that generate less predictable pathways of EAD introduction.  

Current focus is on the occurrence of a sequence of low probability system failures that may 

result in an incursion 
(1,16,59)

.  The approach offered here adopts a bottom-up approach, based 
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on a belief that the behaviour of the system emerges as a whole, and cannot be understood in 

full by the atomised analysis of constitutive parts 
(48,60)

.  Bottom-up models offer the 

following advantages: 
(48,50,51,56,60-63)

 

a) The model is based on simple local rules that drive the complex behaviour observed at 

a global level, so understanding the rules governing system behaviour allows for making 

predictions.  This enables the model to infer system resilience, simulating the UKs’ overall 

resilience to a disease introduction. 

b) The model allows for interplay between bottom-up and top-down perspectives through 

several levels of granularity, allowing the analyst to assess the effects of micro behaviour in 

system performance and weaknesses e.g. at critical control points
(64)

.  These properties make 

network models suited to large, complex systems where the role of an individual component 

is not altogether clear 
(50,51)

. 

Here, pathways are not determined prior to the assessment as in an event tree, but 

generated from within the system, based on agent / system interactions.  This generates a very 

large number of introduction pathways, from which none can be excluded.  In contrast with 

conventional approaches 
(3,24,25,45)

, the model produces an estimation of system behaviour 

based on the likelihood of all generated pathways and information on to the influence of 

components within the system 
(51)

.  The interplay allows us to examine the sensitivity of the 

system to the behaviours of individual components 
(48)

.  The model also assumes individual 

barrier failure is not exclusive to one pathway.  Nonetheless, increasing control over that 

failure will decrease the likelihood across a number of pathways, improving system 

behaviour.  For example, a failure (a) may provide agent access to two high likelihood 

pathways, and a failure (b) to thousands of low likelihood ones.  Understanding which failure 

has greater influence on system behaviour enables the identification of critical control points; 

key areas where intervention is likely to be more effective 
(64)

. 
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An analysis concentrating on the features (components) allows defining priorities at a 

macro level, and a second analysis focussing on the processes/events the identification of key 

areas to intervene with regard to those priorities.  This provides an indication of ‘where’ to 

intervene.  However, as the causes of barrier failure are captured by the FEP list, it also 

provides information on ‘how’ to intervene.  Latent failures are a key concept when assessing 

a multi-barrier system 
(16,59,65)

.  Barrier performance is influenced by a multitude of factors, 

including technological and resource limitations, political and social issues and human 

factors.  Understanding how these influence each individual process/event provides insight 

for the development of risk mitigation strategies, where intervention is possible. 

A key feature of our method is its flexibility, which is the capacity of the model to 

update input data 
(24,66)

.  The structure provided by the FEP list and characterization of each 

process/event allows for updating sections of the input data without influencing the remaining 

system components.  Updating can be performed in light of new, relevant data thus increasing 

the accuracy of the results.  As government policies change and new intervention strategies 

are implemented, the ability to update is valuable for maintaining relevant political and 

economic context. 

The model’s purpose is to develop a comprehensive analyse of the system of controls, 

expanding the number of scenarios analysed for a specific EAD, and in turn allowing for the 

comparison of known scenario with previously unknown ones, generating a list of system 

priorities.  Furthermore, used on a regular basis it can provide an estimation of how changes 

in factors exterior to the system (political economical, new outbreaks) affect system 

behaviour.  In light of the limitations presented by expert- and scenario-based methods, we 

defend a systemic model complements analyses developed through the conventional 

approach.  We suggest the combined use of all three modelling approaches, improves the 
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understanding of vulnerabilities to EAD and allows confirmation and validation of the 

priorities identified, generating increasing accuracy of the results. 

Given the exploratory nature of the method developed and the scarcity of data in 

literature, particular attention was given to model validation.  The internal validation process 

was influenced by publication on IRA good practice 
(24,25,66)

.  Furthermore, method 

development was closely followed by a project-specific Technical Advisory Group (TAG) 

composed of experts from Defra, Animal Health and Veterinary Laboratory (AHVLA) staff 

and experts from other institutions, whose role was to challenge the approach and provide 

alternatives, improving its robustness. 

5 APPLICATION OF THE MODELTO CLASSICAL SWINE FEVER 

DISEASE INCURSION 

Development of the modelling approach included its application to the study of 

vulnerabilities of the system of controls to an EAD.  The model proposed is applicable to test 

systems of different sizes and properties, and can be applied to multiple diseases and/or 

countries. For a fist application the selected disease was Classic Swine Fever, and applied to 

England, instead of UK, a decision based on availability and accessibility of expertise for 

developing the assessment. 

5.1 Classical swine fever incursions 

Classical swine fever (CSF) is a notifiable animal disease caused by the CSF virus 

(CSFv) of the genus Pestivirus of family Flaviviridae 
(67,68)

.  Wild and domestic swine are 

natural hosts for the disease, and its manifestation varies according to the virulence of the 

strain, which can cause a range of mild to acute and sub-acute infections 
(67,68)

.  CSF is an 

EAD that continually challenges a nation’s defences.  It remains present worldwide with 

positive detections within Europe, Asia, Africa and the Americas from 2005 to 2010.  CSF is 
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endemic in parts of Europe having been detected in Bosnia and Herzegovina, Hungary and 

Slovakia in 2010 and in Germany in 2009, (Table III). 

Though eradicated from the UK since 1966, CSF is highly contagious.  Numerous 

routes of transmission exist (Table IV).  The potential introduction of CSF via multiple 

transmission mechanisms places considerable pressure on the UK’s capacity to prevent CSF 

outbreaks.  The diversity and quantity of national and international animal movements, legal 

or otherwise, further enhances this increase.  For example, the UK is exposed to the 

importation of legal and illegal meat consignments, the movement of people, e.g. tourists and 

migrant works, and live animal imports, amongst other potential introduction routes 
(1,41,42)

.  

The detection of CSF in the UK automatically puts in motion a contingency plan focussing 

on containment and eradication of the disease agent.  Measures to prevent disease spread 

include trade restrictions and the elimination of potential sources through the elimination of 

livestock 
(69)

.  These contribute to the high costs of protection 
(5,70)

.  In light of the 

uncertainties associated with the pathways of CSF introduction, and of the roles played by 

different components of the system, a systemic analysis is necessary to provide improved 

insight at the policy level.  This application focuses on understanding the sequence of 

unlikely events that may result in a CSF outbreak, and the influence these events may have 

on compromising the barriers in place to protect against an outbreak. 

5.2 Model application 

The network model was used to assess the likelihood of a pathways being available for 

exposure of English commercial swine herds to CSFv (Figure 4). Definition of the system 

included several components, including the livestock and meat industries, facilities for trade, 

human population and pet shops as well as a mix of organisations and controls protecting the 

England from outbreaks 
(1)

.  The model application focus on understanding the causes for 

exposure of commercial swine herds to CSF. Therefore, the model considers other 
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susceptible animals in the system, e.g. domestic animals, backyard farms and wildlife, and 

that these play a role in CSF transmission (Figure 4).  However, model application considers 

commercial swine herds, i.e. outdoor and indoor finishers and breeders, as terminal receptors.  

Also important is a description of CSFv transmission characteristics that are of importance to 

system behaviour (Table IV). 

5.2.1 System definition 

Transmission mechanisms for the introduction and spread of CSFv are summarised in 

Table IV.  The first row describes the transmission modes demonstrated under laboratory 

condition; the second describes transmission modes detected in epidemiology reports from 

past outbreaks.  The system is the physical components noted above, the regulations and tests 

used to detect an incursion 
(1)

.  Transmission between nodes occur through on or more of the 

possible transmission modes (e.g. live animals, meat products, germplasm – see Table IV).  

Successful transmission of CSFv between two features depends on an event(s) that enables 

the agent to avoid detection and elimination.  The nature of this is recorded and a likelihood 

assigned to its potential for occurrence.  The interaction matrix 
(52)

 is presented as Figure 3.  

An x-y co-ordinate system of four digit codes describes the off diagonal cells.  The last two 

digits indicate the ‘origin node’ and the first two indicate the ‘destination’ node.  So, cell 

0907 describes a connection from node 07 to node 09.  The matrix is not symmetrical.  

Therefore an inverse connection, e.g. node 09 to 07, if existent, is assigned cell 0709. 

5.2.2 Elicitation process 

Scenarios of CSF introduction are sequences of events that allow CSFv to be exposed 

to a UK pig herd.  The literature is incomplete on the causes for failure of the multi barrier 

system.  To overcome this, the model was informed by CSF transmission data elicited from 

experts 
(71,72)

.  Twenty-eight (n = 28) experts informed the exercise according to expertise, 
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domain background, and availability to provide broad network coverage.  By its nature, 

elicitation was constrained by time and resource limitations 
(73)

.  The workshop was 8 hours 

in duration and included training.  This was the sole information gathering exercise, where 

relationships between 20 features (nodes) in the network were assessed (Figure 4).  This 

required extensive data input, and to reduce workload, small groups were formed according 

to expertise (minimum 3 people), and allocated relevant nodes.  Each group was responsible 

for assessing all the outgoing connections to the remaining network nodes.  For example, the 

assessment of node 07 (livestock vehicles) required assessments of all connections (arcs) 

adjacent to this node, hence the cells 0107, 0207, up to 2007.  For each connection experts 

answered the following questions: 1) Is the connection between node A to node X possible 

where A is the node allocated to the expert and X any other node present in the network? 

YES or NO; 2) If YES how frequent are movements between node A and X, using left side 

scale (Figure 5)?  3) If YES how efficient are the barriers preventing the movement of 

contaminated goods between them, using right side scale (Figure 5)?  4) Assuming the 

existing barriers are not 100% efficient, what is in your opinion the cause for barrier failure, 

using in the comments section.  Therefore, for each cell, experts estimated the incidence and 

barrier efficacy (Figure 5) and provided commentary on the causes of failure and the best and 

worst case assessment.  Each expert group was provided with a booklet containing a 

description of the network and forms (figure 5) where expert introduced the values and 

comments requested.  Mediators were present to ensure expert rationale was in line with the 

data requirements for the assessment.  Data collected from the workshop was introduced into 

an interaction matrix coded into the pre-programmed Excel 
TM

 spreadsheet.  The model was 

used to generate all scenarios of CSFv introduction, accompanied by a sensitivity analysis to 

determine the process/event(s) posing greatest influence on system performance.  Follow up 

sessions, via email and telephone conferences dealt with data verification issues; for example, 
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missing values, comments and corrections.  Results were validated by a sub-group of experts 

to ensure inputs and outputs were valid and within scope. 

5.2.3 Sensitivity analysis 

To analyse the sensitivity of the model’s output to changes in the input, the probability 

of transmission in the input parameters was changed using a sensitivity analysis 
(57,58)

.  The 

barrier failure rate associated with the process/events enabling transmission between nodes 

was nominally reduced by 50% (i.e. barriers made less susceptible to failure), simulating an 

improvement to the controls of the disease.  Two analyses were then performed: a) the effects 

caused by individual barrier improvement, using a ‘one-at-a-time’ sensitivity analysis; and b) 

the improvement of clusters of barriers associated with the nodes.  For each increase in 

barrier integrity, a new system performance was estimated and compared to the base case.  

Nodes or arcs presenting higher percentage values represent the greater influence on network 

behaviour.  At these nodes, policy intervention is likely to have the greatest impact on 

reducing the vulnerability of the system to a future CSF outbreak. 

5.2.4 Model output 

For this case study, a single set of core principles was adopted for scenario generation.  

First, a scenario was defined as starting in one of the three available source nodes, i.e. 01 - 

Third Countries; 02 - EU Positive; 04 – Laboratories (Figure 3).  Next, the scenario was 

deemed to terminate when the disease agent reached one of four termination nodes, defined 

as the point where a single domestic livestock pig is infected.  The terminal nodes are 17 - 

indoor finishers; 18 - outdoor finisher; 19 - farm breeder; 20 - animal gatherings.  Finally, the 

scope of the scenario was managed by limiting the maximum length of each pathway (or 

number of nodes visited) to k = 5, where k denotes the length of pathway 
(52)

.  This value was 

based on available computing capacity.  Even then, the model produced 56,269 theoretically 
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plausible introduction scenarios (pathways) derived from three sources.  Each scenario 

represents a failure to detect and eliminate the disease agent prior to exposure to pig herds 

and thus a failure of the multi-barrier system.  A probability estimate is presented for each 

scenario, which ranged from 10
-3

 and below.  The pathway scores and the overall system 

performance do not consider on-going outbreaks in foreign countries or the quantity of 

imported goods at any given moment.  Critically for readers, this does not represent a 

measure of the current residual risk of CSF exposure to pig herds.  Rather, used 

comparatively at the policy level, it provides a diagnostic opportunity to assess the influence 

of exposure scenarios and failure in the barrier between two adjacent nodes in the exposure to 

CSF thus enabling the identification of risk drivers. 

The interaction matrix presents a systemic risk map of the network indicating the key 

network sensitivities.  A colour scheme was used to classify the results of the sensitivity 

analysis and indicate the influence that process/events have on system behaviour (Figure 3).  

The columns represent all incoming connections (upstream) into a particular feature, while 

the rows represent all outgoing connections (downstream).  Upstream interventions represent 

preventative measures while downstream interventions represent containment measures.  For 

example, feature 01 represents a disease source where the only intervention measure is 

through containment.  Similarly, for features representing receptors, 17, 18, 19 and 20, only 

preventative measures are available. 

The interaction matrix presents a powerful visual tool to identify key arcs that exert 

greater influence.  For example, closer review of node 08 - domestic residence (representing 

the human population) reveals that cell 0801, which connects the human population to a 

disease source and cell 1608, which describes the infection of wildlife via domestic 

residence, e.g. rubbish or scraps in FEP list, are most vulnerable.  Also, the matrix identifies 

wildlife as posing a threat to multiple livestock production units (cells 2018 and 2118) and 
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thus of exposing livestock to CSFv (Figure 3).  Figure 3 displays the worst-case sensitivity 

analysis.  Here, the influence is separated according to three levels.  The process/events 

presenting an influence higher than 10% are in red; for example, the two arcs P outside EU 

coordinates number (0801) and C wildlife (0816) discussed above.  In addition, 

process/events associated with wildlife and environment, with coordinates 1516 (14%), 1816 

(15%), 1916 (15%) and 1915 (14%), also present a significant reduction on risk of livestock 

exposure (5).  The interaction matrix allows easy identification of the most influential nodes 

and arcs in the network.  However, the percentage values have to be retrieved from the data 

set, as they are unavailable in the matrix; which is a clear limitation. 

The results of the node influence analysis are presented in Figure 6.  This describes 

network behaviour, considering a best- and worst-case scenario of barrier performance.  For 

both, the source node outside EU had significant influence on network behaviour, creating a 

reduction in overall performance of 46% and 49% for worst and best case conditions, 

respectively.  This suggests that intervention at source may be the best control option.  Under 

best-case conditions, animal gatherings (46%) and domestic animals (44%) also proved 

influential, while worst-case conditions reveal domestic residences (46%), and wildlife (44 

%) as most influential.  Interestingly, the same nodes - animal gatherings, domestic animals, 

human population and wildlife - are influential under both best and worst case conditions. 

A more detailed analysis of node “05 domestic residence” is available in Figure 7.  This 

focuses on a worst-case assessment of all process/events directly associated with domestic 

residences.  The movement of goods between countries outside the European Union (outside 

EU positive) and the human population were shown to be highly influential to system 

performance (42%). Similarly, the link between the human population and wildlife 

(represented by the wild boar population) was also shown to be highly influential (44%).  The 

arc representing movement from European countries had only modest influence (4%).  The 
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arcs (P) outside EU and (C) wildlife, represent the specific movement of goods and animals, 

where intervention results in a significant reduction in the vulnerability to future CSF 

outbreaks.  The prefix (P) stands for preventative measures and represents incoming 

movement to the target node. Contrastingly, C represents containment measures, representing 

outgoing movements.  The percentage values, for example 44% for C wildlife, means that an 

intervention that successfully increases containment reduces the risk of transmission by 50%, 

produces a reduction by 44% in the likelihood of a future CSF outbreak.  Comparing the 

outputs presented, the interaction matrix allows a systemic perspective of the influence each 

process/event has in the overall system performance however the sequences of Pareto charts 

(nodes and arcs) communicate the output without loss of information. 

6 DISCUSSION 

Systemic network models allow for an examination of the interplay between the local 

and global aspects of a network at the policy level.  The Pareto charts provide stakeholders 

with a top down analysis of the system, consistent with the approach to developing a better 

understanding of system behaviour using the conventional approach to developing risk 

assessments 
(3,26)

.  Two independent sensitivity analyses were performed to assess 

vulnerability within the system: at the node level, enabling identification of the features (i.e. 

nodes) exerting greatest influence on network behaviour and at a process/event (i.e. arc) 

level, which enabled understanding of those arcs influencing network behaviour as well as 

providing information about interventions. 

6.1 Increasing resilience against a future CSF outbreaks  

A study by the European Food Standards Agency (EFSA) suggests that in 2006, 

countries were no less susceptible to an EAD outbreak than they were 20 years ago 
(6)

.  The 

enormous progress in disease monitoring, surveillance and diagnostics has been offset by the 
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increase in communication and contact via global trade.  Furthermore, CSF is present 

worldwide with 13 countries declaring outbreaks in 2010; 2 of which were EU partners 
(21)

.  

The peril of introducing CSF into the UK remains.  Our sensitivity analysis reveals that 

disease containment in third countries produces the greatest increase in system performance 

and robustness.  Nonetheless, eradication of CSF is unlikely to be achieved in the 

forthcoming decades, and detection and elimination of outbreaks remain the most viable 

defence options 
(6)

.  Surveillance is vital and the UK has in place a system for the early 

warning and elimination of threats.  The system is complex, consisting of multiple controls, 

each which may be susceptible to failure.  Occasional system failure is exemplified by 

outbreaks in 1971, 1986 and 2000; events’ occurring after 1966, the year the disease was 

officially eradicated from the UK 
(74)

. 

In assessing system robustness, the analysis identifies a number of known threats as 

well as previously unidentified ones.  This was achieved by assessing the level of influence 

each individual node has on system behaviour (Figure 4).  Even when assigning different 

weightings to the nodes (assessment under worst and best case conditions), similar nodes 

were identified as highly influential, although with a variation in the level of influence 

(Figure 6).  This results from a different approach to assessing the efficiency of the barriers 

preventing transmission of CSF. 

Our model also provides enough detail to study the effect of specific events that permit 

transmission between nodes, thus compromising system robustness.  The matrix (Figure 3) 

displays the upstream and downstream arcs connecting a node.  This allows the analysis to 

detect node frailties, as well as guidance as to where best risk management resource 

allocations be made.  Concerning disease introduction from countries outside the European 

Union, experts were most concerned with connectivity to domestic residences and with 

backyard and domestic animals.  They believed that “risk targeted enforcement was unable 
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to check all passengers and packages and there was a lack of awareness amongst travellers”.  

With respect to the exposure of livestock, outdoor farms were deemed most vulnerable, 

particularly those with high contact with wild pig populations and the environment.  

Concerns with wildlife contact refer to the possibility of a “wild boar entering the unit or of a 

young domestic pig escaping from premises into the environment and back [Evidence from 

Belgium]”, in FEP list. 

6.2 A new approach to assessing risk and strategies to prevent EAD outbreaks 

The objective of this work has been to develop a tool requiring minimal expenditure of 

resources whilst providing significant data for the development of guidelines and strategies 

for reducing the likelihood of livestock animals to EAD agents at the policy level.  Previous 

studies have also identified the human population as a driver of exposure as well as backyard 

livestock, restaurants, caterers and food markets, wildlife, livestock lorries, and importation 

of live animals as risk factors 
(2,34)

.  However, conventional scenario-based assessments rely 

on the research literature and past epidemiological reports to define the pathways of exposure 

to be included in the assessment 
(41-43,75)

 and a significant portion of introduction and 

exposure pathways will not have been previously assessed.  This model provides an 

alternative approach, which, through the application of a computer model alongside smart use 

of expert opinion, allows us to consider pathways overlooked by previous assessments and an 

estimate of the impact particular measures may have on overall system performance. 

This said, expert opinion as a source of information exposes the model to the 

limitations of expert judgments 
(76,77)

. We highlight that data produced is influenced by the 

dynamic of personalities within each group, motivations, biasing effects such and anchoring, 

and the capacity to correctly evaluate the data requested in the scale provided, all of which 

may have a negative influence in the accuracy of the outputs produced 
(78)

. Nonetheless, the 

processes of selection and allocation of experts in groups, and development of the elicitation 
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process focussed on minimising the influence of such biasing effects.  In light of the scarcity 

of data associated with the events enabling the introduction of CSFv into the UK, expert 

opinion stands as the sole source of information available to perform such an assessment.  

Furthermore, the expert opinion represents the most up to date source of information.  

Therefore, despite inaccuracies resulting from the capacity to retrieve information from 

experts, the results produced by the systemic model represent the most current assessment of 

the control measures applied to prevent the introduction of CSF into the UK. 

The model presented develops analyses of the system of controls that differ from that 

made available using conventional RA methods.  We defend a systemic analysis brings 

benefits to better understanding how controls fail and where to invest in order to significantly 

improve resilience to an outbreak.  However, we acknowledge the model fails to consider 

specific disease sources (countries or regions) or the outcome following exposure of livestock 

to CSF (subsequent spread within UK).  Thus, the model does not comply with the 

requirements stated in the WTO’s Sanitary and Phytosanitary agreement and the 

implementation of specific protection measures to address identified movements where 

improved control increases system resilience, may require further analysis to ensure 

compliance with WTO 
(23)

. 

6.3 Validation of the model 

The analysis is used in an exploratory model and at the generic policy level to inform 

decisions on intervention.  Therefore, its development follows the OIE risk assessment 

guidelines and efforts were made for the model to be validated by peer review assuring all 

assumptions are reasonable and the mathematical computations representative of the system 

(24,25,66)
.  The validation comprised of a number of development stages where the model was 

structured using available documents and information.  A number of improvements for future 

application were highlighted: 
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 The network considers both legal and illegal movements of potentially threatening 

materials within the same process.  The FEP list identifies and describes the nature of 

the movement.  However, for processes where illegal and legal movements are 

present, the model does not estimate each individual influence in system robustness. 

 For extraordinary situations where control barriers are not in place and common sense 

actions alone prevent events, such as the relation between livestock vehicles and 

domestic residences, future applications of the model should capture the effects of 

both phenomena. 

 Extensiveness of the data to be elicited and the short time available to do so resulted 

in selecting best-case and worst-case approach, as opposed to a more comprehensive 

format (probability density functions) 
(25)

.  Nonetheless, it provides estimates of the 

level of uncertainty associated with the barrier failure rates elicited 
(79)

. 

 Adoption of a stochastic approach to modelling the network, which incorporates the 

level of uncertainty into the outputs produced. 

7 CONCLUSIONS 

This is the first illustration of a network model within an import risk assessment context 

for EAD at the policy level.  It provides a level of insight not within reach of established IRA 

methodologies by providing a systemic perspective and the events at the root of a potential 

CSF outbreak.  As such, it has the potential to contribute to the robustness of UK’s defence 

against a CSFv incursion, so informing where to allocate resources to reinforce those 

defences.  The model harbours its own limitations.  At its core, the model remains an expert 

based-assessment and is susceptible to a certain expert bias.  In spite of these limitations, this 

represents the first attempt to develop a systemic perspective over the risk associated with 

animal disease. 
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TABLES 

Table I  Glossary 

Barrier Any obstacle reducing the chances of disease transmission, these may be physical and 
biological barriers and activities performed 

Barrier Failure rate Represent the frequency of barrier failure events associated with a specific process 

Bottom-up model Modelling technique, based on the description of the system where system behaviour 
and pathways systems emerges for a series of rules used to define the EAD agent 
transmission characteristic 

Diagonal cell In the interaction matrix it represents a network node. In the diagonal cell are also 
include the sources and receptor nodes 

Disease free status The OIE, mandated by the WTO, officially recognises disease-free areas of countries 
for trade purposes 

Events or barrier 
failure events 

Represent a situation or activity causing the preventative barriers (natural and man-
made) associated with a specific process to fail in the detection and elimination of the 
disease agent, leading to a situation in which transmission is possible. 

Exotic Animal 
Diseases (EAD) 

Disease agents included in the list of notifiable disease by the OIE 

Expert-based model A model that relies exclusively on expert opinion a source of information to describe the 
system and evaluate risks 

Feature Events and 
Processes (FEP) list 

Method of recording data, capturing information on all system components and 
variables, and expert assumptions providing a auditable trail of information 

Features Represent system components where the disease agent may be present. In this 
models Feature include all sources, all receptors and all component of the system 
where the disease may be present at any one time. 

Incidence Represents the frequency of a process 

Off-diagonal cell In the interaction matrix it represent an adjacent connection between two network 
nodes. Each off-diagonal cell is associated with a process (potential transmission) and 
an event (causing barrier failure) and therefore a process/event. 

Process Represents an activity and/or movement (e.g. live animals, food goods, people, etc.) 
which present the potential for transmission of the disease agent 

Process/event Represents the interactive behaviour between a process that potentially enables 
disease transmission between two features and the barriers protecting transmission 

Scenario Characterization of a pathway of exposure, through the description of the sequence of 
event uniting the disease source to a susceptible receptor 

Scenario based 
model 

Model based on a detailed description of the sequence of events responsible for 
creating a pathways (scenario) connecting a source of a disease agent to a susceptible 
receptor 

System  The source-pathway-receptor relationship 

System behaviour The interactive relationship between an EAD agent and the source-pathway-receptor 

Systemic Analysis A study aiming to analyse the full extent of the source-pathways-receptor relation, by 
analysing all pathways of exposure connecting source to receptor, regardless of 
likelihood and impact, that are considered within the adopted definition of system 

Top-down model  Modelling technique, where the assessor or experts based on their perception of 
system behaviour, define the pathway(s) or pathways system used to estimate the 
impact of exposure 
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Table II  Description of the strengths and weaknesses of the conventional import risk 

assessment [IRA] methods applied to date and comparison with total system analysis. 

 

  

Advantages Disadvantages

Time (enables quick assessments and are 

adequate to find solution in times of crisis)

Repeatability and validation 

Cost (do not require specialist software) Results are presented in descriptive terms (high, 

medium and low), low level detail of the output

Use all types of data, thus overcoming data 

limitations in the research literature

Comparative output

Application to complex open systems Sensitivity analysis cannot be applied

Event-tree based models: detail analysis of 

pathways of exposure and exposure mechanisms

Extensive prior knowledge to select pathways to 

be assessed 

Binomial probability model Cost and time

In stochastic models, a value for variable 

uncertainty and/or variability is provided

Data availability (data is not always available and 

assumptions have to be made, that undermine 

the value and validity of the model

Repeatability, auditable, and validation

Sensitivity analysis is applicable

Data can be updated to account for changes in 

the system represented

Capacity to study large system, represented  

through the use of an interaction matrix 

Repeatability and validation 

Use all types of data, thus overcoming data 

limitations in the research literature

Complex process of elicitation

Results are represented as numerical values Comparative output

Contextualization provides a descriptive insight  

the mechanism of disease transmission

Pathways described with an intermediate level of 

detail, where the multiple mechanisms of disease 

transmission have no influence in the output

Representation of all pathways and components It does not allow to estimate uncertainty and/or 

variablity

Sensitivity analysis is applicable

Expert-based qualitative model

    Scenario-based quantitative model

Model for total system analysis

Note: Difficult to validate all types of RA
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Table III  Number of outbreaks and of infected animals worldwide from Jan, 2005 to Jan, 

2011; with positive countries within Europe analysed in detail 
(21)

 

 

Table IV  Transmission mechanisms for classical swine fever, classified according to 

verification laboratory under laboratory conditions and confirmation in historical data.  

Transmission modes 
Classical Swine Fever 

Proven in Lab Disease Import References 

Animal movements + + (67,80-85)
 

Transport vehicles + + (67,68,83-85)
 

Human contacts + + (80,83,85,86)
 

Meat based food products + + (83,83,86)
 

Wild boar + + (67,82,83,87)
 

Airborne + - (81,83,85)
 

Other carriers (mechanical 
vectors) 

+ - (88)
 

Iatrogenic transmission + - (88)
 

Artificial insemination + + (81,85,89)
 

Vertical transmission + - (81,83)
 

2005 2006 2007 2008 2009 2010

Bosnia and Herzegovina 40 35 33 324

Bulgaria 5 3 3 1 4

Croatia 13 112 4

Former Yug. Rep. of Macedonia 2 2 4

France 1 1

Germany 24 52 11 2

Hungary 164 27 382

Montenegro (2007-2011) 16

Romania 1075 1438 159

Russia 8 2 7 1 4

Serbia (2007-2011) 18

Serbia and Montenegro (2005-2006) 489 401

Slovakia 4 5 3 24

8 9 10 6 4 3

17 18 18 14 13 10

Year 
CSF outbreaks

Number of 

animals testing 

positive to 

CSF  per year  

in European 

countries 

European countries reporting at least one CSF 

outbreak/year (from 49 countries)

Countries outside Europe reporting at least one 

CSF outbreak/year (from 139 countries)
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FIGURES 

  

Figure 1  Network representation of the system: Nodes represent the features; arcs represent 

the process.  The [Node Third country] represents the disease source; [Node farm] represents 

one the terminal node (terminating the simulation); the remaining nodes represent the 

components contribution to disease transmission; and [Arcs] are represented by the arrows 

corresponding to movement between two adjacent nodes.  Based on the influence diagrams 

developed by Defra 
(1)

. 

 

Figure 2  Analysis of the epidemiological reports develop by the OIE 
(21)

 for CSF and FMD 

outbreak from 2008 up to 2010. Reports are classified according to the capacity to detect and 

confirm the pathways of exposure responsible for disease introduction.  
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Figure 3  CSF interaction matrix - Diagonal cells (black) network nodes, off diagonal cell (white) network arcs: the first two digits of the 

coordinates represent the receptive node, whilst the last two the source node. The colour scheme presents the results of the local sensitivity 

analysis (Red cell represent a reduction in likelihood on system failure > 10 %; orange cells a reduction >1 %; and amber cells reduction > 0.1 

%,) , where highlighted cells represent specific process/events where intervention will produce a greater impact in reducing system vulnerability. 
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Figure 4  The network system developed for Classical Swine Fever (CSF), based on the data recorded by the FEP list using UCINET 6 ™ and 

NetDraw ™: the arcs describe movements that may result in transmission, these consider all possible transmission models (Table IV); thickness 

is associated with the influence of that particular arc in system performance. 
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 1 

Figure 5  Elicitation form used for assesseing the connection between two adjacent nodes: 2 

incidence is captured as a flow per week and barrier failure rate is captured by the efficacy of 3 

barrier(s) between nodes. 4 

 5 

Figure 6 Node sensitivity analysis displays node influence on system behaviour by 6 

describing the reduction in performance value by comparison with the base case. 7 
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Sensitivity analysis - effects of reducing node BFR by 50% in 
system vulnerability 

Best Case Scenario

Worst case scenario

Figure 3 CSF interaction matrix - Diagonal cells [black] network nodes, off diagonal cell [white] 

network arcs: the first two digits of the network code represent the receptive node, whilst the last two 

the source node. 
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 8 

Figure 7 Arc sensitivity analysis – displays the process/events, the arcs of the network, with 9 

higher influence on system behaviour. For brevity, the graph describes the 10 most influential 10 

arcs associate with 08 domestic residences.  The graphic displays all adjacent connections 11 

(upstream and downstream) to the 08 domestic residence nodes where (P) preventative 12 

representing upstream nodes and (C) contingency representing downstream nodes. 13 
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