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Abstract

This work describes and demonstrates a novel numerical framework suitable for
simulating the behaviour of freely falling liquid droplets. The specific case stud-
ied is designed such that the properties of the system are similar to those of
raindrops falling through air. The study of raindrops is interesting from both
an engineering standpoint and from a standpoint of pure curiosity. As a nat-
ural phenomenon, rainfall is something which is experienced by everybody, yet
its properties are often misunderstood. The primary engineering application is
in improving the ability of radar to determine the characteristics of rainfall for
meteorological purposes.
The significant original contributions to knowledge within this work come from
several areas. The numerical methods used are a unique combination of a high
order incompressible implicit large eddy simulation method, a conservative level
set method, and a pressure projection method. These methods have all been
implemented on a highly parallel GPU architecture, with a resulting performance
increase of approximately ten times when a single GPU was compared to a single
CPU core.
The water droplets were simulated in a regime not previously studied by three
dimensional methods. The results of these simulations confirmed the validity of
the numerical model by reproducing several important experimental results. New
insight was then gained regarding the behaviour of droplet wakes, an area with
little previous research. The results of the test simulations show great promise
for future use of the numerical framework developed. While the simulations to-
date have been of air-water interactions, there is little reason the model should
be constrained to such a system. In theory almost any low speed isothermal
interaction of immiscible Newtonain fluids, with length scales of greater than
1mm, could be modeled accurately by these methods.
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1. Introduction

1.1. Computational Fluid Dynamics and Unsteady
Flows

The methods used and described in this work are intended to be used to study
the dynamics of fluids computationally. This field of is known, rather unsurpris-
ingly, as computational fluid dynamics (usually abbreviated to CFD). In collo-
quial usage the word fluid is often taken to be synonymous with liquid, however
in science this is not the case. The Oxford English Dictionary defines a fluid as:
“a substance that has no fixed shape and yields easily to external pressure; a
gas or (especially) a liquid”. The subset of fluids this work is concerned with are
Newtonian fluids, in which the stress acting on the fluid is proportional to the
deformation caused by that stress. Such fluids are common in everyday life and
most fluids people encounter, such as air or water, are Newtonian fluids.
While a fluid fundamentally comprises discrete molecules, at the scales this work
is interested in fluids can be treated as a continuum, with a single fluid’s properties
varying smoothly in space. By using this continuum model the three variables
defining the state of a fluid: its pressure, its velocity and its density, can be linked,
and their variation over time defined using the Navier-Stokes equation (1.1):

ρ

(
∂u
∂t

+ u·∇u
)

= −∇p+∇ ·T + f (1.1)

This equation makes no assumptions regarding the type of fluid it describes,
and is derived from the basic principles of conservation of mass, momentum and
energy.
In this work the evolution in time of fluids are to be modeled computationally
using this equation. While other methods are available for CFD, all the methods
within this work use a finite element method to discretize the domain over which
we examine the fluid dynamics. This method splits the volume of the domain
into many smaller sub-volumes, or cells, within which representative values of
the fundamental fluid properties are calculated. By using values for a cell and its
near-neighbours, the approximate differentials in space can be calculated. These
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Chapter 1 Introduction

differentials can then be used to advance the solution in time. The more cells
there are, the closer this finite element method models a continuum, and hence
the more accurate it becomes. However adding more cells also increases the
computational resources required to advance them in time. For this reason it
is desirable to develop methods that not only model the fluid as accurately as
possible, based on the limited information available, but also allow a computer
to make the most efficient use out of its limited resources.
Fluid flows can be categorized into two types: steady and unsteady. Steady flows
are time invariant, and in CFD will tend to converge to a more accurate solution
with simulation time. Conversely unsteady flows have a flow field that can vary
significantly with time, and a longer simulation time will show these variations.
Steady flows include flow around an aircraft wing at cruise, or slow speed flow
through a pipe with a constant flow rate. Unsteady flows are more common in
nature, for example a wave breaking over a rock or flow around the flapping wings
of a bird. It should be noted that a flow can be both unsteady and stable, a case
which is often characterized by oscillations around a fixed point. In this work the
focus is almost entirely on unsteady stable flows.

1.2. Interfacial Flows

Of fluid dynamics phenomena visible on a day-to-day basis, the flow around
interfaces is perhaps the most commonly witnessed. These flows range from very
small flows, such as rain falling from the sky, to much larger scale flows such as
waves on the ocean. The flows can be either stable, for example individual small
bubbles rising in a carbonated drink, or unstable, such as a stream of water falling
from a tap. They key property of all of these flows is that there is a clearly defined
interface between the two phases and in a very small distance the properties of
the flow can change hugely.
While all the examples given above are of air-water interfaces other interfaces
are possible. So long as the two phases are adverse to mixing, flows with similar
properties will be observed.
In this work the primary focus will be on air-water flows with length scales of the
order 0.1mm to 10mm. In these flows a physical phenomena known as surface
tension plays a very important role. Surface tension is a force, only apparent in
some fluids, which becomes stronger the more curved an interface becomes. It
is brought about by the interactions of molecules at the interface. In water, for
example, each molecule is at its lowest energy state when in contact with many
other water molecules. A molecule at the interface will hence have a higher energy
state than molecules within bulk of the fluid. For the fluid as a whole to minimize
its energy state the sum of the energies of the molecules at the interface must be

2



1.3 Graphics Technology and its Application to Computational Fluid Dynamics

Figure 1.1.: The shape of rain droplets is determined by how the air flows around
them as they fall. (Image: Omar Bariffi)

Figure 1.2.: Waves on the ocean are generated over large distances by the
flow of air over the surface.

minimized. This leads to a minimization of molecules at the interface, and hence
a minimization of interface length, and a minimization of curvature [2].
At the length scales of interest to this work surface tension can be modeled by
a pressure jump at the interface. The size of this jump (∆p) can be calculated
using the Young-Laplace Equation (1.2) [3, 4]:

4p = σ(κ1 + κ2) (1.2)

Where σ is the surface tension coefficient of the interface defined in N.m−1, and κ1
and κ2 are orthogonal curvatures with radii of curvature normal to the interface.
The surface tension coefficient is a property of the interface and varies depending
on the composition and state of the fluids either side.
Besides the pressure jump caused by surface tension incompressible flows have
two other significant properties discontinuous at the interface: density and viscos-
ity. For an air-water interface the density ratio is approximately 1:800, while the
viscosity ratio is approximately 1:55. These discontinuities can be particularly
hard to model using CFD as many traditional approaches require the fluid equa-
tions to be continuous. A significant part of this work will be dedicated to the
modeling of the interface, and in particular the modeling of these discontinuities.

1.3. Graphics Technology and its Application to
Computational Fluid Dynamics

Developments in Graphics Processing Units (GPUs) have recently allowed for
them to be easily used as general purpose massively parallel (thousands of con-
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Chapter 1 Introduction

currently running operations) computing devices. While these advances were
originally intended to allow complex visual effects to be displayed using a large
number of pixels for computer graphics, it was found that the same technology
could be applied to perform calculations for scientific computing, often much
more efficiently than traditionally used Central Processing Units (CPUs).

One of the first scientific applications for GPUs was presented by Lengyel et
al. in 1990 and concerned robot motion planning [5]. Many other applications
have since followed [6, 7, 8, 9]. At first the tools were extremely limited and
programmers had to treat each parallel operation as analogous to a pixel on the
screen, or a vertex on a three dimensional object. It was not until the release of
NVIDIA’s Compute Unified Device Architecture (CUDA) programming language
in 2007 that scientific computing on GPUs finally became fully decoupled from
the “graphics” model [10].

Although many applications make use of GPUs, the field is still relatively young,
with the first double precision capable GPU released only a few years ago in 2008.
Despite its youth GPUs do seem to be gaining traction in the HPC community.
Table 1.1 shows the growth of the CUDA programming language from 2008 to
May 2012.

Year: 2008 2012
CUDA SDK Downloads 150,000 1,500,000

Supercomputers 1 35
Universities teaching CUDA 60 560
CUDA Academic Papers 4000 22,500

Table 1.1.: CUDA by the numbers [11].

There are two primary reasons for the decision to develop the code used for this
work on GPUs:

• The development of methods which run well on GPUs is itself an interesting
scientific subject. It is not always possible to directly convert methods that
are efficient on CPUs to GPUs and the challenges that arise from this are
worthy of study in themselves.

• GPUs, by their nature, can often run codes more efficiently than CPUs.
Cranfield’s small cluster comprising eight GPUs has been shown to per-
form on-par with over 200 individual CPU cores at a fraction of the power
requirements, when methods that map well to the GPU are used. The
quality of the results from CFD simulations is often limited by the amount
of processing power that can be applied to a given problem and increasing
this power is obviously desirable.
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1.4 Droplet Dynamics

While GPUs can be used to solve many problems, it is important to remember
that they have their limitations. Often a model simply cannot be made to run
efficiently in a massively parallel environment. Furthermore, converting a CPU
program to run on GPUs can take a significant amount of time which may not
be worthwhile in some cases.

1.4. Droplet Dynamics

It is intended that the models developed for simulation of interfacial flows will
be used to model the behaviour of water droplets falling freely though air. These
water droplets have properties akin to naturally occurring rainfall at sea level,
and this was, in-part, the inspiration for this study. The focus of the simulations
will be on droplets of 1mm to 3mm spherical radius.

It is a common misconception that rain drops form a “teardrop” type shape as
they fall. Instead, the shape greatly depends on the size of the droplet. Small
droplets tend to both fall more slowly (due to having a higher ratio of viscous to
inertial forces) and have higher mean curvature, and therefore a higher a surface
tension. The combination of a lower external pressure and a higher restoring force
means that droplets of radius up to 1mm tend to be roughly spherical. Larger
droplets, however, deform much more significantly. This deformation tends to
result in a flattening of the droplet as a whole, particularly at the base. This
change in deformation with size is shown diagrammatically in Figure 1.3.

While these deformations give an idea as to the average shape of a droplet as
it falls, they do not tell the whole story. Droplets of greater than 0.5mm radius
have been found to oscillate in multiple low frequency modes with few significant
harmonics at higher frequencies [13]. There are also other properties of interest,
such as the terminal velocity, the circulation of the water inside the droplet, and
the shape, size and behaviour of that wake.

The set of simulations to be run have never previously been attempted com-
putationally and it is hoped that they will be able to bring new insight into
droplet dynamics. The requirements of the numerical model used to simulate the
processes surrounding droplets at terminal velocity are surprisingly taxing. The
combination of significant higher order spatial derivatives of the velocity field in
the near interface region, and very large discontinuities in density and viscosity
at the interface, combine to form relatively subtle movements in that interface.
Even slight inaccuracies in the model can lead to significant errors. As such, a
powerful numerical model is required to produce accurate results.
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Figure 1.3.: Deformation of droplets with equivalent radius 1mm (inner), 2mm
(centre) and 3mm (outer). These two dimensional profiles are based on the
equilibrium shape profiles theorized by Beard and Chuang [12]. The equilib-
rium profile of the 1mm radius droplet has an axis ratio (horizontal:vertical
chord length at the broadest point) of approximately 1.09:1, the 2mm droplet
1.29:1 and the the 3mm droplet 1.56:1.

1.5. Thesis Objectives

There are three main objectives for this work, each of which has a chapter pri-
marily concerned with it:

1. To present a 3D flow solver able to simulate the interaction of two immis-
cible fluids at low speeds. This solver is designed to simulate unsteady
incompressible gravity and curvature driven flows, as accurately as possible
(Chapter 2).

2. To demonstrate the performance that can be attained by using GPUs to
execute CFD problems of this type and compare this to conventional CPU
performance (Chapter 3).

3. To demonstrate this GPU accelerated 3D flow solver by simulating water
droplets falling under gravity and, in doing so, bring new insight into the
behaviour of these droplets (Chapter 4).

Chapter 5 concludes the thesis and makes suggestions for potential future re-
search.
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1.6 Publications and Related Work

1.6. Publications and Related Work

So far a single publication has been made as a direct result of this work:
• J. Appleyard and D. Drikakis. ‘Higher-order CFD and interface tracking

methods on highly-Parallel MPI and GPU systems’. Computers & Fluids,
Volume 46, Issue 1, July 2011, Pages 101–105

The following paper is currently being written and submission is planned immi-
nently.

• J. Appleyard and D. Drikakis. ‘CFD Investigation into the properties of
water droplets falling through air’

Related work not directly resulting from this academic study, but completed in
parallel by the author:

• J.R. Appleyard, J.D. Appleyard, M. Wakefield, A. Desitter. ‘Accelerating
Reservoir Simulators using GPU Technology’. SPE Reservoir Simulation
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2. Numerical Methods

Synopsis

Numerical simulations of fluids require specialized methods to model them accu-
rately and quickly. This project aims to model low speed immiscible fluids with
a large density discontinuity at their interface. This chapter details the meth-
ods used to model these flows. Part of the code used for this project was based
on Hirecom, a FORTRAN 90/95 code developed by Cranfield’s Department of
Engineering Physics. Hirecom contains implementations of the simpler parts of
the methods presented here. More specifically, at the initiation of the project
Hirecom was capable of solving low density ratio incompressible miscible flows.
It was also capable of solving zero surface tension immiscible flows compressibly.
The changes to Hirecom for the current work required reworking implementations
throughout the code, as many were found to be implemented correctly only in a
narrow operating domain. In the first part of this chapter the governing equations
for low Mach flows and methods for interface tracking are presented. The second
part describes the pressure projection technique used to enforce incompressibility
within the flow and the methods used to couple this with the interface tracking
method, to ensure the flows remain unmixed.
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Chapter 2 Numerical Methods

2.1. Governing Equations

The aim of these methods is to simulate low Mach interaction between two or
more immiscible fluids with a density ratio of at least three orders of magnitude.
It is assumed that density and viscosity are uniform within each fluid, and that
each is Newtonian. The equations of motion for this system in three dimensions
are:

∂u
∂t

+ (u · ∇) u = −∇p
ρ

+ g + (∇ · τ)T

ρ
(2.1)

where:

u = (u, v, w)T

g = (0, 0, g)T
(2.2)

τ = µ


 ∇u∇v
∇w

+

 ∇u∇v
∇w


T
 (2.3)

To obtain the solution at the next time step Equation 2.1 is advanced forward in
time in two stages. Firstly the solution is advanced neglecting the pressure term:

(ρũ)n+1 = (ρu)n −4t
(
ρ ((u · ∇) u + g) + (∇ · τ)T

)
(2.4)

The pressure term is then calculated implicitly so as to conserve mass at the n+1
time step:

(ρu)n+1 = (ρũ)n+1 −4t · ∇p (2.5)

The steps for solving first Equation 2.4 and then Equation 2.5 numerically will
be described in this chapter. Particular attention will be placed on the treatment
of the jump conditions arising at the interface between the immiscible fluids, as
many of the differentials above are not smooth in the near-interface region.
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2.2 Spatial Integration

2.2. Spatial Integration

To solve the equations given in Section 2.1 the domain is modeled as a set of
discrete three dimensional cells. Each of these cells has several floating point
values associated with it, which represent the mean values of the fluid properties
over the volume contained within the cell. In this case these properties are the
pressure, density, distance from the interface and the x, y and z momenta per
unit volume. As the problem has no fixed geometry to map the grid to, the grid
is structured with cuboidal cells whose faces align with the three Cartesian axes.
In this section the mapping of Equation 2.4 to this discrete grid will be described.

2.2.1. Interface Tracking

As the fluids are immiscible there is a clearly defined interface between them.
This interface is able to move and therefore cannot be assumed to be aligned
with a static grid. For this reason the interface position must be tracked so that
properties of the field any point can be determined. Furthermore it is advanta-
geous if properties such as normals and curvature can be easily determined from
the interface tracking method, as there are physical phenomena (specifically, in
this case, surface tension) that rely on them.

For the above reasons, it has been decided to use the level set method to track
the interface. The level set method was first described by Osher and Sethian [14]
and has been used by many authors since [15, 16, 17]. For this method the scalar
function φ(x, t) is introduced. This function is initialized as a signed distance
function, the magnitude of which is set to be the distance from the interface, and
the sign to be positive for regions outside of the fluid, and negative for regions
inside. The position of the interface is therefore defined by the isosurface given
by φ(x, t) = 0. This function is advanced in space and time by solving the level
set equation using level set velocity uLS:

∂φ

∂t
+ uLS · ∇φ = 0 (2.6)

In this work the level set equation is solved using a High-Order Upstream Central
(HOUC) finite element scheme [18] (simple upwinding expanded to higher orders)
to update φ at each time step. These schemes have been found to be more efficient
than the more usual Essentially Non-Oscillatory (ENO) or Weighted Essentially
Non-Oscillatory (WENO) schemes and, in the case of a smooth level set function,
cause no detriment to numerical stability. In this work, unless otherwise stated,
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Chapter 2 Numerical Methods

the 5th order HOUC scheme described in the x-direction by Equation 2.7 is used
for the spatial dicretization of the level set equation.

φx ≈


1
60 [−2φi−3 + 15φi−2 − 60φi−1 + 20φi + 30φ1+1 − 3φi+2] uLS > 0
1
60 [2φi+3 − 15φi+2 + 60φi+1 − 20φi − 30φ1−1 + 3φi−2] uLS < 0
0 uLS = 0

(2.7)

As previously stated, one of the key advantages of the level set method is that
it allows for easy calculation of the properties of the interface. The normal field
N(x, y, z) can be calculated, at any point, directly from the level set equation
using Equation 2.8:

N = ∇φ
|∇φ|

(2.8)

The curvature field κ(x, y, z) is the calculated by taking the divergence of the
normal:

κ = −∇ ·
(
∇φ
|∇φ|

)
(2.9)

Expanding Equation 2.9 in two Cartesian dimensions gives the following equation
for curvature:

κ = −
(φ2

xφyy − 2φxφyφxy + φ2
yφxx)

(φ2
x + φ2

y)1.5 (2.10)

In this work the differentials of the level set field for normal and curvature calcu-
lation are computed using central differences.
As several authors have noted discretizing this equation using central differences
can lead to spurious results for curvature if the level set field is not smooth
[19, 20]. One solution to this problem is to reconstruct the interface on to a local
sub-grid [19]. Another is to use a least squares method to attempt to smooth any
irregularities in the level set field [20].
In this work a hybrid of Equation 2.10 and a slightly modified version of the
least squares method presented by Marchandise et al. is used [20]. It was found
that direct implementation of this method resulted in some significant errors,
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2.2 Spatial Integration

especially in regions where the curvature field changes sign multiple times in a
small area. These changes of sign can be incorrectly smoothed into a significantly
lower curvature, resulting in potential instabilities of high frequency modes.
For these reasons several changes have been made to the implementation of
Marchandise et al. with the intention of retaining its smoothing properties where
required, but suppressing them where not. A quality parameter q is introduced
to quantify the smoothness of the local level set field:

q = |1−
√
φ2
x + φ2

y + φ2
z| (2.11)

With κsq representing the least squares curvature and κlvl the level set curvature,
the final calculated curvature is given by Equation 2.12:

κ =


κlvl q ≤ 0.05
θκsq+(2−θ)κlvl

2 0.05 < q < 0.5
κsq+κlvl

2 q ≥ 0.5
(2.12)

where:

θ = (q − 0.05)
0.45 (2.13)

This interpolation method goes some way toward smoothing the irregularities in
the level set field, without leading to instability.

Conservative level set

One of the drawbacks to the level set method has traditionally been its poor
conservation properties in the near-interface region [21]. The reasons for this are
twofold. Firstly, mass in an incompressible fluid is proportional to the volume of
that fluid. The level set method is not designed to conserve volume, so errors are
likely to accumulate over time. Secondly, the values of the conserved properties
(ie. momentum and density) are discontinuous at the interface. Differentiating
over these discontinuities clearly leads to incorrect results. One proposed solution
to this problem is to combine Ghost Fluid Method (GFM) [15] with the level set
method to help reduce these conservation errors. In this method ghost values
of the fluid properties of each phase are calculated in cells which lie across a
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boundary from the working cell, and these ghost values are then used in place of
the real values when differentiating.
While the GFM helps to reduce the errors due to differentiating across an interface
it does not eliminate them. An alternative conservative method first described
by Hu et al. in two dimensions [22], and more recently extended into three
dimensions by Barton et al. [23], is used in this work. This method achieves
conservation by reconstructing the position of the interface within mixed cells,
and then solving the inviscid momentum equations for each phase within each
cell individually, as if the cell were cut in two. The solution at the interface is
then calculated by solving a Riemann problem on the interface plane.
A drawback of this type of conservative level set method is that it has the potential
to create very small sub-cells, which can restrict the maximum time step to
correspondingly small values. To overcome this problem a cell merging method
is used. Any sub-cell whose volume is less than a certain threshold is merged
with a neighbouring sub-cell whose volume is greater than that same threshold
volume. In this work the threshold volume is chosen to be half of the volume of
the smallest cell in the domain. While this does result in some loss of resolution in
the near interface region the improved conservation properties make this trade-off
worthwhile.
A brief description of the method used to reconstruct the interface and to merge
cells is presented below. For further details the reader is directed to [22] and [23].

Interface Reconstruction

To calculate accurate volume fractions and cell face apertures the interface must
be reconstructed from the level set field. This reconstruction requires the follow-
ing steps to be performed on each mixed cell:

1. Compute the values of the level set field at each of the cell’s corners. These
values are computed by taking the mean of the values of the level set field
in neighbouring eight cells.

2. Using linear interpolation of these averaged values, find the points where
the interface intersects the cell edges (ie. where φ = 0).

3. The fraction of a given face which lies within the phase can be determined
by calculating the area Ai of the triangle, or quadrilateral, with corners at
the interface intersections calculated in step 2.

4. Having calculated these fractions the area of the interface plane within the
cell can be calculated using the Pythagorean theorem.

5. The volume contained within the interface can then be calculated by using
the sum of tetrahedra method for volumes of arbitrary polyhedra. Where
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2.2 Spatial Integration

the vector xi is a vector from an arbitrary point to the centroid of the
face, and ni the unit normal facing outward from the enclosed volume, any
polyhedron’s volume can be determined using Equation 2.14:

V = 1
3

Nfaces∑
i=1

(xi · ni)Ai

 (2.14)

It should be noted that this reconstruction method assumes that the interface is
planar. In regions of extremely high curvature this assumption will lead to errors
in the volume fraction and apertures calculated, and should be considered when
analyzing results where radii of curvature approach the resolution of the grid.
It is also assumed that the mixed cell only contains one interface plane. In
cases of merging or splitting phases this is often an incorrect assumption. As
this work does not aim to simulate such flows, this is unlikely to cause errors,
however should an extension be required at a later date to more accurately model
such flows the Marching Cubes method of Lorensen and Cline could be used to
differentiate between the interface planes [24].

Cell Merging Method

As previously stated, to prevent the time step from becoming prohibitively small,
any sub-cell with a volume fraction, α, of less than half of the volume of the
smallest cell in the domain is merged with a neighbouring sub-cell. These low
volume fraction sub-cells are termed small cells. At the start of each time step
the following procedure is carried out:

1. For all small cells choose a neighbouring target cell. This cell should be a
neighbour of the small cell, and should ideally lie in the normal direction.
Each target cell may be shared by any number of small cells.

2. Merge the small cells with their target cells. This is achieved by updating
the target cell’s momenta to be a volume fraction weighted average of the
values of momenta defined at the target cell, and those of the small cells
being merged into it. To update the target cells (subscript T) is with their
associated small cells (subscript S) Equation 2.15 is used.

(αu)∗T = (αu)T + αT
∑NS (αu)S − (αu)T

∑NS αS

αT +∑NS αS
(2.15)
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3. Set the small cells’ momenta and density equal to that of their target cell’s.
The cells are now merged.

The overall mass and momentum of the merged cells remains unchanged by this
procedure and, as the cells are effectively one, the CFL condition now applies to
the merged cell rather than the small cell, removing the time step constraint the
small cell was previously causing. It should be noted that when using a multiple
stage time integration method (such as the Runge-Kutta method used here and
described later) it is important to maintain the cell pairings through all stages of
a single time step.

Interface Velocity

The level set velocity for use in Equation 2.6 can be calculated in a number of
ways. The simplest method is to equate the level set velocity at a point with
the velocity of the fluid at that point. This method is acceptable, but tends
to distort the signed distance function, especially in regions where the velocity
gradient normal to the interface is high. An alternative method is to calculate
the level set velocity only at the interface and then extrapolate it into the far
field. This greatly reduces the level set velocity gradient in the normal direction
resulting in much less compression or rarefaction of the signed distance function.
In this work, the velocity at the interface uI is defined in all the cells where both
phases are present as the density weighted average of phase velocities:

uI = ρ1u1 + ρ2u2

ρ1 + ρ2
(2.16)

This velocity is then extrapolated to all the cells in the domain using the method
described by [23]: a quantity q can be extrapolated along unit level set normals
n by solving Equation 2.17 to steady state in pseudo-time τ :

∂q

∂τ
± n · ∇q=0 (2.17)

Reinitialization

Despite the level set velocity extrapolation method described above, the level set
field will still deviate slowly from a signed distance function. To solve this, the
level set field must periodically be reinitialized. Here, the High-order Constrained
Reinitialization (HCR-2) method presented by Hartmann et al. is used [25].
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2.2 Spatial Integration

As Walker and Müller observe this constrained reinitialization method will tend
to reduce the volume contained within a convex shape [26]. As the model is
incompressible, this reduction in volume results in an unphysical reduction in
mass. For this reason, a small correction must be made on each reinitialization
to offset this error: if the mass of a phase drops below 99% of it’s initial mass
after reinitialization, the following fixed offset to the level set field is applied:

φ = φ0 + 0.02 · 4x (2.18)

While more complicated solutions to this problem could be found, this correction
is very low in computational expense, and was found, in all tested cases, to
adequately offset the mass loss due to reinitialization without over-correcting.

2.2.2. Inviscid Terms

By defining A as the area on which the flux is applied and V as the volume of
the relevant cell, the momentum changes due to the inviscid and gravity terms
of Equation 2.4 can be discretized as follows:

(∆ (ρu))inv = −∆tρ ((u · ∇) u + g) ≈ −∆t · ρ
(∑NFaces

i=1 (Ai (ni · ui) u)
V

+ g
)

(2.19)

where the unit normals, ni, point outward from the cell faces. The implementa-
tion of the gravity terms is trivial as it simply requires a constant velocity change
to all cells in the domain. Discounting gravity, and considering only fluxes on
faces aligned in the x-direction, Equation 2.19 can be expanded by employing
Godunov’s conservative finite volume method [27] to:

(∆ (ρu))inv ≈ −∆t · ρ


(
(AE)i+ 1

2
− (AE)i− 1

2

)
V

 (2.20)

where:

E = (u2, uv, uw)T (2.21)
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The flux, E, is computed by solving the Riemann problem at the cell face. To
solve the Riemann problem, the states of the variables on the left and right sides
of the face must first be defined. In this work these variables are reconstructed
from the surrounding flow field using a 5th order Kim-Kim limiter [28] as UL and
UR. A Rusanov Riemann solver [29] is then used to solve for the fluxes at the cell
interfaces. The Rusanov Riemann solver defines these fluxes in the x-dimension
as:

ERU
i+ 1

2
= 1

2 ((EL + ER)− s (UR −UL)) (2.22)

where:

s = max (|uL| , |uR|) (2.23)

To solve for faces not aligned with the x-direction, a change of coordinate systems
is required. In the case of faces aligned along either of the other Cartesian axes
this procedure is trivial. For example fluxes, F = (uv, v2, vw)T , aligned with the
y-axis are calculated using:

FRU
j+ 1

2
= 1

2 ((FL + FR)− s (UR −UL)) (2.24)

where:

s = max (|vL| , |vR|) (2.25)

Some additional care is required in the near interface region when implementing
this method. Firstly, the phase interface is treated as a cell boundary, but is not
aligned with the grid. This means that the Kim-Kim limiter cannot be applied
at the phase interface. It is instead treated in a first-order manner, with left and
right states simply defined as the values of the properties within the cells to the
left and the right of the interface in the rotated co-ordinate system. Secondly,
while the Kim-Kim limiter is designed to treat flow fields with significant high
order terms (such as a change in phase) smoothly, calculating differentials across
the interface in unnecessary. Instead, in any cell where the flow properties of
a particular phase are not defined, the input into the Kim-Kim reconstruction
method is set equal to the value closer to the interface from it. For example, if
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the cell at x + 2 lies fully outside of a phase, the value for this cell at x + 1 is
used.
This method is an implementation of a method known as Implicit Large Eddy
Simulation (ILES). In explicit Large Eddy Simulation (LES) an explicit subgrid
model is required to model the decay of turbulence at scales smaller than the grid
spacing, whereas in ILES the numerics are designed such that modeling of these
sub-grid scales are implicit. For further details the reader is directed to [30].

2.2.3. Viscous Terms

As the Reynolds numbers of the flows studied in this work are expected to be
relatively high (Re > 500), the viscous momentum fluxes are expected to be small
in comparison to the convective terms. Although sharp viscosity implementations
exist [31], none are compatible with the conservative level set method. Sharp
treatment of viscosity in the near interface is desirable however it was decided
that, as interface viscosity is not expected to be a major contributor to the overall
flow field, rather than developing a new method to handle it sharply, it would be
treated as a smoothly varying property at the interface.
The term to be discretized is given in Equation 2.26:

(∆ (ρu))vis = −∆t · (∇ · τ)T (2.26)

With τ being the incompressible viscous stress tensor as defined in Equation 2.3.
As viscosity is defined to be smooth across the interface a continuous viscosity is
defined using a Heaviside step function:

µc (φ) = µ2

(µ1

µ2

)H(φ)
 (2.27)

where:

H (φ) =


0 φ < −ε
1+sin(πφ2ε )

2 −ε ≤ φ ≤ ε

1 φ > ε

(2.28)

This interpolation method has two key properties:

19



Chapter 2 Numerical Methods

• It has a continuous gradient which reduces the potential for oscillations
resulting from small changes.

• At the interface (ie. φ = 0) the viscosity is given by µI = √µ1µ2 resulting
in the equality: µI

µ1
= µ2

µI
. This property means that the momenta of the

two phases are adversely affected to the same degree by errors in viscosity.
No reference could be found using this interpolation method and it is thought to
be novel.
For the Heaviside step function ε should be chosen to be of the same order as
the grid spacing, though no lower. In this work ε is set equal to 1.5 times the
smallest grid spacing in the domain.
The divergence operator in Equation 2.26 is discretized using a finite volume
method. For clarity only the fluxes resulting from expanding the divergence
operator in the x-direction is presented:

(∆ (ρu))x,vis ≈ −

µc
 2ux
uy + vx
uz + wx



i+ 1

2

−

µc
 2ux
uy + vx
uz + wx



i− 1

2

∆x (2.29)

The differentials are discretized directly using central differencing. For example:

(ux)i+ 1
2
≈
ui+1 − ui

∆x (2.30)

(uy)i+ 1
2
≈
ui+1,j+1 + ui,j+1 − ui+1,j−1 − ui,j−1

4∆y (2.31)

2.2.4. Reference Frame

As the movement of an interface under gravity is to be studied, the choice of
reference frame is important. A stationary reference frame, for example, would
require the domain to span the entire volume through which the interface would
move. Given that sub millimeter resolutions, traveling over distances of several
meters are to be modeled, it is clear that a stationary reference frame would lead
to very high computational requirements.
For this reason a reference frame such that the mass contained within the interface
is constrained to move only slowly relative to the reference frame is used. While
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it is possible to constrain the centre of mass of the interface almost exactly, this is
undesirable as it can lead to accumulation of discretization errors over time. For
this reason a slightly more relaxed constraint is used, defined in the x-dimension
by Equation 2.32 and extended in the natural manner to the y and z dimensions:

ucorrect,x =


α(∆t)·(xCOM−β)

β
|xCOM | > β

0 otherwise
(2.32)

where α is a scaling factor, β is a threshold distance and xCOM is the position
of the centre of mass when projected on to the x-axis. While the values of
these parameters are clearly dependent on the problem, it was found through
experimentation that values of approximately α = 0.25 and β = ∆x maintain
the interface in a central location in the falling droplet test case presented in
Chapter 4 without correcting too aggressively. This correction is calculated in
all three dimensions and the velocity ucorrect added to every cell in the domain,
accumulating as a constant normal velocity boundary condition at the domain
edges.

2.3. Temporal Integration

The time derivatives in Equation 2.1 are integrated using the third-order Total
Variation Diminishing (TVD) Runge-Kutta method described by Shu and Osher
[32].
The overall time step used for each iteration must be based upon all the forces that
could act on the fluid in a cell. Convection, viscosity, gravity and surface tension
must all be considered. The analysis of Kang et al. suggests an appropriate time
step restriction can be calculated from the following equations [31]:

Ct = 1
α

(
|u|max

∆x + |v|max∆y + |w|max∆z

)
(2.33)

Vt =
max

(
µ1
ρ1
, µ2
ρ2

)
α2

(
2

(∆x)2 + 2
(∆y)2 + 2

(∆z)2

)
(2.34)

Gt =
√
|g|
α∆z (2.35)

St =

√√√√ σ |κmax|
α2 ·min (ρ1, ρ2) · (min (∆x,∆y,∆z))2 (2.36)
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With a final time step of:

∆t = 2 · CFL

(Ct + Vt) +
√

(Ct + Vt)2 + 4
(
(Gt)2 + (St)2

) (2.37)

Where α is the minimum unmixed volume fraction within a cell. As any cells
with volume fractions of less than a half are mixed in this work, α = 0.5.

In all the simulations reported in the results section the CFL number was 0.5.

2.4. Pressure Projection Method

The pressure projection method was introduced by Chorin [33, 34]. The first
work adapting this method to incompressible flows published by Bell et al., who
developed an unsteady second order constant density solver [35]. This work was
later extended to incompressible variable density flows [36]. Further extensions
were made by Shu et al., who implemented spectral methods for the solution
of the pressure field [37], and by Andrews who approached the problem using a
fractional-step method [38]. While the pressure projection method has been pre-
viously coupled with the level set method for immiscible incompressible flows [31],
the combination of the conservative level set method described in Section 2.2.1
and the pressure projection method requires some additional consideration at
points.

The aim of the pressure projection method is to decompose the velocity field
given by the solution of Equation 2.4 (ũn+1) into the sum of its divergence free
part un+1 (ie. the solution after the time step) and the gradient of a scalar field
φ.

ũ = u + σ∇φ (2.38)

By substituting φ = p and σ = 4t
ρ

Equation 2.38 can be modified to fit the form
of Equation 2.5. By taking the divergence of both sides of this equation and
applying the incompressibility constraint: ∇·u = 0, Equation 2.39 is reached:

∇ ·
(
∇p
ρ

)
= ∇ · (ũ)

∆t (2.39)

22



2.4 Pressure Projection Method

The solution to this equation yields a pressure field which can be projected using
Equation 2.5 to give the incompressible solution.
Depending on the discrete form of the left hand side of Equation 2.39 the pressure
projection method can be either exact or approximate. The exact formulation,
while more computationally expensive, strictly enforces the divergence free cri-
terion. The approximate formulation tends to be more difficult to implement as
it requires additional filters in order to reduce the errors brought about by the
approximations [30]. The exact formulation has been chosen for this work.
Each side of Equation 2.39 must be discretized separately. The left hand side is
discretized in two dimensional Cartesian co-ordinates as follows using standard
central differences:

∇ ·
(
∇p
ρ

)
= ∇ ·

 1
ρi,j


pi+1/2,j−pi−1/2,j

4x

pi,j+1/2−pi,j−1/2
4y




= 1
(∆x)2

(
pi+1,j − pi,j
ρi+1/2,j

− pi,j − pi−1,j

ρi−1/2,j

)
+

1
(∆y)2

(
pi,j+1 − pi,j
ρi,j+1/2

− pi,j − pi,j−1

ρi,j−1/2

)
(2.40)

where the inter-cell densities ρi±1/2,j and ρi,j±1/2 are defined using the method
outlined in section Section 2.4.1.
When discretizing the right hand side care must be taken as the velocity gradient
across the interface can be discontinuous. The definition of the discrete divergence
of the velocity in a given volume V is:

∇ · (ũ) =
∑Nfaces
i=1 Ai (ui · ni)

V
(2.41)

In the far field, the solution to this equation is equivalent to taking central dif-
ferences and assuming that interface velocities are simply the mean of the cell
velocities either side of the interface. However in split cells this assumption is
invalid and instead the divergence must be calculated from the full equation.
The value for the pressure has been chosen to be defined only once at each node,
and as such the pressure projection method can only work on a single phase
per node. For this reason methodology from the cell merging method used to
maintain stability of the inviscid fluxes must be borrowed. As the phase at the cell
centre is the only one that can be corrected, any partial cells which are not to be
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corrected must be merged with a target which is to be corrected, otherwise mass
and momentum are not conserved. The same cell merging method described in
Section 2.2.1 is applied to these cells. It is also important here that Equation 2.41
is computed by taking all the faces of the fully merged cell.
Once both the left and right hand side of Equation 2.39 have been calculated, a
linear series of equations remains. These equations can be represented in matrix
form by the equation:

Ap = b (2.42)

where the solution to this equation for the vector p is sought. The methods
required to solve such a system have long been a topic of discussion in the scientific
community the details of which are beyond the scope of this work. For an overview
the reader is directed to [39]. The Bi-Conjugate Gradient Stabilized method
(BiCGStab) was chosen to calculate the solution in this project, the details of
which will be described later in this chapter (Section 2.4.2). Once the pressure
field has been found, the final step is to project it on to the intermediate velocity
field to obtain a divergence free velocity field.

un+1 = ũn+1 −4t ·
(
∇p
ρ

)
(2.43)

The ∇p
ρ

term in Equation 2.43 is discretized by taking the mean of the term at
cell faces along the relevant axis:

∇p
ρ

=


1

2∆x

(
pi+1,j−pi,j
ρi+1/2,j

+ pi,j−pi−1,j
ρi−1/2,j

)
1

2∆y

(
pi,j+1−pi,j
ρi,j+1/2

+ pi,j−pi,j−1
ρi,j−1/2

)
 (2.44)

It is important to discretize it in this way rather than by simply using the cell
centred density, as the ∇p

ρ
term used here must be the same as that which was

calculated in Equation 2.40.
The procedure is therefore as follows:

1. Apply the cell merging method for small cells. Additionally, any any cell
with φ < 0 must be merged with a valid neighbouring cell.

2. Calculate the velocity divergence across each cell and merged cell using
Equation 2.41.
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2.4 Pressure Projection Method

3. Calculate the pressure field required to produce a divergence free solution
Equation 2.42.

4. Project these pressures on to the velocity field of all cells with φ ≥ 0 using
Equation 2.43.

By applying this variation on the cell merging method presented earlier, this new
procedure allows the conservative level set method and the pressure projection
method to be used in tandem.

2.4.1. Treatment of Jump Conditions

At the interface there are two spatial jump conditions which much be considered
when calculating Equation 2.40: a pressure jump and a density jump. These are
defined at the interface by Equation 2.45 and Equation 2.46:

[p]Γ = σκI (2.45)

[ρ]Γ = ρ+ − ρ− (2.46)

Considering the Poisson equation to be solved (Equation 2.39) simplified into the
one dimensional case:

1
(∆x)2

(
pi+1 − pi
ρi+1/2

+ pi − pi−1

ρi−1/2

)
= RHS (2.47)

If an interface lies in the in the region xi+1 → xi−1 special treatment is required
to handle the jump conditions, as this discretization is only valid in the presence
of smooth pressure and density fields. To avoid mixing of values across domains
a ghost fluid method is used to explicitly account for the jump conditions at
the boundary. The ghost fluid method used for solving these jump conditions is
similar to that described by Liu et al. [40], and is summarized in the following
two subsections.

Pressure Jump

The first consideration is the pressure jump condition due to surface tension given
by Equation 2.45. As the interface has sub-cell resolution the curvature at the
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interface can be found by interpolating its inverse based on the level set field.
Note that this interpolation method is a departure from Liu et al., whose method
instead interpolates the curvature directly. While ideally the inverse interpolation
would be used in all cases, if the curvature between the two points of interest
changes sign, then the calculated result for curvature incorrectly passes through
infinity. For this reason the method of Liu et al. as a fallback solution should
this occur.

κI ≈


κ+κ−(|φ−|+|φ+|)
κ+|φ+|+κ−|φ−| κ+κ− > 0
κ−|φ+|+κ+|φ−|
|φ−|+|φ+| otherwise

(2.48)

Where superscript + and - are values at the next cell on the positive and negative
sides of the interface respectively. Figure 2.1 indicates the difference between the
two methods.

Figure 2.1.: Discretization of a circle with a radius of four grid spacings. In-
terpolating the radius and inverting the result will give the correct curvature
on the interface of 0.250 whereas interpolating the curvature field directly will
give a curvature on the interface of 0.254.

It is clear that interpolating from the curvature field will not give as accurate
results and that, instead, interpolation of the radius of curvature is preferred.
For a convex shape this error effectively increases the effect of surface tension
around the entire volume. Although the error in the example above is only
approximately 2%, the magnitude of the radius of curvature has potential to
be significantly lower than four grid spacings and the error becomes much more
significant as the resolution of the curvature decreases.
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Defining xi+1 and xi as the positions of cells either side of the interface, the pres-
sure jump due to surface tension can be substituted directly in to Equation 2.47.

1
(∆x)2

(
(pi+1 + σκI)− pi

ρi+1/2
+ pi − pi−1

ρi−1/2

)
= RHS (2.49)

As the pressure jump term is a constant it is convenient to move it to the right
hand side of the equation:

1
(∆x)2

(
pi+1 − pi
ρi+1/2

+ pi − pi−1

ρi−1/2

)
= RHS − σκI

(∆x)2 ρi+1/2

(2.50)

The other equation featuring a derivative over xi+1 and xi must also be corrected.
Once again directly substituting the pressure jump into the equation:

1
(∆x)2

(
pi+2 − pi+1

ρi+3/2
+ pi+1 − (pi − σκI)

ρi+1/2

)
= RHS (2.51)

and again the constant term can be moved to the right hand side:

1
(∆x)2

(
pi+2 − pi+1

ρi+3/2
+ pi+1 − pi

ρi+1/2

)
= RHS + σκI

(∆x)2 ρi+1/2

(2.52)

It is important to note that the additional value on the right hand sides of
Equation 2.50 and Equation 2.52 are the same magnitude with opposite sign.
This is expected as they are both correcting for the same jump condition, simply
from different sides of the interface. The method for calculating the density term
ρi+1/2 will be described below.

Density Jump

Next the density jump condition (Equation 2.46) must be taken into account.
Considering once again an interface lying between xi+1 and xi the interpolant θ
is calculated:

θ = |φi|
|φi|+ |φi+1|

(2.53)
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This interpolant can be used to approximate the position of the interface, as it
splits the region between the cells into two pieces, of size θ4x on the left side, and
(1−θ)∆x on the right. Although the pressure at the interface is discontinuous the
pressure gradient remains continuous when divided by the density. A second order
approximation for pressure allows the assumption that this pressure gradient is
constant within the cell. This leads to the following approximation:

pi+1 − pΓ

ρi+1 (1− θ) ≈
pΓ − pi
ρiθ

≈
pi+1 − pi
ρi+ 1

2

(2.54)

Solving Equation 2.54 for the pressure at the interface:

pΓ = pi+1ρiθ + piρi+1 (1− θ)
ρiθ + ρi+1 (1− θ) (2.55)

If an effective density ρ̂ is defined:

ρ̂ = ρiθ + ρi+1 (1− θ) (2.56)

Equation 2.55 simplifies to:

pΓ = 1
ρ̂

(ρipi+1θ + ρi+1pi(1− θ)) (2.57)

substituting Equation 2.57 back in to the left hand term of Equation 2.54:

pi+1 − pΓ

ρi+1 (1− θ) =
pi+1 − 1

ρ̂
(ρipi+1θ + ρi+1pi (1− θ))
ρi+1 (1− θ)

=
pi+1

(
1− 1

ρ̂
(ρiθ)

)
ρi+1 (1− θ) + pi

ρ̂

= 1
ρ̂

(
pi+1 (ρ̂− ρiθ)

ρ̂− ρiθ
+ pi

)

= 1
ρ̂

(pi+1 + pi) (2.58)

This analysis shows that the correct inter-cell densities in the presence of a density
jump condition with no pressure gradient jump, are given by Equation 2.56. This
is an important result. If one were to take inter-cell densities from any other
interpolation the jump condition would not be modeled correctly.
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2.4.2. Solution of a Sparse Linear System

The pressure projection method outlined above requires the solution of a linear
system of equations for x:

Ax = b (2.59)

where x is a vector of n unknowns, A an n by n constant matrix, and b a vector
of n constants. This equation is solved using a preconditioned Bi-Conjugate
Gradient Stabilized (BiCGStab) method [41]. The algorithm for this method is
documented in Algorithm 2.1.

Algorithm 2.1 Pseudocode for the BiCGStab method
x0 is initialized as a guess of the final solution
K−1 is the inverse of our preconditioning matrix
w is a weighting factor for each cell
r0 = b−Ax0
r̃0 is chosen as an arbitrary vector not orthogonal to r0. e.g. r̃0 = r0
ρ0 = α = ω0 = 1
v0 = p0 = 0
Iterate i=1,2,3,...

ρi = (r̃0, ri−1)
β = ρiα

ρi−1ωi−1
pi = ri−1 + β (pi−1−ωi−1vi−1)
y = K−1pi
vi = Ay
α = ρi

(r̃0,vi)
s = ri−1−αvi
z = K−1s
t = Az
ωi = (K−1t,K−1s)

(K−1t,K−1t)
xi = xi−1 + αy + ωiz
if (mod (i, 10) = 0) then

ri = b−Axi
otherwise

ri = s−ωit
if ∑ r2

i ·w < threshold
x = xi
exit
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Preconditioning

The solver is preconditioned to help accelerate convergence. The aim of a pre-
conditioner is to reduce the condition number (a bound on the inaccuracy of x
after an approximate solution) of A in Equation 2.59 by per-multiplying both
sides by the inverse of a preconditioning matrix K. Typically K in this case
is an approximation to A for which it is easy to calculate K−1y. Perhaps the
simplest preconditioner is the Jacobi preconditioner where K is formed by taking
the diagonal terms of A and K−1 is found by simply reciprocating these values.
While the aim of the preconditioner is to increase performance by reducing itera-
tion count, care must be taken not to spend more time calculating the additional
matrix-vector products required by the method than time saved due to reduced
iterations. Another consideration is that a highly parallel preconditioner must
be selected so that it can run effectively on the GPUs. For this reason a simple
block-Jacobi preconditioner is used [39], with the blocks being columns spanning
the z-dimension.

2.5. Summary

A method of solving immiscible incompressible flows has been presented. The
method is capable of solving problems involving viscous flow interactions with
surface tension and gravity forces present. The overall method can be subdivided
into three smaller methods: the conservative level set method, implicit large eddy
simulation and the pressure projection method. While at the start of the project
there was an implementation of each method available, they were not compatible,
and work was required to combine them. In the process of combining them,
several code errors and incompatible assumptions were found and corrected.
Throughout this method the interface is treated as sharply as possible. The one
exception to this is the viscosity terms, with the value of fluid viscosity smoothed
over the interface. The delta function used to smooth viscosity over the interface
is thought to be novel, and ensures that the momenta of the two phases are
adversely affected to the same degree by the smoothing.
The method to advance the solution by a discrete time step can be summarized
as follows:

1. Calculate the time step ∆t from the flow field.
2. For each Runge-Kutta step:

a) Calculate the level set velocity.
b) Calculate inviscid, viscous, gravity and level set fluxes and update the

flow field based upon these.
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c) Apply the cell merging method to all mixed cells.
d) Calculate interface parameters such as curvature.

3. Using the pressure projection method enforce the divergence free constraint
of incompressible flow fields.

4. Apply reference frame corrections so that the interface remains near the
centre of the domain.

5. If required use the level set reconstruction method to ensure the level set
field remains a signed distance function.

The method was validated using two test cases: the oscillation of a water droplet
under surface tension in the absence of gravity (Section A.1), and the motion
of an air bubble rising through a viscous fluid (Section A.2). The rising bubble
test case was of particular interest and highlighted a potential problem with
the numerical scheme. Instead of the interface being smoothy curved, the edges
were noticeably straighter than they should be. At the time it was decided that
the cause of this error was imprecise handling of the viscosity terms, and as
preliminary tests of water droplets showed no such error, it was considered not to
be a problem. Much later a potential mechanism was found in the conservative
level set method. As the level set field passes through space, cells are merged
and unmerged when the phase volume fraction crosses a threshold. This merging
significantly changes the local properties. If interface movements are brought
about over a long time by small forces this change might lead to a local oscillation:
if a certain cell is mixed the interface is forced in a direction leading the cell to
become unmixed. Once it becomes unmixed it then may be forced in a direction
leading the cell to become mixed. So long as this oscillation is stable the solution
will tend to favour the threshold region, effectively constraining a point. Although
the error is small, it is significant.
Having validated the method it was then used to simulate water droplets falling
under gravity. The results from those simulations are presented in Chapter 4. The
“straightening” error was not noticeable from visualizations of these simulations,
possibly due to higher surface tension smoothing out areas of high local curvature,
however analysis shows that some results may have been affected by it.
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3. Implementation on Graphics
Processing Units

Synopsis

To be able to extract best performance out of a technology it is first important to
understand the properties of that technology. In this chapter an overview of GPU
technology will be presented, along with explanations of how this technology can
be used to achieve significantly better performance than CPUs for the problems
we are interested in. This performance improvement allows those who wish to run
CFD simulations to do so either in more detail, or in a shorter time. Details of
implementation and relative performance improvements for each of the numerical
methods detailed in Chapter 2 are reported.
Parts of this Chapter have been presented in: J. Appleyard and D. Drikakis.
‘Higher-order CFD and interface tracking methods on highly-Parallel MPI and
GPU systems’. Computers & Fluids, Volume 46, Issue 1, July 2011, Pages
101–105
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3.1. GPU Technology

3.1.1. Background

To understand the advantages of a Graphics Processing Unit (GPU) compared to
a Central Processing Unit (CPU) one must first understand the design philoso-
phies around them. Modern GPUs are designed first and foremost to project
three dimensional scenes onto a two dimensional plane for computer gaming.
These scenes typically comprise hundreds of thousands of polygons, each with
effectively arbitrary position and colouring. The GPU must transform these
polygons from 3D space to 2D space, sort them by depth, texture them, light
them, and finally determine the colour of each pixel so that the full image can
be displayed. For a moving scene to appear smooth this entire process must be
done in real time, with typical frame rates of at least thirty frames per second.
While this may seem a daunting task it becomes tractable once one key element
about all of the above transformations is recognized: almost every operation
that has to be performed on one polygon must also be performed on many other
polygons. Furthermore these operations are independent. For example, the trans-
formation of a vertex from “world space” to “screen space” is a matrix operation.
This matrix operation must be performed on every vertex in the “world” so that
its position relative to the virtual camera is known. The result of one vertex
transformation does not depend on the result of another so it is possible to do
each simultaneously. The same is true to a large degree with the texturing and
lighting operations, with the final colour of a polygon usually largely independent
of the final colour of another. As it is commonplace for millions of these indepen-
dent calculations to be required for a single frame the system can be described
as massively parallel: there’s a lot of work to be done and it can all be done
simultaneously.
One of the first scientific applications for GPUs was presented by Lengyel et
al. in 1990 and concerned robot motion planning [5]. Many other applications
have since followed [6, 7, 8, 9], including CFD [42, 43, 44]. At first, the tools
were extremely limited and programmers had to treat each parallel operation as
analogous to a pixel on the screen, or a vertex on a three dimensional object.
For example, in computer graphics the colour of a pixel is often defined by a
32 bit integer, with the red, green, blue and alpha (a value determining how
the pixel is blended with those further from the camera) each forming eight bits
of this integer. By performing operations such that the colours of these pixels
changed in a certain way it is possible to manipulate these integers to perform
certain calculations, the answer of which can then be interpreted as the result of
a computation. It was not until the release of NVIDIA’s Compute Unified Device
Architecture (CUDA) programming language in 2007 that scientific computing
on GPUs finally became fully decoupled from this graphics model.
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3.1.2. Hardware

Once the problem is understood to be massively parallel, it is possible to design
hardware to exploit this fact. Perhaps the most obvious design decision that
differentiates a CPU and a GPU is the amount of space on the die devoted to
processing.
As CPUs are inherently serial it is not necessarily known what data will be called
upon for the next calculation. For example, it may be that a process contains a
branch which, if followed down one path will require one block of memory, while
if followed down another path will require a completely different block. Until the
result of the branch is calculated the processor cannot know for sure which block
will be required. For this reason CPUs tend to have a large proportion of their
die space devoted to caching data that is expected to be required soon, with large
multi-level caches to minimize latency should the expected data be required.
GPUs do not need nearly so much cache, and can hence devote more space to
processing. As GPUs are designed to deal with large amounts of data in parallel
they are made to be most efficient when it is assumed that parallel threads do not
depend on each other. This means that while calculations are being processed for
one thread, another thread can waiting idle for the memory for its next calculation
to load. There is little or no chance that the first thread will invalidate this
memory load, either by overwriting the data with new data, or by taking a branch
that makes that data unnecessary. As the idle threads can be made to take up
very few resources, this method allows the GPU to hide latency due to memory
loading, as the GPU is able to load data into memory and perform calculations
simultaneously. Because memory latency becomes less important in a massively
parallel environment, a GPU die does not need nearly so much space dedicated
to caching of memory as a CPU die, and hence can dedicate a lot more space to
raw processing power.
This is not the only advantage a GPU has when it comes to performance. As it is
known at the outset that the problems the device is to solve will be massively par-
allel, it is possible to design the hardware to do many calculations simultaneously
rather than separately. This means that a GPU can have many simple processing
cores rather than a few highly complex ones. While the simplicity means that a
single GPU core is less efficient at performing a single series of instructions on a
single piece of data than a single CPU core, there are many more simpler cores
available. This means that not only does the GPU have more space devoted to
processing, but that space can be more efficiently used.
In the early stages of this work a cluster comprising four Tesla C1060s was used
to run all the GPU simulations. At a later stage, an improved cluster comprising
eight Tesla S2050s was obtained. The basic performance capabilities of each Tesla
GPU is listed in Table 3.1.
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Device Multiprocessors Arithmetic Throughput Memory
Single Precision Double Precision Bandwidth

C1060 30 933 GFLOPS 78 GFLOPS 102 GB/s
S2050 14 1288 GFLOPS 515 GFLOPS 148 GB/s

Table 3.1.: Performance capabilities of the GPUs used. 1 GFLOPS is equal to
one billion floating point operations per second.

It is clear that these devices have a very high arithmetic intensity (ratio of floating
operations per second to memory bandwidth). Given that the Tesla S2050s can
attain 515 GFLOPS in double precision with only 148 GB/s of global memory
bandwidth, for each eight byte floating point number loaded from global mem-
ory 28 floating point operations must be completed to maximize floating point
throughput. As very few applications have such a high arithmetic intensity most
codes are strongly limited in performance by memory access speeds, making effi-
cient use of memory highly desirable.
The two main methods for maximizing memory bandwidth on a GPU are memory
re-use and memory coalescing:

Memory re-use To understand how memory can be reused one must first un-
derstand the different types of memory available on GPUs. Both the C1060 and
S2050 share the same basic three types of memory:

1. Global memory; accessible to every thread on every multiprocessor.
2. Shared memory; accessible to every thread in a single block. Each block

resides on a single multiprocessor and the total shared memory for all the
blocks on a single multiprocessor is limited.

3. Register memory; accessible to an individual thread only.
Both shared and register memory are very high bandwidth whereas global mem-
ory is orders of magnitude lower bandwidth. For this reason, if memory that can
be reused is stored in either register or shared memory, it is possible to greatly
accelerate the application by reducing usage of the limited global memory band-
width. One improvement in the S2050 was the inclusion of a small cache for
global memory accesses. This cache reduces the requirement for memory reuse
in some cases, but has little effect in others.

Memory Coalescing

Memory coalescing allows for the minimum instructions necessary to load data
from global memory. Given the highly parallel nature of most GPU applications,
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the hardware is designed to be most efficient when a small group of consecutively
assigned threads reads from consecutive memory locations. This access pattern
is known as a coalesced access pattern. If the memory structures can be designed
so that this access pattern is obtained then the memory throughput of the ap-
plication can be increased by up to an order of magnitude over an application
with random memory access. The cache on the S2050 mitigates this requirement
somewhat if the memory accesses are nearly coalesced, as the additional memory
that must be loaded in the case of an uncoalesced access can be stored in the
cache.

3.1.3. Software

The GPU implementations presented in this work are based upon NVIDIA’s
CUDA (Compute Unified Device Architecture) programming model [10]. The
CUDA environment comprises extensions to both the C and FORTRAN pro-
gramming languages allowing the CFD code to be written specifically for NVIDIA
GPUs. These extensions allow large numbers of threads to be launched on the
GPU from within a program running on the CPU. With a few exceptions, exe-
cuting the CFD code can be very similar to executing a code written to run on a
CPU.
The implementation used for the work outlined here primarily used PGI CUDA
FORTRAN, an implementation of CUDA in FORTRAN which also includes
PGI’s own accelerator language [45].

3.2. Implementation of Discrete CFD Problems on
GPUs

The methods described in Chapter 2 were first implemented using traditional
CPU methods, before being rewritten for GPUs. The process used to transfer
the methods to the GPU was incremental. Each sub-section of the code was
considered separately and implemented individually, without the requirement of
any other subsection of the code to be running on the GPU. This method allows
for significantly easier error-checking as it is possible to isolate certain parts of
the code very easily for testing.
The publication: Higher-order CFD and interface tracking methods on highly-
parallel MPI and GPU systems was written based of the findings from an early
part of the project and has been largely reproduced in Section 3.2.1. While the
hardware used for this publication is now outdated, many of the findings remain
valid as the core technologies remain the same.
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After the preliminary study was completed new hardware was acquired. Table 3.2
indicates the hardware used for each section.

CPU GPU
Section 3.2.1 Intel Xeon 51xx [46] S1060

Section 3.2.2 onward Intel Xeon E5620 C2050
Table 3.2.: Hardware used for each section.

3.2.1. Preliminary Study

The first section of the code to be implemented on the GPU was the level set
solver. It was decided that it would act as a good proof of concept and would
give a good early indicator of expected performance. The three primary aims of
producing this solver were:

1. To develop methods to implement discrete finite-element solvers on the
GPU efficiently.

2. To determine what performance improvements could be obtained by using
the GPU for CFD methods.

3. To analyze the influence of stencil size on this performance.

At the time the study was preformed the hardware available comprised four Tesla
S1060s and an HPC facility based on an 856 processor HP XC Cluster built in
2007 [46], and these hardware configurations are used as a basis for comparison
between GPU and CPU technology.

Level Set Solver

The aim of the level set solver is to solve the level set equation (described in
Section 2.2.1) on a three dimensional grid. While the level set equation was
chosen in this case, the method is fairly generic, and adapting it to most other
finite element problems is simple. This is because they all follow the same basic
pattern of gathering data surrounding a cell to compute a value at that cell.
The method presented here is similar to the method used by both Brandvik and
Pullan [47] and Micikevicius [48] and is as follows:

Firstly, the solution space is subdivided into n equally sized cuboidal domains.
Each domain spans the solution space in one dimension. The sizes of the other
two dimensions are then calculated based on four factors:
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1. The size of the solution space in these directions. It is most efficient to
have its side length as a factor of the length of the solution space. If this
is not the case additional logic is required to prevent threads outside of the
domain from executing.

2. The limitations on the availability of the fast shared memory and register
spaces on the GPU. Larger cuboids require more shared memory. It is also
more efficient to have a cross-section as close to square as possible so as to
minimize boundary data.

3. Memory coalescing requirements. Memory can be coalesced if the length of
one side is a multiple four in double precision.

4. Number of shared memory bank conflicts. If one side length is a multiple of
16 then shared memory is guaranteed to be accessed in the fastest possible
way (conflict free). Side lengths which are not multiples of 16 may still
access shared memory conflict free, however it is not guaranteed in every
case.

The optimum size of the cross-section varies with problem size and the order of
accuracy required, however, is typically 8×16 or 16×16. Larger cross-sections
require too much memory while smaller cross-sections are inefficient.
Having subdivided the solution space a thread block is assigned to each of the
cuboidal domains. Every time step the thread blocks iterate in parallel through
the solutions space spanning dimension using shared memory and registers to
explicitly cache data required for the next iterations. Each thread in the thread
block calculates the result for a single cell per iteration. This is shown diagram-
matically in Figure 3.1. Shared memory is used to swap data between the threads
of the thread block so as to minimize loading from global memory. If the limita-
tions on shared/register memory availability were lifted this method would allow
for each global memory location to be read from only once. Instead, each thread
block must load data from neighbouring domains, decreasing efficiency.
A more naïve solution would be to simply assign each thread to perform the
calculations for one grid cell. While this is a lot simpler (as it requires no shared
memory programming) it would result in an order of magnitude increase in global
memory requirements due to the lack of memory re-use. This would therefore be
a lot slower.
If multiple GPUs are being used boundary data must be transferred between
GPUs after each iteration. Due to hardware limitations there is no way of directly
transferring data between GPUs and so the data must be copied across the PCI-E
bus to the host memory before being copied onto a different GPU. The maximum
theoretical bandwidth of this transfer is 8 GB/s (an order of magnitude slower
than GPU global memory). Fortunately, it is possible to copy data across the
PCI-E bus while continuing calculations on the GPU by splitting the algorithm

39



Chapter 3 Implementation on Graphics Processing Units

Figure 3.1.: Thread blocks spanning the domain in two dimensions iterating in
parallel along the third dimension.

into two sections (one which requires the boundary information and one which
does not). This effectively hides the memory transfer with only a small cost due
to the splitting.

The CPU implementation is much simpler than the GPU implementation. Each
core iterates over a small part of the domain before transferring data between
cores. The same asynchronous memory transfer masking technique as in the
GPU method is used.

Performance

The test case used to generate these results was the motion of a slotted sphere
in a rotational velocity field. The grid was strongly scaled across many devices,
i.e., total data processed remains constant. Extrapolation boundary conditions
were used at each of the interfaces. It should be noted that while the velocity
field was constant in time it was treated as a variable and no optimization was
based upon it being constant.

The first set of results are a simply architectural comparison between the GPU
systems and the CPU system. Figure 3.2 shows the arithmetic throughput of
the CPU and C1060 architectures using a 3rd-order HOUC scheme in single
precision. As each architecture solves the same equations this can be used as a
direct measure of performance.

Table 3.3 shows the equivalent processing power of multiple C1060s in terms of
CPU cores. It is clear to see that a single GPU is capable of performing two
orders of magnitude more work than a single CPU core when solving the level
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3.2 Implementation of Discrete CFD Problems on GPUs

Figure 3.2.: GFLOPS produced from a 3rd-order HOUC scheme in single pre-
cision by up to 4 C1060s (left) and by up to 256 CPU cores (right).

set equation. It is also apparent that both architectures scale in performance in
a close to linear manner.

C1060s 1 2 3 4
Equivalent Cores 92 187 280 371

Table 3.3.: Equivalent single-precision CPU cores for up to 4 C1060s.

Order of accuracy

Figure 3.3 shows the arithmetic throughput of the CPU and C1060 architectures
using 3rd, 5th, 7th and 9th-order HOUC schemes in single precision.

Figure 3.4 shows the arithmetic throughput of the two architectures using 3rd
and 9th-order HOUC schemes in single and double precision. Figure 3.5 shows
the memory bandwidth required on the two architectures using the same config-
urations.

As is to be expected the double precision throughput on the GPU is significantly
lower than the single precision throughput, however, it is a much greater pro-
portion (30–50%) of the peak theoretical throughput. Comparatively, the CPU
shows approximately half the throughput in double precision than in single pre-
cision. This suggests that the CPU method is bound by the memory bandwidth
of the system. Comparison of the memory bandwidth achieved to that achieved
on the same system by the STREAM [49] benchmark confirms this.
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Figure 3.3.: GFLOPS produced from 3rd, 5th, 7th and 9th-order HOUC schemes
in single precision by up to 4 C1060s (left) and by up to 256 CPU cores (right).

Figure 3.4.: GFLOPS produced from 3rd and 9th-order HOUC schemes in single
and double precision by up to 4 GPUs (left) and by up to 256 cores (right).

Conclusions

These data show that the GPU method is bound solely by neither the two con-
straints (memory bandwidth or arithmetic throughput) of the GPU. Instead, it
would appear that the algorithm is bound by both at different stages of execution.
This is possible despite the massively parallel nature of the GPU as each itera-
tion requires two steps and after each a block-wide synchronization occurs. The
first step mainly comprises memory transfer while the second mainly comprises
arithmetic operations. As a multiprocessor typically executes only two blocks
concurrently, the system is prone to bottle-necking in either step.
The proportion of time that the GPU spends bound by each limit varies with
precision and order of accuracy. To illustrate this: although in both precisions
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3.2 Implementation of Discrete CFD Problems on GPUs

Figure 3.5.: Memory bandwidth for 3rd and 9th-order HOUC schemes in single
and double precision by up to 4 GPUs (left) and by up to 256 cores (right).

the 9th-order scheme shows improvements over the 3rd-order scheme, in double
precision this improvement is nowhere near as significant. This is due to the
inferior double precision performance of the GPU leading to a greater proportion
of the execution time spent doing arithmetic operations. This effect is not seen
so prominently in single precision as increasing the order of accuracy does not
bring the arithmetic throughput to such a large fraction of the peak.
It should be noted that a lot of these results were collected quite early in the
project, and although they remain valid as a guideline, improvements in technol-
ogy have naturally brought about improvements in performance. It was found
that the newer S2050s performed approximately 50% faster than the C1060s in
double precision calculations. The exact performance improvement varied with
case, but not significantly. This indicates that while arithmetic throughput was
found to be a partial constraint for the older C1060s, the vastly improved through-
put of the S2050s shifted the primary constraint to global memory bandwidth.

3.2.2. Momentum Fluxes

Both viscous and inviscid momentum fluxes were implemented using a very sim-
ilar method to the level set solver (Section 3.2.1). Fundamentally the process
is the same: iterate through a domain in columns using only data from nearby
cells. While the actual calculations within each cell are significantly different the
“gather and calculate” pattern is the same.
There are however some notable differences between the two which don’t allow
the momentum fluxes to be nearly as efficient on the GPU relative to the CPU.
Firstly, each cell requires significantly more information and outputs significantly
more data. Not only must momenta in all three dimensions be gathered from
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the entire stencil rather than just a single velocity value, but other information
such as aperture sizes must be loaded for each cell. Secondly, the momentum
solves must iterate three times through the domain, once along each Cartesian
axis. This not only impacts on memory coalescing, but also on overall efficiency.
Rather than load each value once, it must be loaded thrice. This adds significantly
to the memory bandwidth requirements of the GPU. Finally, while it would be
desirable to have all of the data stored on the GPU memory global memory
size restrictions often do not allow for this. As the S2050s have only 3GB of
global memory, and there is significantly more data to be stored than for the
level set solver, this was a significant issue. While it was found that a lot of data
could remain on the GPU some moderately sized copies to and from the GPU
were required during the calculation of the fluxes to minimize the global memory
footprint of the code.
Table 3.4 indicates the relative performance of a single S2050 compared to a
single CPU core. These data are compiled over a complete set of three fluxes
(inviscid, viscous and level set) combined, along with associated copies to and
from the GPU.

Domain Size Runtime (ms) Speed-upCPU GPU
323 47.1 16.7 2.8
643 496 67.9 7.3
963 1693 211 8.0

Table 3.4.: Relative performance of the CPU and GPU for computing momen-
tum and level set fluxes.

While these results initially may seem disappointing compared to the preliminary
results it will be shown later that they do not contribute hugely to the overall
run time. It may be that with additional work it would be possible to accelerate
the GPU runtime; however this was not decided to be a priority.

3.2.3. Velocity Extrapolation

The interface velocity extrapolation method described in Section 2.2.1 is quite
expensive in terms of run-time. As the procedure must be run once every Runge-
Kutta iteration, and must undergo a reasonable number of iterations on all cells
in the domain to reach convergence, there is a significant amount of work to be
done for this seemingly simple task.
The GPU implementation of this method is simple yet effective. The odd iter-
ations of the algorithm read the upstream values from one array into each cell,
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calculates the new value for that cell, and writes it to a second array. This second
array is then used as the input for the even iterations, with the first array for
the output. Shared memory was used to reduce the number of global memory
loads by loading small cuboid volumes into shared memory at the start of each
iteration, and then loading the data from the shared instead of from global mem-
ory. While this method reduces the required memory bandwidth of the problem
by approximately a factor of two, it was found that the impact on performance
was much less significant than this. This is likely due to the global memory
cache of the S2050 filling a similar role to the shared memory without need for
hand-coding.

Table 3.5 indicates the relative performance of a single iteration of the velocity
extrapolation implementation on a single S2050 compared to a single CPU core.

Domain Size Runtime (ms) Speed-upCPU GPU
323 0.69 0.27 2.6
643 4.43 0.48 9.2
963 14.2 1.27 11.2

Table 3.5.: Relative performance of the CPU and GPU for extrapolating level
set velocities.

3.3. Implementation of Linear Solvers on GPUs

One of the more computationally expensive parts of each time step is the cal-
culation of the pressure field required for the Pressure Projection method. The
method used to calculate this field is outlined in Section 2.4.2. Each iteration
of this solver requires many level 1 Basic Linear Algebra Subprograms (BLAS)
[50] operations, as well as at least five large sparse matrix-vector multiplications.
The preconditioning algorithm also requires the solution of many independent
tri-diagonal systems.

3.3.1. Level 1 BLAS Operations

There are many options for implementing the level 1 BLAS operations required,
including NVIDIA’s own cuBLAS library [51] however it was decided for the
sake of simplicity to implement these using the PGI Accelerator [45]. While
the performance of the PGI Accelerator may not be optimal compared to hand-
coding the kernels, profiling showed that these operations weren’t a significant
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proportion of runtime. The implementation of these within the Accelerator was
trivial and in most cases could be achieved by simply wrapping the relevant CPU
code in preprocessor directives. This has the advantage of making the code easier
to understand quickly without significantly impairing performance.

3.3.2. Sparse Matrix-Vector Multiplications

Given the matrix to be solved contains all of its elements within diagonal runs,
each diagonal is stored in its own data structure. This method is both simple,
compact, and provides optimal coalescing for the matrix-vector multiplication
operation. As this particular operation is the most significant in terms of per-
formance due to its high memory bandwidth requirements, it is important to
optimize memory structures around it. As each element of the vector must be
loaded multiple times in this subprogram, the vector was explicitly loaded into
shared memory blocks 256 elements wide. Use of these shared memory blocks
resulted in a decrease in global memory bandwidth required by a factor of ap-
proximately two, significantly increasing performance.

3.3.3. Tri-diagonal Solver

The linear solver is preconditioned with a block-Jacobi preconditioner. This
block-Jacobi preconditioner requires the solution of a tridiagonal matrix which
can be subdivided into n smaller tridiagonal sub-matrices each of which is formed
by the near-diagonal coefficients of a single line of cells spanning the domain. Each
sub-matrix is solved in parallel using the Thomas algorithm [52]. For maximum
efficiency some pre-processing is done in the first iteration of the solver to reduce
work in all future iterations at the cost of a small amount of memory.
Although the data structures used to store the coefficients are designed for use in
the sparse-matrix vector multiplication algorithm, they also allow for very good
coalescing in the Thomas algorithm implementation, and hence the tri-diagonal
matrices can be solved very efficiently.

3.3.4. Performance

Table 3.6 shows the difference in performance between a single core of a CPU
and a single GPU. The results clearly show that while the speed-up is significant
at small domain sizes it becomes very beneficial on larger domains.
It should be noted that on the CPU, much more sophisticated preconditioners
can be implemented efficiently as there is no longer the restriction that they must
be massively parallel. These preconditions have not been implemented here and
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Matrix Size Single iteration time (ms) Speed-upCPU GPU
323 3.99 0.38 10.4
643 35.2 1.52 23.1
963 118 4.61 25.6

Table 3.6.: Relative performance of the CPU and GPU based matrix solver.

as the most efficient preconditioners for linear systems often are very serial, the
comparison is somewhat unfair to the CPU. The scale to which it is unfair is
outside the scope of this work; however a related work co-authored by the author
of this work suggests that the improved convergence on serial hardware is rarely
enough to compensate for gains from the massive parallelism of GPUs [53].

3.4. Performance Summary

The full numerical method was found execute approximately nine times faster on
a single GPU than on a single CPU core. This performance is broken down by
part in Table 3.7.

Method Step time (s) Percentage runtime Speed-upCPU GPU CPU GPU
Momentum and 7.3 0.68 10% 8% 10.7level set Fluxes

Velocity Extrapolation 8.4 0.96 11% 12% 8.8
Pressure Projection 55 4.7 73% 59% 11.7

Other 4.5 1.7 6% 21% 2.6

Total 75 8.0 - - 9.4
Table 3.7.: Performance summary. The results were averaged over a long run
typical of the intended use. The domain size was 96 by 96 by 132 cells. The
“other” column represents many small methods, each of which was too small
to warrant separate accounting. These include volume fraction and aperture
calculations, normal and curvature calculations, reinitialization, cell mixing
and output.

The most important result here is that the pressure projection process takes the
majority of the time on both pieces of hardware. If any further work was to
be done on optimization, further study of the runtime of this section seems the
obvious place to start. While the BiCGStab method was shown to be greatly
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accelerated by implementation on the GPU it would appear that the methods
surrounding it are perhaps not as fast as they could be. Another section which
may require further attention for peak performance is the other section. This sec-
tion includes many small methods which combine to take a significant proportion
of run-time. Although some of these methods are running on the GPU, others
are not, and it may be that some extra performance can be found here.
It is noteworthy that the velocity extrapolation method is not performing as
well as it was found to in Section 3.2.3. Although the difference is only a few
percentage points, the change in domain size or iteration count is not expected
to lead to worse performance. Instead, this change can probably be attributed
to the change in shape of the isosurface over time. As the extrapolation method
updates only a subset of points in its early iterations, an alteration to this subset
can result in a change in the requirements of the algorithm. A smaller subset will
tend to under-occupy the GPU, hence reducing relative GPU performance.
While the GPU has been used to accelerate the program significantly compared
to a single core, the overall speedup is not as high as had been hoped based upon
the preliminary investigation, with the overall speedup being approximately a
factor of 10. The poor performance is probably due to the additional complexity
of the full code. One problem is that the comparison between CPUs and GPUs is
hard to do fairly. While here only performance is compared, age, cost, and power
consumption are also important considerations. In the preliminary investigation
the GPUs were newer than the CPUs, whereas in the full code the comparison is
between hardware with similar release dates.
One unexpected advantage of the GPU was the increased size of domain that
could be executed on a single GPU node in a reasonable execution time. The
ability to execute simulations on a single node is a significant advantage, because
some of the methods used don’t perform particularly well in a multi-node environ-
ment (specifically, neither the velocity extrapolation nor the BiCGStab method
scale particularly well: the former often only updates a subset of cells, while
the latter requires very frequent inter-node communication). When conducting
numerical simulations many different input parameters could be simulated simul-
taneously, each using a single GPU, giving a lower overall runtime than if they
were scheduled sequentially. This would not be possible using CPUs as each
simulation would take an order of magnitude longer, and instead multi-node sim-
ulations would be required with their associated loss in efficiency. For all of these
reasons, it’s unfair to concentrate on a single metric, such as speed-up value,
when comparing CPUs and GPUs.
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4. Water Droplets Under Gravity

Synopsis

In this chapter the 3D flow solver described in the previous two chapters is used to
simulate water droplets falling through air under gravity. There have been a large
number of experimental and theoretical investigations into the the properties of
this system. The two main properties of interest in these investigations are the
shape and velocity of droplets at terminal velocity. The aim of the work described
in this chapter is both to reproduce experimental results, and to provide new
insight into these properties. By reproducing results for water falling through air
it is then possible to say, with reasonable confidence, that properties of similar
fluid pairings acting under similar forcing can be simulated accurately.
It is planned that parts of this chapter are to be presented in: J. Appleyard
and D. Drikakis. ‘CFD Investigation into the properties of water droplets falling
through air’
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4.1. Introduction

In Chapter 2 numerical methods designed to simulate incompressible, immiscible
multi-phase flow were outlined. Appendix A describes some validation tests used
to confirm that these numerical methods are indeed working as intended. In the
current chapter these methods are used, having been implemented on GPUs as
described in Chapter 3, to simulate water droplets of various sizes falling freely
through undisturbed air. The results from these simulations will be compared to
experimental results with the aim of not only validating the numerical methods,
but also providing new insight into single droplet dynamics. With these methods
validated, it is hoped that future work into related fields, such as the breakup of
large droplets or the modeling of arbitrary fluids in similar situations should be
possible with simple extensions to the code.

The falling water droplets have been chosen to have similar properties to single
droplets in naturally occurring rain at sea level. The study of raindrops is inter-
esting from an engineering standpoint and from a standpoint of pure curiosity. As
a natural phenomenon rainfall is something which is experienced by everybody,
yet its properties are often misunderstood. The primary engineering application
is in improving the ability of radar to determine the characteristics of rainfall for
meteorological purposes [54].

Studies into the terminal velocity of falling water droplets primarily took place
in the first half of the 20th century [55, 56, 57, 58], while studies into drop
deformation at these terminal velocities have mostly taken part in the second
half of the 20th century. Notable research was carried out in wind tunnels by
[59, 60], and mathematical models describing describing the equilibrium shape of
water droplets at terminal velocity have been proposed [61, 12]. In conducting
these experiments it was noticed that the droplets under study tended to oscillate
as they fell, and the parametrization of these oscillations became the next focus
of study in both laboratory conditions [62, 63, 64, 65, 66], and in the field [67,
68, 69, 70]. Both Beard et al. and Szakall et al. have recently summarized much
of the experimental and theoretical work on drop shapes and oscillations to date
[13, 71].

In the field of CFD several authors have studied axisymmetric deformations of
liquid droplets [72, 73, 74], however the axisymmetric assumption has been shown
both experimentally and theoretically to break down for larger droplets [74].
Other CFD work on droplets make the assumption that the effects of the air
phase is negligible. For example, the work of Lycett-Brown and Luo[75] uses
the Lattice Boltzmann Method to study droplet collision, in a regime where
the ratio of surface tension to inertia of a droplet is higher than the droplets
this work studies. In this case, the assumption of no deformation due to air is
reasonable[12].
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Neither of these assumptions can be made when studying the full case, as the
deformations of the droplets are expected to be driven by air flow around each
droplet and these deformations are not expected to be axisymmetric. As such,
the simulations presented in this chapter will be the first of their kind.

The droplet sizes studied will range in size from an equivalent spherical radius of
1mm to 3mm. The main results that this work aims to reproduce from experiment
are:

1. The terminal velocity of the droplets. At the lower end of the size range
the terminal velocity is expected to be approximately that of an equal mass
sphere while at the upper end it is expected to be significantly lower.

2. The mean and transient axis ratios the droplets, as well as their mean and
transient profiles. At the smaller end of sizes the mean ratio between vertical
and horizontal axis length of the droplets is expected to be approximately
0.9, while at the larger end it is expected to to be approximately 0.65. This
axis ratio is expected to oscillate significantly and these oscillations are to
be characterized.

3. The internal circulation within the droplets. The pressure and viscosity
forces acting on the droplet should cause circulation within the water. Given
the density of water is so much greater than that of air it is expected that
this circulation will be significantly slower than the external flow.

Further to this, the properties of the wake of the droplets is to be examined.
It is expected that falling droplets will shed eddies, much as a sphere would
at similar Reynolds numbers. There is very little experimental data available for
these properties, with the work of Saylor and Jones as the only reference studying
relevant droplet sizes [76].

Section 4.2 will describe the simulation conditions for all simulations. Each sub-
section in Section 4.3 will describe the current theory, any relevant experimental
results, and present the results of the simulations for one of the following prop-
erties of the droplets:

• Terminal velocity.

• Mean profile.

• Droplet oscillations.

• Turbulent wake.

• Internal circulation.

The results findings will then be summarized in Section 4.4.
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4.2. Parametrization

The physical properties of the system were chosen to match the properties in
the terminal velocity experiments of Gunn and Kinzer as closely as possible [58].
These properties are tabulated in Table 4.1.

Water Air
Density (kg ·m−3) 998 1.20

Dynamic Viscosity (µPa · s) 1002 18.3
Surface Tension (mN · s−1) 72.9

Gravity (m · s−2) 9.81
Table 4.1.: Physical properties of the system.

Droplet radii (r) between 1mm and 3mm were simulated. The domain size was
chosen to be proportional to the droplet radius and had dimensions(20r, 20r, 33r),
with the droplet initialized centred at (10r, 10r, 10r). The domain was discretized
using a rectilinear grid with a core uniform grid of dimension (4.5r, 4.5r, 5.625r).
A co-ordinate system was defined such that the droplet centre was at the origin.
Gravity was defined to act along the negative z-axis. Spatially constant velocity
boundary conditions are enforced on all faces of the domain. The grid size for the
domain was (96, 96, 132), with a core of (48, 48, 60), for all cases. The resultant
core grid spacing was 3r

32 , giving approximately 21 grid cells per dimension for a
spherical droplet.
Each droplet was initialized in the equilibrium shape described by the Beard and
Chuang model [12]. The water was initialized at rest, with air moving at uniform
velocity filling the rest of the domain. The initial velocity of the air was taken
to be 90% of the expected terminal velocity. Once the terminal velocity was
found to vary by no more than 0.02m/s over a 1m fall distance, and there were no
indications of any influence of initial conditions on droplet oscillations, data on
wake and drop shape was logged.

4.3. Properties of Freely Falling Water Droplets

4.3.1. Terminal Velocity

The terminal velocity of water droplets through stagnant air at sea level was
established experimentally first by Laws, and then by Gunn and Kinzer [57, 58].
As both authors report similar results, and no more recent work has shown these
results to be significantly in error, they will be assumed to be an accurate basis for
comparison. Figure 4.1 shows the terminal velocities of the simulated droplets.
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For comparison the results of Gunn and Kinzer and results for a rigid sphere [77]
are also shown.
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Figure 4.1.: Terminal velocity variation with droplet Reynolds number. Sim-
ulated results are represented by circles. The solid line represents the experi-
mental results of Gunn and Kinzer. The dashed line represents the results for
a solid sphere.

The terminal velocities from simulation correspond well with the results of Gunn
and Kinzer, with the largest error being approximately 3%. The experimental
error bounds set by Gunn and Kinzer was 0.993%. It is unclear whether this
error is due to inaccuracies within the numerical model, or whether the simula-
tion simply required a little more time to converge on the experimental result.
Alternatively, the simulated conditions may have been slightly different to the
conditions studied by Gunn and Kinzer.
Although the droplets principle direction of motion was aligned with gravity,
there were horizontal velocities observed in some cases. These drift velocities
have been noticed in experimental studies, with drift velocities of up to 30% of
the terminal velocity recorded [78, 69]. However in the simulations the magnitude
of the drift velocity measured was, at greatest, only 2% of the vertical velocity.
These drift velocities are not fully understood, but are thought to be related to
asymmetric vortex shedding.
One possible cause of error could therefore be the initialization of the simulated
drops at speed. It has been reported that, for spheres, asymmetric wakes are
produced at a Reynolds numbers between 300 and 420 [79]. These asymmetric
wakes are expected to produce asymmetric drag, and therefore induce drift veloc-
ities. By not simulating the droplets as they pass through this Reynolds number
range, lateral drift is erroneously not induced as the droplet accelerates.
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4.3.2. Mean Profile

Theory and Experimental

The two main models describing the equilibrium profile of droplets are the per-
turbation model of Pruppacher and Pitter [61], and the force balance model of
Beard and Chuang [12]. Of these two models the force balance model appears
to give more accurate correlation with experimental data [13]. To produce this
model it was assumed that internal pressure remained hydrostatic (ie. no in-
ternal circulation) and the external pressure was based upon distortions of the
time-averaged pressure distribution around a sphere. While it’s clear that these
assumptions will not be valid for the unsteady profile of a droplet they can be
used to provide a baseline for the “average” shape of droplets.

Simulation

Figure 4.2 compares the axis ratios calculated using the force balance model
with the mean axis ratios calculated through simulation. While most droplets
correspond to the model, the 2mm radius droplet shows significant deviation.
While the calculated terminal velocity for this droplet is slightly larger than the
expected terminal velocity (and therefore a slightly smaller axis ratio is expected),
this seems insufficient to account for the difference, and the 2mm radius droplet
terminal velocity is not significantly more in error than other droplets. Further
investigation is needed to determine the cause of this discrepancy.
Although droplets were found to oscillate (Section 4.3.3), the Beard and Chuang
model was found to be a good predictor of their approximate shape. Figure 4.3
compares various simulated drops appearing at their theorized equilibrium state.

4.3.3. Droplet Oscillations

Theory and Experimental

It has been found that water droplets of diameter of 1mm or greater falling at ter-
minal velocity through air oscillate as they fall [63, 64, 65]. A first approximation
to the natural frequencies of these oscillations can be calculated by assuming that
the droplets remain spherical. With this simplification the natural frequencies de-
termined by Rayleigh should be correct for small oscillations [80]. For a given
spherical drop of radius r it is the natural frequencies are given by Equation 4.1.

ωR0 =
√
σn(n− 1)(n+ 2)

ρr3 (4.1)
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Figure 4.2.: Mean axis ratios for 1-3mm radius droplets. The circles indicate
simulated results. The solid line shows the equilibrium results from the Beard
and Chuang model [12].
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Figure 4.3.: Simulated drop profiles (filled area) compared to the Beard and
Chuang model (solid line). The droplet radii illustrated are 1mm (top left),
1.75mm (top right), 2.5mm (bottom left) and 3mm (bottom right). Droplets
were found to oscillate and therefore the profiles do not quite match the equi-
librium profiles.
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The first non-trivial natural frequency is found by substituting n = 2:

ωR0,2 =
√

8σ
ρr3 (4.2)

The modes at each natural frequency are expected to have n nodes.
This model is acceptable for a droplet oscillations at rest, however it is not suffi-
cient if the droplet is affected by strongly directional external forces, such as grav-
ity. As a result of this imposed directionality each value of n produces m = n+ 1
distinct modes instead of simply one [62]. The characteristic frequency of a given
mode, m, is approximated by:

ω0,n,m ≈ ωR0,n

1− A
(2,1)
0 (n,m)

4n (n− 1) (n+ 2) û
2

 (4.3)

Where û is a non dimensional flow velocity defined by û = (0.34447 ·Wer)0.5.
For the first non-trivial value of n (ie. n = 2) the frequency modification factor
A

(2,1)
0 (2,m)

4n(n−1)(n+2) takes values of -0.00804, 0.0241 and 0.121 for m = 1, 2, 3 respectively
[62]. These three modes have been classified by Beard et al. as axisymmetric
(m = 1), transverse (m = 2) and horizontal modes (m = 3) [13]. Figure 4.4
shows the approximate form for spherical droplets of these modes pictorially.
For droplets which have equilibrium profiles significantly distorted from spherical
these shapes are very much indications of the approximate shape of the drop
distortions rather than exact descriptions.
The three distinct low-frequency oscillation modes have the potential to interact
with the turbulent wake of the droplet, if their natural frequencies are found
to be similar to the eddy shedding frequency of the droplet. By comparing the
natural frequencies of the system to the eddy shedding frequencies of a sphere, and
confirming this result by experiment, Beard and Kubesh show that the frequencies
at which eddy shedding occurs are too high to directly resonate with droplets
significantly larger than 0.8mm radius [64]. In a later work by the same authors
it is suggested that subharmonic resonances are possible, if the eddy shedding
frequency is an integer multiple of the natural frequency [81]. Section 4.3.4 will
examine the wake of the droplets in an attempt to determine how the wake could
interact with the droplet oscillations.
An alternative method of forcing may come about through drag forcing [82, 81].
A drop becoming more oblate (ie. flattening) will tend to have an increase in
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Figure 4.4.: n = 2 modes for axissymetric (left), transverse (centre) and horizon-
tal (right) modes. The black and white regions depict amplitudes of opposite
sign, with their edges representing the anti-nodal lines[63]. The gravity vector
acts vertically.

pressure at its upstream surface. This increase in pressure will lead to further
flattening, and hence further pressure. The flattening, however, will increase the
frontal area of the droplet, leading to higher overall drag. This drag will cause
the drop to decelerate, stabilizing the positive feedback due to decreased pressure
at lower speeds. Depending on the time scales of the flattening and deceleration
response, it is possible that drag forcing could create a larger response than forcing
via eddy shedding.
While the frequencies of the modes of droplet oscillation are well understood, the
expected amplitudes of the oscillations at each mode are not. Both Szakáll et al.
and Beard et al. report a second order polynomial fit from empirical data [71, 13].
Szakáll et al. giving the following equation for the peak-to-peak amplitude of the
axis ratio Aα [71]:

Aα = 3.6 · 10−3D2
0 + 2.13 · 10−2D0 (4.4)

Where D0 is the equivalent sphere diameter with units of mm.
Equation Equation 4.3 can also be used to determine the expected natural fre-
quencies of higher order modes. For the four oscillations for which n = 3, the
coefficient A

(2,1)
0 (3,m)

4n(n−1)(n+2) takes the values -0.00357, 0.0107, 0.0536 and 0.125 for
modes m = 1, 2, 3, 4 [62].
As with the n = 2 modes the approximate mode shapes can be represented
pictorially Figure 4.5.
There has been a large amount of experimental work conducted examining oscil-
lations of falling droplets, both in wind tunnels and in the atmosphere [62, 63,
64, 81, 66, 83]. For a review the reader is directed to the summary of Beard et
al. [13].
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Figure 4.5.: n = 3 modes for axissymetric (left), transverse (centre-left and
centre-right) and horizontal (right) modes. The black and white regions de-
pict amplitudes of opposite sign, with their edges representing the anti-nodal
lines[63]. The gravity vector acts vertically.

Simulations

There are several properties of the fundamental modes to be reproduced from
experiment. By computing the power spectral density of the axis ratio sig-
nal, it is possible to determine with reasonably high accuracy the frequencies
of the fundamental modes. The power spectral densities for each droplet are pre-
sented in Appendix B, and the extracted frequencies are compared with theory
in Figure 4.6. While these data follow the general trend expected from theory,
the fit is not as good as experimental data [13]. It is certainly not possible to
distinguish between different modes by their frequency alone. Part of the diffi-
culty is the lack of resolution in the power spectral density, indicating that the
simulation time was too short.
It should be noted that there is a slight flaw in this methodology which was noticed
too late to be corrected: it is possible that an oscillation in the horizontal mode
will result in no change in axis ratio should the nodal lines intersect the Cartesian
axes. Given the discrete nature of the numerical simulation, it is possible that
the alignment of the grid cells will favour an oscillation which results in this
intersection. While any large amplitude oscillation with this alignment will be
evident from inspection of the interface isosurface, small oscillations may pass
unnoticed.
Several droplets (1.75mm, 2mm, 3mm) have peaks at frequencies significantly
lower than expected. Closer examination reveals this deviation is likely to be due
to an error in the numerical model. As described in Section 2.5 there is thought to
be a problem with the model which wasn’t understood until after the simulations
were completed. This error results in a varying resistance to motion as the droplet
interface passes through space. If a droplet has mean motion through the domain,
different areas of the surface will be affected by this resistance differently. This
can result in a spurious oscillation, with a frequency dependent on the speed the
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Figure 4.6.: Fundamental oscillation frequencies for 1-3mm radius droplets. In
several simulations unexpected low frequency components arose and these are
not thought to be physical. A potential cause of these are discussed in the
text. The line represents the Rayleigh frequency, the circles represent the
lowest strong oscillation frequency, and the triangles the fundamental frequency
(where different from the lowest frequency).

droplet is moving through the domain, the size of the droplet, and how much
resistance to motion there is. For example, in a horizontal drift the leading side
of the droplet might encounter low resistance to motion, while the trailing side
encounters high resistance, resulting in an increase in axis length. As the grid is
uniform, it is expected that the leading side will then encounter high resistance to
motion, while the trailing side encounters low resistance, resulting in a decrease in
axis length. This error artificially adds a small, low frequency, signal to droplets
passing through space, and it is thought that this is the cause of the unexpected
peaks on the power spectral density plots.
In the three cases where this error was clearly apparent it was possible to discern
peaks in the spectra nearer to the expected fundamental frequency. These are
indicated by triangles in Figure 4.6. It is thought that the same error may
be responsible for lower than expected frequencies in other droplets (2.5mm,
2.75mm), however in these cases the error frequency and the true frequency are
indistinguishable on the plots.
Other properties of the oscillations observed matched experimental data well.
Figure 4.7 shows visualizations of droplets as they fall. The modes match well
with both theoretical and experimental data. Figure 4.8 compares the Szakáll et
al. empirical axis ratio fit to amplitudes from the simulations, showing a good
match to simulation.
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Figure 4.7.: Visualizations of droplet motion.

Although the frequencies of higher mode oscillations formed spikes in the power
spectral density plots for some of the droplets simulated (1.25mm, 1.5mm and
2.25mm), no higher mode oscillations were visible by observation of the drop
movements.

4.3.4. Turbulent Wake and Eddy Shedding

Theory and Experimental

As spheres fall through a medium it has been found that, for certain Reynolds
numbers, an unsteady phenomenon known as eddy shedding takes place [79].
Given that freely falling water drops tend to be near-spherical, the same patterns
of eddy shedding are expected to be apparent in these flows. The Strouhal number
is most commonly used to non-dimensionalize the eddy shedding frequency of an
object. It is defined as:

St = fL

U∞
(4.5)

Where L is a characteristic length scale of the flow and U∞ the free stream
velocity. In this case L is taken to be the diameter of an equivalent spherical
droplet.
The Reynolds number range the simulations aim to reproduce is from Re ≈ 850
to Re ≈ 3550. Studies of spheres [84, 79] at these Reynolds numbers have shown
there to be two modes of eddy shedding, one with a low Strouhal number (the
low-mode), and one with a high Strouhal number (the high-mode). The low-
mode takes the form of large scale vortices, the shedding point of which “rotates
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Figure 4.8.: Axis ratio peak-to-peak amplitudes for 1-3mm radius droplets (cir-
cles) compared with the polynomial fit of Szakáll et al. (line).

slowly and irregularly” around an axis though the centre of the sphere in the free-
stream direction. The high-mode takes the form of smaller scale eddy shedding
from the cylindrical shear-layer vortex sheet close to the separation point. It has
been found that a Strouhal number for the low-mode varies almost linearly from
approximately 0.2 at the lower end of Reynolds numbers to approximately 0.24 at
the upper. The Strouhal number for the high mode, however, is expected to rise
from 0.2 to 1 in the same range. Figure 4.9 is a reproduction of a figure presented
by Sakamoto and Haniu illustrating these two shedding Strouhal numbers [79].

Although these results are important, and the assumption that a droplet behaves
as a sphere seems valid for small droplets, larger droplets deviate significantly in
shape from spherical and this may cause significant differences from the results
for spheres.

For small, near spherical droplets (equivalent radius 0.5 to 0.8mm, Re ≈ 270 to
Re ≈ 600), the eddy shedding frequency of droplets has been found to be similar
to the eddy shedding frequency of an equivalent radius sphere [13]. There has
been little research into the eddy shedding frequencies of larger droplets, with
the work of Saylor and Jones being the only known reference studying vortices in
larger water droplets [76]. The authors present images of vortices in the wake of
a droplet of approximate Reynolds number 1000. Although the images do show
clear vortices in positions not dissimilar to vortex structures one might expect
from flow around a cylinder, this is perhaps misleading. As the images are stills
of different droplets, it is impossible to determine how the wake was evolving over
time, and therefore impossible to draw substantial conclusions.
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Figure 4.9.: Eddy shedding Strouhal numbers of spheres. Source: Figure 4,
Sakamoto and Haniu, “A study on Vortex Shedding From Spheres in a Uniform
Flow”, Page 3[79].

One significant finding of the work of Saylor and Jones was a correlation between
the position of an asymmetric vortex, and the canting angle (or tilt) of the droplet,
despite the expected eddy shedding frequency being several times higher than the
expected resonant frequency of the droplet. While the authors suggest that the
canting angle may be the result of these vortices, it may be that the causality is
reversed, and that the vortices result from the canting angle.

Simulations

By calculating the power spectral density of the variation in vorticity, summed
over a plane, downstream from the droplet, Strouhal numbers can be calculated
for eddy shedding from droplets. Two planes were placed downstream from the
centre of the droplet: the first approximately 5 radii downstream, the second ap-
proximately 10 radii downstream. The closer plane was placed with the intention
of capturing high-mode oscillations before their frequency signal became dissi-
pated. The farther plane was placed with the intention of capturing low-mode
oscillations. Each plane was divided into equally sized square quarters. By sum-
ming the vorticity over each quarter individually, and calculating the frequencies
at which the ratios between them change, it is possible to determine if there is
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any periodicity in the shedding position of the eddies.
Long term drift in droplet position caused the downstream positions of the planes
relative to the droplet to vary by approximately one radius. Similar drifting re-
sulted in the centre point of the quartered plane not being positioned above the
centre of mass of the droplet. The precise position of the planes is not required
for accurate sampling, and the motion itself was not relevant at the frequen-
cies considered, although it can be seen as a low frequency term in the spectra.
The power spectral densities for the nine simulated droplets are presented in
Appendix C. As an example, the power spectral density of the 1.75mm radius
simulated droplet is included here (Figure 4.10).
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Figure 4.10.: Eddy shedding frequencies of the simulated 1.75mm radius droplet.

It was found that both Strouhal numbers expected for spherical flow were present
in the wake of the droplets. Observation of the flow indicates that the up-
per two Strouhal numbers correspond to the expected modes for wake shedding
from a sphere. One point of interest is that the transition from hair-pin shaped
low Strouhal number vortex shedding to an undefined wavelength described by
Sakamoto and Haniu was not as sharp as Figure 4.9 would imply, with hairpin
vortices distinguishable in the flow at Reynolds numbers up to 1600. Although
the domain was too small to capture more than one complete vortex loop at any
given time, those single vortex loops were observed. Figure 4.11 illustrates a typ-
ical vortex loop having been shed from a 1.25mm radius droplet at a Reynolds
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number of approximately 1200. The pattern here is very similar to that of the
formation of vortex loops observed in sphere wakes of similar Reynolds number
[84, 79, 85].

Figure 4.11.: An isosurface of vorticity downstream from a 1.25mm radius
droplet. The flow direction is from left to right. Clearly visible is a vortex
loop surrounding a central vortex core.

This overlap between structured eddy shedding and wake oscillation does lead
to some potential confusion. While the eddies remain structured (approximately
Re < 1600) the low-mode represents two frequencies: the frequency of eddy shed-
ding and the frequency of oscillation of the wake. The former is double the latter,
with one eddy shed for each peak of the wake oscillation. It is important to specify
that the low-mode Strouhal number is defined by the frequency of oscillation of
the wake (the lower of the two frequencies). Due to the two frequencies present in
the low-mode, a potential problem arises when interpreting the spectra, as both
frequencies will alter the ratio between the cut planes. For this reason the spec-
tra cannot be used alone to determine the frequencies of the low-mode Strouhal
number, and an observation of the flow must also be made.

As droplets oscillate, their chord length changes, and it is therefore expected that
the Strouhal number also changes with time. This can be seen in Figure 4.10: it
is clear from the full near plane that eddy shedding is occurring at approximately
780-840Hz, with two or three distinct peaks visible. For this reason a minimum
and maximum Strouhal number has been calculated for each eddy shedding type
on each droplet. These Strouhal numbers are tabulated in Table 4.2.

At high Reynolds number (Re > 2500) the power spectra become extremely
noisy, and it becomes increasingly difficult to determine the dominant frequencies.
There are two primary reasons for this. Firstly, as Reynolds number increases
the wake becomes more chaotic as multiple vortex lines interact. This is expected
to add noise to the frequency plot as vortices no longer pass through the planes
at regular intervals, but instead experience bunching and spreading. Secondly,
the oscillating axis ratio of the droplets will cause a change in frontal area with
time. Larger droplets tend to oscillate more, spreading the frequencies over a
larger range. For this reason it was often impossible to determine the high-mode
frequency, and values for droplets of greater than 2mm radius are uncertain.
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Radius (mm) 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
Re 839 1195 1595 1997 2353 2697 2990 3246 3533

St1,min 0.16 0.14 0.13 0.16 0.16 0.17 0.17 0.15 0.14
St1,max 0.16 0.15 0.13 0.17 0.17 0.17 0.24 0.15 0.16
St2,min 0.21 0.24 0.20 0.31 - 0.26 0.27 0.34 -
St2,max 0.21 0.3 0.25 0.34 - 0.33 0.28 0.37 -

Table 4.2.: Sphere-mode Strouhal numbers of the simulated droplets at terminal
velocity. Many of the power spectra were unclear at high Reynolds number and
hence several Strouhal numbers could not be determined.

The Strouhal numbers presented in Table 4.2 tend to be lower than those for
a sphere at equivalent Reynolds number, especially for high-mode oscillations.
This difference is likely to be due to droplet deformation, as droplets at higher
Reynolds number have axis ratios which are quite far from spherical. This will
change the properties of the wake significantly as the frontal area is increased,
the separation point will move, and the recirculation region becomes a different
size.
Another cause of difference between flow past a droplet and flow past a sphere
are the effects of internal velocity: air passing the droplet will cause circulation
within the droplet, reducing the velocity gradient normal to the interface, and
therefore the shear stress. It will be shown later in Section 4.3.5 that this effect
is expected to be equivalent to a decrease in free stream velocity of approximately
4%.
Despite the lower than expected values, the sphere-mode Strouhal numbers are
still too high to resonate with the lower oscillation modes of the droplets. While
they will still cause some motion in the droplet, it is unlikely that this will be
significant.
The orientation of the wake is also of interest. In many instances it is clear that
a strong asymmetric wake is present, and that, not only is the wake oscillating
with a set frequency, but the oscillation has some alignment to it. Referring
to Figure 4.10, a significant oscillation is visible at approximately 400Hz in the
far y-axis ratio, implying an asymmetric oscillation with a path nearly parallel
to the y-axis. This contrasts with experimental findings for spheres, which are
described as having “irregularly” oscillating wakes [79]. It seems likely that these
systematic oscillations are present due to asymmetries within the profile of the
droplet favouring one direction. A correlation between the eddy shedding axis and
the axis through which the main motion of droplets oscillating transversely occurs
was sought, but none could be found. This suggests that while the droplet shape
may favour an eddy shedding axis, this axis is not necessarily the same as (or
even perpendicular to) the droplet oscillation axis. If high frequency asymmetric
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eddy shedding is indeed the source of transverse oscillations at a lower frequency,
the mechanics which bring about this connection remain unclear.

Several of the droplets were found to have significant low frequency components in
the wake. It has been observed that these low frequency components correspond
to the bulk movement of the droplets within the domain, and, as described previ-
ously, these bulk movements will result in low frequency errors due to the method
used to measure the frequencies. As such, it seems that these low frequencies can
be discounted.

Thus far the focus of discussion has been on characterizing the two modes result-
ing in eddies entrained by the main flow, however close examination of the flow
reveals a third mode by which eddies are produced. Figure 4.12 shows slices of
the magnitude of vorticity through the X:Z plane of the 2.5mm radius simulated
droplet. These plots show not only the two modes described previously, but also
a third mode resulting in eddy formation within the recirculation region. These
recirculation eddies are similar to those visualized by Saylor and Jones [76].

Although it is not immediately apparent, careful study of these plots reveals a
frequency at which vorticity is pushed into the recirculation region. Five such
events are visible in the above plot:

1. 4-8ms: Vorticity is pushed from the right shear layer into the centre of the
recirculation region before dissipating.

2. 10-14ms: Vorticity is pushed from the top of the recirculation region to the
right shear layer and becomes entrained.

3. 14-18ms: A similar pattern to 2.

4. 18-22ms: Vorticity is pushed from the right shear layer into the centre of
the recirculation region before dissipating.

5. 22ms onward: Vorticity is pushed downward from the top of the recircula-
tion region and dissipates slowly.

These results give an approximate frequency for eddies forming within the re-
circulation region of 275Hz. This value is significantly smaller than the two
sphere-mode eddy shedding frequencies, and hints at a possible mechanism driv-
ing droplet oscillations. A further point of interest is the different type of events,
with some vortices dissipating quickly, some becoming entrained with the shear
layer, and others being much more persistent. The characterization of this mode
could be important for the understanding of the driving factors behind droplet
oscillation, as it appears to occur at a significantly lower frequency than the two
primary oscillations. Unfortunately the time allotted for this project does not
allow for any further study to be made here.
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Figure 4.12.: Vorticity shedding and recirculation within the wake of the 1.75mm
droplet. Gravity is acting downward, and the droplet is visible as a darkened
area at the bottom of each plot. The scale is set to allow small vortices to be
visible, with fully white regions representing a vorticity of greater than 5000s−1.
With an interval of 2ms between plots, the high-mode is not easily discernible,
though the low-mode can be seen in the oscillation of the wake.
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4.3.5. Internal Circulation

Theory and Experimental

The internal circulation of water within a falling droplet has not been studied in
as much depth as other properties, and its interaction with the droplet’s other
properties is still unclear. Although several authors have studied internal circu-
lation of water droplets [60, 86, 66], their studies have largely focused on droplets
below the size range simulated here.
The work of LeClair et al. presents experimental data and a theoretical model for
the tangential surface velocity within the droplet [86]. Above a Reynolds number
of 400, it is expected that the mean tangential velocity at any given azimuth is
simply proportional to the velocity of the droplet, with a peak non-dimensional
tangential velocity (ut/U∞) of approximately 0.043m/s. Szakáll et al. showed, by
comparing this theory with experimental data, that a fairly good match was
made between the theoretical maximum tangential velocity and the experimental
maximum [66], although their experimental maximums fell short of the values
predicted by LeClair et al..
Szakáll et al. also allude to a potential oscillation in the internal circulation,
whereby a coupling occurs between the primary circulation within the droplet and
a second opposing circulation at the rear. It is reported that these circulations
have a cyclic behaviour, with the rearward circulation gaining strength, coupling
with the primary circulation, breaking down into chaotic flow, decaying, and then
leading back to the formation of primary and secondary circulations.

Simulations

The maximum internal speed in the droplet size range simulated is given in
Figure 4.13. The results were calculated as the mean maximum value over a
period of approximately 250ms. Good agreement is obtained between simulated
and theoretical results, though theoretical results appear to be a lower bound.
This may be due to the oscillatory behaviour of droplets: the LeClair et al.
model does not account for large movements of the interface, and these are likely
to increase internal tangential velocity relative to steady results.
The cyclic behaviour reported by Szakáll et al. could not be detected. Figure 4.14
illustrates three stills of the 1.75mm simulated droplet. Nothing approaching the
primary/secondary structure described by Szakáll et al. could be found, though
they do not specify the maximum Reynolds number at which they occur, only
that the minimum is 300. It could be that a maximum Reynolds number for
the cyclic behaviour exists, and that all the simulations exceeded that Reynolds
number. The pattern was similar in every droplet for which internal circulation
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Figure 4.13.: Maximum internal tangential velocity. The circles represent sim-
ulated data, the solid line the theoretical values from LeClair et al.[86]

was visualized: flow resembling the external flow on the upwind and side sections,
with a vortex ring centred near the band of peak horizontal chord. The flow at
the rear was unstable, with occasional vortex structures internally. No pattern
could be found in the internal vortex structures, though it is possible that one
exists.
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Figure 4.14.: Velocity field within the 1.75mm radius droplet at three different
time steps. The slice is taken through the centre of mass of the droplet. The
time interval between each is 50ms.

How internal circulation affects external flow patterns, such as the wake behaviour
and droplet oscillations, is unclear and requires further analysis. It is not expected
that the effects will be large, as the peak internal velocities are small when com-
pared to the external flows. For example, the internal velocity acts to reduce the
shear stress across the interface, lowering the vorticity imparted to the air as it
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passes. This will have an effect on eddy shedding frequencies, however as the
peak internal velocity is only approximately 4% of the free-stream velocity, the
effect is expected to be small.

4.4. Summary

Water droplets with spherical radii of 1mm to 3mm were simulated under free-fall
conditions in air. The Reynolds number of the system varied from Re ≈ 850 to
Re ≈ 3500. The simulations were designed to mimic natural raindrops of different
sizes falling at sea level. Various properties of the system were examined in detail,
and, where possible, compared to experimental results. It was found that, in
most aspects, the numerical model either accurately reproduced the results of
experiments or brought potentially new insight. A summary of successful results
from each subsection follows:

• The terminal velocities of the droplets was found to match the experimental
results of Gunn and Kinzer [58] to within 3%.

• The Beard and Chuang model [12] was found to be a good predictor of the
mean droplet axis ratio and shape.

• Fundamental droplet oscillations were found to match with theoretical and
experimental results. The amplitude of the oscillations was found to corre-
spond with an empirical curve derived from experimental data. Indications
of higher mode oscillations were seen on a few droplets.

• Eddy shedding modes corresponding to the eddy shedding modes of spheres
at similar Reynolds numbers were seen. Although the Strouhal numbers of
these modes did not match experimental results for spheres, this is not un-
expected as the system is different in several ways. Not only do droplets
flatten, altering frontal area, separation points and the size of the recir-
culation region, but droplets also have internal circulation which acts to
decrease the shear stress on the air as it flows past. The Strouhal num-
bers of droplet eddy shedding were quantified, and orientation was found in
the wake. Eddy formation within the recirculation region was also briefly
examined, and it is thought that a mechanism might exist in this region
resulting in forcing of droplet oscillations.

• The internal circulation speed was found to agree with the results of LeClair
et al. [86], especially for smaller drop radius. Although no quantitative con-
clusions were made regarding the influence of internal circulation on either
droplet shapes, oscillations or external flow, the model has proved that it
is capable of producing data to analyze this influence should a hypothesis
be made.
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Although the simulations reproduced most expected results, there were some
inconsistencies:

• The numerical model failed to predict the large horizontal drift seen in
some experimental results. One potential explanation for this difference is
the method by which the simulations were initialized. By initializing the
droplets at a significant proportion of their terminal velocity, a low Reynolds
number region where asymmetric vortex shedding occurs is not simulated.
As asymmetric vortices will tend to lead to horizontal drift it may be that
the simulations unintentionally circumvent the cause of the drift.

• The oscillation frequencies were found to match theory, however the qual-
ity of the results was poor. Several spectra contain unexpected oscillations,
which in some cases overwhelmed the expected frequencies. It is thought
that the cause of this error is the “straightening” effect, that was observed
when studying the rise of bubbles in viscous fluids (Section A.2), and dis-
cussed in Section 2.5. Although no similar effect was observed when visu-
alizing the simulated droplets, the amplitude of the natural oscillations is
expected to be of the order of only a few grid cells. Any unnatural resis-
tance to movement of the interface at this level, even if the influence is slight,
could cause significant errors in the calculated oscillation frequencies. If the
numerical error described is indeed the cause of these spurious oscillations,
any future work must first correct this error before studying oscillations as,
while many of the droplets performed as expected while oscillating, many
did not.

• No oscillation could be found in the internal circulation of the droplets. Al-
though no experimental data specifically reports the existence of a periodic
oscillation in internal circulation at the Reynolds numbers that have been
simulated, an oscillation has been reported to exist at lower Reynolds num-
ber. No upper bound was given for the Reynolds number of this oscillation,
and it may be that one exists [66]. One way to determine whether the nu-
merical simulation is accurate in this regard would be to simulate smaller
radius droplets and observe their behaviour. If smaller droplets were found
to exhibit an oscillation, it could be said with more confidence that the
numerical model was predicting physical internal circulation at the larger
droplet sizes, and an upper bound could be found of the Reynolds number
required for cyclic behaviour.

One of the main advantages of CFD over experimental work is the amount of
information one can collect without causing any disturbance to the flow. This
allowed for in-depth analysis of the entire system, and specifically of the wake of
the droplets, in a manner which is significantly harder to achieve experimentally.
The observation of a third mode of eddy generation is important, as this mode
may be a significant contributor to driving droplet oscillation. While it was not
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studied in depth here, it is hoped that any authors who continue this work are
able to study it in more depth than was possible here.
Many of the results found in this work would be improved if the simulations had
either been run for a longer, or been run with faster hardware. One of decisions
made before collecting results was to spread the computational resources available
over a spectrum of droplets. While this has allowed a greater number of scenarios
to be studied, it inevitably reduces the amount and accuracy of data that can be
gathered from any single simulation. These studies have shown that the numerical
model is capable of accurately simulating freely falling water droplets, with the
simulations matching experimental and theoretical results over a wide range of
droplet sizes.
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5.1. Conclusions

The aims of this work were threefold: to develop numerical methods capable of
simulating three-dimensional immiscible flows, to implement these methods in an
efficient manner on a GPU based system, and to use these methods to model a
problem which has not yet been modeled using CFD. All three aims have been
achieved, requiring novel methods and discovering new information about the
test problem.

Numerical Methods

The numerical methods used required a combination of several complex methods.
An incompressible pressure-projection method designed for curvature driven flows
was combined with a conservative level set method, with the aim of accurately
simulating subtle interactions at an interface with very severe jumps in properties.
Not only is such a combination novel, but there are novel additions to several
parts of the scheme. Neither the curvature nor viscosity interpolation method
described have been seen in the literature, nor has the conservative level set cell
mixing procedure previously been applied to the pressure projection method.
The resulting numerical scheme was shown to be capable of accurately simulat-
ing both inviscid surface tension driven flows (a zero-gravity oscillating water
drop, Section A.1) and highly viscous low surface tension flows (air bubbles ris-
ing in viscous fluids Section A.2). In both domains it was found to perform well,
predicting a frequency very close to the theoretical natural frequency for the os-
cillating water drop, and accurately predicting both the terminal velocities and
shapes of the bubbles. Slight errors were found in the shape of the bubbles, with
unphysical “straightening” of the interface. This is thought to result from nu-
merical jumps caused by the conservative level set method. As the level set field
moves through space, cells close to the interface undergo a merging procedure
so as to conserve momentum. Unfortunately this procedure results in a sharp
jump in local velocity at the moment of merging. This jump is thought to cause
small oscillations of the interface position about the merging point, which can
unphysically constrain the position of the interface.
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Although this error was not visibly apparent in the main test case, it is thought
that it may be a cause of the relatively poor results for droplet oscillations when
placed in a flow.

GPU Implementation

Although initial work suggested that the GPU performance was likely to be bet-
ter than that which was achieved, the GPUs were still able to outperform a single
core of a CPU by an order of magnitude. The reasons behind the unexpectedly
poor performance are twofold. Firstly, the complete code was significantly more
complicated than the test case, and these complexities resulted in unexpected
performance problems. Secondly, given the extremely rapid development in tech-
nology it is very hard to find a fair point of comparison between CPUs and GPUs.
As new hardware is released the performance balance shifts between the compet-
ing hardware types and, as such, a fair comparison is problematic. It is very
possible that the initial tests were “unfair” in favour of the GPUs, whereas the
current results are “unfair” in favour of the CPUs.

Despite the slight disappointment in performance the order of magnitude increase
over a single core was still a of significant benefit. This acceleration allowed for
single-node computation of the falling droplet problem, avoiding complications
due to low bandwidth and high latency inter-node connections. Instead, a multi-
realization approach was taken, with each of the eight GPUs available simulating
a different set of initial conditions simultaneously.

This multi-realization approach increased efficiency as several of the methods
used are not very suitable for node-level parallelism. This is either because they
require frequent transfers of information, or because they are only necessary in a
certain part of the domain, typically near the interface.

Falling Droplets

Water droplets with radii in the range 1mm to 3mm were simulated in free
fall conditions. Comparison with experimental results clearly shows that the
numerical methods developed were indeed capable of solving a complex interfacial
problem, with agreement in nearly every aspect.

The wake of the droplets was examined in depth and it is thought that this
work will bring about a significant advancement in understanding in this area. It
has been found that, although the droplet wakes are similar to those of spheres,
the frequencies present in the wake are significantly lower than reported eddy
shedding frequencies of spheres. The wakes were also found to have an oriented
asymmetric structure, with large scale oscillations along a line on the X-Y plane.
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5.2 Future Work

Eddy formation within the recirculation region was briefly examined, and a low
frequency oscillation described. It is thought that this oscillation may be a factor
driving droplet oscillations, however there was insufficient time to study it in
depth.

5.2. Future Work

Numerical Methods

The most apparent issue with the numerical methods is the treatment of viscosity:
all other proprieties are treated sharply at the interface, but viscosity is treated
as a continuously varying property. While it was found that viscous problems
could still be modeled fairly accurately (Section A.2) there were some clear errors
apparent. A new method would be required to model interface viscosity, as
current sharp viscosity methods are not compatible with the conservative level
set method.
Another significant area of concern regarding the numerical methods is the nu-
merical jump introduced by the conservative level set method. This problem is
thought to be the reason why droplet oscillations are incorrectly simulated, so it
is important to find a solution.

GPU Implementation

While the GPU implementation of the numerical methods was found to give an
order of magnitude speedup over a single core, this can undoubtedly be improved.
It was found that, on both CPU and GPU, the pressure projection step took a
significantly larger proportion of runtime than other steps, despite the core of the
method, the BiCGStab solver performing very well on the GPU. This suggests
that there may be inefficiencies elsewhere in the method that could be eliminated.
Another area which could be examined is whether any features of the newer
NVIDIA Kepler GPUs[87] could be used to accelerate any of the methods.

Falling Droplets

As the work presented here is the first set of CFD simulations studying full flow
around a three dimensional droplet, there are many extensions that are possible.
Perhaps the most obvious is the detail at which an individual droplet is studied.
The work presented here concentrated on the simulation of a range of droplet
sizes. This meant that the processing power available to a single droplet was
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only a fraction of the processing power available. A simple extension to this work
would be to change the scope, and instead simulate one droplet in greater detail:
either at a higher resolution or for a longer period of time. If the droplets are to be
studied for a longer period of time one potential issue is the poor performance of
GPUs for small grid sizes. By increasing the number of GPUs working on a single
problem, the efficiency of each GPU is reduced. It may be that additional work
would be required to accelerate the GPU methods in multi-node environments.
One area that may be of particular interest is further study into recirculation
eddies. Early indications are that a low frequency mode exists within the recir-
culation region which may be a significant factor in driving droplet oscillations.
Unfortunately the time available for this work did not allow for this mode to be
studied in as much detail as was desired. Further analysis would require collection
of higher frequency data than has been collected thus far.
There is active research within droplet dynamics on the breakup of larger droplets
into smaller droplets. While the work contained within this thesis was focused on
stable droplets, it has been reported that an increase in radius beyond the maxi-
mum radius studied here will shortly lead to droplet breakup [58, 88]. The modes
of breakup and the drop size distribution in the remaining spray are both areas
of interest and the problem is well suited to the computational model presented
in this thesis. While it is likely that a few changes would be required to account
for some of the properties of such systems it is anticipated that these changes
need not be significant. Specifically, it is likely that the mass correction method
would need to be updated to take into account multiple convex interfaces, and
that the cell merging method would have to be made more robust, as currently
it is unclear what the procedure should be if there are no neighbouring cells to
merge a small cell with.
It may be of interest to study droplets in a more realistic environment. The
impacts of interaction between multiple droplets, or of atmospheric effects could
significantly alter the behaviour of the system. It is expected that the addition
of either factor would add significant forcing to the droplets, likely causing an
increase in droplet oscillation, and potentially breakup. Finally, one could explore
of the parameter space of the system. While for larger droplets it is expected that
results will be similar for similar Eötvös numbers, there remain plenty of areas
where property changes could bring about interesting results. For example it may
be interesting to simulate lower surface tension fluids, such as ethanol.
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A. Validation

A.1. Surface Tension

Surface tension was validated by simulating the oscillation of a drop of fluid in a
zero-gravity field. The natural frequencies a given drop of radius r is expected to
be close to those given by Rayleigh[80]:

ω0 =
√
σi(i− 1)(i+ 2)

ρr3 (A.1)

The first non-trivial natural frequency is found by substituting n = 2:

ω0,2 =
√

8σ
ρr3 (A.2)

An ellipsoidal water droplet with two semi-principle axes of length 0.95mm with
the third of length 1.1mm was initialized at rest. The density of the simulated
droplet was 1000 kg/m3and its surface tension 0.07564 N/m. The viscosity of the
droplet was negligible. The domain was discretized with a uniform grid with 64
points spanning a side length of 2.5mm in each dimension.

The system was advanced in time and the lengths of the semi-principle axes
was measured. The axis ratio is then calculated by dividing the length of the
original semi-major axis by the mean length of the other two axes. Substituting
the properties of the droplet in to Equation A.2 this axis ratio is expected to
oscillate at a frequency of approximately 780 rads-1, or 124 Hz. This corresponds
to a full oscillation in a period of 8.05ms. Figure A.1 shows the variation in axis
ratio with time over 50ms, approximately six full oscillations.

The measured frequency from this plot is approximately 121 Hz, an error of
under 3%. It is of note that the oscillation appears undamped, suggesting that
the numerical scheme has very low numerical viscosity.
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Figure A.1.: Axis ratio of droplet at rest over six oscillations.

A.2. Rising Bubble

The second validation case simulated was the motion of an air bubble rising
through a viscous fluid. The objective is to reproduce some of the experimental
results presented by Bhaga and Webber [1].
The results of two simulations are presented. Both are the solutions after a
spherical bubble initialized at rest was allowed to rise under gravity until the
interface position reached steady-state. As with the falling droplet case examined
in Chapter 4, the domain is rectiliniear with spatially constant velocity boundary
conditions enforced on each face.
The parameters of the problem are defined by three non-dimensional properties:
the Reynolds number (Equation A.3), the Eötvös number (Equation A.4) and
the Morton number (Equation A.5):

Re = ρd0U

µ
(A.3)

Eö = gd2
0∆ρ
σ

(A.4)

Mo = gµ4

ρσ3 (A.5)

The values of these properties for the two experiments are tabulated in Table A.1.
It should be noted that the Reynolds number is not explicitly set as the velocity
of the bubble is a variable which is calculated based on the other parameters.
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A.2 Rising Bubble

Eö Mo Re
Case 1 116 266 3.57
Case 2 116 5.51 13.3

Table A.1.: Non-dimensional properties of the two test cases.

Although the falling droplet test case has significantly different non-dimensional
numbers, the rising bubble test case is helpful for two main reasons. Firstly,
because the Reynolds number is much lower, it acts as a validation of the viscosity
model. The falling droplet test case tends to have Reynolds numbers of one to
three orders of magnitude higher, and if the viscosity model is sufficient for a
low Reynolds number case, it follows it should be sufficient for the falling droplet
case. Secondly, the surface tension term in this test case is a lot less significant,
due to the significantly higher Eötvös number. This means that the time step
restriction for stability is much less strict and these simulations can be run in a
much shorter time than the falling droplet case.
The first step is to validate the Reynolds number calculated from simulation.
Table A.2 compares the expected Reynolds numbers with the Reynolds numbers
calculated at terminal velocity from the simulation. Although the Reynolds num-
bers differ slightly the error is small. The second point of comparison is the bubble
profiles. Figure A.2 and Figure A.3 compare the calculated interface position to
photographs taken by Bhaga and Webber for case 1 and case 2 respectively.

Expected Re Simulated Re
Case 1 3.57 3.65
Case 2 13.3 12.6

Table A.2.: Expected and simulated Reynolds numbers for the two test cases.

Figure A.2.: Simulation 1. Experimental results [1] (left - reproduced from
Figure 3 (b), page 6) compared with simulated results (right).

Both simulations appear to match the experimental results fairly closely. The
axis ratios and approximate shape of the bubbles are consistent with experiment,
however the experimental results appear to have a much smoother outline than
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Figure A.3.: Simulation 2. Experimental results[1] (left - reproduced from Fig-
ure 3 (d), page 6) compared with simulated results (right).

the simulated results. In both cases it appears that the simulated results form
more straight lines rather than smooth curves along the boundary. Of the two
simulations, case one appears to suffer from this effect more. Potential causes of
this error are discussed in Section 2.5.
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B. Droplet Oscillation Frequencies

The power spectral densities for droplet oscillations, from which the frequencies
presented in Section 4.3.3 are determined, are presented here. For each droplet
three power spectra are documented. The first spectrum shows the frequencies
of change in the ratio vertical axis length to the first horizontal axis length (X:Z
ratio). The second shows the frequencies of change in the ratio vertical axis length
to the second horizontal axis length (Y:Z ratio). The third shows the frequencies
of change in the ratio of the two horizontal axes (X:Y ratio). The first two spectra
are expected to show axisymmetric oscillations. The third spectrum is expected
to show horizontal mode oscillations. All three spectra should show transverse
oscillations.
While the values of the y-axes on the plots are not relevant, the relative values
are, and are the same across all three plots. As there is interest over a wide range
of frequencies the x-axis range has been set on a case-by-case basis.
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Figure B.1.: Axis ratio oscillation frequencies of the 1mm radius droplet.
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Figure B.2.: Axis ratio oscillation frequencies of the 1.25mm radius droplet.
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Figure B.3.: Axis ratio oscillation frequencies of the 1.5mm radius droplet.
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Figure B.4.: Axis ratio oscillation frequencies of the 1.75mm radius droplet.
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Figure B.5.: Axis ratio oscillation frequencies of the 2mm radius droplet.
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Figure B.6.: Axis ratio oscillation frequencies of the 2.25mm radius droplet.
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Figure B.7.: Axis ratio oscillation frequencies of the 2.5mm radius droplet.
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Figure B.8.: Axis ratio oscillation frequencies of the 2.75mm radius droplet.
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Figure B.9.: Axis ratio oscillation frequencies of the 3mm radius droplet.
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C. Eddy Shedding Frequencies

The power spectral densities for eddy shedding in the droplets’ wakes, from which
the frequencies presented in Section 4.3.4 are determined, are presented here. For
each droplet six power spectrums are documented, three for the near plane and
three for the far plane. The entire plane spectrum is calculated from vorticity
summed across the plane. This can be used to calculate the frequencies at which
eddies are shed. The x and y axis ratios are calculated from the ratio of vorticities
on planes splitting the respective axis. These frequencies can be used to determine
if there is any structure to the positions that the eddies are shed at, and give some
insight into that structure, should it exist.
While the values of the y-axes on the plots are not relevant, the relative values
are. The two full plane spectra for a given plot have the same scaling, and the
four ratio spectra for a given plot have the same scaling.
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Figure C.1.: Eddy shedding frequencies of the 1mm radius droplet.
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Figure C.2.: Eddy shedding frequencies of the 1.25mm radius droplet.
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Figure C.3.: Eddy shedding frequencies of the 1.5mm radius droplet.
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Figure C.4.: Eddy shedding frequencies of the 1.75mm radius droplet.

0 200 400 600 800 1000

F
ul

l P
la

ne

Near Plane

0 200 400 600 800 1000

X
−

ax
is

 R
at

io

0 200 400 600 800 1000
f (Hz)

Y
−

ax
is

 R
at

io

0 200 400 600 800 1000

Far Plane

0 200 400 600 800 1000

0 200 400 600 800 1000
f (Hz)

Figure C.5.: Eddy shedding frequencies of the 2mm radius droplet.
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Figure C.6.: Eddy shedding frequencies of the 2.25mm radius droplet.
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Figure C.7.: Eddy shedding frequencies of the 2.5mm radius droplet.
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Figure C.8.: Eddy shedding frequencies of the 2.75mm radius droplet.
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Figure C.9.: Eddy shedding frequencies of the 3mm radius droplet.
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