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SUMMARY 

Part 1 of this report describes the results obtained 

from a series of tests on the flexure-torsion flutter character-

is -Gics of cascades of similar aerofoils having symmetrical 

sections. The critical flutter speeds and frequencies of the 

aerofoils in cascade have been compared with their isolated 

values. 	The investigation has included the effects of gap-chord 

ratio and of stagger. The Reynolds number, based on wing chord, 

was about 0.15 x 10 6 . 

It was found that the critical flutter speed decreased 

as the gap-chord ratio was reduced. The variation of critical 

flutter speed with stagger angle was relatively small. In both 

cases the critical flutter frequency was greater ttlan that for 

the isolated aerofoils. 	It was noted that during flutter 

adjacent aerofoils were oscillating approximately 1800  out of 

phase, and, hence alternate blades were in phase. 	The mode of 

oscillation was of the flexure-torsion type. 

The accuracy of the experiments was limited by slight 

variations in the structure of the models and in the case of 

the wooden aerofoils, by noticeable changes in their torsional 

and flexural stiffnesses with humidity and temperature. 
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Part 2 of this report is a review of the theoretical 

studies on oscillating aerofoils in cascade. 	Since, as is 

noted in Part 1, adjacent aerofoils vibrated 180° out of phase, 

the problem is analoguous to that of a single oscillating aero- 

foil placed between parallel walls. 	The air forces have been 

calculated approximately enabling the flutter characteristics of 

the aerofoils, described in Part 1, to be computed and a com-

parison made with the experimental results. Fair agreement has 

been obtained, and such differences as there are, it is suggested, 

are due to the neglect of the effects of finite aspect ratio and 

thickness of the aerofoils and the rigid body movements. 	The 

latter problem together with an account of simplified flutter 

calculations are discussed in appendices. 

The major part of the experimental work discussed in 

Part 1 was reported by K. Aiming, G.E. Gadd and W.F. Wiles in an 

unpublished note. 
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A 	 real part of C (see below) 

Al 
	

flexural moment of inertia 

a
1 	

non-dimensional form of A l 

A
3 	

flexural-torsional product of inertia 

a 3 	 non-dimensional form of A3  

7tis/21cc 

B 	 imaginary part of C (see below) 

B
1 	

direct flexural c9nmping coefficient 

b1 	
non-dimensional form of B

1 

B
3 	

compound torsional damping coefficient 

b
3 	

non-dimensional form of B, 

C
1 	 flexural stiffness 

c1 	 non-dimensional form of C
1 

c 	 chord 

C 	A-iB) 	generalised Theoaorsen function 

C 3 	 torsional cross-stiffness 

e3 	 non-dimensional form of C3  

E (k) 	complete elliptic integral of the second kind 

f 	 frequency 

f (T) 	 flexural mode 

F(r1) 	 torsional mode 

F (a,b; c, z) 	hypergeometric function 

G
1 
	 flexural-torsional product of inertia 

gl 	 non-(91monsional form of G
1 

G
3 	 torsional moment of inertia 

g3 
	

non-dimensional form of G
3 

he 	 distance of flexural 	from leading edge 

H
(2) ' o 
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Henkel functions 1  

J
1 	 compound flexural damping coefficimt 

non-dimensional form of J
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J3 	 direct torsional damping coefficient 

j
3 	

non-dimensional form of J3  

tanh 

; 	 k2  

K(k),Ki(k) 	complete elliptic integrals of the first kind 

X
I 	 flexural cross-stiffness 

k
I 	 non-dimensional form of K

I 

K
3 	

direct torsional stiffness 

k
3 	

non-dimensional form of K3  

L 	 flexural moment 

span 

id 	 flexural stiffness 

2z . 'gE iv 	aerodynamic derivatives 

aerodynamic derivatives 

PSI 

	

	 pitching maient; torsional moment; Mach No. in 
free stream 

Fn 	 mass/unit length of span 

me 	 torsional stiffness 

mz  m. m. 	aerodynamic derivatives 2 

m0  m mu 	aerodynamic derivatives 

p 	 pressure 

Q 1 Q 2Q 3Q4 	functions of 

exp(-rat/K) 

goql(12c13q-2+ 	dimensional coefficients 

gcg l q2g3q 	non-dimensional coefficients 

r
n 	

distance (see ogn. 2.22) 

r1 r2r3r4 	coefficients in flutter equations 

R 1 R2R3 	coefficients in flutter equations 

s 	 gap 

t 	 aerofoil thickness; time 

u 	 perturbation velocity component in direction OX 

V 	 freestream velocity - isolated aerofoil 

freestream velocity - aerofoil in cascade 

w 	 perturbation velocity ccraponent in direction OZ 
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x 	 coordinate in chordwise direction 

xf 	
distance of reference section from origin 

y 	 coordinate in spanwise direction 

Z 	 force in direction OZ 

z 	 coordinate normal to chord 

aerofoil displacement in direction OZ 

_ a = tank ;)1x, angle of incidence; aerodynamic stiffness parameter 

P 	 exp(nc/s); elastic stiffness parameter 

bound vorticity; phase angle 

n 	
coefficient in series Q Q 

3 

circulation 

e 	 free vorticity 

0 	 aerofoil rotation; torsional coordinate 

'19- 	= 	0c4 

radius of gyration 
flicc 

2s 

2\0"21 	
aerodynamic derivatives 

N ■Nve )N.6 	aerodynamic derivatives 

i0  1 	aerodynamic derivatives 

p- e 	 aerodynamic derivatives 

kinematic viscosity 

a 	x/c 

distance of the centre of gravity from the 
leading edge 

distance of the flexural axis from the 
leading edge 

, J) 	 coc/IT frequency parameter (reduced frequency) 

air density 

stagger angle 

y 4- 6 

0 	 flexural coordinate; velocity potential 

acceleration potential 

circular frequency 

w
f 	

natural frequency in flexure 
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t 
	 natural frequency in torsion 

Suffix c denotes the value of a quantity at which flutter is 

just maintained. 

Suffix o denotes the free stream value. 
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§1. 	Introduction 

The effect of the interference of adjacent blades 

in a cascade of aerofoils in modifying the isolated critical 

flutter characteristics of the aerofoils has received little 

attention. A recent paper by Bellenot and Lalive d'Epinay 

(reference 1) describes some tests on cascade flutter made at 

one gap-chord ratio over a range of stagger angles. They found 

that the modes of vibration during flutter were either pure 

torsion or pure flexure and these are therefore different from 

the type of flutter investigated in this report. 	In Part 2 of 

the present paper the problem of flutter with one degree of free-

dom is discussed. 

An experimental investigation of the flutter 

characteristics of aerofoils in cascade has been conducted in 

the Aerodynamics Laboratory of the College of Aeronautics 

between 190 and 1950. Two types of model aerofoils have been 

used in these experiments 

(a) Aerofoils manufactured from a light wooden 

framework covered with doped silk 

(b) Rigid metal aerofoils supported from combined 

flexure and torsion springs at the root. 

The two types of aerofoils had approximately the 

same chord but the spans were different. 	It was found, however, 

that there was in the main qualitative agreement between the two 

sets of results. Therefore, in order to avoid confusion and 

undue repetition, and noting that the aerofoils of type (a) are 

more allied to practical aerofoils, only the results obtained from 

type (a) aerofoils will be presented here. 	The small differ- 

ences in the flutter characteristics obtained between aerofoils 

of types (a) and (b) have not been completely explained but it 

is considered that these differences are probably due to the 

variations in the end fixing, the nodes of vibration and the 

aspect ratio. 

The accuracy of these experiments was limited for 

reasons which will be discussed. 

The major part of the experimental work, relating 

to the wooden aerofoils, described in this report was reported 

by K. Aiming, G.E. Gadd and 7.F. Tiles in an unpublished note. 

The experiments on the metal aerofoils were completed by 

E.S. Farris, E.T.B. Smith and C.G. Hughes. 

§2 
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§2. Apparatus  

The experiments were conducted in a blower type wind 

tunnel, 	whose working section dimensions were 18.75in. x 8.75in. 

and the speed range was zero to 170 feet per second. The dis-

tribution of velocity across the working section outside the 

boundary layer was uniform to within 0.5 per cent. 

The aerofoils were cantilevered from a turntable in a 

side wall extension to the wind tunnel contraction (see figures 

1 and 2). The wooden aerofoils were of rectangular planform, 

Sin. chord and Bin. span, and were of NACA 0010 section. Each 

aerofoil had a mahogany spar 0.15in. square and eight mahogany 

ribs each 0.10in. thick. 	The framework was covered with silk 

which was doped with a mixture of vaseline and chloroform. The 

blades were provided with stops (see figure 3) in order to limit 

the amplitude of the blades during vibration. +  

The metal aerofoils were first made of solid light 

alloy. They had a 14 per cent thick symmetrical section, a 

chord of 2.9in. and a span of 2.9in. 	The blades were fixed to 

various forms of spring hinges connected to the working section 

turntable. The flexure-torsion springs were designed so that 

the natural frequencies of the blades in flexure and torsion 

were nearly the same as those of the wooden aerofoils. 

Although many different types of springs were tested they all 

quickly failed by fatigue. A second sot of metal aerofoils 

were manufactured from 30 s.w. g. brass sheet, the aerofoil 

section being the same as for the solid blades but the span was 

increased to Gin. 	Separate flexure and torsion springs were 

fitted and friction was reduced to a negligible amount by the 

use of taper needle roller bearings. 	(See figure 4). 

The wind speed in the working section was calibrated 

against static pressure tappings in the contraction section and 

the settling chamber. The frequency of the oscillating aero-

foils was measured using a strobo-tachometer having an error of 

/less than 

The stops were provided to prevent (Iquage to the blades 

when they were fluttering above their critical speeds. 	In all 

cases when the blades were fluttering at or near to their 

critical speeds, and the amplitudes of the oscillations were 

therefore small, the stops could be removed. 
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less than 1 cycle per second. 

The torsional and flexural stiffnesses of the aerofoils 

were measured by applying torques and loads respectively about 

and at the flexural axis at the tip section. The natural 

frequencies in torsion and flexure were measured on a standard 

vibrating table (see figure 5). 

A film showing the motion of the aerofoils during 

flutter was taken with a tine camera, f1.5, 8 frames per second, 

using stroboscopic light. 

§3. 	Test Procedure 

Each aerofoil was tested separately and its critical 

flutter speed and frequency were noted. These were obtained by 

increasing the wind speed until flutter commenced; the wind 

speed was then decreased until flutter stopped. The wind speed 

just prior to the blade flutter stopping was recorded as the 

critical value. The frequency could not, however, be conven-

iently obtained corresponding to the critical wind speed. Con-

sistent readings of the critical frequency were, however, 

dbtained by measuring the frequency at each steady wind speed 

above the critical wind speed. 	Since the latter was 

obtained as stated above the critical frequency could easily be 

obtained by extrapolation (see figure 9). 

The aerofoils were then selected so that a cascade of 

blades could be found such that the isolated characteristics 

of the aerofoils differed by less than 	5 per cent. 	The 
aerofoils were arranged in cascade so that the weakest aerofoils 

were near the centre. The critical flutter speed and 

frequency were taken corresponding to the mean values of these 

quantities obtained from the three central aerofoils. 	In the 

case of the wooden aerofoils the critical flutter s .eeed decreased 

with blade age owing to fatigue. The flutter characteristics 

were also dependent on the prevailing temperature and humidity. 

It was therefore necessary to measure the isolated aerofoil 

characteristics immediately before and after a test (at a given 

gap-chord ratio). 
• 
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• 

In order to reduce the magnitude of the air forces 

and amplitudes of the aerofoils during flutter, the aerofoils 
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were in all cases set at zero incidence relative to the upstream 

direction. A few measurements were, however, made at 5o inci-
dence and since no change in the flutter characteristics could 

be detected it was assumed that the blade incidence was not a 

very important parameter at least in the range 	5° . 

It was noted that when fluttering, adjacent aerofoils 

were approximately 180 °  out of phase, and hence with zero stagger, 

they might be regarded as images of each other in a rigid plane 

boun9nry midway between them. 

The above measurements mere, therefore, repeated for 

the case of a single aerofoil placed midway between two parallel 

plates. 	The gap between the plates was varied; the distance 

apart of the plates being assumed to correspond to the gap 

between adjacent aerofoils when in cascade, but with zero 

stagger. 

4. Experimental results  

The fall of the critical flutter speed with age is 

shown in figure 6. The temperature and humidity variations have 

also been plotted on figure 6 and it is seen that little 
correlation was obtained with the changes in the flutter speed. 

This does not necessarily indicate that temperature and humidity 

do not affect the flutter characteristics but rather that fatigue 

of the flexible wooden structure was probably predominant. 

Further tests did in fact show that the elastic stiffnesses, 

especially the torsional stiffness, were altered by changes in 

temperature and humidity. 	It was also found that the porosity 

of the silk ebvering was not always uniform and extreme care 

was required in applying the chloroform-vaseline dope. 	It was 

therefore concluded that changes in the critical flutter speed 

were mainly caused by the wooden structure and the silk covering 

'drying out' (at the beginning of each test). 	The overall 

effects of blade fatigue, and room temperature and humidity, 

were reduced to a minimum by the experimental procedure discussed 

in the previous paragraph. 

The variation of the critical flutter speed of the 

cascade of aerofoils with the gap-chord ratio is shown in figure 

7. 	The results of tests on a single aerofoil placed between 
parallel plates is also included. The blockage curve shows 

the ratio of the measured wind speed upstream of the cascade 

/compared 
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compared with the mean speed in the gaps between adjacent aero-

foils. It is clearly seen that the very large decrease in the 

critical flutter speed with gap-chord ratio cannot be entirely 

due to a blockage effect. 

The results of the two tests can be expressed by the 

following empirical law 

V' 
1  1 V

c 	 (1-1-s/c 

where 

n 	= 4.24 for the aerofoil in cascade 

= 3.15 for the single aerofoil between two parallel 
plates 

V' 	= the critical flutter speed of an aerofoil in cascade 

V
c 

= the critical flutter speed of the isolated aerofoil 

s/c = gap-chord ratio. 

The effect of the cascade stagger angle on the critical 

flutter speed of the aerofoils is shown in figure 8. It is seen 

that the critical flutter speed is nearly independent of stagger 

angle. 

The frequency-speed curves for different gap-chord 

ratios of the aerofoils are shown in figures 9a and 9b; the 

former shows the results obtained from a single aerofoil placed 

between two parallel plates whilst the latter shows the results 

for an unstaggered cascade of five aerofoils. The dotted lines 

show the variation of frequency with wind speed when the aero-

foils are fluttering above their critical wind speeds. 	The 

blacked in points correspond to the extrapolated critical 

frequencies (see paragraph 3 above) at each gap-chord ratio. 

It is seen that again the results are similar in the two cases 

and that the critical frequency of the aerofoil in cascade is 

only slightly greater than that of the single aerofoil between 

plates. 	The corresponding effects with cascade stagger angle 

are shown in figure 10. The critical flutter frequency 

increases with stagger angle although the increase is not 

large for stagger angles below 20 0 . 	It was observed that for 

small gap-chord ratios the frequency increased rapidly for small 

increases above the critical flutter speed. 	This fact probably 

accounts for the scatter of the observed points for s/c equal 

to 0.25 in figure 10. 
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The experimental results for the unstaggered cascade 

are compared with the theoretical values, obtained from Part 2, 

in figures 11 and 12. 	In figure 11 the square of the critical 

speed ratio has been plotted against gap-chord ratio. Good 

agreement between theory and experiment is obtained except at 

the smallest value of gap-chord ratio. 	This is not surprising 

since the finite amplitude and the effect of the aerofoil thick-

ness, vthich have both been neglected in the theory, will increase 

in importance as the gap-chord ratio decreases. 	In figure 12 

the square of the reduced frequency ratio has been plotted 

against s/c. Good agreement between the observed and theoretical 

values is again obtained except at the lowest value of gap-chord 

ratio. This agreement between theory and experiment is encour-

aging but not conclusive, since the theoretical values do not 

agree so well with thD results obtained from the tests on the 

single aerofoil between parallel plates. 	Nevertheless, the 

theory should apply equally well to both systems, provided that 

the aerofoils in cascade are vibrating exactly in antiphase, and 

hence further investigation of these differences is desirable. +  

Figure 13 shows a series of photographs taken in 

stroboscopic light for a cascade having a gap-chord ratio of 0.5 

and two stagger angles o-  = 0 °  and 15° . 	The corresponding 

pictures taken for an isolated aerofoil are also given. The 

antiphase motion between adjacent aerofoils is clearly indicated. 

The motion, in detail, can be described as follows.- 

(1) 
	

An aerofoil in its mid-position and moving upwards say, 

has a positive twist i.e. its leading edge is above 

its trailing edge. 

(ii) As the motion progresses the twist is reduced until 

/at the ... 

These differences may be accounted for as follovrs.- 

(±) The aerofoils in a cascade had isolated flutter character-
istics which differed by about + 5 per cent, and experimental 
inaccuracies of at least + 5 per cent will therefore exist. 

(ii) In the case of the single aerofoil oscillating between 
parallel plates the boundary layers adjacent these plates may 
produce important changes in the flow even though a rough 
calculation has shown that the equivalent blockage effect is 
small. 
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at the point of maximum flexure the twist is approx-

Imately Lero or slightly negative. 

(iii) As the aerofoil starts its doemward path its twist becomes 

more negative reaching a maximum at about the mid-

position of the flexural displacement. 

(iv) As the flexural motion proceeds downwards the twist of 

the aerofoil is reduced and reaches zero or a slightly 

positive value at the position of maximum negative 

displacement. 

(v) Thilst the motion described in (i) is taking place the 

aerofoil above is moving downwards with negative twist 

which is decreasing as the flexural motion progresses. 

(vi) Similarly the aerofoil below is also moving downwards 

with negative twist which is decreasing as the flexural 

motion progresses. 

Hence •  alternate aerofoils in a cascade, both unstaggcred, 

have similar motions. 	Their motion corresponds to the classical 

flexure-torsion vibrations in which the torsional motion lags 

behind the flexural motion (see reference 2). 

The type of motion discussed above was present for all 

arrangements of aerofoils except that at angles of stagger above • 

35 0  the flutter amplitude did not remain constant. 	In this case 

a pulsation of the aerofoil was superimnosed on the steady 

oscillations. 	The reasons for this require further investigation. +  

The measured elastic stiffnasses and the natural 

frequencies of uncoupled flexural and torsional vibrations in 

still air varied for each aerofoil in the cascade. Typical 

values for the central aerofoil in the cascade together with its 

isolated flutter characteristics are given below in Table 1. 

/Table 1 

'Pulsating flutter' of the type encountered at large 
angles of stagger is probably due to the disturbances created 
by the oscillatory wakes affecting the motions of adjacent 
aerofoils. 	In the case of small angles of stagger the fluttering 
aerofoils are moving towards the surfaces of adjacent aerofoils, 
but at large angles of stagger the fluttering aerofoils are moving 
during one half of their motion towards relatively undisturbed 
air, whilst on the other half they are moving towards the dis-
turbed wakes of adjacent aerofoils. 
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TABLE 1 

nuantity Symbol 	Lieasured Value  

Flexural stiffness 	
;do 	

2.49 lb.ft./radian 

Natural flexural circular 	off 	 152 rad./sec. 
frequency 

Distance of flexural axis 	he 	 0.25 
from the leading edge 

Torsional stiffness 	 m 	 ❑ .15 lb.ft./radian 

Natural torsional circular
t 	 326 rad./sec. 

frequency 

Critical flutter speed 	V
c 	 87.0 f.p.s. 

(isolated aerofoil) 

Critical flutter circular 	coc 	 220 rad./sec. 
frequency 

1.0 
c 

 

Reynolds number 	
V

c 	 1.37 x 105  

From the results quoted in Table 1 above and the 

results plotted in figure 9 it can be seen that the critical 

flutter frequency increases towards the natural frequency in 

torsion as the gap-chord ratio is reduced. 

The modes in flexure and torsion, obtained from static 

tests, are shown in figures 1)1a  and 14b respectively. 

§5. 	Discussion 

The main reason for the decrease in critical flutter 

speed with gap-chord ratio arises from the increased negative 

value of the aerodynamic torsional-stiffness derivative, (see 

Fart 2) even though the corresponding variations of the aero-

dynamic torsional and flexural damping derivatives are many 

times greater. 	It was first thought that the reduction in the 

critical flutter speed was duo to the aerodynamic forces and 

moments which arise when the displacements of adjacent aerofoils 

in the cascade are not infinitesimal. 	It is shown in Appendix 

2 that these forces and moments arising from rigid body movements 

are inversely proportional to the gap-chord ratio. The 

_ c 
Reduced frequency 	 co = 

/numerical ... 
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numerical value of the results given in Appendix 2 are unlikely 

to be correct awing to the drastic nature of the assumptions 

used. However, even with these values of the aerodynamic 

derivatives added algebraically to those calculated from the 

'classical theory' of Part 2, the critical flutter speeds and 

frequencies were changed but slightly from the values calculated 

using only the derivatives of the 'classical theory'. 

The aerodynamic forces which arise due to the rigid 

body movements (even though these may be relatively small com- 

pared with, say, the gaps between adjacent aerofoils) are important 

however in controlling the type of antiphase flutter occurring 

between adjacent blades in a cascade. 	The aerodynamic forces 

and ensuing motions probably arise as follows. 'Then a given 

aerofoil in a cascade is vibrating with a harmonic motion of 

small amplitude in an otherwise steady airstream, the air vel-

ocity over its upper and lower surfaces will respectively in-

crease and decrease as it pursues say the upward part of its 

motion, since if we assume that initially the adjacent aerofoils, 

above and below it, are at rest the effective upper and lower 

gaps will respectively decrease and increase due to the aerofoil 

motion. But the increase in velocity over the top surface of 

the given aerofoil will also exist over the lower surface of the 

adjacent upper aerofoil on which in consequence a normal force 

in the downward direction will be induced. Similarly a down-

wards induced force will be exerted on the adjacent lower aero-

foil. These induced forces will be sinusoidal and vibration of 

these aerofoils will therefore be excited by the oscillations of 

the parent aerofoil and the motions of these aerofoils will be 

in the opposite phase to that of the parent aerofoil. 	It appears 

therefore that the structurally weakest aerofoil in a cascade of 

aerofoils will commence fluttering at a critical speed determined 

by its elastic stiffnesses, inertias and the aerodynamic deriva-

tives calculated from the 'classical theory' (see Part 2). This 

aerofoil will in turn excite the adjacent aerofoils. 

The corollary to be rained from this explanation  is 

that the  critical  flutter speed of a cascade of aerofoils is 

that corresponding to the structurally weakest member in the  

cascade provided  that the variations in the elastic stiffness  

are not very large.  

The variation of the critical flutter speed with gap-

chord ratio, as determined in this paper, is not a universal 

• • • 
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curve for all cases of aerofoil geometry, elastic stiffness, and 

inertia. The results, as quoted, apply only to the particular 

type of aerofoil tested and each particular arrangement requires 

a separate investigation. 

The good agreement between theory and experiment for 

gap-chord ratios greater than 0.5 suggests that future work on 

the compressible flow problem at high subsonic teach numbers, 

following on similar lines to that suggested in Part 2 of this 

paper, is worthy of consideration. 
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§7. Conclusions  

1. Experimental results have shown that when aerofoils ara 

placed in cascade, at small incidence, their critical 

flutter speeds are reduced  compared with their isolated 

values. 	Similarly the frequency of the flexure-torsion 

vibrations, at the critical flutter speed, increases 

as the gap-chord ratio of the aerofoils in the cascade 

arrangement is reduced. 

2. Adjacent aerofoils in the cascade vibrate in antiphase. 

Hence alternate aerofoils have similar motions. 

3. The frequency of the flutter is in gerral nearer to the 

torsional natural frequency than to the flexural 

natural frequency. 

/4. • • 
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4. The variations in the critical flutter speed and frequency 

with stagger angle (at small angles of incidence) are 

relatively unimportant for stagger angles below 30° . 

At stagger angles greater than 35°  constant amplitude 

flutter could not be maintained and the steady oscilla-

tory motion wP.s disturbed by pulsations probably 

originating from adjacent wakes. 

5. Fair agreement between theory and experiment has been 

obtained. 	In view of the practical importance of this 

work, as for example in connection with the design of 

binding in axial compressors, it appears desirable to 

extend both the range of the experiments and the theory 

to high subsonic ilach numbers. 
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PART 2 

§1. 	Introduction 

As far as is known to the author no theoretical papers 

(apart from reference 1) have been published on the flutter of 

aerofoils in cascade. 	It appears, however, in the light of the 

experimental results reported in Part 1, that the general theory 

of the flutter of aerofoils in cascade can be simplified, in a 

restricted sense, in view of the antiphase notions of adjacent 

aerofoils. The flutter characteristics can, however, only be 

calculated 'rthen the aerodynamic forces and moments on the 

oscillating aerofoil are known. 

If we consider the air flow past a cascade of oscilla-

ting aerofoils in antiphase motion (see figure 15b) it can be 

seen that the flow about the mid lines, A'A' and B'B', between 

adjacent aerofoils, will be symmetrical for all positions of the 

aerofoils. 	The lines such as A'A' and B'B' are therefore 

streamlines of the motion and can thus be replaced by solid 

boundaries. 

The flow around oscillati r aerofoils in cascade at  

zero stagger is therefore equivalent to the tunnel wall inter-

ference on a single oscillating aerofoil provided that adjacent 

aerofoils in the cascade have antiphase motions.  

The three-di,lensional problem of tunnel wall inter-

ference on an oscillating ac,rofoil has been investigated by 

7.P. Jones (reference 3). 	This theory is based on the vortex 

sheet method which replaces the aerofoil and its wake by suit-

able distributions of doublets, satisfying the following 

boundary conditions. 

(a) The velocity at the trailing edge is finite. 

(b) The normal induced velocity at the aerofoil, due 

to the doublet distributions, is equal to 

the normal components of the velocity of the 

aerofoil. 

(c) The normal velocity at the walls is zero. 

The calculation of the airloads, using this method, is very 

lengthy and unfortunately numerical values arc quoted only for 

one height-chord ratio, which is considerably greater than the 

values of the `gap-chord ratio of interest in this investigation. 

/The ... 
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The corresponding problem in tem-dimensions has been 

investigated by Reissner (reference 4) and. Timman (reference 5), 

for incompreseible flow and by Runyan and Watkins (reference 6) 

for compressible flow. 

The essential details of the tiro-dimensional incom-

pressible theory is presented below and the airload coefficients 

are given in a form such that rapid calculation is possible. 

Only a brief review of the essential results, quoted in the main 

in reference 4. and 5 is given. 	The method of presentation, 

however, has the advantage that a clear physical picture is 

obtained of the essential feature of the theory and simple results 

can be obtained for the values of certain airload coefficients 

as the gap-chord ratio approaches zero. As will be shown in 

Appendix it is sufficient to calculate the variation of the 

stiffness derivatives with gap-chord ratio, if approximate 

values only of the flutter characteristics are required. 

The extension of the incompressible theory to subsonic 

compressible flow is not considered in this paper. The theory 

developed in reference 6 is not in a form suitable for the 

evaluation of the airload coefficients. An important result 

obtained, however, in reference 6 is that the normal induced 

velocity at the aerofoil becomes infinite for certain values of 

This resonant condition corresponds to values of the 

frequency parameter given by 

10/1-1? = ------- 

where U is the freestream Hach number. According to this 

criterion the circular frequency w is infinite  for an incom-

pressible fluid but it has finite values in a compressible fluid 

rihen 	equals zero. 	These results are mentioned here since 

they-  may have an important bearing on the theory of cascade 

flutter applied to subsonic and supersonic compressible flow% 

The theories outlined above only apply to the case 

of a cascade of aerofoils at zero stagger and zero incidence. 

The extension of the theory to other cases is being considered. 

The results discussed in Part give the order of the variations 

involved, at least, for the case of stagger. 

The calculation of the critical flutter speed and 

frequency is straightforward once the aerodynamic derivatives 

/and 
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and the structural coefficients have been evaluated. The class-

ical treatment of this problem in the case of flexure-torsion 

flutter is given in Appendix 1. 	It is important, however, not 

to overlook the fact that in reference 1 flutter with a single 

degree of freedom was experienced. 	This problem is also dis- 

cussed below. 

§2. The aerodynamic forces on an oscillating_two-dimensional 

aerofoil in cascade in incompressible flow. 

2.1. General theory 

The axes of the fixed coordinates OX and OZ aro 

taken as shoran in figure 15. 	The origin of coordinates is at 

the nidchcrd of aerofoil (0). 	The aerofoils, which are assumed 

to be infinitely thin, are oscillating with constant infinitesimal 

amplitude. 

Let the components of velocity at (x, z) in the 

directions OX and OZ respectively be 

V + u, 

where the perturbation velocities u,w are small compared with 

the freestream velocity V. From the equations of continuity 

and motion for an inviscid and incompressible fluid, when second 

order terms are neglected, it can be shown that 

	

V20 = 0    2.1 

	

\ 71$ = 0   2.2 

Po-P 
where 0 is the perturbation velocity potential, 	= - is 

the acceleration potential, p and o denote the pressure and 

density respectively and suffix o denotes the free stream 

value. 

Bernoulli's equation for the unsteady motion of an 

incompressible fluid when second order velocity components are 

neglected becomes 

_31 	 P, 
+ Vu + = 

0 at 	o  

which can be written 

	 2. 3 

= (Tt v 77c 
„ 	 2 
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If the suffices 	and - refer to the top and bottom 

surfaces of the aerofoils and their associated wakes then, 

u a 4 
at + • ax 	K. + 

- )=
- 	X 7,5 	eoe0245 

0 	7 ,c X 	2  6 

since the pressure is continuous across the wake. 

It is convenient in the further development of the 

theory to define y(x,t) as that part of the vorticity associated 

with the pressure loading and (r+c) as the total vorticity, 

associated with the velocity difference, across the aerofoils. We 

will refer to y (x, t) as the bound vorticity and c (x, t) as the 

free vorticity. 1-  Using the above definitions it follows that 

q* 	V y 	2.7 

and 
	

u ax (0+ - 0_) = y+c 	 2  8 

The condition for finite loading at the trailing edges 

is satisfied by y(c/2) equals zero. 	It follows, from equation 

2.8, that the condition for finite velocity at the trailing edges 

is that e (c/2) shall be finite. 	Since the aerofoils are infin- 

itely thin the velocities around their leading edges will be 

infinite. 	Hence y(-c/2) will be infinite. 	By definition the 

values of e(-0/2) and e (0) are zero. 

It follows that the total lift force, and the total 

pitching moment about the reference section, x = x
f' on each 

aerofoil at time t are respectively equal to 

etc/2 

(t) = 	(y+e) dx   .9 

0 -0/2 

In two-dimensional steady aerofoil theory the free 
vorticity, as defined above, is of course everywhere equal to zero. 
In two-dimensional unsteady aerofoil theory the free vorticity over 
the aerofoil and its wake is due to the time variation of the bound 
vorticity. 
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- z(t) = p.V r

/2 

 y ax 	2.10 

-c/2 

- M(t) = pV 

,Ic/2 
(- 	■ y

f
i cix 

-c/2 

 

2 	 11 

 

If the aerofoils are in simple harmonic motion with 

circular frequency w and similar motions are assumed for their 
- prat 

wakes, and if we write all time variable quantities as y = y e , 
 e = e eiwt  etc. where y and c are complex quantities; then 

it follows from equations 2.6, 2.7 and 2.8 that 

0+ 0-
iV  

= 	6   2.12 

iV ac y + 6 	 13 
ax 

and ye iwx/V iV 	f iWX/V) = 	 kE e w 8x 
1 

If w€ integrate equation 2.13 with respect to x between the 

limits 2 — 	2 and - — then from equation 2.9 

(t)
CO 	2 

6 (2' t) 
	

2 	 15 

Thus the instantaneous value of the circulation around 

each aerofoil is proportional to  the free vorticity at the trail- 

In addition the condition that the total vorticity is 

zero becomes 

, ky+e) dx = 0 

-0/2 

	  2.1 6 

/and @OM 

It is to be understood that only the real (or imaginary) 
part is finally taken. 

o . 	Or the rate of change of circulation around each aero- 
foil is equal to minus the product of the free stream velocity 
and the free vorticity at the trailing edge. 
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and since y equals zero in the wakes 

C;14 ../ 	 1.11C/ 2 

E C1X = - 	 (y÷e) 	Ti (t) =- 	8 (^?* , t} 

Li C/2 	 -c/2 

by virtue of equation 2.15. 

Thus the instantaneous vale of the total fima=rILaty  
in the wake is equal in ma_trtc2A_-Leinrii. 	 sign, to the  

instantaneous value of the circulation around the aerofoil. 

Again if we use the condition that y equals zero in 

the wakes, equation 2.11k, when integrated with respect to x 

gives 

s(x,t) e iwx/V = Ye iwx/V 

	

thc -
o 	

7 
-c/2 

2  18 

=
'2' 	

e iwc/2V 
2 — x < 

Alternatively from equation 2.13 

2  17 

Ix 

(y+s) dx 

-c/2 

  

2  19 
and 

 

pc/2 

£ (2' t) 
	11) 	(Y+E) clx 

-c/2 

The amplitudes of the lift farce and pitching 

moment become respectively on each aerofoil 

- 	

2 

= - T 	Ce-71 (3c.)dx ,  + 	(1-x,f) 	2 7. 	E(x')dxr 
pVc 	 2 7 	

L. 
) 

-1 

220 

/where 
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where 	= 2 denotes the non-dimensional frequency parameter 

and (lashes denote values of x divided by c/2. 

The discontinuities in 0 across the surface of the 

aerofoils and their wakes can be represented by distributions 

of doublets of strengths equal to the local discontinuity. 

Thus 

a 0(x, z, t) = 2 1 7c 	j T (X
1 1  zn' t) 	— a z log r

n 
dx ax1 

n -c/2 

	 2. 21 

where T = y+s 
2 

r 	= (x-x1  ) 

and suffix n refers to the nth aerofoil from the axis OX. 

Then adjacent aerofoils are oscillating in antiphase 

with small amplitude T(xl ,zn,t) = (-1) n  T(xl ,ze t) and on 

differentiating equation 2.21 with respect tc z and taking 

the limit as z tends to zero, We find that the normal induced 

velocity adjacent to the zeroth aerofoil+  is 

T (x1,  "C) chi w(x,0,t) 
= 2 s 

u  _ 0/2  sinh 5 (x-x1 1 

where s is the gap between adjacent blades. 

But w(x,0,t) must equal the normal velocity of the 

oscillating aerofoil. 	This can be written in terms of ,O 

its displacement and rotation respectively about the reference 

axis as 

w(x,t) = at  v 40 (+(x-xf)!) 

1 	..... , 2. 23 = V I-L-4 	4'1 (x.'-x) 
/On ... 

The following relations are used 

O 	 x- X a 2 	 xl 

dz 	
log rn 

ax = 
aon 

-00 	
rn 

z 
n 

= ns 

rY1 

2 2 2 cosoch y 	C(-1) 11 	 
__cx) 	y 1-n 'A 

\O..) 

and 
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On equating equations 2.22 and 2.23 and dividing 

through by oiwt  we obtain finally 

1w 	- 
iZ(X - ) 

+ e ---7---- + 1 
2 

-\042 
7 (xl''0)  dx' 

=  
2x 

-1  sinh 7\(X I  -X
1

) 
k..) 

	2.24 

where i\ = 	and and dashes denote quantities divided by c/2. 

-,‘ c,.c., 	 ) oo 	r‘l 
c 

from equation 2.18 

/x) \ - 	

1 	OE
1 	

) dx
1 k 	

.2\ 	J (1 ) 	exp 2  [1-xi  

ex 	sinh ?\(x-x1 ) 	27c 	 sinh ?'\ 
-1 	 V 1 

2  25 

where, for convenience, the dashes on x have been omitted. 

Apart from changes in notation, equation 2.25 agrees 

with equation 68 of reference 4. On making the substitutions 

tanh r\ = k 

	

tanh .?‘x = ka 	 2  26 

tanh 21x1  = kal 

 equation 2.25 becomes 

1/k 	-1 
tanh ka 

_ 1 
11  7(al)dal 	T(1) 	exp w , 	- 	

1  
>\ 

0  — 2 7 	
\ .  

1 - k 	 Lf -1 (a-a pv 1-k2  al 	 1 	(a-a 	- k2  a2  

	

1 	 1 

	2.27 

The solution of the integral equation 2.27 can be 

obtained by the methods suggested in reference 4. 1-  After a 

partial integration this becomes 

If we further write 	= 	+ 	and substitute 

-1 

If g(x) = then f(x) = 
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obtained by the methods suggested in reference 4. 1-  After a 

partial integration this becomes 

If we further write 	= 	+ 	and substitute 

If g(x) = then f(x) = 
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•1 
) da 

1-a 	it 	1-a 
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1
) 	k 

2  

The value of E(1) is obtained by integrating ;(a) 

with respect to a between the limits 1 and -1 and substituting 

from equation 2.19. After some rearrangement it can be shown 

that, 

	

/1 -a 	da  as 
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The amplitudes of the lift force and pitching moment 

can be found directly from equations 2.19, 2.20, when ;7 is 

substituted from equation 2.28 together with 2.29. 

It is possible to simplify the above integrals for the 

case of small gap-chord ratios since when s/c (:<1, 

and 7\ is very large. The validity of the resulting expressions 

is limited however to values of the gap-chord ratio below 0.5. +  

liore general solutions to the above integrals can be 

obtained by transforming them in terms of Jacobean elliptic 

functions. The final expresseions obtained are in agreement with 

the solution obtained in a different way by Timm .), (reference 5). 

Only ... 

In particular in this region the airload coefficient 

- 24" 	k  K2  (k) 
2 	3 - 

Timman uses the method of conformal transformation. 

It is an extension of Theodorsen's method for the 
two-dimensional isolated oscillating aerofoil. 
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The value of E(1) is obtained by integrating ;(a) 

with respect to a between the limits 1 and -1 and substituting 

from equation 2.19. After some rearrangement it can be shown 

that, 
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The amplitudes of the lift force and pitching moment 

can be found directly from equations 2.19, 2.20, when ;7 is 

substituted from equation 2.28 together with 2.29. 

It is possible to simplify the above integrals for the 

case of small gap-chord ratios since when s/c (:<1, 

and 7\ is very large. The validity of the resulting expressions 

is limited however to values of the gap-chord ratio below 0.5. 4.  

Liore general solutions to the above integrals can be 

obtained by transforming them in terms of Jacobean elliptic 

functions. The final expresseions obtained are in agreement with 

the solution obtained in a different way by Timman*  (reference 5). 

Only ... 

In particular in this region the airload coefficient 

- 24" 	k  K2  (k) 
2 	3 - 

Timman uses the method of conformal transformation. 

It is an extension of Theodorsen's method for the 
two-dimensional isolated oscillating aerofoil. 
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Only the final expressions for the airload derivatives will be 

quoted here. 

The airload coefficients will be expressed as follows 

- - 
— + 	0 2 = Z 12 c 	z34 

2  30 

= 11 	— + 	e 
9  2 	. 19 c 

7..pc -17 

where 
	

z12 = z 1 4* 11 2 

1I
12 

= 1J11 
+ 1112 	

etc. 

now refers to the amplitude of the pitching moment about 

the mid-chord axis. 

Then, 

e2..,  
- 	 7 	Ix

2
Q 1 )1 	16 cA) s

2 
 Q 2  

12 	c 	1 Z 	= it° 
16s 
 Q 	+ (C-1) ( 1 - 	- 	 7, 	 9 	2 2 

L. 	 c 
	 2. 31 

2 
E

4 	7,0 	 2 
16s 	 / 	7cQi  

,...32s 2  [I 	Q1Q3 	1 Q 	+ (C-1) 11 - 	+ 3.ww 	Q + 	1) 1 
3 2

c
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--32s 2 	 2 
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7 c 	 21cK 
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2 32s 4- 	„  32s3 
w -47 Q - iw 	3  Q

2 
(C.-1 ) 

C 	 K-  c 

where the generalised Theodorsen function+  C(CYYo2) A-iB 

Timman (reference 5) expresses the airload coefficients 
tr c in terms of a generalised nssner function Ti 	a 2C-1. 

Equations 2.31 to 2.40 are not identical with the expressions 

quoted in reference 5, since a number of minor errors exist in 

the printed paper. 
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T 	,,,,, ,2 
F ( fb+ ibF CT, ib4-; ih; -4 ) - 	,-+

, 
 i 	, 	-1; ih+2 • -LI  )4. 

	

(i-0+1 )p
2 	2 P 	 ' 
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r- 
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(i13  

I ( 2 3 .7)  	1 . 	] 7 ----,7 - 1 + i 	14,1b+-2- ;i1D+1;7 
F-' 	la"- 	 lc' 2 P7 

where FG, ib-l-3, ih.-1-) etc. are hypergeometric functions - 	•   
P 

s = 2Ac 

and ewc/s p  

It reduces to the standard value 

i H (2)  (7-;) I 	2 

i H (2) II (2) (-) 1 	2 	o 	2 

when — tends to infinity. 

In equations 2.31 to 2.35 inclusive; 

2  36 

4n+f(1.4.q 2n+1 )  

Q 1 `' n=0 	(i_en+1 ) 2 
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q2n+1 )3 

rao  
I 	cin (11.q 2n)  
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r>„ 	2 q2n(14.q2n) 

14. - 4-- 	Yn n=1 	n  (1-q  2n)  
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2  38 

2  39 
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The functions Q 1  to Q, used in this report are not identical with the functions which are sometimes used in connection 
with the theta function. 
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m=n-1 
= 	

1 
'n m=0 / ) ( 1 _em+1, f 	2n-2m-1) 

2m+1)(2n-2m-1 	) 
(1-q 

 
2n-2m-1 

	 2.41 
2m+1 

2m+1)(2n+2m+1)(1-q2T1141) (i_en+2m+1 / 	 ) m=0  

k = tan h ( 7 	' 1 	k2  + k '
2 
 = 1 k. 2s  

K(k) ; K' (k) are the complete elliptic integrals of the first 

kind of order k, and E (k) is the complete elliptic integral 

of the second kind of order k. 

§2.2. Approximate value of C for small values of the gap-chord 

ratio 

The hypergeometric functions in equation 2.35 can be 

expanded in the following power series, 

a. b 	a (a+1 	(b+1)  z2 
F (a, b; c; z) 	

+ 
1.c z  + 1.2. c+1) 	when 	Id < 1. 

equation 2.35 it is noted that E(k) and k
2 

tend to unity and 

k'
2 to zero as the gap-chord ratio tends to zero. + If we use 

these approximations we find that in the range 0c7.. 41 equation 

2.35 reduces to 2 

+ 8b2X2  
A - 	

2  
" 	2.43 

 

- 	+ 16b2K2  

For small values of the gap-chord ratio 1 	and 

then, for most practical applications, we need only the first two 

terms of the above series. Also in evaluating C(Z
2 c  ) from 

/For very ... 

For small values of s/c K(k),--loge k'  and 	(k) 	. L- 	K' 	-.4  7 2 

Hence 
q = e-  Ke 	

9 
(2s 

 xc + loge2) 
Ta 



and. B 
2 

zr

e
— 	+ 13  log 2 ) 2 
	2. 46 
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For very svoll values of the gap-chord ratio 

'‘2 
12s loge`) (  

A _ 

1 	W2  • I +1o2) L 7.0 

2. 45 

1 4- r.i.) 	+ 2sloc 2 
g'e 

The asymptotic values of their derivatives with respect 

to the gap-chord ratio are 

re 1 orr dA 
7737 	- 	„,._62 ) 2 

s/c-0 

713 f -2 
-(A) 	loge 2 

77 1- 	 2 
(1 + -e )  
	2.48 

The functions A and B are plotted 5n figure 16 for 

certain values of the frequency parameter 135. 

§2,3. The evaluation of the functions Q 1 ,Q 2,Q,Q24_. 

The functions 71, 
e 

Q 3  and Q4 
are determined from 

the infinite series in the function q (see equation 2.42). Now 

for small values of the gap-chord ratio q varies from 0.1 to 

1.0 and in this range the series are not rapidly convergent. 

They have been evaluated, by direct summation, to three decimal 

places and the results are given in table 3 and figures 17 and 18. 

§2.4. The two-dimensional aerodynamic derivatives 

If the lift and pitching moment are written respectively 
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then from equations 2.30, 

z z 	fdz 'eZ. z 
7K OV 
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The values of the aerodynamic derivatives referred to 

the mid-chord axis  are, from equations 2.31 to 2.34 inclusive, 

= - 
Z

= 0 
z 	pV2 

1  _ 	.16 -!-Q i  F „_,) (.1 741 
2kK 

71 	1 6s 2 17, 	BT 	7c2Q ,),  

- 	 2 = 	2 I 	- 1 	8 pc 	itc 	 1■... 	21(K) 

_ 	- a 

2 

	

2- 	c 
is 	

Q1 	
+ 	(A-1) 

	

= 	 (A-1) 

'- 

pcV 	 Ma- 

Q Q 

20 	—I  

c rt. 
(.0 

/rd 	= 

zo 	32 
- 16 a Q 

A n 

pc-V 

	

- 	

zu 	2112_ cc2Q1Q3B 

.2 2 	2-,, 

	

PC 	7C c 	2kK w 

M 
- 	= 	0 

pcV 

P,iz3 2 59 

M. 	
Q 	B 	lz2Q,E) 

) 

pc-V 	91c 
---9 	=-2 2 	Q3 	+ (A-1) 

2kK2 

pc3 = 	

2 

.nc 	 2kK 
2 	3 	 2 

Me 	32s2 
	 7C2Q i) 

2 Q3 	(11-1) 	1 	- po2v2 
2kK- 

2  50 

- 

E 

M12 = - 

2 

= 

▪ = 
6 

.. = 

mz = 

ra. = 

= 

= 

  

2 51 

  

2 

2kK2 

• • • 

 



-34- 

2„ ,. me 	32s3  ,2 (, - , N , 	
2 
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The variations of the derivatives ,..1? m. 	m 
' 	0' 	, 	e 

with gap-chord ratio are shown in figure 19. 

If the reference axis is taken he forward of the mid-

chord position and the corresponding values of the derivatives are 
- 

denoted by iz , mz 
etc. then the transformation formulae are 

zz .ez = 	; '2z• = 	; -6• = •• 

0 = 	+ h.ez  , 	e = 8 + 
.„  

' 	171 = m. 	h..1) 	= m. 	1.. M
z  =

m 
z 
 + z' 	 ' raz 

m0  = m0 	h z +-Ye ) + 	11. 2.(1 z 

0 = 0 + h (m. + • ) + htt 0 
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** = Er. 	h 	 h2  k( .. o 	e 	z 	e 	z • 

R2.5. The three-dimensional flutter derivatives  

Although the theory derived above can be logically 

extended to aerofoils of finite aspect ratio in cascade the added 

complications+  appear unnecessary in this preliminary estimation 

of the magnitude of the cascade effect. 	It will be assumed 

therefore that the lift loading at all spanwise positions on the 

aerofoil will be similar and directly proportional to its local 

displacement and rotation. 	The aerofoils will be assumed to be 

of constant chord. 

If the normal displacement of the zeroth aerofoil is 

given by 

. 	fen) 	(K-xf)0 F(i) 	 2  53 

where 	= y/t 
= the distance from the root to the reference section. 

Since the wake plays a minor role in the determination 
of the airloads on an aerofoil in a cascade of small gap-chord ratio, 
it might be inferred that the effect of the tip vortex would not be 
very marked. 
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fen) and Fen) = the flexural and torsional modes of vibration 

0,0 = the angular displacements in flexure and 

torsion at the reference section relative to 

the root. 

x, = the ohorduise position of the reference axis 

in the reference section, 

then the amplitudes of the flexural and torsional moments about 

the root section can be expressed by, 

- FA23 = T12 0 + 34. 

= 	0 + 11
34

19-  - 2f12 	N12 pV t o 

where 
	/J4- ec  

The aerodynamic derivatives are derived from 

L1 2 = c1 + 	b1 - 2 al 

L
34 

= c3 + Jab3 - -2 g1 

1412 	k1 	j1 	3 

34 
= k

3 
+ iw 3 - w g

3 

`11 
where, 	al  = 	f2a1 
	

b1 	
f2an 

I.• 0 

c _ z 	f dn g1 To• 1 fF dri 
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1 = 2. 	fF k 
 

0 

1 

fF 

0 

fF dr] 

 

a = 	fF an 3 	 b
3 

 

...2.56 

1 o 

fF n 03 	mz 	d  
g3 = 

and [11  F2dri 

The derivatives are written as ,r z 	, 	, to 
show that two-dimensional values are being used. It is more 
usual to use the notation 	 , for those same 
derivatives when three-dimensional values are being used. 

2.52+ 

2  55 
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j 3  = mo 

/11  

F- dri k
3 	

m
e 	

Fdi 

_• 

and the reference axis is taken at he forward of the mid-chord 

position. 

The complete coefficients a1 , 
b

1 
etc. must include 

both the aerodynamic and the structural components. 

§3. Flutter with a single degree of freedom 

Uncoupled flexural or torsional oscillations can occur 

when the coupling terms G i  , J1  , Ki  and A
3 , 

B
3 , 

C
3 

(see 

equations Al.1) are zero. 

The equations of motion for uncoupled flexural and 

torsional oscillations are respectively, 

Al 
T2f+ B1 	C1  0 = 0 	

31  

G3 o+ J3 ©+ K3 e = 0 

where 0 is the flexural coordinate and 0 is the torsional 

coordinate. 

Flutter can therefore occur in the flexural and tor- 

sional modes, when respectively B 1  and J3  are zero. 	In the 
_ 

notationot-Rthiswouldrequire4.01. m. to be zero. 

Hence for flutter with a single degree of freedom 

either 

= 0 ; j 1  = 0 ; k1  = 0 ; b 1  =0 

or 	 3  2 

a3  = 0 ; b 3  = 0 ; c3  = 0 ; j 3  = 0 

It can be shown from an analysis of the terms given 

in equations 2.51 and 2.56 that these conditions cannot be 

satisfied. 	It is probable, however, that for oscillations 

having finite amplitude, the values of the aerodynamic deriva-

tives will be reduced below those stated in equations 2.51 (see 

Appendix 2) and more exact analysis may show that under certain 

conditions equations 3.2 can be satisfied. 

/Table 3 ... 

o 
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Q l  

TABLE 3 

Q4 Q 2 Q3 

0 0 0 0 0 

0.05 0.272 0.061 0.061 0.003 

0.1 0.465 0.151 0.151 0.018 

0.2 0.953 0.472 0.472 0.133 

0.3 1.702 1.14.8 1.148 0.613 

0.4. 2.939 2.623 2.623 2.481 

0.5 

0.6 9.456 15.209 15.209 47.128 

Note. 

1. Tabulated values have been Obtained by term by term 

summation. 

2. Five decimal places have been used throughout. 

3. The following values of y n  were calculated and were 

used in the evaluation of Q
3 and. Q,. 

(1 Y1 Y2 Y3 Y4 Y5 Y6 

0 1.0 1.333 1.533 1.676 1.787 1.878 
0.05 1.14.3 1.446 1.642 - - - 

0.1 1.309 1.572 1.763 1.903 2.013 2.103 
0.2 1.732 1.382 2.055 2.191 2.299 2.388 
0.3 2.338 2.3'11 2.)1114. 2.570 2.675 2.762 
0.4 3.262 2.927 2.990 3.094 3.191 3.275 
0 .5 - - - - - - 

0 .6 7.571 5.616 5.192 5.104. 5.120 5.168 

q Y7 Y8 Y9 Y10 Y 11 Y 12 

0 1.955 2.022 2.081 - - - 

0.1 2.179 2.24.6 2.304 - - 

0.2 2.4.63 2.538 2 .563 
0.3 2.837 2.903 2.961 - _ _ 

0.4 3.349 3.413 3.470 3.522 3.597 3.611 
0 .5 - - - _ _ 
0.6 5.223 5.278 5.330 5.379 5.4.22 5.464 

Y13 Y14 Y15 Y16 r17 Y18 
0.4 
0.5 

0.6 5.503 5.538 5.572 5.603 5.633 5.661 
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Table 3 - Contd.. 

q 	Y19 	Y2021 	r 22 
0.4 

0.5 

0.6 	5.687 	5.712 	5.736 	5.759 

 N ,, (in el  + 2n+1 )  
7 	. 

Q 1 	
= 	q- ..„..., 	su 	-.I 7 

n=0 
(1 - q

2n+1)- 
= 	 Yn 

n=1 

r 

q  2n)  

	 92n+1 2 q 	+ q2n)  2n I 

Q 2 = 	 = 	Yri 	 2n\ 
2.‘11.+1) 	q2n+1 n.=0 / 	 ) 3 	 n=1 	n O - q ) 

Yn 
1 

 

2m+1 	...q.2n-2m-1 )  
(2m+1) (2n-2m-1 ) (1 -q  

2m+1 
+ 2n  ..----'  

111=0 (2m+1 ) (2n+2m+1) (1- ci2r1+1 ) (1 -q2n+2m+1 ) 
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APPETODC 1  

The calculation of the critical flutter s eed and 

frequency for coupled flexure-torsion flutter.  

A brief account of the essential features of flutter 

theory are given, for completeness, below. L more detailed 

account can be found, for example, in reference 2. 

The equations of motion describing the vibration of a 

rectangular cantilevered aerofoil in cascade are (reference 2) 

A 1 .0 +

• 

 B 1 0 + 0 1 0 + G1 6 +

• 

 Jl e + K1 6 = 0 
	A1,1 

A3.0 +

• 

 B30 + C30 + G3.8 +

• 

 J3 b + K3 6 =o 

where 0 is the flexural coordinate (the downward displacement 

z of the extremity of the flexural axis at the tip 

section divided by the span 

and 	0 is the torsional coordinate (the twist at the tip section 

- positive when the leading edge rises and the trailing 

edge falls), 

If f(71) and F(n) are the flexural and torsional 

modes respectively then the downward displacement at the point 

(x,y) is 

z = 	f 01) + Go (F,-F:)F 	...   1 . 2 

where 	= y/4? 

= x/c 

e is the distance of the flexural axis from the 

leading edge 

= span (root to tip) 

c = chord 

and x,y,z 	are rectangular cartesian coordinates having 

their origin at the leading edge of the root 

section (see figure 20). 

The boundary conditions are that 

f(0) 

f(1) 

fr (0) 

f" (1) 

= 

= 

= 

= 

F(0) 

--F(1) 

F 1 (1) 

f"(1) 

= 

= 

= 

= 

0 

I 

0 

0 

	 11 .3 

/If ...  

Good approximations to the flexural and torsional modes 
are f(TI) = r1 2  

and F (r1} = rl 
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If, for a harmonic motion, 0 = 0 e 52Dt  and 
- Lot = 0 e , where 0 and 0 are the amplitudes and (4) is the 

circular frequency, then from equations A1.1, when 0 and e 

have been eliminated, 

qo  w 4 

which has the solutions 

w
2 	

= 

and 

ql q2 

where 	OSA 

. 	w3 

q3  I g1  

q 3 - go 

A
l 

G
) 

A G 
3 	3 

2 
- q2.:a 

- q 

. 
+ 3434) + q 

2 
0 

0 	A1.4 

	A.1.5 

	Al. 6 

A
l 

J
1 	

B1  C. 
= A3  J3 1 	1B3  G3  

q 

0
1 
K

1 
c 3  K3 1 

If m = mass per unit length of span 

c = distance of the centre of gravity from the leading 

edge 
2 2 

mcPx = the polar moment of inertia per unit length about 

the leading edge 

41 ,1 

 

= flexural stiffness , y)  - 

mo  = torsional stiffness 

p = density 

V = wind speed 

the coefficients - 

' 1 

etc. can be expressed in the following 

non-dimensional forms, +  

a1 
 

ql 

m f -dn 

	

1 	 2 

-73  . -?\ 	- 
f dn + 2- 

P 0  L Lie 	Pc Li ❑ 

	

A 	

(11 	A1.8 

Ib 1  

It should be noted that  some of the coefficients are 
different from those used in reference 2. 



'11 

	

b
3

_ 	n ,,e2c2 	
fF d  - 

cJ o 

	A1.15 

j  = 	= 	r2d1 

3 	0403  
0 

	 A1 .1 8 

B, >, r 2  b l 
= 	I-7 = , - 	1  f an 

pVce Jo 

C 	 1 	J'1  elt 1 	= A 	f 2 	'p  c = 	 -dn +  
1 	pV2i3 	0 	 pV23 Li 0 

	A1.9 

	A1.10 

J 	 11 
1 

= 	22 = 	fF  d-71  
pvc 	 0 

 4 

k1 
21

2c 
 = ?k e 	fF dn 

PV .e  

g1 

G1 
4203 

=- = 
fF (In + 1 	 fF clil 

L. o 	Pc  u o 

0 

1 11  

= 
fF dn + 	 fF 	A1.14 a3  = 	- 2 

pe

3

c-) 	 o 	Pc Lt 0 

C
3 03 	
22 	= 110 	

fF do 
c 

0 

	 ,i .16 

G 	 11 	 'II .... 

--1- = .
L11 	F2all 4.  1 2 	(e_2Z. E  ,x2 ). ,2,, .. 

g3 = 	
a . .A1.17 

pc4  Po 0 	 i, o 

K3 	_ 6  

11 
0 F2dn + —377

0  (T--tc 
	Al.19 2o 2 tc 

In the above formulae )'‘ -05  etc. represent the overall 
aerodynamic flexural derivatives and Ec etc. represent the 

overall aerodynamic torsional derivatives. 	The reference axis 

is taken as the flexural axis of the reference section+. The 

/effect ... 

+ The aerodynamic derivatives are functions of the plan form, 
aerofoil section and the frequency parameter w. For preliminary 
calculations of the flutter speed and frequency sufficient accuracy is 
obtained if two-dimensional derivatives appropriate to the required 
frequency parameter are used. 

k
3 



effect of hysteresis or structural damping has been neglected. 

If the non-dimensional coefficients above are substit-

uted into equation A1,5 and A1.6 

- - 	- -2 -2 
oqq-qq, - 	= 0 
-1 

q2 
 3 	o 
	11.20 

and 

w 
WC 

V 
	A1.21 

al 
g1 
" where 

q-o 	I "3 g3 

    

    

 

a1 
j

1 
a3  j3  

 

b
1 g1 

+ b
3  g3  

I hi ji 

+ b
3  j3  

ic 
i 1 ji 

+ c3  j3  

  

    

    

    

    

a1  ki 

 q2 :-- 
a3 
 k3 

,13  = b3  k3  

bi  k1  
7 	I 

c1 k1 

q4 =  4 	
0
3  k3  

  

  

 

01 gi 

03 g3 

 

 

  

  

   

The phase difference and the anplitude ratio between the torsional 

and flexural motions can be obtained as follows. (See reference 2). 

If in the moment equations A1.1 we put 0 = 0 ei(0t4y) 
 and 0 = 0 eiwt  

then it can be shown that the amplitude ratio is given by 

be - b3c 
3 	3 1 - w 	b3a1 )  

j 1 k3 - j
3
k

1 	'3 1 g3 	j3g1 )  

	X1 .22 

and the phase difference y from 

tan y 

Since 

(b 3 j 1  - 1) 1  j3 ) 

 

	A1.23 
(c 1 lD3-k3b 1  ) - 7:62  (b3g1  -b i  g3 ) 

11 
c 1  = 	e-

9  
do 24- 

P Li
0 	PVT 

k
3 

= pe  
M
0  F`'  dry 

oV2ijc`" 

/we can ... 



c 	7\  

1 c 	0 	f 

we can eliminate V
2 

and derive that 

k
3 

= a + Pc 1 	A1.24 

where 

ji  
a = p.0 

[11 
F

2
6111 - 0 	f- dri 

Lc 	 0 

If k
3 

is eliminated from equations A1.20 and A1.21 

with the aid of equation A1.24, we obtain the following quadratic 

equation in terms of the unknown c l  ,+ viz. 

R1 1 
 c + R

2  c 1 
 + R

3 	
0 	 A1.25 2 

 

where 

R
1 = r1  r2 - q1 

- 
R

2 
= r i r3  + r2r4  - a qi

2  

-2 R
3 

= r3r4  + k1 c3  

and 

r
1 
 = b p + j

3 

r 2 = (11 g3 	'7Io j3 ) 	2-1 al - 

r
3 = q1  (b 1  j 3 -  b 3 j 1  - a3k1 	c3 g1 ) + 40 (b3k1  + c3 j 1 ) 

+a(g1 a1 
zoo 

r 	. b 1  c,- b 3k1 	c3 j 1  

If the solution to equation A1.25 is written 

2 R
7 — 2 

-
1
R
3 c

I c 
 

ZR 
I 

then the corresponding value for the critical flutter speed 

V
c is 

V 2  = 	o  / 

 

	 11.27 

 

m. 
0 

0 
	 /and ... 

c
1 

and k
3 

are unknown since V is initially 

unknown. 



and the non-dimensional frequency parameter 

/e,
•• 

+ r 
WC  = 

51  
	A1.28 

It is interesting to note that the calculation of the 

flutter speed of a ri7nn aerofoil at a number of gap-chord ratios 

can be obtained approximately by the following method. 

It can be shown that for typical values of the aero-

dynamic derivatives (see figure 21) 

= Aa+Bk1 
	10.29 

where the constants A and B (not to be confused with A and 

B used in equation 2.35) can be obtained from an evaluation 

of c1 
from equation A1.26 for say the aerofoil in the isolated 

case when arbitrary values are in turn inserted for a and k 1
. 

Hence 

ci 710 	f
2dr1 = Bk1 

+ A 

and from equation Al .27 

o 

f2 010.1 	(44.1) 	f2(371  

Lip 

	A1.30  

V
2 

 

  

3 
/ 

   

    

1\1 

J o 

 

 

Bk1  + Apo  

 

F
2 	

- Af3 ?No  f2
ari 

      

Similarly 

"..(6
2 

= C a 	Dk
1  

	A1.31 

	A1.32 

where C and D are constants. 

Therefore, having calculated A, B,C and D, and knowing 

the values of .?\e)  , [l e  >10 for various gap-chord ratios, the 

corresponding values of V0  and Ij can be directly obtained 

from the equations above. 

The critical flutter speed and frequency have been 

estimated, by the method described above, for the aerofoils 

used in these tests. Typical results are given in table II 
below. 

/Table II ... 
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TA.BT 	II 

Aerofoil properties Theoretical Experimental 

chord 	c 

span 	.i 

t/c 

Flexural stiffness 10  

f 
Torsional stifss m 

co t 

Critical flutter 
speed 

Critical flutter 
frequency 

equency parameter 

Assumed values Aerofoil 11 Aerofoil 14 

3.0 in. 

8.0 in. 

0.10 

3.01b.ft/rad. 

205 rad/sec. 

0.161b.ft/rad. 

484 rad/sec. 

3.0 in. 

8.0 in. 

0.10 

2.491b.ft/rad. 

152 rad/sec. 

0.151b.ft/rad. 

326 rad/sec. 

3.0 in. 

8.0 in. 

0.10 

2.721b.ft/rad. 

179.5 rad/sec. 

0. 1751b. ft/rad. 

326 ra 	sec. 

Calculated 

87 f.p.s. 

220 rad/sec. 

1.0 

111 	f.p.s 

277 rad/sec. 

1.0 

•7.5 f.p.s. 

272 rad/sec. 

0.7 

AFPhNDIX 2 

An approximate calculation of the forces arising from  

the finite amplitude of oscillating aerofoils in cascade  

1.1. Introduction 

In the classical treatment of the forces arising on an 

isolated oscillating aerofoil, the assumption is made that the 

amplitude of the oscillations is infinitesimal. 	The results so 

obtained are, however, applicable to aerofoils oscillating with 

finite amplitude, provided that the amplitude is small compared 

with, soy, the aerofoil chord. 

VI-len the classical theory is extended to the case of 

oscillating aerofoils in cascade, where adjacent aerofoils have 

antiphase motions, the results, so obtained, are not directly 

applicable to the case of small, but finite, amplitude. 	In fact, 

the classical theory neglects the small, but important change in 

the tangential velocity components in the neighbourhood of the 

aerofoils due to the changing gap between adjacent oscillating 

aerofoils. This effect will naturally be important only for 

cascades of oscillating aerofoils having small gap-chord ratio. 

/A very ... 



A very crude approximation is given below of the forces 

and moments on an oscillating aerofoil in cascade due to these 

changes in the tan- 	velocity above and below the aerofoil. 

It will be assumed that such forces and moments will be additive 

to those calculated on the basis of the classical theory. 

It is not suggested that the numerical values calculated 

from this crude theory are necessarily good approximations to the 

exact results. 	It is hoped, however, that they will give the 

order of the corrections involved, and will serve to stimulate 

further interest in this problem. +  

§A. 2. Analysis  

Let us consider a two-dimensional cascade of aerofoils, 

having zero thickness, which are set at zero incidence and 

stagger angle. We will assume that adjacent aerofoils are 

vibrating with antiphase motions. 41  

Let the amplitude of the displacement of the aerofoil, 

with reference axis at the mid chord positions, and the instant-

aneous displacement be respectively 

and 

z = j+ x 0   12. 1 

—  z z eLot 	A2.2 

Lct us consider aerofoil (0), see figure 22, which at time t 

has a displacement z at distance x from the origin. At 

this latter station lot the velocities above and below aerofoil 

(o) be uniform and equal to V-u and V+u respectively. After 

the time interval dt the fluid which crossed the plane at x, at 

time t, will have moved to x + dx, I 
where the velocities above 

and below the aerofoil will be equal to V-u-du and V+u+du 

respectively. The correspondinr; change in the aerofoil 

/displacement 

problem of the forges and moments arising on two 
adjacent oscillating sl.a&ros has been discussed by Lamb (reference 8). 

sos 	The axes and notation are similar to that used in Part 2. 

The small djfierence between the relative movements of 
the fluid above and below the aerofoil has been neglected in this 
crude approximation. 
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displacement will be dz. 	Since the rates of mass flow at times 

t and ti-lat must be equal 

(71-u)(2 - z) = (V+u+du)( 	z - dz) 

below the aerofoil and 

(V-u)(a + z) = (7.-u-du)(2  + z + dz) 2 	 2 

above the aerofoil. 

When IzI‹ K s/2 the required solution of equations 

.L2.3 is 

giving 

u 	2z = 
V 
	A2. Li- 

	A2. 3 

u - u = 14_V z 	 L. 5 

 

where u and u-  are respectively the perturbation velocities 

above and below the aerofoil. 

From Bernoulli's equation for the unsteady flow of an 

incompressible fluid, when second order velocity components are 

neglected, it can be shown that, + 

2 
= LLY 	(7+x0) + iw 24-P17 	+( FRX + 2\7  +(x2  - e+  	7 

	12. 6 

The amplitude of the lift force is given by 

43/c  iFcr 
7m /c 	5/c ;/3) 7777 - ItpcV - 

and the amplitude of the pitching moment about the mid-chord 

axis is 

M 	 . am _ 
?ye -V 

= — 
37 	— cs c 371770 /c  

The airload coefficients are 

., _ 
4 	2i 	. 	 ia" 

8112 - 	— 	 Z — 12 	777 777 ' 	34 77;7 

_ 	..., co 

	

' 	, 7 	----rI . . 
M12 = - 3 

I
77 	' "34 = — 3ns/c 

	A2.8 

	A 2.9 

/and the 

The pressure difference calculated from equations 
A2.6 must be added, as stated in the introductory remarks, to 
the pressure difference caused by the direction motion of the 
aerofoil. 



and the lift and pitching moment derivatives about the mid-chord 

axis are, 

• -2- 5 

4), 0 75.i177, 

	A2.10 

0 raz = • = --"— 
3sIc 

1 
me 

▪ 	

0 
M8 	777 

If we now compare the derivatives above with those 

obtained by the classical theory (see equation 2.51) it can be 

seen that both the classical stiffness and dnuping derivatives 

are reduced when the reference axis is formrd of the Did-chord. 
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COLLEGE OF AERONAUTICS 

REPORT No, 60. 	 FIGS, I & 2. 



COLLEGE OF AERONAUTICS 

REPORT No. 60. 
	 FIGS. 3 & 4e4 

CASCADE OF AEROFOILS WITH STOPS IN POSITION 

FIG. 	3. 

GENERAL VIEW OF THE METAL BLADE SHOWING THE FLEXURE—

TORSION SPRINGS AT THE ROOT Fl XING 

FIG.  4. 
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	 FIG. S. 

VIEW OF THE AEROFOIL MOUNTED ON THE VIBRATION TABLE. 
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(a) 

SINGLE AEROFOIL BETWEEN PARALLEL 

PLATES. 

411111Eman- 

4111282sw- 
vc 	 S 

ALL AEROFOILS 

NAC A 0010 

CHORD 3 IN. 

diatemoo- 

(b) 

AEROFOILS IN CASCADE 

(UNSTAGGERED) 

LEGEND. 

0 	f.:`,JRVE 

Vc  CRITICAL FLUTTER SPEED FOR ISOLATED AEROFOIL. 

V
F 

CRITICAL FLUTTER SPEED FOR AEROFOIL CASCADE. 

(p) SINGLE AEROFOIL BETWEEN' PARALLEL PLATES. 

} A 5 AEROFOILS 
CURVE (b) UNSTAGGERED CASCADE OF AEROFOILS. 

❑ e AEROFOILS 

0 05 1.00 I.S0 

GAP — CHORD RATIO Sic  

CRITICAL FLUTTER SPEED VARIATION WITH GAP CHORD RATIO. 
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CRITICAL FLUTTER SPEED VARIATION WITH STAGGER ANGLE. 
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LEGEND. 

POINTS THUS V DENOTE THE EXTRAPOLATED 

CRITICAL FREQUENCY CORRESPONDING TO THE 

CRITICAL FLUTTER SPEED. 
13 

I•2 

FREQUENCY VARIATION ABOVE CRITICAL 
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lc  — CRITICAL FREQUENCY OF ISOLATED AEROFOIL, 

fG — CRITICAL FREQUENCY CF AEROFOIL IN CASCADE. 
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	 FIG. 13. A. 

AEROFOILS IN CASCADE, 

par minute. 

per minute. 

par minute. 

INCIDENCE (1:16°) 0°  

STAGGER (C -' °) 15°  

GAP—CHORD RATIO is:D=1, 0.5 

LIGHT FREQUENCY 39 cycles 

FLUTTER FREQUENCY 40 cycles 

FILM SPEED 13 cycles 
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FIG 13. B. 
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AEROFOILS IN CASCADE. 

per minute. 

per minute. 

per minute. 

INCIDENCE k:3)=-":00  

STAGGER 07'1 = 15°  

GAP—CHORD RATIO (t)=0•5 

LIGHT FREQUENCY 39 cycles 

FLUTTER FREQUENCY 40 cycles 

FILM SPEED 8 cycles 
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REPORT No. 60. 

ISOLATED AEROFOIL. 

LIGHT FREQUENCY 39 cycles p4►r second. 

FLUTTER FREQUENCY 40 cycles per second. 

FILM SPEED 8 cycles per second . 

INCIDENCE (02) --r: 0°  
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ASSUMED MOTIONS OF THE AEROFOILS AND THEIR WAKES. 



VARIATION OF THE PARAMETERS A AND B WITH GAP CHORD RATIC 

A 	i B.) 

FIG. 	16. COLLEGE OF AERONAUTICS 

REPORT No. 60. 

I .5 I 0 3.5 2n 30 0.5 2. 5 

ASYMPTOTIC VALUES 

EXTRAPOLATED 

(Sirs 	Gtto 

A 
0 

0418 

(•=0.5 ..... ,,,,,-. 

7 
:5 '` I . 

 Mar il... 

— 

eft Mail 

.... ••■•■ *maw 

0 
MUM ,N■ MM. 

101=W 	MM. 	14•11. 

■Is 

•■■• 

rim ..ir 

e.6 = C20 
6 3.0 

GAP -  CHORD 	RATIO 5/ 

CALCULATED FROM EQUATIONS 

2.43 AND 2.44. 

WNW. •dia• ■■ NAV •10. 

! 0 	 15 	 2.0 

GAP-CHORD 	RATIO Sic  

2.5 	 3.0 	 3 . 5 

Ga 0.5 

i3= 1.0 

OBTAINED FROM REF 7. 

0.4 

0 

0 

08 

0 6 



FIG. 17. COLLEGE OF AERONAUTICS 

REPORT No, 60 

0.5 O 1.0 
	

1.5 2.0 

S 
C 

2.5 3.0 

I 
I, 2= exp 

COMPLETE 

KIND 

Tr 
K

f 
(-- -17) 	WHERE 

ELLIPTIC 

AND 	fl,...-= 

K I (4) AND 

INTEGRALS 

Tanis.( 1224) 

K(. ARE 

OF THE THE 

FIRST 

GAP—CHORD 	RATIO 

VARIATION OF THE PARAMETER 9/ 

 WITH GAP CHORD RATIO 

10 

08 

06 

04 

0.2 

0 



FIG. 18. COLLEGE OF AERONAUTICS. 

REPORT No. 60. 

0 1  

0 0 5 	 l 0 	 15 	 2 0 	 2.5 

RATIO 	/ GAP CHORD 

2.0 

1.5 

0 1 

 AND 

02 

1.0 

0.5 

GAP— CHORD 	RATIO Sic  

VARIATION OF THE FUNCTIONS QI Q2, Q3iQ4• 

2.0 

0 

C •5 

5 

AND 

04 

1.0 

O.5 1 0 1.5 

Q3 

2.0 2.5 



0 

COLLEGE OF AERONt,t,:TiC 

REPORT NQ. SO 
HG. 19. 

GAP- CHORD RATIO Sitc 

0 0.5 1.0 15 2 .0 

..............•■•■10.1•••• 

VARIATION OF THE DERIVATIVES

e 

 AND rt'l • 

WITH GAP-CHORD RATIO a-) O. 5 

4 

4 
AND 

to  
2 

a 

— - - EXTRAPOLATED CURVES 

= 4 	a K 2  (a) 
Ir X 

I 1  1  
/  

i 

L 	
_

0
1

  

. 	.... .., 

0 
	

0•5 	 1•0 	 1.5 
	

2 . 0 

GAP-CHORD RATIO 
s
/C 

WITH GAP CHORD RATIO Z.) 7. 0- 5 

VARIATION OF THE DERIVATIVES 	AND I 
e 

TYPICAL VALUES OF THE CLASSICAL 

AERODYNAMIC DERIVATIVES 



COLLEGE OF AERONAUTICS 

REPORT No, 60. 

FIG. 20. 

NOTATION 	FOR FLUTTER CALCULATIONS. 
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DIAGRAM SHOWING OSCILLATING 

AEROFOILS IN CASCADE , 


