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SUMMARY

Part 1 of this report describes the results obtained
from a series of tests on the flexure-torsion flutter charscter-
istics of cascades of similar aerofoils having syrmetrical
sections. The critical flutter speeds and frequencies of the
acrofoils in cascade have been compared with their isolated
values, The investigation has included the effects of gap-chord
ratio and of stagger. The Reynclds number, based on wing chord,
was about 0.15 x 106.

It was found that the critical flutter speed decreased
as the gap-chord ratio was reduced. The variation of critical
flutter speed with stagger angle was relatively small, In both
cases the critical flutter frequency was greater than that for
the isclated aerofoils. It was noted that during flutter
adjacent aerofoils were oscillating approximately 180° out of
phase, and hence alternate blades were in phase. The mode of

oscillation was of the flexure-torsion type.

The accuracy of the experiments was limited by slight
variations in the structure of the models and in the case of
the wooden aerofoils, by noticeable changes in their torsional

and flexural stiffnesses with humidity and temperature.
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Part 2 of this report is a review of the theoretical
studies on oscillating aerofoils in cascade., Since, as is
noted in Part 1, adjecent aerofoils vibrated 180° out of phase,
the problem is analoguous to that of a single oscillating aero-
foil placed between parallel walls. The air forces have been
calculated approximately enabling the flutter characteristics of
the aerofoils, described in Part 1, to be computed and a com-
parison made with the experimental results. Fair agreement has
been obtained, and such differences as there are, it is suggested,
arec due to the neglect of the effects of finite aspect ratio and
thickness of the aerofoils and the rigid body movements. The
latter problem together with an account of simplified flutter

calculations are discussed in appendices,

The major part of the experimental work discussed in
Part 1 was reported by K. Alming, G.E. Gadd and W.F, Wiles in an

- unpublished note.
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NOTATTION

real part of C (see below)
flexural moment of inertia
non-dimensional form of 31
flexural~torsional product of inertia
non-dimensional form of A3

“Ws/2nc

imaginary part of C (see below)

direct flexural damping coefficient
non-dimensional form of Bﬂ

compound torsional damping coefficient
non-dimensional form of B3

flexural stiffness

non-dimensional form of C1

chord

generalised Theodorsen function

torsional cross-stiffness

non~dimensional form of 03

complete elliptic integral of the second kind
frequency

flexural mode

torsional mode

hypergéometric function

flexural~torsional product of inertia
non-dimensional form of G1

torsional moment of inertia

non-dimensional form of G3
distance of flexural axis from leading edge
Hankel functions

compound flexural damping cocfficient

non-dimensional form of J1
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J3 direct torsional damping coefficient
53 non-dimensional form of J3
k = tanh 2\

Sex

K (x),K' (k) complete elliptic integrals of the first kind

3
i

K1 flexural cross-stiffness

k1 non~dimensional form of K1

K3 direct torsional stiffness

k3 non-dimensional form of K3

L flexural moment

E span

Eﬁ flexural stiffness

Ez i% EE aerodynamic derivatives

'ge zé E@ aerodynamic derivatives

M pitching moment; torsional moment; Mach No. in

free stream

m mass/unit length of span
My torsional stiffness

m, m, I, aerodynamic derivatives
mg My my aerodynamic derivatives
P pressure

Q1Q2Q3Q4 functions of g

q = exp(-K'/K)

q0q1q2q3qh dimensional coefficients

qoqﬂquEqu non-dimensional coefficients

7 distance (see egn. 2,22)

r1r2r3r4 coefficients in flutter equations

R1R2R3 coefficients in flutter equations

s gap

t aerofoil thicknessy time

u perturbation velocity component in direction OX
v freestream velocity - isolated aerofoil

v freestream velocity ~ aerofoil in cascade

w perturbation velocity component .in direction 02
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b4 coordinate in chordwise direction

Xo distance of reference section from origin

NG coordinate in spanwise direction

Z force in direction O0Z

Z coordinate normal to chord

%z aerofoil displacement in direction 0Z

g = -;E tanh hx, angle of incidence), aerodynamic stiffness parameter

B E exp(nc/s); elastic stiffness parameter
¥ bound vorticity; phase angle
fficient in seri ;
¥, coefficient in series Q3Qf+
i circulation
€ free vorticity

v/

aerofoil rotation; torsional coordinate

Oc/ —?

%cn =
m

H,c radius of gyration
i ne
A - 2s
7\;3?\;57\;3 aerodynamic derivatives
?\8?\'6 ?"é aerodynamic derivatives
"L,Gf ”f:’f “Ej aerodynamic derivatives
Lo M3 My aerodynamic derivatives
v kinematic viscosity
& = x/ 2
cg distance of the centre of gravity from the
leading edge
cg‘; distance of the flexural axis from the

leading edge

ry = we/V  frequency parameter (reduced frequency)
o] air density

o stagger angle

T = Y + €

flexural coordinate) velocity potential

acceleration potential

VI

W circular frequency

natural frequency in flexure
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W, natural frequency in torsion

Suffix c denotes the value of a quantity at which flutter is
Just maintained.

Suffix o denotes the free stream value.



81.  Introduction

The effect of the interference of adjacent blades
in a cascade of aerofoils in modifying the isolated critical
flutter characteristics of the aerofoils has received little
attention. A recent paper by Bellenot and Lalive d'Epinay
(reference 1) describes some tests on cascade flutter made at
one gap-chord ratio over a range of stagger angles. They found
that the modes of vibration during flutter were either pure
torsion or pure flexure and these are therefore different from
the type of flutter investigated in this report. Ia Part 2 of
the present paper the problem of flutter with one degree of free-
dom is discussed.

An experimental investigation of the flutter
characteristics of aerofoils in cascade has been conducted in
the Aerodynamics Laboratory of the College of Aeronautics
between 1948 and 1950, Two types of model aerofoils have been

used in these experiments

(a) Aerofoils manufactured from a light wooden
framework covered with doped silk

(p) Rigid metal acrofoils supported from combined

flexure and torsion springs at the root.

The two types of aerofoils had approximately the
same chord but the spans were different. It was found, however,
that there was in the main qualitative agreement between the two
sets of results. Therefore, in order to avoid conflusion and
undue repetition, and noting that the aerofoils of type (a) are
more allied to practical aerofoils, only the results obtained from
type (a) aerofoils will bé presented heve. The small differ-
ences in the flutter characteristics obtained between aerofoils
of types (a) and (b) have not been campletely explained but it
is considered that these differences are probably due to the
variations in the end fixing, the modes of vibration and the

aspect ratio,

The accuracy of these experiments was limited for

reasons which will be discussed.

The major part of the experimental work, relating
to the wooden aerofoils, described in this report was reported
by K. Alming, G.E. Gadd and W,F. Wiles in an unpublished note,
The experiments on the metal aerofoils were completed by
E.S. FParris, E.T.B, Smith and C.G., Hughes,

8 ...
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§2. Apparatus

The experinents were conducted in a blower type wind
tunnel, . whose working section dimensions were 18.75in. x 8.75in.
and the speed range was zero to 170 feet per second, The dis-
tribution of velocity across the working section outside the

boundary layer was uniform to within + 0.5 per cent,

The aerofoils were cantilevered from a turntable in a
side wall extension to the wind tunnel contraction (see figures
1 and 2). The wooden aerofoils were of rectangular planforn,
3in. chord and 8in. span, and were of NACA 0010 section. FEach
aerofoil had a mahogany spar 0.15in. square and eight mahogany
ribs each 0,10in. thick, The framework was covered with silk
which was doped with a mixture of vaseline and chloroform. The
blades were provided with stops (see figure 3) in order to limit
the amplitude of the blades during vibration.”

The metal aerofoils were first made of solid light
alloy. They had a 14 per cent thick symmetrical section, a
chord of 2.9in. and a span of 2.9in, The blades were fixed to
various forms of spring hinges comnected to the working section
turntable, The flexure~torsion springs werc designed so that
the natural frequencies of the blades in flexure and torsion
were nearly the same as those of the wooden aerofoils.
Although nany different types of springs were tested they all
quickly failed by fatigue. A second set of metal aerofoils
were manufactured from 30 s.w.g. brass sheet, the aercfoil
section being the same as for the solid blades but the span was
increased to 6in.  Separate flexure and torsion springs were
fitted and friction was reduced to a negligible amount by the
use of taper needle roller bearings. (See figure 4).

The wind speed in the working section was calibrated
against static pressure tappings in the contraction scetion and
the settling chanber, The frequency of the oscillating aero-

foils was measured using a strobo-tachometer having an error of

/less than sials

o+ The stops were provided to prevent damage to the blades
when they were fluttering above their critical speeds. In all
cases when the blades were fluttering at or near to their
critical speeds, and the amplitudes of the oscillations were
therefore small, the stops could be removed.



less than 1 cycle per second.

The torsional and flexural stiffnesses of the aerofolls
were measured by applying torques and loads respectively about
and at the flexural axis at the tip section. The natural
frequencies in torsion and flexure were measured on a standard

vibrating table (see figure 5).

A film showing the motion of the aerofoils during
flutter was taken with a cine camera, 1.5, 8 frames per second,

using stroboscopic light,

§3. Test Procedure

Each aerofoil was tested separately and its critical
flutter speed and frequency were noted. These were obtained by
increasing the wind speed wuntil flutter commenced; +the wind
speed was then decreased until flutter stopped. The wind speed
just prior to the blade flutter stopping was recorded as the
critical value. The frequency could not, however, be conven-
iently obtained corresponding to the critical wind speed. Con-
sistent readings of the critical frequency were, however,
obtained by measuring the frequency at each steady wind speed
above the critical wind speed. Since +the latter was
obtained as stated above the critical frequency could easily be
obtained by extrapolation (see figure 9).

The aerofoils were then selected so that a cascade of
blades could be found such thgt the isolated characteristies
of the aerofoils differed by less than + 5 per cent. The
aerofoils were arranged in cascade so that the weakest aerofoils
were near the centre. The critical flutter speed and
frequency were taken corresponding to the mean values of these
quantities obtained from the three central aerofoils. In the
case of the wooden aerofoils the critical flutter speed decreased
with blade age owing to fatigue. The flutter characteristics
were also dependent on the prevailing temperature and humidity.
It was therefore necessary to measure the isolated aerofoil
characteristics immedintely before and after a test (at a given
gap~chord ratio).,

.

In order to reduce the magnitude of the air forces

and amplitudes of the aerofoils during flutter, the aerofoils

/were TR e
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were in all cases set at zero incidence relative to the upstrean
direction. A few measurements were, however, made at 50 inci~

dence and since no change in the flutter characteristics could

be detected it was assumed that the blade incidence was not a

very important parameter at least in the range + 50.

It was noted that when fluttering, adjacent aerofoils
were approxinmately 180° out of phase, and hence with zero stagger,
they might be regarded as images of each other in a rigid plane

boundary midway between themn,

The above measurements were, therefore, repeated for
the case of a single aerofoil placed midway between two parallel
plates. The gap between the plates was varied; the distance
apart of the plates being assumed to correspond to the gap
between adjacent aerofoils when in cascade, but with zero

stagger,

§4. Experimental results

The fall of the critical flutter speed with age is
shown in figure 6. The temperature and humidity variations have
also been plotted on figure 6 and it is seen that little
correlation was obtained with the changes in the flutter speed.
This does not necessarily indicate that temperature and hunidity
do not affect the flutter characteristics butlrather that fatigue
of the flexible wooden structure was probably predominant.
Further tests did in fact show that the elastic stiffnesses,
especlally the torsional stiffness, were altered by changes in
temperature and humidity. It was also found that the porosity
of the silk covering was not always uniform and extreme care
was required in applying the chloroform-vaseline dope, It was
therefore concluded that changes in the critical flutter speed
were mainly caused by the wooden structure and the silk covering
'"drying out' (at the beginning of each test). The overall
effects of blade fatigue, and room temperature and humidi ty,
were reduced to a minimum by the experimental procedure discussed
in the previous paragraph.

The variation of the critical flutter speed of the
cascade of acrofolls with the gap~chord ratio is shown in figure
7. The results of tests on a single aerofoil placed between
parallel plates is also included, The blockage curve shows
the ratio of the measured wind speed upstream of the cascade

/canpared b
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compared with the mean speed in the gaps between adjacent aero-
foils. It is clearly seen that the very large decrease in the
critical flutter speed with gap-chord ratio cannot be entirely

due to a blockage effect.

The results of the two tests can be expressed by the

following empirical law

-

8 8 . N
vc (1 +s/cjn
where
n = 4.24 for the aerofoil in cascade
= 3.15 for the single aerofoil between two parallel
plates
Vé = the critical flutter speed of an aerofoil in cascade
Vc = the critical flutter speed of the isolated aerofoil
s/c = gap-chord ratio.

The effect of the cascade stagger angle on the critical
flutter speed of the aerofoils is shown in figure 8. It is seen
that the critical flutter speed is nearly independent of stagger
angle,

The frequency-speed curves for different gap-chord
ratios of the aerofoils are shown in figures 9a and 9b; the
former shows the results obtained from a single aerofoil placed
between +two parallel plates whilst the latter shows the results
for an unstaggered cascade of five aerofoils, The dotted lines
show the variation of frequency with wind speed when the aero-
foils are fluttering above their critical wind specds. The
blacked in points correspond to the extrapolated critical
frequencies (see paragraph 3 above) at each gap-chord ratio.

It is seen that again the results are similar in the two cases
and that the critical frequency of the aerofoil in cascade is
only slightly greater than that of the single aerofoil between
plates. The corresponding effects with cascade stagger angle
are shown in figure 10. The critical flutter frequency
increases with stagger angle although the increase is not

large for stagger angles below 20°, It was observed that for
small gap-chord ratios the frequency increased rapidly for small
increases above the critical flutter speed., This fact probably
accounts for the scatter of the observed points for s/c equal
to 0,25 in figure 10,

/The ...
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The experimental results for the unstaggered cascade
are compared with the theoretical values, obtained from Part 2,
in figures 11 and 12, In figure 11 the square of the critical
speed ratio has been plotted against gap-chord ratio. Good
agreement between theory and experiment is obtained except at
the smallest value of gap-chord ratio. This is not surprising
since the finite amplitude and the effect of the aerofoil thick-
ness, which have both been neglected in the theory, will increase
in importance as the gap-chord ratio decrecases, In figure 12
the square of the reduccd frequency ratio has been plotted
against s/c. Good agreement between the obsecrved and theoretical
values is again obtained except at the lowest value of gap-chord
ratio. This agreement between theory and experiment is encour-
aging but not conclusive, since the theoretical values do not
agree so well with thz results obtained from the tests on the
single acrofoil between parallel plates, Nevertheless, the
theory should apply equally well to both systems, provided that
the aerofoils in cascade are vibrating exactly in antiphase, and

hence further investigation of these differences is desirable, ™

Figure 13 shows a series of photographs taken in
stroboscopic light for a cascade having a gap-chord ratio of 0.5
and two stagger angles o = 0° and 150. The corresponding
pictures taken for an isolated aerofoil are also given. The
antiphase motion between adjacent aerofoils is clearly indicated.

The motion, in detail, can be described as follows.-

(1) An aerofoil in its mid-position and moving upwards say,
has a positive twist i.e. its leading edge is above

its trailing edge.
(11) As the motion progresses the twist is reduced until

/at the ...

+ These differences may be accounted for as follows, -

(1) The aerofoils in a cascade had isolated flutter character-
istics which differed by about + 5 per cent, and experimental
inaccuracies of at least + 5 per cent will therefore exist.

(i1) In the case of the single aerofoil oscillating between
parallel plates the boundary layers adjacent these plates may
produce important changes in the flow even though a rough
calculation has shown that the equivalent blockage effect is
small.,
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at the point of maximum flexure the twist is approx-

imately zero or slightly negative.

(1ii) As the aerofoil starts its domward path its twist becomes
more negative reaching a maximum at about the mid-

position of the flexural displacement.

(iv) As the flexural motion proceeds dovnwards the twist of
the aerofoil is reduced and reaches zero or a slightly
positive value at the position of maximum negative

displacement.

(v) Whilst the motion described ip (1) is taking place the
aerofoll above is moving downwards with negative twist

which is decreasing as the flexural motion progresses.

(vi)  Similarly the aerofoil below is also moving downwards
with negative twist which is decreasing as the flexural

motion progresses.

Hence alternate aerofoils in a cascade, both unstaggcred,

have similar motions, Their motion corresponds to the classical

flexure-torsion vibrations in which the torsional motion lags

behind the flexural motion (see reference 2},

The type of motion discussed above was present for -all
arrangements of aerofoils except that at angles of stagger above *
350 the flutter amplitude did not remain constant. In this case
a pulsation of the aerofoil was superimposed on the steady

: : : . ; - .+
oscillations, The reasons for this require further investigation.

The measured elastic stif'fnesses and the natural
frequencies of uncoupled flexural and torsiomal vibrations in
still air varied for each aerofoil in the cascade, Typical
values for the central aerofoil in the cascadc together with its

isolated flutter characteristics are given below in Table 1.

/Table 1 ...

+ 'Pulsating flutter' of the type encountered at large
angles of stagger is probably duc to the disturbances created

by the oscillatory wakes affecting the motions of adjacent
aerofoils, In the case of small angles of stagger the fluttering
aerofoils are moving towards the surfaces of adjacent aerofoils,
but at large angles of stagger the fluttering aerofoils are moving
during one half of their motion towards relatively undisturbed
air, whilst on the other half they arc moving towards the dis-
turbed wakes of adjacent aerofoils,
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TABIE 1
Quantity Symbol Measured Value
Flexural stiffness fﬁ 2.49 1b.f%./radian
Natural flexural circular W 152 rad./soc.
frequency
Distance of flexural axis he Q.25 ¢
from the leading edge
Torsional stiffness mg 0.15 1b.ft./radian
Natural torsional circular W, 326 rad./sec.
frequency
Critical flutter speed Vc 87.0 £.p.8,
(isolated aerofoil)
Critical flutter circular o, 220 rad./sec.
frequency
. _w.c
Reduced frequency w = T 1.0
c
Reynolds number Egi 1057 X 105
v

From the results quoted in Table 1 above and the
results plotted in figure 9 it can be seen that the critical
flutter frequency increases towards the natural frequency in

Jorsion as the gap-chord ratio is reduced,

The modes in flexure and torsion, obtained from static

tests, are shown in figures 14a and 14b respectively.

§5. Discussion

The main reason for the decrease in critical flutter
speed with gap-chord ratio arises from the increased negative
value of the aerodynamic torsional-stiffness derivative, (see
Part 2) even though the corresponding variations of the aero-
dynamic torsional andlflexural damping derivatives are many
times greater. It was first thought that the reduction in the
critical flutter speed was duc to the aerodynamic forces and
moments which arise when the displacements of adjacent aerofoils
in the cascade are not infinitesimal, It is shovm in Appendix
2 that these foarces and moments arising from rigid body movements

are inversely proportional to the gap-chord ratio. The

/numerical ...
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numerical value of the results given in Appendix 2 are unlikely
to be correct owing to the drastic nature of the assumptions
used, However, even with these values of the aerodynamic
derivatives added algebraically to those calculated from the
'classical theory' of Part 2, the critical flutter speeds and
frequencies were changed but slightly from the values calculated

using only the derivatives of the 'classical theory'.

The aerodynamic forces which arise due to the rigid
body movements (even though these may be relatively small com-
pared with, say, the gaps between adjacent asrofoils) are important
however in controlling the type of antiphase flutter occurring
between adjacent blades in a cascade, The aerodynamic forces
and ensuing motions probably arise as follows. Vhen a given
aerofoil in a cascade is vibrating with a harmonic motion of
small amplitude in an otherwise steady airstream, the air vel-
ocity over its upper and lower surfaces will respectively in-
crease and decrease as it pursues say the upward part of its
motion, since if' we assume that initially the adjacent aerofoils,
above and below it, are at rest the effective upper and lower
gaps will respectively decrease and increase due to the aerofoil
motion. But the increase in velocity over the top surface of
the given aercfoil will also exist over the lower surface of the
adjacent upper aerofoil on which in consequence a normal force
in the downward direction will be induced. Similarly a down-
wards induced force will be excrted on the adjacent lower aero-
foil, These induced forces will be sinusoidal and vibration of
these aerofoils will therefore be excited by the oscillations of
the parent aerofoil and the motions of these aerofoils will be
in the opposite phase to that of the parent aerofoil, It appears
therefore that the structurally weakest aerofoil in a cascade of
aerofoils will commence fluttering at a critical speed determined
by its elastic stiffnesses, inertias and the aerodynamic deriva-
tives calculated from the 'classical theory' (see Part 2). This

aerofoil will in turn excite the adjacent aerofoils,

The corollary to be gained from this explanation is

that the critical flutter speed of a cascade of aerofoils is

that corresponding to the structurally weakest member in the

cascade provided that the variations in the elastic stiffness

are not very large.

The variation of the critical flutter speed with gap-

chord ratio, as determined in this paper, is not a universal

[curve ...
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curve for all cases of aerofoil geometry, elastic stiffness, and
inertia, The results, as quoted, apply only to the particular
type of aerofoil tested and each particular arrangement requires

a separate investigation.

The good agreement between theory and experiment for
gap-chord ratios greater than 0.5 suggests that future work on
the compressible flow problem at high subsonic liach numbers,
following on similar lines to that suggested in Part 2 of this

paper, is worthy of consideration.
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E?. Conclusions
i Experimental results have shown that when aerofoils are

placed in cascade, at small incidence, their critical
flutter speeds are reduced compared with their isolated
values, Similarly the frequency of the flexure-torsion
vibrations, at the critical flutter speed, increases

as the gap-chord ratio of the aerofoils in the cascade

arrangement is reduced.

2o Adjocent aerofoils in the cascade vibrate in antiphase.

Hence alternate aerofolils have similar motions.

3 The frequency of the flutter is in gemeral nearcr to the
torsional natural frequency than to the flexural

ratural frequency.
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The variations in the critiecal flutter speed and frequency

with stagger angle (at small angles of incidence) are
relatively unimportant for stagger angles below 30°,

At stagger angles greater than 350 constant amplitude
flutter could not be maintained and the steady oscilla-
tory motion wes disturbed by pulsations probably

originating from adjacent wakes.

Fair agreecment between theory and experiment has been

obtained, In view of the practical importance of this
work, as for example in commection with the design of
blading in axial compressors, it appears desirable to
extend both the range of the experiments and the theory

to high subsonic ilach numbers,

JPaxrt 2 ...
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PART 2

§1. Introduction

As far as is known to the author no theoretical papers
(apart from reference 1) have been published on the flutter of
aerofoils in cascade, It appears, however, in the light of the
experimental results reported in Part 1, that the general theory
of the flutter of aerofoils in cascade can be simplified, in a
restricted sense, in view of the antiphase motions of adjacent
aerofoils., The flutter characteristics can, however, only be
calculated when the acrodynamic forces and moments on the

oscillating aerofoil are known.

If we consider the air flow past a cascade of oscilla-
ting aerofoils in antiphase motion (see figure 15b) it can be
seen that the flow about the mid lines, A'A' and B'B', between
adjacent aerofoils, will be symmetrical for all positions of the
aerofoils, The lines such as A'A' and B'B' are therefore
streamlines of the motion and can thus be replaced by solid

boundaries.,

The flow around oscillating aerofoils in cascade at

zero stagger is therefore equivalent to the tunnel wall inter-

ference on a single oscillating aerofoil, provided that adjacent

acrofoils in the cascade have antiphase motions.

The three-dimensional problem of tunnel wall inter-
ference on an oscillating acrofoil has been investigated by
W,P, Jones (reference 3)., This theory is based on the vortex
sheet method which replaces the aerofeil and its wake by suit-
able distributions of doublets, satisfying the following
boundary conditions.

(a) The velocity at the trailing edge is finite,

(b) The normal induced velocity at the aerofoil, due
to the doublet distributions, is equal to
the normal components of the velocity of the

aerofoil,
: (¢) The normal velocity at the walls is zero,
The calculation of the airloads, using this method, is very
lengthy and unfortunately numerical values are quoted only for

one height-chord ratio, which is considerably greater than the

values of the gap-chord ratio of interest in this investigation.

/The ...
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The corresponding problem in two-dimensions has been
investigated by Reissner (reference 4) end Timman (reference 5),
for incompressible flow and by Runyan and Watkins (reference 6)

for canpressible flow,

The essentiacl details of the two-dimensional incenm-
pressible theory is presented below and the airload coefficients
arc given in o forin such that rapid calculation is possible,
Only o brief review of the essential results, quoted in the main
in refercnce 4 and 5 is given. The method of presentation,
however, has the advantage that a clear physical picture is
obtained of +the essential feature of the theory and simple results
can be obtained for the values of certain airload coefficients
as the gap=-chord ratio approaches zero. As will be shown in
Appendix 1 it is sufficient to calculate the variation of the
stiffness derivatives with gap-chord ratio, if approximate

values only of the flutter characteristics are required.

The extension of the incompressible theory to subsonic
compressible flow is not considered in this paper. The theory
developed in reference 6 is not in a form suitable for the
evaluation of the airload coefficients. An important result
obtained,‘hcwever, in reference 6 is that the normal induced
velocity at the aerofoil becomes infinite far certain values of
@ s/e. This resonant condition corresponds to values of the

frequency parameter given by

- ‘KNI{T—HQ'
() e———

B 4.
"I‘:L
C

where M is the reestream lMach number, According to this
criterion the circular frequency o is infinite for an incon-
pressible fluid but it has finite velues in a compressible fluid
when Il equals zero., These results are mentioned here since
they may have an important bearing on the theory of cascade

flutter applied to subsonic nand supersonic compressible flow.

The theories outlined above only apply to the case
of a cascade of acrofoils at zero stagger and zero incidence.
The extension of the theory to other cases is being considered.
The rcsults discussed in Part 1 give the order of the variations

involved, at least, for the case of stagger.

The calculation of the critical flutter speed and
frequency is straightforward once the aerodynomic derivatives

LT R



and the structural coefficients have been evaluated. The class-
ical treatment of this problem in the case of flexure-torsion
flutter iz given in Appendix 1. Tt is important, however, not
to overlook the fact that in reference 1 flutter with a single
degree of freedom was experienced. This problem is also dis-

cuszaed below.

82, The serodynamic forces on an oscillating two-dimensional

aerofoil in cascade in incompressible flow.

2.1. General theory

The axes of the fixed coordinates OX and OZ are
tsken as shown in figure 15, The origin of coordinates is at
the midchord of aerofoil (0)., The aerofoils, which are assumed
to be infinitely thin, are oscillating with constant infinitesimal
amplitude.

Let the components of velocity at (x,2) - in the

directions O0X and O0Z respectively be
V+uw

where the perturbation velocities wu,w are small compared with
the frecstrecam velocity V. From the equations of continuity
and motion for an inviscid and incompressible fluid, when second

order terms are neglected, it can be shown that

2
VP

= 0 LB B 2!1
Vz‘@ = O # 0 8 v B8 v 8N 2.2
: B0
vhere f is the perturbation velocity potential, @: wietS is

the acccleration potential, p and o denote the pressure and
density respectively and suffix o denotes the free stream

valus,

Bernoulli's squation for the unsteady motion of an
incompressible fluid when second order velocity components are

neglected becomes

P
£+Vu+2= Q PR R I B A 203
Q

which can be written

0 =’(}%E +V %;i) ¢ b b it S N

JI? tBe <.
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If the suffices + and - refer to the top and bottom

surfaces of the aerofoils and their associated wekes then,

(%v%;) @g) ,-F. -%sxs8 ...z

1

= 0 %3]‘:&3’ .-a-.c02-6

since the pressure is continuous across the wake.

It is convenient in the further development of the
theory to define y(x,t) as that part of the vorticity associated
with the pressure loading and (y+e) as the total vorticity,
associated with the velocity difference, across the aerofoils. We
will refer to y(x,t) as the bound vorticity and e(x,t) as the
free vorticity.” Using the above definitions it follows that

¢, - L = vy kel

a.nd- u = u = é'_ (ﬁ “',@")=Y+8 .-31-0-0-1218

+ - ax +

The condition for finite loading at the trailing cdges
is satisfied by y(c/2) equals zero. It follows, from equation
2.8, that the condition for finite velocity at the trailing edges
is that e (/2) shall be finite. Since the aerofoils are infin-
itely thin the velocitics around their leading edges will be
infinite, Hence ¥y (-c¢/2) will be infinite. By definition the
values of e(-c/2) and e(@©) are zero.

It follews that the total 1ift force, and the total
pitching moment about the reference section, x = Xp, ON each

aerofoil at time t are respectively equal to

1c/2
r(t) = (Y'l's) dx ] vo-ooanc-02.9
~c/?2
- In two-dimensional steady aerofoil theory the free

vorticity, as defined above, is of course everywhere equal to zero,
In two-dimensional unsteady aercofoil theory the free vorticity over
the aerofoil and its wake is due to the time variation of the bound
vorticity.



c/2

-2(8) = ov y ax sy o n 2210
-c/2
/2

“"M(t) = pv Y(X"'xf) d:x llllll‘lll2l11

~c/2

If the aerofoils are in simple harmonic motion with

circular frequency  and similar motions are assumed for their

wakes, and if we write ell time variable quantities as y = v e=°F,
¢ & £ 0P obes whate ¥ and & are complex quantities] then

it follows from equations 2.6, 2.7 and 2.8 that

iv
g+—g_ e H;‘B c-aono-¢|02¢12
iV de
Y+8 i w -5'55 --cat|-0002|13
and Yelwx/V = %E %; (e elmx/v) S cineeeen ey ik

If we integrate equation 2.13 with respect to x between the

limits 3 and - % ‘then from equation 2.9

. iV
T(t) = iﬁ-s%,t) --o-looo--2-15

Thus the instantaneous value of the circulation around

each aerofoil is proportional to the free vorticity at the trail-

s £
1 COge,

In addition the condition that the total vorticity is
zero becomes

f'tcff
J (y+e) dx = 0 ARMRUTSRCIL
'“0/2 /and
+ It is to be understood that only the real (or imaginary)
part is finally taken.
@ Or the rate of change of circulation around each acro-

foil is equal to minus the product of the free stream velocity
and the free vorticity at the trailing edge.
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and since Yy equals zero in the wakes

o 1e/2 )
e dx = - (’r+a)r1:~:=-—'f"('t;)=-§‘-1 e(%,t).....&‘[?
Je/2 -c/2

by virtue of equation 2.15.

Thus the instantancous valie of the total free vorticity

in the wake is equal in magnitude, but opposite in sign, to the

instantaneous value of the circulation around the aerofoil,

Again if we use the condition that ¥y equals zero in

the wakes, equation 2.1, when integrated with respect to x

gives
/v = x/V
. 1wx, > in 1o c c
ex,t) e = - ye dx -$¥=x8 3
Y ~c/2
.l'.ll2.18
= (%) eiwc/zv S<x< oo
- i AR e
Alternatively from equation 2.13
8
e (x, t) =-';}£ (y+e) ax
nc/2
and 0030-1010321‘19
c/2
e t) = —-\}f& (y+e) ax

-c/2

The amplitudes of the 1ift farce and pitching

moment become respectively on each aerofoil

~Fma ok | EEDaxt + 2
p % ¥
g f P (v
- —%—2 = -i— (x'-xf) ex')ax' + &}_’) -=xp) -5 | e&"ax’
Ve 2w .

- U .

00--.000¢.2-20

/where ...
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e
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iy
-V
and dashes denote values of x divided by c¢/2.

where denotes the non-dimensional frequency parameter

The discontinuities in @ across the surface of the
aerofoils and their wakes can be represented by distributions
of doublets of strengths equal to the local discontinuity.
Thus

7y e 5
1 :: d
?(x,2,t) = o . 1(x1,zn,t) 35 log r, dx ax,
= oo “n
—0/2 -
. '.'."....2.21
where T = ¥+
2 - 2
r, = (x-x1) + (z-zn)

and suffix n refers to the nth aerofoil from the axis OX,

"hen adjacent aerofoils are osecillating in antiphase

with small amplitude ©(x,,2,t) = (-1)" = %,y

differentiating equation 2.21 with respect tc 2z and taking

zo,t) and on

the linit as 2z tends to zero, we find that the normal induced

velocity adjacent to the zeroth aerofoil is

w(x,0,t) = = o o 2,22
3 ] 2 s Sinh E (x_x ) LI L B B B B B A Y .
Veg/2 s 1

where s 1is the gap between adjacent blades.

But w(x,0,t) must equal the normal velocity of the
oscillating aerofoil, This can be written in terms of ,6

its displacenent and rotation respectively about the reference

axis as
d 0
wix,t) = (E-_E - ¥ E':E) (}+(x-xf)6)
e | a P »
-'_..v,‘l&)él + 6 {%‘g (JC'-' %) + 1n ..c|..¢2023
J
/|
20T ous
+ The following relations are used
2 X=X,
dz oz dog Tn Ok & 2
n oy
-G n
Z_ = ns
n
o
SR
and cosech y = :’3 (=)™ —5-%—-2- .
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On equating equations 2,22 and 2.23 and dividing
through by o7 we cbtain finally

o : '\D@_
w(x') = W L 5 {f(—;.ﬁ) + 1} Ve D 7(x},0) ax;
‘ Ly winh Aet<x))

lonoo-c-o¢2|2-,+

where A\ = 5= ond dashes denote quantities divided by o/2.
ey ocC ™M
If we further write = + and substitute
=1 M -1

from equation 2,18

A
) o 2 boily) ax, As(1) exp(“' 1 "1-.1}‘"
b B sinh A-x,) = 2« sinh 7 (x-x,)
-1 1

o-coo----c2o25
where, for convenience, the dashes on x have been onitted,

Apart from changes in notation, equation 2.25 agrees
with equation 68 of reference 4. On making the substitutions

tanh A = k
tan‘h-hx= kO'., oconlo-¢o¢2126
tanh 7\:{1 = kc:,,i
equation 2,25 becomes
e 1/k w( tanh™ ko,
wa) _ 1 7(a, )da, . () ép 5= {1~ == da.,

o 2% ; 2
m/1-k2a2 -1 (a-aﬂ)N/1—k2m1 1 (t:a.--a,,E IV k2 af

llllfl.nl-202?

The solution of the integral equation 2.27 can be
obtained by the methods suggested in reference 4.+ Af'ter a
partial integration this becomes

e o a-t [ A e -2 [ (9 s

-



; (a-a1)‘\/1 - k2 c;f
-1
ot tanh = ko \‘!
» 'TI/ 1w ’— '1_,
o 20 £ kil w4 § ~ A / da,y
T a, =1 s 3
U1 L (a-c.1) «\//1—1:2 f

..l‘lll'l.2l28

The value of €(1) is obtained by integrating (o)
with respect to « between the limits 1 and -1 and substituting
from equation 2,19, After some rearrangement it can be shown
that,

20 = - & J:ii

: da.
1+c1 1
A 1% o. —1 (c.ma. ) Yo

L1 1 1-1{@

tnh kCL
1/k iR [ =
PO S b ] o (L e &
W 11'.,?\‘ a, =1 ﬁJ 14a j

l.l.llll"2'29

The omplitudes of the 1ift force and pitching moment
can be found directly from equations 2.19, 2,20, when 7 is
substituted from equation 2,28 together with 2,29,

It is possible to simplify the above integrals for the
case of suall gap-chord ratios since when s/c < <1, kazi,
and A\ is very large. The validity of the resulting expressions
is limited however to values of the gap-chord ratio below 0.5.+

lore general solutions to the above integrals can be
obtained by transforming them in terms of Jacobean elliptic
functions. The final expresseions obtained are in agreement with
the solution obtained in a different way by Timman® (reference 5).

/Only T
B In particular in this region the airload coefficient
3. =g =Bl w¥)
2 D 2
™
- Timman uses the method of conformal transformation,

It is an extension of Theodorsen's method for the
two-dimensional isolated oscillating aerofoil,

(c.--c.1 ) r\/1 -kzaé

da.

1
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Only the final expressions for the airload derivatives will be

quoted here.

The airload coefficients will be expressed as follows

i 5 F.i s
- = = %
'st_ncvg 1e .o 3l
— .....l‘l'.2.30
M T p = =
- w ¥ = =M. B
Q z
'Icpc‘?vg ve e S
where Z,|2 = Z1 - iZ2
.M12 = M‘I + :n.m2 ete.

a:ndﬁ[ now refers to the amplitude of the pitching moment about

the mid-chord axis.

Then,
. i 16’(‘5232({!0
Z,i2=1f1)";['c' 2 o cau|l2031
c
o 168 3 Q‘IQ 2
7, =g E el (1)
1
3L i) 2 ‘ 2kK2 i
......"..2.32
gz ar 328
1‘112-"-'-"'1(1] Olltli.l’l2l33
™ C
- 2
328
M = - a---n'o--czajlln
3b 7oa®

where the generalised Theodorsen function® C(@,2) = A-iB =

+ Timmen (reference 5) expresses the airload coefficients
in terms of a generalised Klssner function T(%-—ic, k) = 2C-1.
Equations 2.31 to 2.40 are not identical with the expressions
quoted in reference 5, since a number of minor errors exist in

the printed paper.
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] B (ib+1)B B
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2
Kk'™ k 52
where F~%,ib-%;ib;—%) ete. are hypergeometric functions
B
¥ s
% 2xe

It reduces to the standard value
. (2) i
i H1 (;)

. H‘[(z) @2:) % Hég) (%J)

Cz chttioll!2036

when % tends to infinity.

In equations 2,31 to 2.35 inclusivef

o< .

Q, 22951%(“&211;1) Y
n=0 (1-q2n+1)
Fo )

szzqzmqum) eeeresess2.38

2
n=0 (2n+1) (1_ 2n+1)

o =
. 7 1 2
P g (g’ 0) PO 3 -

Q., =
¥ n=1 = (1—(‘;_211)
-z 2n 2n
Q4=ZY§ -9-—--(%11—.) il'i-lll!t2lz{D
n= n (1—q )
+ The functions €, to @, used in this report are not

identical with the functions which are sometimes used in commection
with the theta function.
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m=n-1 1

¥ =R
bl —
e (2m+1)(2n-2m~1)(1_q?m+7)(1_q2nr2m 1)

oo
. gn:§£:: q2m+1

- (2m+1)(2n+2m+1)(1_q?m+1)(1“q2n+2m+1)

ID.II2IJ'F1

-k ! /K
qQ=e 0L ag suemne ek el
k:tanh(g-g- VN

K(k) ; K'(k) are the complete elliptic integrals of the first
kind of order k, and E(k) is the complete elliptic integral
of the second kind of order k.,

82, 2, Approximate value of C for small values of the gap-chord

ratio

The hypergeometric functions in equation 2.35 can be

expanded in the following power series,

a.b ala+l )b(b+1) 2
Pavsorn) =1+ 3222+ 2EURED 2 men ol <1,

For small values of the gap-chord ratio — <<1 and

then, for most practical applications, we need only the first two
terms of the above series. Also in evaluating C (& % ) from
equation 2.35 it is noted that E(k) and k° tend %o unity and
k'2 to zero as the gap-chord ratio tends to zero.,” If we use
these approximations we find that in the range O<:% <1 equation

2.35 reduces to 5
2
1 ]
(z - B2 . o2

A 2 5 PP
2
]
(E B ) s e%
2bK (E - Kk'2
and B-—.- g ..-.......2.1‘-}.‘_
2
(5 - B ) veie?
/For YETY sus
+ For small values of s/g K(k)”&loge kﬁ'_' and K' (k) 52"% .
~
Hence X' T (ke



For very small values of the gap-chord ratio

"632 28 ,\\‘2
1 + 5 1 +:I-EE log /.}
A—- 2 11-01-1-1120}-}5
T +w C] +-‘2-§-log 2)
TC =]
%’ 1 +2'-‘3-log‘?)
and B= i = 2 ouacoo-cn.2|!,+6

The asymptotic values of their derivatives with respect

to the gap-chord ratio are

A g(ﬁg 10g 2 5 ?
= - 'JL‘—'-—'-—'L R N B A R ) lh-
as;c (1 +E.!32)2
s/c-30
B £ ('1—52) log 2
=_+_ﬂ e 2 48
m 2 2 8 08 088w L
)
s/c=0 (1 +

The functions A and B are plotted in figure 16 for

certain values of the frequency parameter .

82, 3. The evaluation of the functions Q1’Q2’Q%’Qi,.'

The functions Q1, QQ, Q3 and Q)... are determined from
the infinite series in the function q (see equation 2,42). Now
for small values of the gap-chord ratio q varies from 0.1 to
1.0 and in this range the series are not rapidly convergent.

They have been evaluated, by direct summation, to three decimal
places and the results are given in table 3 and figures 17 and 18,

§2.1.|.. The two-dimensional aerodvnamic derivatives

If the 1ift and pitching moment are written respectively

[n I |
I

ZZZ+ZqZZ+Zhé%+Zee+Z'SB+Z‘ée no-nuicocazal}s

Mzz + IvI.zz + M.éﬁ + Mes + M-ee + Mée

=
1

/then from ...
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then from equations 2.30,

" z oy Yo
7 = z _ _ 5, 4
12 ';'tQT.Tz npcV ﬂpCQ
. e 2
5 Zﬁ- ) l-‘nZ'e . [} ZE’S
e ﬂpdv2 ﬂpczv 'Jtpc3
o I‘.lllll.l2.50
H M i, o
£ au R Z
= ﬂpcvz ﬂpczv ':tpc3
M v e LY
- 1 e Tiles
= SNy U e

the

= +
2 ﬂpozv2 ﬂpcjv rpc't

The values of the aerodynamic derivatives referred to

mid-chord axis are, from equations 2,31 to 2.34 inclusive,
ZZ

B = 0
pv

2
-3 [o-ode (]
pcD ﬁcz L_2 1 & 21cK2
7 z
:""“"92516—('2 JE'F (A"‘l)( oo-c--ca002151
pcV
2
Zs 2 ® Q
=-—-§-@'='~—2§'§ Q2+(A—‘1)—'2_1 - 16 2 Q G— 12>
pcV ;s ] s 2kK
w 2y %05 % (“Q*lq
pc3 ﬂc2 2kK25’
Mz
= = — = 0
pdVZ
2
Mé 3252 1 'RQ"I
= - 2 Q3 2ok (A_1) i )
pczv bide] 2kK
2
L. 3252QB(_“Q1)
po3 'Jtcz 3'5)’ 21{_7{2
=——BEQ——=—EEQ 12'—!— A= 1—‘—“)‘]
p02V2 ﬂc? 3 2kK
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52
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(1
The variations of the derivatives 5 ,.ke s Wy 5 Ty

with gap-chord ratio are shown in figure 19,

If the reference axis is taken he forward of the mid-
chord position and the corresponding values of the derivatives are

denoted by ?z " ﬁz ete. then the transformation formulae are

f.= L {

n

- JEU -1,

z? 1y =4
Jo =4 +nf ; E‘sﬁfé”hgz; jgz{)-é+h,z.
B, =m, +hd ; & =m +nl; 5, =m, o+l
mg = My + h(m, +98) +'h2~()_z ...........2.52

2
my = my + h(m.z +‘€8) + hf.z

i
!

-
= my + h(m.z. -l-'?'é) + hf,&. .

§2.5. The three-dimensional flutter derivatives

Although the theory derived above can be logically
extended to aerofoils of finite aspect ratio in cascade the added
ocmplications+ appear unnecessary in this preliminary estimation
of the magnitude of the cascade effect. It will be assumed
therefore that the 1ift loading at all spanwise positions on the
aerofoll will be similar and directly proportional to its local
displacement and rotation. The aerofoils will be assumed to be

of constant chord.

If the normal displacement of the zeroth aerofoil is

given by
Z= Lg £n) + (x-x,)6 F(n) s b Brans 285
where n=y/4
= the distance from the root to the reference section,
% Since the wake plays a minor role in the determination

of the airloads on an aerofoil in a cascade of small gap-chord ratio

it might be inferred that the effect of the tip vortex would not be
very marked,
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£(n) and Fn) the flexural and torsional modes of vibration

#,6 = the angular displacements in flexure and

torsion at the reference section relative to

the root.

x, = the chordwise position of the reference axis

in the reference section,

then the amplitudes of the flexural and torsional moments about

the root section can be expressed by,

L — -
» ..'.ll."l2.5}-‘-
5 21‘_12 = M, 8+ 171313}
oV e
where 7}": '9"9'

The aerodynamic derivatives are derived from

2

L12 = 01 +ia"b_1 - a1
g g
L = c, +iwb, ~w g
3l 3 1
oy 3 ll.ol.llo|2I55
o = kg o+, -—-732.:3.3
]ﬁ - k P i .__n.2
3l . St Al
_ 1 - P1
- 2
where, a, = -Pg lf £ an b, = fi f2dn
o vo
o , -
o, = [z #24n g = Yl 9
o o
- = B w o
Jy = EO fF dn k1 = J)é P dn
J e] J o
11 4 -]1
a; = EE fF dn 'b3 < By fFan ,,,2.56
d " “o
1 1L
2 - 2
c3 = m fF dn g3 = me Fdn
o Vo
/23 = P
- The derivatives are written as f,, ... , me... , to

show that two-dimensional values are being “used. It is more
ummltoumzﬁmrmmmumhg..q By coe s for these same
derivatives when three-dimensional values are being used.
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and the reference axis is taken at hc forward of the mid-chord

position.

The complete coefficients a, » b1 etc. must include

both the aerodynamic and the structural components,

83. Flutter with a single degree of freedon

Uncoupled flexural or torsional oscillations can occur
when the coupling terms Gy s J1 P K1 and 'AS 5 B3 N 03 (see

equations A1,1) are zero.

The equations of motion for uncoupled flexural and

torsicnal oscillations are respectively,

A, @+8B, $+0 8 = 0
-1 1 1 '."..l.-.3.1

® + K -
G38+J58+36 0

vhere @ is the flexural coordinate and © is the torsional

coordinate.

Flutter can therefore occur in the flexural and tor-

sional modes, when respectively B1 and J, are zero, In the

¥

notation of 82 this would require f% or m;

5 to be zero.

Hence for flutter with a single degree of freedom

either
g_1=0, J‘l:O’ k.'_1=0, 'b1=0

or S leeii we i e
a.3=0; b3=0; 03=0; j3=0

It can be showm from an analysis of the terms given
in equations 2.51 and 2.56 that these conditions cannot be
satisfied. It is probable, however, that for oscillations
having finite amplitude, the values of the aerodynamic deriva-

" tives will be reduced below those stated in equations 2,51 (see
Appendix 2) and more exact analysis may show that under certain
conditions equations 3.2 can be satisfied.

/Teble 3 ..
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0 0 0 0 0
0.05 0,272 0.061 0.061 0,003
0.1 0.465 0.151 0.151 0,018
0.2 0.953 Q.72 0492 0.133
0.3 1,702 4.448 1.448 0.613
.k 2,999  2.62% | _2.883. 2.8
0.5 - - - -
0.6 9.456 15.209 15.209 47.128

Note.
1 Tabulated values have been cbtained by term by term

summation,
2, Five decimal places have been used throughout.

3. The following values of Y, Were calculated and were

used in the evaluation of Q3 and Q!.
B

0 10  4.333 4533 4.676 1.787  1.878
0.05 1.143 1.446 1,642 - - -

0.1 1.309 1.572 1.765 1.903 2,013 2.103
0.2 17 5L 1.882 2,055 2.191 2.299 2,388
0.3  2.338  2.307 2.4 2.570 2.675 2,762
Ok  3.262 2,927 2,990 3,094 3.191 3.275
0.5 5 2 % 3 . 3

6 7571  B5.616 5,192 5.104 5.120 5,168

0.1 2,479 2.246 2,30k " . r
0.2  2.463 2,538 2,588 - - -
0.3 2,857 2.903% 2,964 - - =

Ok 3.3k9  3.443 3470 3.522  3.597  3.611
0.5 : - - - -

0.6 5.223 5.2718 5.330 5.379 5.422 5.46

0.4 - - - - - -
0.5 - - - - - -
0.6  5.503 5.538 b5.572 5.603 5.633 5,661
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Table 3 - Contd.

Q Y49 Yoo Yoq Yoo
0.l ~ - - -
0' 5 = fia ' i

0.6 5.687 5.712 5,736 5.759
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1 n i+ “
3% e dY ) a0 +9")
Q"i = 9l s 2 QB s Yn ( 211)
n=0 ( W q2n+1 ) n=} 1=-q

ol
2n+1
'-q::-7 q2n+1(1 bd n+ )
n=0

3
(2n+1) (1 - 22"y

1

v u
S
-

.‘r

2+ )

(2m+1) (2n-2m~1) (1-q Bty

(1-q

2m+1
g

+ 2n
m=0 (2m+1)(2n+2m+1)(1_q?m+1)(1_q?n+2m+1)
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APPENDIX 1

The calculation of the critical flutter speed and

frequency for coupled flexure-torsion flutter.

A brief account of the essential features of flutter

theory are given, for completeness, below. A more detailed

account can be found, for example, in reference 2.

The equations of motion describing the vibration of a

rectangular cantilevered aerofoil in cascade are (reference 2)

A1ﬁ + B1ﬂ + C1¢ + G1é +J,0 + K6

Asﬁ+33ﬁ+03ﬁ+93'é+.}3é+1{e

o

1 ..l'llllllA1l1

0

3

where @ is the flexural coordinate (the dovmward displacenment
z of the extremity of the flexural axis at the tip
section divided by the spaxxa?)

and 0 1is the torsional coordinate (the twist at the tip section

- positive when the leading edge rises and the trailing
edge falls),

If f£(n) and F() are the flexural and torsional
modes respectively then the downward displacement at the point

(x,7) is

where

o i 3
L]

themy
1

and Xx,y,2

glem) + oo E-E)FM) ... IR - 1

y/¥
x/c

is the distance of the flexural axis from the
leading edge

span (root to tip)

chord

are rectangular cartesian coordinates having
their origin at the leading edge of the root
section (see figure 20).

The boundary conditions are that’

f(O) = F(O) = 0
£(1) = POA) = 1
£10) =F'(1) = 0 ISR R, — .
U (1), = 2™f1) = 0O
2
+ Good approximations to the flexural and torsional modes

are f(n) =n

and F(n) =n .
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If, for a hormonic motion, @ = ¢ e gna
=0 elmt, where ﬁ and © are the amplitudes and w is the
circular frequency, then from equations A1.1, when g and 6

have been eliminated,
q_ow4-iq_1m3-q2:02+iq_BW+q_4 5 llilol.f..A1ll}-

which has the solutions

2

w = q'j/q1 |looocclo‘A1!5
and
q -q. q._- 2q = 0 ---.......111.6
Y % 95 03" Y Y,
A1 G1
where q; = A} G3
411 J, B, G
q1 = AB J_3 + BB G3
A K1 B1 J C1 G1
q2 = !LB K3 + B3 J; + 03 G’3 -:cn-u--onﬂjt?
C J1
%G = |Bs Es] + |05 5
01 K'1
qh‘ = 03 1{3
ik i m = mass per unit length of span
£ ¢ = distance of the centre of gravity from the leading
in edge
mc K~ = the polar moment of inertia per unit length about

the leading edge
)’ﬁ = flexural stiffness

mg = torsional stiffness
p = density
V = wind speed

the coefficients I-\.1 5 B1 etec. can be expressed in the following

non-dimensional fonns,+
A, o o P’ 5
a = = =h. fdﬂ-l"""- mf&n lo-o-cao--in-'\.1o8
1 2{5 1} 2
e o "o
/b_;:'- [N
+ It should be noted that sane of the coefficients are

different from those used in reference 2.
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c ¥
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I"1
g ey o g
offc s
1
J i
3 1 ?\
J e = : fF dn
1 vaZ)EZ 8 Y ;
K pt
] A
k = = fF dn
1 sz‘Ezc 0 JO
A i (
8. = 5 = W fF dn + -
S e =
B 1
b = e fF dn
: PVB202 i /o
o i
c, = = U fF dn
i ov*f%e £ "
8l
G
g = ——i- = p_u
> y L 0
pte o
g L .
jj = —‘% = }J.-e i d’f'l
pvfc LJO
vl
By ® __1;_:,_5 Ho Foan + "“;?"E
pv £e Jo pv e

..ll..lll'j\i1l9

.ll.t.llo-A1-10

4
ﬁdﬂ+“j'§f(é-g)mﬁdﬂ ‘llll.li‘A1i11
pe o

.lla..oac.A1.12
ll't.ll...A1l13

,1
[ (E=E)r £ @N veveeeee Mok

FRe]

--.--0---0A1-15

Ian.l-'llA1.16

=2 ==
Pan + —s f(a 22 £ +K°)m ¥Pan ..A1.17
e J o

.lll.'.".A1‘.18

'l...l.ll.*&1l19

In the above formulae >\Q' ete. represent the overall

aerodynamic flexural derivatives and “ﬁ etc. represent the

overall aerodynamic torsional derivatives,

is taken as the flexural axis of the reference section+.

The reference axis

The
/effect ais

+

The aerodynamic derivatives are functions of the plan form,
aerofoil section and the frequency parameter w,
calculations of the flutter speed and frequency sufficient accuracy is

For preliminary

obtained if two-dimensional derivatives appropriate to the required

frequency parameter are used,
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effect of hysteresis or structural damping has been neglected.

If the non-dimensional coefficients ahbove are substit-

uted into equation A1,5 and A1.6

- - = - =2 -2 - :
q.;‘ q.ZO.L3—qO q.j_q.»‘ q.‘:+ — O l.olollolnl-\.1-20
and e
q
W = %‘E" 2\/:2' o...---n.-ﬂ-.1|21
9
S
where (-10 = a3 83
e by g
%Y =893 * [P By
» % % by g 1 &
D=2l * (P59 * |°5 8
y b k1 Sy Iy
q3 = b3 k;,) + 03 33
y G k1
%Wt %%

The phnse difference and the amplitude ratio between the torsionmal

and flexural motions can be obtained as follows. (See reference 2).

If in the moment equations A.1 we put & = a e:"(“tW)
and 6 = 6 e:"ur17

then it can be shown that the amplitude ratio is given by

ey e al
(&.@.) i bycg = bye, -~ @ (b1a3 "bjaq)

{ g

'.‘....II.}L1.22
. ' A2 1 o
quj - ij'T - (J.q g3 T 3581)

and the phase difference vy from

W (b3, = b, 3s)
tan vy b 1

. ) ltl..tlllllﬂlv']023
(e bykesb, )= @ (b5g,-b, 85)

Since

/we can ...
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we can eliminate V2 and derive that

" where

k5 = Q+Bc1 Ol‘oll-lc.il—112)-i-

o = g Fan - B hﬁ 2 an

S
N

-

02{’;5

B =

It k3 is eliminated from equations A1.20 and A1, 21

with the aid of equation A1,24, we obtain the following quadratic

equation in terms of the unknown c, ,+ viz,
Rc2+Rc +R, = 0 A,.25
_11 21 3 - L BN BN BN BN BN BN BN .
where
-2
R_1 = I‘1I‘2—BCLI
B, w ror. #0.0 w88
p W FyEy Tk WS
-2
R3 = 1-31-14_+1¢:1c:3q_l
and

Re » B % 0y

r, = (q85 - a3;) + B(@a, - 3b,)

ry = (b5 - bdy = agk, - cg,) + io(b3k,| + c3d,)
+ algny ~ 4y

r g bl = bk, = @

) 1 3% T C3d4

If the solution to equation A1.25 is written

= ey
Rz ;_i-_”‘R2 - AR1R3

C = - 1-.1-0.-.:-&-1'26

i i
2R1

then the corresponding value for the criticel flutter speed

Vc is
2 £ /94’3
VC o g 4 oacc-.acn.iﬁkjoz?
§
°1c”>";zf f2c1n
& /and »vh
4

unknown.

c, and lt:3 are unknown since V is initially
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and the non-dimensional frequency parameter

e —
T 01__'.’.‘4 + r
w = —\_'—ﬁ ..........1'\.1.28
fe) -

q,

It is interesting to note that the calculation of the
flutter speed of a given aerofoil at a number of gap-chord ratios

can be obtained approximately by the following method.

It can be shown that for typical values of the acro-
dynamic derivatives (see figure 21)

01 = Aa+Bk1 ..........3.1.29
where the constants 4 and B (not to be confused with A and
B wused in equation 2.35) can be cbtained from an evaluation
of ¢, from equation A1,26 for say the aerofoil in the isolated

1
case when arbitrary values are in turn inserted for a and k‘I .

Henece
1 . 1 q
2 2 . 2
c, '?‘;J £ = Bk, + Ay £°an - (uﬁm)?\g £°an
(o] 0 Vo

..llllll.lﬂ1.30
and from equaticn A1.,27

2 kﬁf@-{ﬁ

Vc = ‘ﬁ _1 .o.n.-ca..ﬂ,1-31

) 2 2
Bk1 + g Fdan - AR }\ﬁj £7dn

Similarly

2

w = CCL+Dk1 il..lv..ltA1l32

where C and D are constants.

Therefore, having calculated &, B,C and D, and knowing
the values of }\e s Bg s }\ﬁ for various gap-chord ratios, the

carresponding values of V, and © can be directly cbtained
from the equations above,

The critical flutter speed and frequency have been
-estimated, by the method described above, for the aerofoils

used in these tests, Typical results are given in table IT
below.

/Table IT ...



Aerofoil properties

Theoretical

Experimental

chord c¢
span  J
t/c

Flexural stiffness,fﬁ

Dp

Torsional stiffhess my

Assumed values

Aerofoil 11

Aerofeill 14

90 S,

8.0 in,

0.10

3.01b, £t/rad.
205 rad/sec,
0.161b, £t/rad.

3.0 d,

8.0 dn,

0.10

2,491b, £+/rad.,
152 rad/sec,
0.151b, £t/rad.

5.0 49,

8.0 4,

0.10

2,721b, ft/rad.

179.5 rad/sec.

0.1751b, £t/rad.

W, L8l rad/sec. 326 rad/sec. 326 rad/sec.
Calculated
Critical flutter
speed B 745 £ 0 87 £.p.s. 191 fop.8

Critical flutter

frequency 272 rad/sec. 220 rad/sec. 277 rad/sec.
Frequency parameter 0.7 o0 1.0

APPENDIX 2

4n approximate calculation of the forces arising from

the finite amplitude of oscillating aerofoils in cascade

SA.1.

Introduction

In the classical treatment of the forces arising on an

isolated oscillating aerofioil, the assunption is made that the

amplitude of the oscillations is infinitesinal.

The results so

obtained are, however, applicable to aerofoils oscillating with
finite amplitude, provided that the amplitude is small compared

with, seay, the aerofoil

When the

chord,

classical theory is extended to the case of

oscillating aerofoils in cascade, where adjacent aerofoils have

antiphase motions, the results, so obtained, are not directly

applicable to the case of small, but finite, amplitude.

In fact,

the classical theory neglects the small, but important change in

the tangential velocity components in the neighbourhood of the

aerofoils due to the changing gap between adjacent oscillating

aerofioils,

/A very

This effect will naturally be important only for

cascades of oscillating aerofoils having small gap-chord ratio,
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A very crude.approximation is given below of the forces
and moments on an c¢scillating aerofoil in cascade due to these
changes in the tang=r%iz1l velocity above and below the aerofoil.
It will be assumed that such forces and moments will be additive
to those calculated on the basis of the classical theory,

- It is not suggested that the numerical values calculated
from this crude theory are necessarily good approximations to the
exact results. t is hoped, however, that they will give the
order of the corrections involved, and will serve to stimulate

further interest in this problem,”

80,2, Amalysis

Let us consider a two-dimensional cascade of aerofoils,
having zero thickness, which are set at zero incidence and
stagger angle, We will assune that adjacent aerofoils are
vibrating with antiphase notions.™

Let the amplitude of the displacement of the acrofoil,
with reference axis at the mid chord positions, and the instant-

aneous displacement be respectively

E= g.+x-é l...ll.lll‘12'1
and
2 = E elmt e L ]

Let us consider aerofoll (0), see figure 22, which at time 4
has a displacement 2z at distance x from the origin, At
this latter station let the velocities above and below aerofoil
(0) be uniform and equal to V-u and Vsu respectively., After
the time interval dt the fluid which crossed the plane at x, at
time ¢, will have moved to x + dx,E where the velocities above
and below the aerofoil will be equal to V-u-du and V+u+du

respectively. The corresponding change in the aerofoil

/displacemagt
+ The problem of the fordes and moments arising on two
adjacent oscillating spheres has been discussed by Lamb (reference 8).
% The axes and notation are sinilar to that used in Part 2,
= The small difference between the relative movenments of

the fluid above and below the aerofoil has been neglected in this
crude approximation,
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displacement will be dz. Since the rates of mass flow at times
t and +t+dt must be equal

(V+u) (-;- - z) (V+u+du) (% -~z = dz)

below the aerofoil and s e R

V-u) & + z)

s
5 (V-u~-du) (—2- + 2z + dz)

above the aerofoil.

When |zl < < s/2 the required solution of equations

1{"*2.3 i.S

%Tl. = %E ---.-..-..4'5-2.-’4-
giving

u+"u_=—l—+%-z- .l.lco.on-ﬂ.2.5

where u, and u_ are respectively the perturbation velocities
above and below the aerofoil,

From Bernoulli's equation for the unsteady flow of an
incompressible fluid, when second order velocity components are
neglected, it can be shown ‘bhat,+

B -
-p = 4oV (§+xe)+iwl—"-g—1{ Ex+-%)5 +(x2—£-—-)-§-l

.lll..l.'.Azlé

The amplitude of the 1lift force is given by

2 o 1y

" - e -m (23/0-5/3) o wseininiele el 1

'}tpcV2

and the amplitude of the pitching norent about the mid-chord
axis is
1 0 iz,
» = = = c lOll.lt!!lnﬂ-z.B
:u:pozv2 3rs/c ~ 3ms/c S

The airload coefficients are

e _2a IR

12 = “'mefc ns/c ? 34 - 3ms/c

LB B B ] l'.l‘A-2.9

- o -
M g b iw : M . 1

12 3ns/c 2 34 T T 3xs/o

/and the ...

- The pressure difference calculated frem equations

A2,6 nust be added, as stated in the introductory remarks, to
the pressure difference caused by the direction motion of the
aerofoil,
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and the 1ift and pitching moment derivatives about the mid-chord

axis are,

L=-% i 4

n
1
o

? A s/c
- i 1
P6 . 0 = ‘HB = 3s/c
ll.lllll..Az.“O
L] 1
B, = 0 3 By =5y
1 L3

o

me=—-3—s7-6, my =

If we now compare the derivatives above with those
obtained by the classical theory (see equation 2.51) it can be
seen that both the classical stiffness and domping derivatives

are reduced when the reference axis is forward of the mid-chord.
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CASCADE OF AEROFOILS WITH STOPS IN POSITION
FIG. 3.

GENERAL VIEW OF THE METAL BLADE SHOWING THE FLEXURE-
TORSION SPRINGS AT THE ROOT FIXING
FIG. 4.
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VIEW OF THE AEROFOIL MOUNTED ON THE VIBRATION TABLE.
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AEROFOQILS IN CASCADE,
LIGHT FREQUENCY 39 cycles per minute.
FLUTTER FREQUENCY 40 cycles per minute,
FILM  SPEED 8 c¢yclgs per minute.
INCIDENCE (of”) =0°
$TAGGER (07°) = 5°
GAP«~CHORD RATIO (£)»0-5
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FIG 13.B.

AEROFOILS IN CASCADE.
LIGHT FREQUENCY 39 cycles per minute.
FLUTTER FREQUENCY 40 cycles per minute.
FILM  SPEED 8 cycles per minute,

incioence (%)= 0"
sTAGGER (0°) = 1s°
GAP—CHORD RATIO (3)=0-5
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