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SUMMARY 

The first part of this note concerns the 
evaluation of the potential at a fixed point in space 
due to an arbitrarily moving source. 	The method is 
then applied to the calculation of the disturbance at 
a point fixed relative to a source moving in a helical 
path where conditions are invariant with time. 	An 
explicit relation for the potential is obtained if the 
rate of rotation is assumed small, and the results are 
applied to the calculation of the pressure distribution 
on a wing in a uniform rotary motion in yaw at super- 
sonic speeds. 	The quasi-static yawing derivative of 
the rolling moment is then calculated for an infinite 
aspect ratio wing. 	It is found that the curvature of 
the path of the wing must be taken into account, except 
in the particular case of zero sweepback of the wing 
leading edge. 	Below a certain supersonic Mach Number 
the rolling moment is unstable, and this effect is most 
pronounced for high sweepback. 

The results are based on a consideration of 
the classical wave equation for the potential in a 
compressible, but inviscid, gas. 	The construction 
of the required potential follows the method of Lienard 
and Wiechert in the electro-magnetic theory of the 
moving point charge. 
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the Busk Studentship. 
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N O T A T I O N 

+ m2 ' 

Mo 	= CO R 0  /a. 

= co p /a . 

M2 	V/a. 

R 	= distance of field point from axis of rotation. 

Ro 	= distance of centre of rotation from reference 
point on wing centre line. 

R 	= distance between effective source and field point. 

U 	= velocity of movement of wing leading edge due to 
rotation. 

V 	= forward speed along axis in helical motion. 

Vo 	= wR o . 

V 	. vector velocity of source at its effective position. 

7 	= distance behind wing apex of reference point on 
wing centre line. 

(x,Y) 

a 

system of rectangular coordinates taken parallel 
and perpendicular to wing centre line 
respectively (see Figure 6). 

speed of sound. 

wing span. 

c 	x-coordinate of leading edge of wing at z = 0. 

d R =  

m 	source strength. 

n 	distance from wing leading edge. 

pressure. 

free-stream pressure. 

A pressure difference between top and bottom 
surfaces of wing. 

r 	distance between source and field point. 

s 	(see Figure 2). 

t 	time. 

x.y,z 	(paras.1-3) system of cartesian coordinates, 

(para.4 et seq.) system of helical coordinates 
(see Figures 3 and 4). 
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NOTATION  (contd.) 

wing incidence. 

,/ m2 	. 

angle between leading edge and radius vector 
to axis of rotation. 

angle of sweep of wing leading edge. 

position of effective source element. 

radius of curvature of helical path. 

source volume distribution. 

R t  retarded time = t - g . 

velocity potential. 

(see Figure 2). 

rate of angular rotation. 
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1. 	Introduction 

In any discussion of the stability of an 
aircraft in one plane there are three conditions of 
flight to be studied. 	For instance, in yawing 
motion, we may consider firstly the conditions re-
sulting from a fixed angle of sideslip (C3 / 0 but 
r 0); secondly, those resulting from a uniform 
rotary motion in yaw (with (3 = 0 but r / 0); and 
finally, the conditi9ns in forward motion with 
oscillation in yaw ( / 0 but r = 0). 	In general, 
motion might consist of sideslip, rotation and yaw 
combined, and similar conclusions apply to the 
motion in other planes. 	The first and second of 
the conditions may be deemed 'steady motion' because 
conditions on the wing surface are invariant with 
time, whereas the last mentioned motion involves 
changing conditions on the wing surface during the 
oscillations. 	The first condition is amenable to 
discussion by the usual methods involving uniform 
motion of the elements of the aircraft through the 
air in straight lines. 	The second is typical of 
the type of motion which we shall consider here, 
where elements of the aircraft wing surface are all 
moving in a circular path about some common fixed 
centre of rotation. 	In the case of a uniform rolling 
motion the elements of the wing are moving in a helical 
path through space with a cannon axis of rotation, and 
because a circular movement in the plane of yaw or 
pitch is no more than a particular case of a helical 
movement, we shall consider the latter as being the 
general rotary movement in which conditions at points 
fixed relative to the aircraft are steady. 

In a steady rotary motion the rolling, 
pitching or yawing derivatives of a wing may be 
defined in terms of the difference between the 
forces (or moments) acting on the wing in such a 
rotary motion and those engendered while moving in 
a straight path at the same forward speed (measured 
at some fixed reference point on the wing centre line). 
The derivatives are, in fact, written as the limit 

lim 	Difference in force (or moment) . d . 
7-imensional 

(-) constant 

where 	is the appropriate rate of rotation, and in 
this limiting form they take what is called their 
'quasi-static' value. 

It is often found that some investigators 
of these 'quasi-static' rotary derivatives have used 
the argument that, as 	0, the free-stream over 
the aerofoil becomes parallel, and hence the linearised 
equation for the potential: 

a 24 	 2 
(M2 - 1 )  	+ 	.-- 0   (1.1) 

ax2 	ay 
	az 

for steady straight motion (at the representative 
local Mach Number M) is valid at any point on the wing. 
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Clearly, though indeed it is a convenient simplification, 
there is a need to investigate how far such an assumption 
may be justified. 

In this investigation - founded upon a previous 
thesis 1 - an attempt is made to bring the 'curvature 
effect' into account. 	In the first instance we shall 
describe the method of construction of the velocity 
potential, due to an arbitrarily moving source, which 
satisfies the wave equation 

a 20 a 2y a 20  _ 	a`V 
axff '22 - a 2 at 2 

A source is chosen,for, under certain conditions of the 
supersonic flow, the surface element of an aerofoil may 
be replaced by a source distribution whose density is 
adjusted to satisfy the local boundary conditions on 
that surface. 	We have seen that the most general steady 
motion of a surface element of the aircraft is a helix, 
so that - as an illustration of this method of con-
structing the potential - we shall therefore consider 
the potential due to a source moving on a helical path. 

An explicit statement of this potential is 
not generally possible to obtain, as such a statement 
requires the solution first of a transcendental equation. 
However, we shall find an approximate explicit solution, 
bearing in mind that we are only interested in conditions 
of the flow at distances from the moving source which are 
small compared with the radius of curvature; for, in the 
study of quasi-static derivatives, the rate of angular 
rotation may be considered as infinitesimal, so that in 
a uniform rotary motion at a finite speed of flight, V1, 
it follows that the radius of curvature is of the order 
of 1/./ .2 and is (in the limit) large compared to, say, 
the wing dimensions. 

Finally, we shall apply the results we obtain 
in this way to the study of the pressure field due to a 
wing describing a circular path with uniform supersonic 
velocity about some fixed centre of rotation. 	Such a 
condition corresconds to that of a steady rotary motion 
in yaw and the results we obtain are valid if the an-
gular rate of rotation becomes vanishingly small. 	It 
is our intention to show that the curvature of the path 
can be an important first-order effect, even in this 
limiting condition. 

For simplicity we shall confine our discussion 
to a study of those parts of the wing (with a supersonic 
but swept-back leading edge) where there are no tip 
effects, and no interference from the wing centre section. 
Nor shall we consider the effects of wing thickness, 
twist or dihedral. 	We shall indicate finally the lines 
of possible extension of this theory to more general 
problems. 	It is mainly the intention here to state 
the fundamental results and indicate the method of 
solution, by way of an example, rather than to attempt 
an exhaustive survey of possible applications. 

(1.2) 



2. 	The Potential of an Arbitrarily Moving Source of  

Varying Strength  

We are here concerned in the construction of 
the potential of an arbitrarily moving source of varying 
density which satisfies the Laplace Wave Equation (1.2). 
A solution of this problem has been obtained by Lienard 2 

and Wiechert 3 who found it in analogous form when con-
sidering the electro-magnetic field due to a moving point 
charge. 	Although in a sense 'classical', their solution 
will be summarised here in a form relevant to our dis- 
cussion. 	The notation used in this and other paragraphs 
is listed in the front of this report. 

We consider a source, then, of arbitrary 
strength and motion which at the instant t occupies an 
element of volume Ox Oy Oz. 	At this instant we assume 
that matter is locally introduced into the fluid at the 
rate 24.1croa Ox by Oz per unit time. 

At the element occupied by the source 

2 	1 a20 
7 	- 	 .x  —7 	= a   . .. . . . (2.1) 

Far away from the source a = 0, or in spherical 
coordinates 

a 20 	2 21i a 20 	cot 0  _al 		I 	a20 + 
8r 2 	r ar 	r2 30 2 	r2 	80 r2 sin20 alt 

 

a 2 rlf 

 

(2.2) 

(2. ) 

a2 at  

of which a solution is 

0 	-1 f(r - at) 

 

 

where r is the distance between the source and the 
field point. 

As the source is approached 

°-tt  _41,2 f"(-at), f(- at) and 	0    ( 2 .4) 
"rr 	

f (at ) 

After this work was completed the attention of the 
author was drawn, by Professor G.N. Ward, to the fact 
that the analogous problem of an electron moving in a 
curved path at a speed greater than the speed of light 
was dealt with by G.A. Schott in his book 'Electro-
magnetic Radiation' (Camb. Univ. Press, 1912). 	It 
will be appreciated that it was only prior to the wide 
acceptance of the Theory of Relativity that such 
problems were regarded as fruitful topics for research. 



and hence (2.1) reduces to Poisson's ecuation; so that 
as r -3 O 

I' r  a dx dy dz  
• 

 

(2.5) 

  

Comparing (2.4) and (2.5), we therefore find that 

o dx dy dz W f(- at). 

Similarly, for field points away from the source we may 
introduce the retarded time r, where 

= t - a 

so that 

f(- aT) 	f(r - at) 

and consequently we may write 

0 = 	
Laj 	dy dz  

 

(2.6) 

 

wiiere DI is the value of a at the retarded time T. 

 

When determining the potential of a moving 
source, it is necessary to note that the retarded time 
varies over the volume occupied by the source. 	This 
is even important if the total volume it occupies is 
infinitesimal. 	Suppose we wish to evaluate the 
potential at (x',y 1 ,z') at time t'. 	Let (E,11,) be 
the position of any element of the source at the 
retarded time -t = t ?  - R'/a where R' is the distance 
from the point V,1-1,0 to the general field point 

We may speak of ( ,ri,4) as the 'effective 
position' of the element of the source, since this 
element contributes only to the potential we are in 
search of when it is at V, -q,4). 

The retarded time will be different at any 
given instant at different parts of the source. 	Let 
us consider the conditions at some standard retarded 
time T. 	Let the position of the element under con- 
sideration at T = To  be (_ 01 0 ,L; ), and its velocity 
Vo  at this instant. 	Let r,,11,43 and ( 0 ,71 0 , 0 ) be 
the components of two vectors 1 and 1, 0 , respectively; 
then since the element which is at (E0 ,11 0 ,t 0 ) at 
time T = To  has moved to V,11,) by time T 

/ —o (T—
o )

2 = 	+ V (T - To ) + 

av 

—0 —0 

I- 
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Remembering that T is a function of E, n and 	we have 

at 

ag o 	al. 	 aY-0 	 a2v 	
2

aT - 7 	- aE 	 To )-1- 7 (ti- T )+...1 etc. 

with similar expressions for the other derivatives. 

Those elements of the source which have their 
effective positions inside a small element of volume 
dE dri (3X occupy, at the fixed time T o , an element of 
volume dE0  dn o  d o , the ratio of these elements being 
given by the usual Jacobian 

3( 0 , n, L',0 ) 

aE ar aE 
-0 	-0 	-0 

aE ai, a 

an D  an o  an3  

ari 	a 

a ,c) a40 a40 
Tr an a 

Evaluating the determinant we find 

dE0  dno  clZ0  
	  = 	1 - grad T 0 

 + V
0 
 (T-T

o 
 )+ 	o (T-To )2+...  dE dT1  

Thus, if V is the velocity of the source when 
the element considered reaches its effective position, 

1 grad T = a — grad R' 

and 

V = V
o 
 + V

o 
 (T- o )-1- — V—o  (T- To )

2 4. .... — 	 2  

e find that 

dE0  dn o  d40 

 dE dn 

  

1 	V grad R' 
a 

K 1, say 	 (2. 7) 

   

where K is called the Doppler factor, and equals at/aT. 

Suppose now that we let (Eo , n o , ,c) ) be 

the effective position of the centre of the source, 
so that TmN- T

o
, V V, etc., then the potential at 

(x', y', z') at time t' is given from (2.6) and (2.7) 
by 

0 = 

where all quantities are evaluated at the retarded time To; 

fj 'a dE0  dno  dZo  

r 



mn 
0 

n 1 Kn  RA 
(2.8) 
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i.e. neglecting variations in r as measured from various 
parts of the source 

m 
0 - 	

o 
 

1K1 

where m
o is the strength of the source at time T

o
. 

Since there are in general a number of 
effective positions of the source - depending on its 
speed and path - we may write generally 

where mn and n are respectively the source strength 

and the Doppler factor of the source at time T = tin , 

when the source is at the effective position (E n trin , n ) 
distance R' from (xl, y', zi). 

3. 	Pulse Waves  

A physical interpretation of this equation 
(2.8) may be obtained by assuming that at each instant 
of time the moving source emits pulse waves which travel 
away from the point of emission in the form of snherical 
waves, expanding with velocity a. 

Let the source at time t be at the point 
(x, y, z). 	The configuration of the pulse waves will 
be considered at the present time t k 	At tIlis time 
the source occupies the position (x , y 	). 	 The 
path of the source is denoted by r' in Figure 1. 

In thifigure, it will be seen that at a 
point (X, Y, Z, t there are two pulse waves whiq x x  
intersect simultaneously as the source reaches (x ,y ,z ). 
Hence the potential at (X, Y, Z, t ) depends on the 
strength and kinematics of the source as it passes 
through the 'effective points' (x l , y l , z 1 ), (x2 , y2 , z 2 ), 

	 (x
n  yn

, z
n

). 

If the source never reaches the speed of 
sound it may quite simply be shown that n = 1 or 0, 
i.e. there is just one effective point and no other. 
For a source which, however, during its motion has 
exceeded the speed of sound, these may be regions 
for which n = 0 or n 1. 

To illustrate these deductions, we shall now 
consider the specific example of a source moving in a 
helix. 



L4. 	The Potential Near a Source of Constant Strength moving 

along  a Helical Path at Constant Speed  

The geometry of the path and the system of 
coordinates is shown in Figure 2, and the distance 
between the effective position of the source and the 
field point is R' where 

% R' = 	+VT) 2  + r2  + p
2 - 2 rpcos (co T 	 (4• 1 ) 

where T is the time of emission of an effective source 
previous to the present time t. 

By definition of retarded time, 

	

at = a T 	R' 

whereas 

	

at 	aR' K == 1 +  

	

aT 	a at 

Hence, the Doppler factor 

(4 2) 

K 	V( 1 + y +V-0 + row sin(w T- )  

a R 

 

(43)  

 

The problem is now to solve equations (4.1) 
and (4.2) to find T y  i.e. to solve 

a (t - T) = 	(y + V 	+ 	+ 0
2 - 2 r p cos ( T 

 

(44)  

by which process we find the times of emission of all 
the effective sources. 

Let us suppose that the source has been 
moving along the helix since time t o . 	Then any 
solution of (4.4), T = Tmy  must evidently satisfy 
the inequality 

 

t o 	T < t. --  

If there are n solutions 

 

(4-5) 

 

T
1 
 > T

2 
 > 

 

tin 
	

and 	T
n 
 > t o 

 

then evidently after the source has travelled a finite 
length of time (t 	gin) the potential 0 becomes 
independent of the starting time t o . 
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Wu now define the new variables 

W 	= s/p 

w(t-T) = (x-sYp 

p + Z 

w p /a = M i 

 V/a = M2  

and without loss in generality we may consider the 
potential at (x,y,z) at time t = 0. 	Squaring both 
sides of (4.4) and substituting the new variables we 
find 

M2 12 
(x-s) 2 	( 

2 	y +(x-s) 	+ z
2 + 4p(p+z)sin2 s 

M M1  

i. e. 
2 	 ' 

 s, (M22 	P- - 1 )+ 2 	2S-0  (M22  - 1)- pM2 
M1} P 

r 2 
x 	2 
2 2 	 2 

tm 	1 )4_ y
2

+z
2 

 „ 2 - 
	2 

2xy  2 
1 p    

=
2 (1 + 	s  

2p • 

The assumption will now be made that we are 
interested only in the potential at points whose 
distance from the source is small compared with p. 
For the moment we may regard this merely as a con-
venient method by which an explicit solution of (4.6) 
may be obtained. 	The assumption means that 

2 	2 ■ 
ix + y

2 
 + z  1 

‘ 	2 	i i 
1 	 p  

may be treated as small com ared with unity: and 
consequently so also may (s /p 2 ). 	Correct to first 
order terms in the small quantities (4.6) becomes 

s
2 

im  2 	2 1  \ 2s ; x tn  2 1  \ 	// n  
2 ' 1'12 + 1-1 - I 	p 	-p`‘2 	p '1'2 j 

P  

(4. 6 ) 

("x 2 2 	v2  z2 2 2xy  —2- (2,12  - ) 	- 	 - 	Dol I 	= O. 2 	1 	2 
P 

Here 1 2 + M2
2 

= M
2
, say, where M

2  is the Mach Number 

of the source relative to the gas. 	We must now 
consider the nature of the roots of this equation 
for both M > 1 and M 	1 (i.e. the supersonic and 
subsonic cases). 



0 (4.9(i)) 

,vi (1 - M2 ) (x
2 + y2 + z 2 ) + (M x + IkAL2y ) 

2. 

(I4
2_ 1  ) (x 2 +y2 +z 2 ) 

or (iii) if 1I 	1 and (M 1 x + M2y) 
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The solutions are given by 

M 	 - 	+ y M2 ) = 	(M 1  x +
2y ) 2+ (1-M2 ) 

 (x +y 2 +z 

(4.7) 

The required solutions are those which yield 
a value of s such that T < C, since we are considering 
only the conditions at the instant t = 0, (vide the 

	

inequality (4.5)). 	We must therefore have s s x; 
now it follows that in (L.7) 

x 	
1 4,  

M 1 	y M2 	
/ 
(xM i  + yM2  ) 2  + (1 -M2  ) (x2 +y2+z 2 ) 

according to whether M j 1. 

Having regard to the signs of the expressions 
in (4.7) it follows that there is just one root s = s 1  < x 
if M 	1. 	But if M > 1, neither or both roots satisfy 
the required condition according to whether 

(M1 x + M2y)
2 	(M2 - 1)(x2 + y2 + z 2 1. 

In other words, to the accuracy of the 
approximations already made, the expression of the 
potential from (2.8), (L1.2) and (4.3) is 

mn 	 mn  
= 	 - 	 V (y+VTn)+ r p co sin FT:7.* n 	Kn  I RA 	n I a (t-T n ) 	 a 

(Li- 8) 

i. e. 
m  0 = 	 

n 1 ( 1-M
2
)(x_

sn
)1- m

2
y 	M1 xi 1 

and using (4.7) we therefore find: 

(i) if M C 1, there is one root s i  < x and 

or (ii) if M > 1 and (M i x + M2y)< /(M2 -1 ) (x 2 +y2 +z 2  ) 

0 = 0   .(4.9(ii)) 

(4.9(iii)) 

/ (M 1 ' - + M2y ) 2 - (I412 -1) (x2  + y2 + z e ) 

assuming that the source strength is invariant with time. 

0-lems-x)  

0 2m 
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The condition expressed by the inequalities 
of (ii) and (iii) is that in supersonic flow there is 
no disturbance outside the 'Mach Cone' from the position 
of the source at t = 0 (i.e. the origin x = y 	z = 0). 
It is a 'cone' with its vertex at the origin, it semi-
vertical angle 6 = arusin 1/M, and its axis along the 
line M2 x + Ml y = 0 = z. 	This line is in fact the path 
of thesource, but since the expression above is valid 
only for small x/p, y/p and z/p, the axis in this 
region is indistinguishable from the tangent to the 
path. 

This solution was obtained by retaining only 
the terms os lowest order in (4.6). 	It corresponds 
with the conditions we normally associate with uniform 
linear motion. 	A correction term of next lowest order 
will now be sought. It follows from (4.6) that the 
term of next order contained in the expansion of the 
r.h.s. is 

2 z 5 2 

	

0/1 	) p 	2 

which involves the third power of the small quantities 
s/p, z/p, etc. whereas the other terms contain second 
powers only. 

The solution of (4.6) then becomes - in olace 
of (Li. 7) - 

(1 -M2 )( s _x )_(xm+ym ) 	± t(xml+ym2)21_0_m2)(x2+y2+z2) 
M 1 	

l 	2 
 

.2 	2 + M 2  z  21 t —z rovl 	) 	x I 	• p 	2 	1 y 	 • 

	 (4.10) 

The root in the r.h.s. is now the term which appears 
in the denominator of the expression of 0, in place 
of the first order expressions in (4.9). 	The con- 
ditions change for M ›..c.  1 as before, provided we do 
not consider the condition M 	since z/p must be 
considered as an infinitesimal whereas (M-1) is finite; 
the 'Mach Cone' is now modified to a slightly different 
shape, viz. if M > 1 and 

(xM1 	yM2) 	-102 )(x 2 41.2 +z 2 ) _ .Elt 
‘ua'' 

 m1y) 2 -x2+m 
 I
2 z21,,1 pLin  

0 2m 

 

211  11(xM. +yM2  ) 2 + (1 -M2  ) (x
2 

+y
2 +z 2 ) _ 	

2 
x_m

I y)  2_x 	2 z 

Since we are generally interested in the 
potential due to a distribution of sources, and not 
just a single one, it is more convenient to refer 
the axes to a field point as origin. 	Accordingly 
we take a new set of axes as shown in Figure 3 with 
x' W  y' = z' = 0 as origin corresponding to a field 
point moving with the same forward and angular 
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velocities as the source. 	Then if its axial and 
circumferential Mach Numbers are M' and W9 1 	2 respectively 

x = x' (1 - 	) 	
M1 	1 

= M t 	- z ) 

Y = Y' 
	

M2 = MI 

z = z' 	 p = R' - zi. 

Hence, from (4.11) the potential at the origin due to 
a source at (x', y', z 1 1 is, correct to the same order 
of approximation, 

0 = 2m 

 

, 	2 	 2 	2+z'  . 4. 	 , 	 ,.2 	,2_,2 (x 1 144+y'M) +(l-W 2 )(x' +y' +z' ) 	uK2x 	) -x +m ,i z 

(Li.. 12) 

5. 	The Pressure  on a Flat Plate Aerofoil in a Steady  
Rotary Motion in Yaw  

As an application of the previous solution lot 
us consider a wing rotating in the plane of yaw in such 
a way that the angle of sideslip is always zero. 	This 
is in fact the condition of an aircraft when it is turning 
in an unbanked circle, pointing always in the direction of 
motion. 	In such a manoeuvre, the angle between the 
direction of travel and the plane of symmetry of the 
aircraft is zero, so that there is no sideslip and no 
yaw: yet there is plainly a rotation; in t.he usual 
stability notation, r is non-zero although p = 0, (in 
particular we shall take 6 = 0). 	There is an analogy 
here in the behaviour of a model aircraft attached to 
the end of a whirling-arm where there may be no change 
in the angle of incidence with time, but where there 
is a pitching effect induced by the curved path of the 
model through the air. 	In this case there is non- 
zero q, although t = 0. 

In the application proposed, each element 
of surface of the aircraft wing is moving in a circle 
about a centre of rotation fixed in space and time, 
so that (because a circle is a degenerate form of 
helix) the analysis of the above paragraph is relevant. 
Moreover, if this rate of rotation (which we shall 
call w) is sufficiently small, then the radius of the 
circle will be large compared with the dimensions of 
the aircraft and the approximations previously intro-
duced will be valid: we shall consider then the 
condition w 	0, although wR/a is finite. 

As the velocity along the helix (V) is zero, 
the total velocity of the aircraft is simply wRo, 
where R o  is measured to some fixed datum on the air-
craft. 	We shall consider wRo 	a, so that the motion 
is supersonic: more particularly, we assume that the 
Mach Cone from any point on the wing surface lies 
behind the wing leading edge. 	Moreover, we shall 
consider only the flow over those parts of the wings 
where there is no effect from either the wing tips or 
centre section. 
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5.1 The Potential Function and the Mach 'Cone'  

To proceed with the analysis, we note that - by 
reason of the above arguments - we may use (4.12) to 
describe the potential due to a boint source on the wing, 
provided that we put M2 = 0 and M1 = M, say: then, 
dropping the primes in (4.12) the potential in the plane 
of rotation is 

0 	
2m  •   (5.1) 

Y=0 	t 	 m 2 z 2 jix2  + (1-M2  )z 2  - R ij 

The rate of rotation in the plane y = 0 is w; and if the 
wing is at a vanishingly small incidence a., conditions. in 
the plane y = 0 are effective, also those in the plane of 
the wing. The equation (5.1) applies for M > 1 where 

it (m - 11z 2  2 z
(x2 m2 z 2 

x 	1z1 

5.2 The Viing Geometry 

The geometry of a part of the wing is shown in 
Figure 4. 	Here we consider that we wish to find the 
potential at the point A due to the rotation of the wing 
about the point O. 	If the length of the arc AD = c, 
then from the geometry of the triangle DPO, where P is 
any point of the wing leading edge. 

- z 

	

x-c 	sin Y sin( 	Y - -17-) 

or for small values of (z/R), 

z = (x-c) I cot Y - 	 cot 2Y 

5.3 The Source Distribution on  the Wing  

Suppose that the wing leading edge is 
supersonic'. 	Then conditions on the top and bottom 

surfaces are independent and we may simulate the 
pressure field over the upper surface as a plane 
distribution of sources (or sinks) on the wing. 
Now it may be shown using (4.11) that the displace-
ment of the stream caused by a source of strength m 
is equal to an infinite cylinder of cross-section 

2m/( /1 -I- 	wp) 

normal to the direction of motion, if m--->0. 	This 
follows from differentiation of 0 in (4.11) with 

 respect to r = 	2 + z 2  to find the induced normal 
velocity, and then appropriate integration downstream 
for the condition r 	O. 	However, if r--> 0, the 

(5.3 ) 

i. e. 

 

(5. 2) 
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variation of z on the limiting (surface) stream tube is 
negligible so that the displaced area is simply 47m1/wo. 

Let us now consider conditions on a plane 
surface over which the surface inclination to the direction 
of motion is equal co -a (as on the wing upper surface). 
Then taking coordinates on the surface s and n in the 
direction of, and perpendicular to, the resultant stream 
velocity, since in moving from s to s 	Os the increase 
in flow area is +aOs On, where On is the width of surface 
element considered, it follows that at a surface element 
of area OS 

,x m) = - a 38 cop 

only the half of the displacement above the wing surface 
being considered. 

In terms of the coordinates originating from 
a fixed field point, if the element of surface is at 
(x, 

a m 	
2?[ 

- 	(1)(R - z) OS . 

 

(5.4) 

 

5.h The Potential due to the  Lift  Distribution  

The potential at the point A (Figure L1.) may be 
found by integrating the total effect due to the source 
distribution on the aerofoil surface. 	Since no distur- 
bance is propagated outside the Mach 'Cone' of a source 
element, it follows that the range of integration may be 
confined within the region enclosed by ABC, defined by 
the leading edge BC given by (5.3) and the inequality 
(5.2). 	Thus, using (5.1) together with (5.4), the 
potential at A due to the wing lift is 

 

(R-z)dz dx ca 
Y=0 	'x 	1 1 J(m2 .4A2 

ABC ,/ -172 )x2  

 

...
. (5.5) 

  

where 

	

zB 	
xLE 

dz dx = 	dz 	dx 

" ABC 	 U-zc MC 

  

if zB and z are respectively the values of z at B 

and C, and xmc  is the value of x at the intersection 

of the line z = const. througll - xLE' with the Mach 

Cone ABC (x LE 
lying on the leading edge BC). 

Performing the integration with respect to x, 
since from (5.2) 

xMC 	
/ 	- 1 - 

 I/ 



zB 	z argcosh 

zc  
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we have, if (M2 - 1) = 13 2 , 

= awR 
y=0 

xLE  

/ 2 	z dz I ,vff3 - 	- 
(5. 6 ) 

where by (5.3) 

, 

	

xLE - c + z tan Y 	+ - tan2YU + cot 2 
 Y) 1 , 1  

and at the upper and lower limits, z = z B  and zr , 

J
J 

xLE = 1 z1 
2 	

z by (5'2). 	
This integral is 

evaluated in Appendix 1. 	Using the result obtained 
there we have that 

0 	
a, w R c 	co 	tanY sec 2YiM2+ 2 sec 2y)

+ 
 ic2\ 

1 y=0 

	

A/M2-sec 2Y 	4 
2 

- sec
2Y) 2R 	 R  

(5.7) 

The first term is the same as that resulting from a 
uniform motion without any rotation, and the second 
provides the 'curvature effect', which is negligible 
if I 0 only. 

5.5 The Pressure Distribution  

The pressure difference (p - p c) ) between the 
local pressure and that of the air at rest is given, to 
the first order in a, by the expression 

1.21 
P- Po = P Dt = 	w  ac 

 

(5.8) 

 

or from (5.7) 

(M2 +2sec 2Y) 	/c2 ) +0( 
p  - n ,7.,  _ 121tiL2J2, 1  + c tan Y sec 2Y  

.-0 

	

	
‘R 42-sec 2Y ( 2 (M2 --sec 2

Y) R 2 	 2
I 

By symmetry, the pressure difference 
between the upper and lower surfaces is 

2a, p(w13.) 2 	c tan Y sec 2Y(M2+2sec2Y)  + 0(r,)r 

2(M2 -sec 2Y) 2R R`' 

(5. 9 ) 



R o 

- d tan Yo  Y - Yo (5. 10
) 

- 19 - 

R 6 Changf_of Coordinates  to those referred to  the 

Wing Centre Line  

We shall now refer to a system of coordinates 
referred to the centre line (root section) of the wing, 
shown in Figure 5 as LK. If OG is perpendicular to LK, 
and OG = R o  in length, we write 

wR V0 
o 

R=Ro +d, 	M o = a 	a 

and so M = M (1 + R  -- • 	') 	7urther, we let Yo 	L.LKD he o   

the sweepback of the wing leading edge, so that if 
GK = X, from the geometry of the triangle ODH in 
Figure 5, 

is small compared with unity. 	Thus correct to terms 
of first order in 1/R, 

R
2 R ic2 2d 	sec 2y o 	tan Y 	d 	 

	

 	1  

2 	 f - sec Y o 
2 	Ro 01 2-sec2Y . A 2 	2 	2  

	

l-secY 
N/DA0 - sec Yo L 	 0 	O  

	  211 + 	  

M 2 -sec 2Yo 	
R0 (M02- sec2Y0) 

N 0 

[(M 2-sec 2Yo - sec4Y )+ — sec
2  Y otan Y o 	d 	 o 

Whence in (5.9), to the appropriate order of approximation 

AP
2 a p vo

2 	
+ wd  1- 

secy 	07 	 Y. -sec 2y
0
tan ! 

~-* 
/34  2 _ see2y

0 	

Vo 

- 	

o2-sec
2
Y 0
1V

a  (14 o
2 - sec Yo ) 

+ wc sec

- 2

yotan Y0 o  (M 2 + 2sec 2
Y 

. 2 	2 
(Mo - sec

2Yo ) 

(5.1 1) 

Without loss in accuracy in this expression we may 
replace the coordinates (c, d) in the correction 
terms due to the curvature of the path by the 
rectangular coordinates (X, Y): X measured from the 
leading edge parallel to the centre line, and Y 
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measured from and perpendicular to the wing centre line 
(see Figure 6), i.e. if b is the wing span 

a( 	) 1) 	2 a. p Vo  b j x sec 2Y 0  tan y o  (M O2 + 2 sec 2y0 ) -1  

aw 	- 
,x/M - sec 

	

o2
2Y 	I- o 	

/ 2 LMo ._sec Y o ) 	22  

I sec 2Y o  tan Yo 	Y 
b 

sec4yo  
- 2 M0 -sec2Y0 _ j M 2  - sec 2Y o 	o 

(5.12) 

5.7 The Unswept Wing  

Evidently for an unswept wing Y o  = 0, and 

2 apVY 	/M 2  - 2\ 3 
=  	

( 	 

P 	
\ hi  2 

0 

(5. 1 3) 

Other investigators 4,5 have found that for this condition 

2apV Y 
0 	1 

11)( LNP) 2 	• 
\.m o — 

 

(5.14) 

 

It appears that this result is in error due to neglect 
of the variation in the induced normal velocity across 
the aerofoil. 	In its derivation, the source strength 
over the span is assumed constant, which by (5.4) is 
not so. 	The expression (5.13) may in fact be obtained 
if we assume that at the point A the equation for straight 
uniform flow is valid, i.e. 

(M2 	 a 2g _ - 1  ) a 20 	a 20 
+ 	- ° ax 	ay 	az2  

where the Mach Number M is chosen as that of the local 
flow at A. 	Hence, with no sweepback, Harmon's use in 
reference 5 of the two-dimensional Ackeret Theory may 
be justified, at positions outside the wing tip Mach 
Cones. 

5.8 The Rolling Moment on a Wing  of Infinite Aspect  

Ratio 

We now consider the forces on a wing of 
infinite aspect ratio, allowing the wing chord to tend 
to zero, but its span b to remain finite. 	Then the 
spanwise distribution of pressure yields a difference 
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caused by the curved motion of amount, from (5.12) 

2a, p Vnb ( y  
(Llp ) = 	 11 -  secilY0  3w . 2 Y %_ 	M0 - sec O j 

(5.15) 

Integrating over the span from -b/2 to +b/2, since the 
contribution from the regions inside the wing apex and 
tip Mach Cones is negligible, the rolling moment is 
given by 

2 
M - sec 2Yo 	-sec

4Yo lim moment 	 o 
w -30 1 	2 	?). 1 p\T

o cob s (m 0
2 - sec 2y)3/2 

(5.16) 

where S is the wing area. 

This derivative changes sign at 11+1=see y °  11+ sec
2  Yo : o 

and the values of this critical Mach Number are plotted 
against Yo , the angle of sweep, in Figure 7. 

The effect is due to the fact that at low 
supersonic speeds the lift force at a given angle of 
attack decreases with increasing speed: thus those 
parts of the wing on the inside of the turn may, if 
the aircraft speed is low enough, be developing more 
lift since there the speed is lower than on the other 
half-wing (because this is moving faster). 	The result 
is that the wing tends to bank into a turn in the 
opposite sense to that which is actually taking places 
the derivative 1r  is then positive, whereas the stable 
rolling action - into the turn - is characteriSed by a 
negative value of tr . 

It will be seen from equation (5.15) that even 
in the example of an infinite aspect ratio swept wing, 
the curvature of the path is an important effect, since 
by an extension of the strip theory one would expect, 
by analogy with the case of the unswept wing, that one 
would obtain an expression like (5.13), viz. 

a 	2 (a, aos 
0 	0 
) pV Y MO2  cos

2yo-2‘i  

A. ,2c08 2y 	M O2 cos
2
yo-1/ 

N m 	0 

sec 2Y 

im2_cos2y0  b Pi .o  - sec2Y o 

2 a, pV b o 	Y 1 - 	  2 

which differs from (5.15). 	This difference may be 
accounted as due to the effects of the curved flow, 
Producing a change in the effective angle of sweep 
over the span. 
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6. Conclusions 

We may conclude,therefore, that it is possible 
to construct the general form which the potential must 
take (equation (2.8)) in an arbitrary motion. 	The 
explicit form of the potential function appropriate to 
any prescribed motion may then be written down if we 
know the effective positions of the source. 	In general, 
the potential at a point fixed relative to the moving 
source will be a function of time, but in some types of 
motion which we may deem 'steady', the potential at such 
a point is invariant with time. 	As an example of such 
a motion the movement in a helical path is considered, 
but then it appears that the effective positions of the 
source may only be found if we solve a transcendental 
equation (4.4). 	Further analysis is only possible if 
we obtain an explicit solution of this equation, which 
is possible if we consider the curvature of the path to 
be infinitesimal: such an assumption means that the 
radius of curvature of the path becomes very large 
compared with the other dimensions, or in other words, 
we consider the potential at points relatively near the 
source compared with the radius of curvature. 	This 
choice of small curvature is compatible with the 
requirement that we shall ultimately calculate the 
quasi-static stability derivatives due to the curvature 
of the path, since these are valid only if the rate of 
angular rotation is infinitesimal. 

The appropriate form of the potential can 
then be obtained for such a motion (equation (4.11)), 
and as an example we consider the potential due to a 
distribution of sources on a swept wing of an aircraft 
at incidence performing a uniform supersonic rotary 
motion in yaw, with vanishingly small rate of rotation, 
w. 	The first-order solution in terms of w for the 
pressure distribution is then given by (5.12) outside 
the region affected by the wing apex and taps. 	This 
differs from that obtained by other investigators, and 
is compatible with the assumption that the conditions 
may be found using a linearly moving source of appro-
priate velocity, only if there is no sweepback on the 
wing. 	Finally, the rolling moment due to a rotary 
motion in yaw (ir ) is calculated for an infinite aspect 
ratio wing - see equation (5.16): the moment changes 
sign below a certain critical supersonic Mach Number 
dependent on the angle of sweep (see Figure 5) and 
becomes 'unstable' - producing a roll out of the turn. 
This is due to the fact that at low supersonic speeds 
lift decreases with an increase in speed bringing 
about a higher lift on the half-wing on the inside of 
the turn where the local velocity is smaller. 	The 
effect is particularly important for high sweepback angles. 

7. Extensions of the Method 

There is no reason why the analysis cannot 
be applied to tip effects and centre-section effects 
on a wing of finite aspect ratio - although the 
calculation involved will be laborious. 	Also it is 
1.Dossible to calculate the rotary derivatives in a 
number of other steady conditions by precisely similar 
methods. 	Such investigations show, for example, that 
the quasi-static rolling derivative due to roll may be 
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calculated using sources moving along straight lines, 
and this applies too for an aerofoil moving with a 
uniform rotary motion in pitch provided that there 
is no dihedral on the wing. 	It seems that the work 
may have some relevance to propeller theory, in those 
regions of the blade where the speed is supersonic. 
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APPENDIX I 

Evaluation of  an Integral 

It is reouired in para. 5.4 to evaluate the 
integral on the right-hand side of (5.6): this is 

-113 /M. 	 - I 

I= 1 	/1 - "1 R . argcosh I 	
x
LE -; 1 dz. --- 

z  

	

J 
c

''' 	 L iz z i 1 ip - , 2 	z  l  	iz- - 

We need only consider the value correct to first order 
terms in (z/R) - assumed small; substituting, now, 

	

RxLE 	c + z tan Y L r  -f 1 + tan2Y + cot 2  y)1 

l z ! 0 ( 1 	z  2) 
i z i4/ 0 2 _ rzz: 

2R 

we find that, from (5.2), 
(-oo 

	

= 	g) /1- R  fl 	
dz 

j 	dt z 0 
1--(710 	- 17

- z
rgcosh t dt. 

Integrating by parts: 

	

I - 	[ 	(2 -
z2 	- (2 - ( 	 z2  

1 z<0 < 0 	 z>0 H."  

But, by definition 

n 	3Y- 

	

- 	
1 	 1 	rst 

L 
0 ,4 + t a Y + tan  	1 

sQt - tan Y 	- sr3t - tan Y 

where s = sgn z. 	Thus, correct to first order terms 
in z/R, 

( 	2 	 2 
Liq (z 

413  z> - (z 
	) 

4n z <0 

c 2    tan2Y  13 46 	( 

	

+ 	(tanY + tan3Y) 
13 2t 2 4, 3  

(0 2 t 2 - tan
2
Y
) 	 2 

L (02 t 2- tan2Y 

tanY 3(3 2t 2 + tan2Y  _tanY 	 
213 2  02t 2 _ tan2y)2 	2  

213t 	+ c tan  YI ec 2Y + /6 2 )  4_  4(1+ sec  yi- 1/A )-ran 2 	/ 2 • 

! (3 2 t 2 -tan2Y 	213 1 2 
 t2 - tan2

Y ((3t-tan tan2Y )2 

t = 

dt 

,,It 2  



= 4 1 - 2n 	 du  
I 	r Y i 

2 - n 
n 

u
2

+ (1- 
tan 

 ---- 2 
P 

(11=F-7-i) 

(n=1 ) 
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The required integral is then made up of integrals of 
the type 

4.‹.  
1 	ds/ ,,,,' s-1 	 ,2 1 	2pt 	 ,q-i- ....._,., 	_ 3 1-2n 
j 1  (s_tan22" )11 	

(s=u ) 

1 	2 	2 n 	,-----"1  2
0 1  (13 t -tan Y) 	,...it - 1 

(3 

r32 - tan2 Y 

R (2n - 3): 	 1  
(n-1)!(n-2)!2 2n-3• 	2 	2 .111  (r3 -tan Y) 2  

(n 2). 

Hence, we find that 

RC 	.1 1 + c tan  y sec 2  Y+3  / 2 	3 (14-sec 2y+ 1/ 2)tan 2Y 

M
2 -sec 2

Y 	
,^ 2 

L 	 (M
2 

sec Y)-J 

c tan Y  o 	-1 rl 
2

I sec 2
Y (101

2
+2 sec

2
Y) I 

0 2 	-  sec 2Y 	)4.R ( -1\1 2 - sec Y ) 
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F IG. 1. PULSE WAVES (SEE PARA., 3) 
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FIG 3 TRANSFORMATION OF ORIGIN TO FIELD POINT 

FIG. 4. COORDINATES ON WING SURFACE 
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FIG. 5. COORDINATES REFERRED TO WING CENTRE LINE. 
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FIG. 6. RECTANGULAR COORDINATES OF YAWING WING 
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