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SUNMARY  

The phenomena of viscous flow over two-dimensional 

supersonic aerofoils are investigated with a view to developing 

a method for estimating their effects on the aerodynamic charact-

eristics of the aerofoils. 

In regions where the flow is unaffected by shock waves 

and where the assumptions of the boundary layer theory hold, the 

concept of the displacement thickness and the equivalent wing 

profile is applied to determine the changes in the local pressure 

distribution and the resulting increments of force and moment 

coefficients. 	It is found that these increments vary with the 

Reynolds number approximately as R-7  for the laminar boundary 

layer and as R-n, nr0.2, for the turbulent. 

A drag-entropy relation and a lift relation are der-

ived from the momentum theorem and are used to demonstrate the 

overall effects of the boundary layer - shock wave interaction. 

Local flow conditions affected by this interaction are examined 

in detail. On the basis of available experimental data an 

empirical correction is suggested for the effects of flow separa-

tion at the trailing edge, and it is found that with the laminar 

boundary layer these effects are of major importance. 	It is 

expected that their influence will diminish at high Reynolds 

numbers and will be negligible with turbulent boundary layers. 

The suggested method of estimating the boundary layer 

effects is applied to the particular case of a 10 per cent 
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circular arc profile at M = 2.13 and R = 0,64 x  10 6 . 	Com- 

parison with experiment is not conclusive, owing to the lack of 

reliable data. 

A new integral relation for laminar boundary layers in 

simple-wave flow and zero heat transfer is developed and is found 

to give good agreement with the appronimate method. of Howarth. 

A brief discussion is also given of the relative merits 

of circular arc and double-wedge profiles. 
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NOTATION 

A,B 4 O 	 functions of aerofoil dimensions and free stream 
conditions (Appendix I) 

C 
X' CY 

D17 

CD 
f 

2 

c f 	
[D o  U:)  

aerodynamic coefficients of force components in 
directions x,y 

basic wave drag coefficient 

skin friction drag coefficient 

local skin friction coefficient 

CM 	 pitching moment coefficient about the leading 
edge 

f(e), g(e), in(0), i(e), ,7„9.(e), x(e), .L (e), m(e) - 

functions of simple-wave flow direction 0, 
used in boundary layer equations (Appendix I) 

8 
H = 	 ratio of boundary layer displacement thickness 

to momentum thickness 

mechanical equivalent of heat 

k 	 coefficient of conductivity of heat 

streamline curvature 
p 	 static pressure 

Ps 	 stagnation (reservoir) pressure 

(10 = 271  Po 
	free stream dynamic head 

resultant velocity 
Uoc 
— R = 	Reynolds number based on chord v

o 

Rte, R
8 	

local Reynolds numbers based on momentum and 
1 	 displacement thicknesses, respectively 

entropy 

s, n 	 curvilinear orthogonal coordinates parallel 
and normal to the aerofoil surface 

t 	 maximum thickness of aerofoil sections 

static temperature 

u, v 	 velocity components in directions x,y or 
s,n (as defined) 

free stream velocity 

rectangular Cartesian coordinates parallel and 
normal to aerofoil chord (except when otherwise 
stated) 

distance of centre of pressure from leading 
edge 

U
o 

x, Y 

x 
Op 
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Y tr,zrsformed boundary layer coordinate 
(Ap,:endix I) 

a 

dv = tan-1  dx 

y = 0 /b p v 

6 13  

5 1  

angle of incidence 

slope of the aerofoil surface 

ratio of specific heats (taken as 1.4) 

boundary layer thickness, also 
deflection of flow across an oblique shock 

boundary layer thickness in terms of Y 

boundary layer displacement thickness 

boundary layer momentum thickness 

0 	 angle of simple-wave flow expansion from sonic 
velocity 

0 
	

angular distance along surface of circular arc 
profile 

curvature 

?"‘ 	 modified Pohlhausen parameter 

coefficients of viscosity and kinematic vis-
cosity, respectively 

P 
	

density 

T = 
	 Prandtl number (taken as 0.72) 

T
w 	

shear stress at the wall 

increment or change of a quantity 

Suffix o refers to free stream conditions 

1 	 main stream conditions at the edge of 
boundary layer 

s 	 stagnation conditions 

conditions at infinity 

Bar () over a quantity denotes that the quantity is non-dim-
sional. 

Standard symbols (CL, M, etc.) are not included in 

the above list. All other symbols are defined when first 

introduced. 
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1. INTRUDUCTION 

Whilst boundary layer phenomena on two-dimensional 

aerofoils in incompressible flow have been extensively studied, 

both theoretically and experimentally, little work has so far 

been done on the corresponding problem in the supersonic flow. 

This may partly be ascribed to the fact that in incompressible 

flow, a recourse to the boundary layer theory is the only means 

of estimating theoretically the drag, whereas at supersonic 

speeds the pressure or wave drag, which forms the major contribu-

tion to the total drag, is given by the inviscid flow theory and, 

as a rule, the boundary layer can be expected to have only sec-

ondary effects. 

The investigation reported here had been suggested by 

the work of Preston (refs. 1,2 and 3), which was primarily con-

cerned with changes in circulation produced by the boundary 

layer on two-dimensional aerofoils in incompressible flow. 

Briefly, Preston's method is based on G.I. Taylor's theorem that 

equal amounts of positive and negative vorticity axe discharged 

into the wake of an aerofoil. This permits the determination of 

the velocities at the trailing edge; the aerofoil is then re-

placed by a new shape displaced from the original aerofoil by the 

amount equal to the displacement thickness of the boundary layer, 

and the changes in the circulation found by determining the thick-

ness and the camber effect of the displacement thickness. The 

changes in local pressure distribution can then be found in the 

usual manner, by using the new value of the circulation. 

It would appear, at first sight, that the corresponding 

problem in the supersonic flow should be very much simpler, 

since the changes in the pressure distribution can be determined 

directly from the local changes of the direction of flow at the 

surface, produced by the boundary layer displacement thickness. 

A closer examination of the problem reveals, however, that this 

advantage is offset by the fact that on supersonic aerofoils 

there exist regions of flow where the classical boundary layer 

theory cannot be applied. 	These are the regions in the vicinity 

of the leading and trailing edges and of the sharp shoulders of 

wedge sections, where shock waves and strong expansion waves 

interact with the boundary layer causing upstream and downstream 

diffusion of pressure through the subsonic part of the boundary 

layer and, in many cases, inducing flow separation. 

The mechanism of this interaction is not yet fully 

understood and presents a problem of such formidable complexity 

that, although in recent years it has attracted the attention of 

many research workers, only very limited progress has so far been 

/reported ... 
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reported (this is discussed in more detail in section 3.3. below). 

In the m9jo7.:ity cf cases, even the positive results achieved are 

cf little practical use, as only the simplest idealised flow 

c:m:o.eotions have so far proved amenable to mathematical treatment. 

Consequently, until a comprehensive theory for the boundary layer - 

s'oel,c wave interaction is developed, it appears that the only 

a iTez.oach at one's disposal of theoretically assessing the bound- 

zy 	effects is a discriminate use of the existing boundary 

layer theory where it is applicable, combined with empirical or 

semi-empirical corrections for effects for which there is no 

theory available. 

The present study was carried out to investigate the 

possibilities of such an assessment on the basis of the existing 

theories and the available experimental evidence, Typical flow 

patterns observed in wind tunnel tests on two-dimensional super-

sonic aerofoils are briefly discussed and the overall effects of 

flow separation are demonstrated by means of a drag-entropy and 

a lift relation, derived from the momentum theorem. The effects 

of the displacement of flow by the boundary layer are then found, 

neglecting the shock wave - boundary layer interaction. This is 

followed by a detailed examination of the regions of flow where 

this interaction may be of major importance, Qualitative ex-

planations of the observed phenomena are suggested and, where 

possible, quantitative assessments of their importance are 

attempted. A new integral relation for laminar boundary layers 

on supersonic aerofoils in simple-wave flow is derived and is 

used to calculate the effects of the boundary layer on the force 

and moment coefficients in the particular case of a 10 per cent 

arc profile at the Mach number of 2.13 and the Reynolds number 

of 0.64 x 10
6
. Effects of separation are accounted for empiri-

cally and comparison is made with some experimental results. 

Finally, the relative merits of various aerofoil sections as 

affected by the visccus effects are discussed briefly. 

2. GENERAL THEORETICAL CONSIDERATIONS  

2.1. Preliminary Remarks 

The development of techniques of optical exploration 

of two-dimensional supersonic flows has provided a most 

attractive and useful tool of experimental research, and made 

it possible to obtain directly a clear picture of the actual 

flow conditions. 7ith its aid, it soon became apparent that 
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flow patterns found in practice differ appreciably from those 

predicted by the inviscid theory. This was first conclusively 

demonstrated by Ferri in a series of tests carried out at 

Guidonia in 1939 (ref. if), on a number of two-dimensional super-

sonic aeorfoils at Mach numbers of 1.85 and 2.13. More recently, 

similar results have been obtained at the N.P.L. by Valensi and 

Pruden (ref. 5), Holder and others (refs. 6 to 9), and at the 

R.A.E. by Beastall and Pallant (ref. 10). Although the results 

of these experiments differ in minor details, they present a 

fairly coherent and consistent picture of viscous flow over two-

dimensional supersonic aerofoils. A detailed examination of 

local flow conditions is given in section 3, and at this stage 

only the general features will be discussed. 

Referring to fig.1, the diagram (a) shows the flow 

pattern over a typical supersonic aerofoil as given by the 

inviscid shock-expansion theory. The incidence of the aerofoil 

is such that on the upper surface the airstream undergoes a 

Prandtl-Meyer expansion at the leading edge, expands gradually 

along the surface and is returned to approximately the free stream 

direction by the shock wave at the trailing edge; on the lower 

surface this order is reversed - there is an attached shock wave 

at the leading edge, followed by the expansion along the surface 

and at the trailing edge. 	In fig. 1 (b) is shown a typical 

example of the actual flow over the same aerofoil with a Laminar 

boundary layer and the Reynolds number of the order of 5 x 105 -10 6 . 

The Prandtl-Meyer expansion at the leading edge is now preceded 

by a weak shock, and that at the trailing edge followed by a 

shock where the boundary layers from the top and bottom surfaces 

join to form the wake. The most striking feature is the separa-

tion of flow occuring towards the rear of the upper surface. 

At a high Reynolds number, when the boundary layer is turbulent 

one would expect (for reasons explained later) either a complete 

absence of separation or, at least, a very much smaller separated 

region, limited to the immediate vicinity of the trailing edge 

(fig. 10). 

It is clear that these modified flow conditions result 

in a surface pressure distribution which is different from that 

determined by the inviscid theory, thus affecting the similarly 

derived aerodynamic characteristics of the aerofoil. Although 

one can account qualitatively for the flow patterns just des- 

cribed, one must await the development of the theory of viscous 

compressible flow, before a full theoretical treatment of the 

boundary layer effects can be attempted. As was already pointed 

out ... 



-9- 

out in the Introduction, at the present stage one can only apply 

the classical boundary layer theory to regions of flow where the 

basic assumptions of the theory are valid, and try to establish 

empirical corrections for the effects of separation. 	It is, 

however, possible to demonstrate the nature of the latter effects, 

without having to go into -their mechanism. This is shown in 

the next paragraph by applying the momentum theorem to the flow 

over an aerofoil, whilst the changes in the local flow conditions 

are found by utilising the concept of the displacement thickness 

and of the effective shape of the aerofoil. 

2.2. Overall Effects of..§alIaLion - Momentum Theorem - 

The derivation of the results which follow is given in 

detail in the Appendix II, and only an outline of the argument 

will be repeated here. 

By applying the momentum theorem to flow past a two-

dimensional supersonic aerofoil, the components of the aero-

dynamic farce acting on the aerofoil are found to be (eqns. 

All, 	1.2 	and 1.3): 

- D = 

L = 

pu(u dy 	v ax) + 

0 

pv(u dy - v dx) + 

C 1/41O 

Yxdx 
	p 	dy)  xx 

C 

e-N 

j 	(1) 	dx - p 	dy) yy 	xx 

...2.2.2 

...2.2.1 

where per, pyy,  pyx are stress components defined by eqn. 

All. 1.4, and C is a simply connected boundary enclosing the 

aerofoil (fig. 2a). 

If C is taken as a rectangular control surface C
1 

(shown in fig. 2b), and if it is assumed that on AB, which is 

far downstream, the velocity of flow has the free stream dir-

ection and that the static pressure is equal to the free stream 

static pressure, the drag component of the aerodynamic force 

becomes 

D = 	pu (uo .u)dy 	pu(uo-u)dy 	 2 2  3 

where cso(1A7)-c,* indicates integration from -00 too.0, excluding 

the wake. For low speed flow u = 	 outside the wake, far 

downstream, and 

D = 	pu(u
o
-u)dy 	2.2,3a 

w 

/which ... 



which is the familiar expression for the profile drag at low 

speeds. Hence, the first integral in eqn. 2.2.3 must rep-

resent the wave drag in supersonic flow and we can write: 

D = D + D 
w p 

where 

D
w 
= I ou(u

o-u)dy 

r.3 0:7 (xv)-v 

so that CD  = 	2 = 2 	212 	
u 

u 	u (1 — My/c)..2.2.4 

w 	v4j ouo° 	J0067)-tr2} ° 	o r 

If we now assume that viscosity in the main stream is 

negligible and use the energy equation for zero heat transfer 

and the Prandtl number of unity, 74e can express C D in terms 
Ga 

of the increase of entropy across the aerofoil shock system, 

and we find that: 

CD  = 2 
w 

-2AS/C 	-,nS/C 

EL
[P: -(k+1)e -6S/CP + ,./(k+1)0 - ke 
(70 

   

2 2  5 

   

13,  

where ZAs = s - so = C o 
	

logif - 2  1= increase of entropy 

—7' along a streamline, 

k = 2 	1 y-i M  2 
0 

To gain a better insight into the nature of the variation of 

CD 

 

wish /' S, we note that to the first order in 6S 

eqn. 2.2.5 reduces to 

CD 	C = 	./AS d(y/c) 	2.2.6 

vl 	P 4. 	
(,r) _ 

This relation is equivalent to the one given by Liepmann in 

ref. 11, but had been obtained independently, before a copy of 

Liopmann's paper became available. 

Referring again to fig.1, it will be seen that as the 

separation near the trailing edge makes the contour ABDCA the 

effective 'wave-making' contour of the aerofoil, the strength 

of the trailing edge shock wave is less than that given by the 

inviscid theory. Now, since ,n,S is approximately 

/proportional 



proportional to the third power of the static pressure rise 

across the shook, one can expect the separation to result in a 

decrease of the wave drag, owing to the decreased strength of 

the trailing edge shock. On the other hand, the presence of 

a weak shock wave just upstream of the Prandtl-Meyer expansion 

at the leading edge will have the opposite effect. 	In general, 

the latter effect is far less significant than the former, as 

the interaction of expansion waves with the shock wave reduces 

it, within a short distance from the aerofoil, to little more 

than a Mach wave (this is discussed in more detail in para. 3.1. 

below). 

If the momentum theorem is now applied to the control 

surface C,)  (shown in Pig. 2c) and viscosity outside the wake 

is neglected, the lift on the aerofoil is given by (eqn. All, 

3. 2 ): 

L;- 	pu v dy 	4 dy 

AC, DF 	IT 

The second term represents the effect of the wake and, as shown 

in the Appendix II, its contribution to the lift coefficient 
/ 	, 

is OkR
- 
 ), where R is the Reynolds number based on the aero- 

foil chord. This is clearly a very small quantity and can be 

neglected. Hence 

L = pu v dy 

1„) AC, DF 

 

2 2  7 

 

To demonstrate the effect of separation it is more 

convenient to consider the linearised form of 2.2.7, which is 

obtained by expressing p, u, and v as 

= p 	p' 	u = u
o 	

u' 	v = vi 

where p', u l , v' are perturbation quantities whose products 

and powers higher than 1 can be neglected. Eqn. 2.2.7 then 

yields 

L 	p u0 	v dy 	 .. 	2 2  8 
AC, DF 

that is, lift is approximately proportional to the integral of 

the Tdownwashl velocity v', taken along a line downstream of the 

aerofoil and perpendicular to the free stream direction. 

Referring again to fig. 1, it will be seen that in addition to 

decreasing the strength of the trailing edge shock waves, the 

/septa rated 
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separated flow also decreases the 'downwash' velocity above the 

upper surface, so that the lift coefficient will also be less 

than that predicted from the invisoid theory. 

Summarising, it can be stated without going into the 

mechanism of the separation at the trailing edge of a supersonic 

aerofoil, or into the details of the surface pressure distribu-

tion, that one can, in general, expect the separation to reduce 

both the lift and the wave drag. 	In addition, of course, there 

is also a further reduction in the total drag, namely that 

resulting from a decreased skin friction in the separated region 

where it is either zero or negligibly small. 

2.3. Effects of Boundary Layer Displacement Thickness  

2.3.1. Concept of the 'eouivalent_Ryofile' 

The fundamental concept of the boundary layer dis-

placement thickness and the 'displacement flux' is not new, but 

it is only recently that it was successfully applied by Preston 

(refs. 1 - 3) to assess boundary layer effects on two-dimensional 

aerofoils in incompressible flow. 	In ref. 2 Preston shows in 

detail how the problem of computing the potential flow external 

to the boundary layer on an aerofoil reduces to the calculation 

of the potential flow about an 'equivalent profile' famed by 

adding the boundary layer displacement thickness, 8 1 , to the 

aerofoil; this proof is extended to compressible flow in 

ref. 13. 

In the simple-wave supersonic flow this leads to a 

particularly simple relation for the change of the local pressure 

due to the boundary layer which, in turn, permits a direct 

evaluation of changes in the force coefficients to be made. In 

the argument that follows the interaction of expansion and 

shock waves with the boundary layer is ignored, as those effects 

are dealt with separately. 

2.3.2. Aerofoils  of arbitrary sham 

Consider an aerofoil (fig.3) of arbitrary shape in a 

uniform supersonic airstream at Each number n o  ; the leading 

and trailing edges are assumed to be sharp and the slopes of 

the upper and lower surfaces continuous; the incidence, a, is 

such that the leading edge shock raves are attached and the flow 

is everywhere supersonic. 	The flow over the aerofoil outside 

the boundary layer is assumed to be irrotational and vorticity 

behind curved shocks is neglected (c. f. para. 2.6). 	x, y are 

/Cartesian ... 



1 
C = 

X q.0  
2.3.5 

rtric 

pL  d.) + 

-13- 

Cartesian coodi,rates, origin at the leading edge and the x-axis 

along the aerofoil chord; s, n are curvilinear orthogonal 

coordinates parallel and normal to the aerofoil surface, re-

spectively. F is the resultant aerodynamic force on the 

aerofoil, with components X and Y parallel to the x- and 

y-axes respectively. 

Lift and drag coefficients are then given by 

CL = CY cos a - Cx sin a 

0 = CY  sin a + 0X cos a. 

 

2 3  1 

2 3  2 

 

 

where 	C, 
X 	2X 	X . = 	= 

p 0 0 TJ 2 c yp0
2 c 	̀loo 

C - 
Y -  q0c 

The pitching moment coefficient about the leading edge is 

x 
--2L12 • Cm  - c 	Y = c. p. CY 040•Osol. . 2 .3.3 

where x 
C. 
p. = distance of the centre of pressure from the 

leading edge. Further, denoting by L and U the conditions 

on the lower and upper surfaces respectively, we have 

	

— oil 	 r.c1 

	

C = i"'" 	1 p diZI - 1 PTT  d(E) 	 2. 3. 4 Y 	qc 	i - L vri 	1 - u 	O.,  

	

0 0 	 0 _ 

- f l  
I 	txN 	x\ 

q 	121L tsc. 	 PU C - 
	 -) 	 - 

Cbli/e  
ar-) C 

0 

rtu/c 

PIT 	a() ... 2. 3. 6 

Now, let /Ap be the local static pressure increment 

due to the displacement of flow by the boundary layer. Re-

ferring to fig. Li., 	is the angle between the tangent to the 

aerofoil surface at a point P and that at the le ading edge. 

At the corresponding point P 1 	the edge of the equivalent 

surface formed by adding the boundary layer displacement tIsick-

ness, the corresponding angle will be "j„. 1  = j4. — ):/ $ 

/where 
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where X 
= tan-1 a.3 1  - a 71  

Thus, the change in the local direction of flow due to the 

presence of the boundary layer is also 

1- = as  

Now, since outside the boundary layer simple-wave flow 

is assumed 

y vi2 	
ae 

VM2  - 1 

where 0 is the flow direction measured from some fixed datum, 

so that 0 . 1,/. 	const; de = 

Thus, we have, approximately 

2..a A 	dp 
de LIE) 	-de 

so that 	 615 
1 	 y 	112 55 1 

= as de 	r-2 	ds 
- I 

Hence, the corresponding increments in the force coefficients 

are 

LC pi, (31 ) - ,110 	 (lin 
Y 	' 	 Pu  ,t,c;  

 

2 3  8 

 

C 
qo 

tL  /c 

.L PL 5k ,c) + 	4\ PU dice  

 

. . . 2. 3. 9 

 

1 

 

c 

r-- 

APL 
(Jo 

'I t 1
\1 

-r% ( LC\ 
01 

0 0 

't1J/C 	 • U/C  
el 	ati) 	1).Pu () __1PL 

2310  

where L'pL,u  is determined from eqn. 2. 3. 7. 

The change in the position of the centre of pressure is given by 

(301,1 	L Cy  
- — uy  

.. 	2 3  11 

/Finally ... 
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Finally, 

Cy  cos a - Cx  sin a 

2 3  12 
I 

/2., CD  =Z_,Cy  sin a +/:', Cx  cos a ; 

If the distribution of the displacement thickness over 
d51 

thesurfaceisklaaml,---can be calculated and with eqns. 
ds 

2.3.7 - 2 3.12 the increments of the force and moment coefficients 

can be determined. As the first approximation the surface 
dp 

pressure distribution, a  , is taken as that given by the in- 

viscid shock-expansion theory and, strictly speaking, one should 

then use the modified pressure distribution to recalculate the 

development of the boundary layer, which would, in turn, lead 

to a second approximation to /_!; p. 	In practice, however, it is 

found that the process is rapidly convergent and the first 

approximation is usually sufficiently accurate, unless the rate 

of growth of the boundary layer is large. 

The methods to be used for computing the development 

of the boundary layer are discussed in section 4. Even neg- 

lecting the heat transfer, 5 1  will be a complicated function of 

the flow conditions outside the boundary layer, the boundary 

layer thickness and the Reynolds number: 

2 	 U c 
8

1 = f f M 2-2 	 Ro  ' R = o 	vo \ 1 ds ' ds
2 

 

2 3  13 

 

and with the existing 
 
ng boundary layer theories it is not poss-

ible ible to express 	analytically, except for the simplest case 

of a flat plate. 	In general, however, for given free stream 

conditions, angle of incidence and aerofoil shape and with the 

boundary layer laminar, 8 	very nearly so that, other 
I  Y 

0 

factors being equal, 

, A CD  , 	CM, ZA 10a pa  0.4- R 02  

When the boundary layer is turbulent 8
1 	

1 
where n 

Ro
n  

depends on the index of power assumed for the power law vel-

ocity distribution, and is of the order of 0.2. Thus, the 

effect of the Reynolds number will be more pronounced with the 

laminar boundary layer than with the turbulent one. 

We can gain some further insight into the magnitude 

of these effects by considering the case of a thin circular 

arc profile, where certain approximations can be made. 

/2. 3. 3. 	• I II 



2.3.3. Thin circular arc profiles 

In addition to the system of coordinates used for 

sections of arbitrary shape, 0, the 'angular distance' along the 

surface is introduced, such that 

s = r0 e = 	+ 0 BL.E. 

where r = the radius of the circular arc. 

The pressure increment ,A,p (eqn. 2.3.7) is then 

	

c15 
1 	d. 	

r 	
clb  1 

	

= cis 	 s 	as 

Since the profile is as 	to be thin, s x and 

db I f.2 
p = r -17 dx 	 • 	 2 3  13 

For simplicity, only the lower surface will be considered. 

From 2.3.8 

Pc  a5 

-' Y - 	ci i c --do 71.x- dx   
L) L.,„ o 

By the mean value theorem 

c do  (a) 
o 	

dx l 	dx 
o 

hence 

1r an' 
cr

o
c.71.".x. ) 	(81 ) T.E. 

 

2 31, 

 

where ( 1.2 1 is the value of 112  at some point between the dxf 	 dx 

	

leading edge (x = 0) and the trailing edge 	= c). Now, on 

a circular arc profile the pressure gradient is highest at 

the leading edge and hence 

	

r 	/
t 
 (12) 

2 3  15 

	

go c 	
(81)

T.E. 

(2P-. Now, 1—c 
o 	

is clearly of thesnmo order of magnitude as 

Cy  hence 

/Similarly 
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c/2 	, 
‘ ' 	do 1  r 	1 	LIE z1 Cx  = -  

q 
 --- 	c dx 	

dy from 2.3.9 dx 
° !Jo 

-17-- 

b 1 	r 	ca 1 de dv 
dx dx clx  

,11 

Since 1-1I changes sign at x = c/2, the integral must be split dx 
( N:c 	ic/2 

into 	 before the moan value theorem can be applied. 

c/2 t . o 

Hence 

1 r (an 6.c  x= o c dx' 1 L 	dx1 2 - * (:) [ - (51) T.E. - (5 1 )  el +  ((12)1  
x- 2 

   

where the suffices 1 and 2 refer to conditions at 

and c/2:- x.$-. c , respectively. 

The sign and value of 	depend on the 

magnitudes of the terms in the 'curly' brackets. 

of growth of the displacement thickness downstream 

of maximum thickness is sufficiently large 

CL;s: x.;.<"" c/2 

relative 

If the rate 

of the point 

i  . /2 	1  ) 	 (8 1  ) 	c 	(t) (8 1  ) 	c  dx 	T E 	x= 	 2 	x= 7  

and X is negative. Such a state of affairs may arise when 

the boundary layer is partly turbulent and the transition point 

is near or at the point of maximum thickness, since for the 

corresponding points (8 1)> (8 1 ) 
turbulent 	laminar 

Thus, with transition near the mid-chord point one can expect 

that 6,CD  0. This was actually found to be the case in 

ref. 13 for a 6 per cent bi-convex aerofoil at M = 1.5. 

The order of magnitude of the individual terns in 

eqn. 2.3.16 can be found by noting that 	4 2 t/c for a dx 
thin circular arc profile and hence, 

qo  (2) 	- 0 (Lx) 

CX  so that 	= 0 
c 

e T.E 

/that is, 0 • • 

Similarly, 



or cy  = 

ell 	R) - 
o' 	 go 	c2T.E. 
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a) /5

I 
 \ 

x y  
that is, 	and 	are of the same order of magnitude. 

 CY 	X 
One must remember, however, that the increments -:\C on the 

upper and lower surfaces are of the opposite sign, whilst the 

corresponding increments Z:\  C are of the same sign (c. f. fig. 4.), 
X A 

consequently, the resultant 	— will tend to be much smaller 

aCx  
than —6— . 

X 

Flat _plate at incidence  

	

For a flatplate  	ecin. 2.3.7 is constant 

'' M2 -1 
along the surface, and is a function of the angle of incidence 

and the free stream conditions only, so that we can write: 

	

05 	 05 
„,Ap = f(Mo,o, ) --a  = f(mo,a) 

dx 

T,'I2  
where 	f (11 ,a) = 

° 	-1112-1 

Hence 	LIC = 	) fL 
 (M

o
,a,) 

Y qo   

I 	'15 do 

1 ax a(3 	io' a) 	—di 
) o 

d# c/ 

U 

•••••• 

f (11a) 	
( 

- f (1.1 ,a) 	
jU) 

 / 	2.3.17 
qc 

L 	c T.E. 	
U o 	c E  

and 	L\CL = ZACy  cos a ; 	= 11Cy  sin a 

On a flat plate, the displacement thickness is a 

function of /I,a , and R o 
and 2.3.17 can be written 

Cy 040 , alR 0  ) 	gu  (110, R 0 )  

For the laminar boundary layer with Prandtl number of unity and 

p. a T, 

8 1 	1.7208 (
1 t 
 

0.277) 	j 
2. 

0 
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(see e. g. Refs. 12, 27 and 28), and for given M o  and a 

2.4, Skin FricIionpaz 

The total skin friction drag is obtained simply by 

integrating the local skin friction coefficient over the aerofoil. 

Let p = tan-1  ti , where y = f (x) is the aerofoil 
contour, 

T 	¶ 
Cf 	1 

w 
= 	 — 	,the local skin friction coefficient. L — 

w 

71P 0 11'.0 	

a 
'0 

Then, contribution to the friction drag from the lower surface 

is 

C D 	cos (P-1-a) c f  
f 

L 	( 1 0 

i1 
cos a cos 3 — sin a sin 13) c d(2) 

f 	c; 
O 

or, 

ct/c 
r 

D
f 

— cos a cf 	) - sin a 1 cf \ 
d1 6-q c/ 

o 	 o 

Unless the incidence is high 	15-200) and the aerofoil thick 

0.1), the second term in the above equation is much 

smaller than the first and we can write without any significant 

loss of accuracy 
i 

1CD  cos a, 	c
f  d(•." I 

0 

In incamp-ressible flow the skin friction drag is 

usually determined together with the form drag from the momentum 

thickness of the wake at infinity downstream (c.f. eqn. 2.2.3a). 

In the supersonic case, this method would only give the skin 

friction drag and a part of the form drag. To determine the 

whole of the form drag (which in this case is equal to the 

change in wave drag due to the presence of the boundary layer), 

/losses 
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losses of the total head caused by the shock waves outside the 

wake must also be considered. 	Inside the wake itself, two 

effects are combined: losses of the total head due to the ro-

tational character of flow in the boundary layer, and those 

caused by shock waves, as streamlines which enter the boundary 

layer from the main stream have already suffered losses of stag-

nation pressure across the leading edge shock waves. 

Furthermore, there is the additional difficulty of 

determining what effects the trailing edge shock waves have on 

the momentum thickness and what is the variation of the momentum 

thickness between the trailing edge and infinity downstream. 

In ref. 35 the latter is assumed to be the same as for turbu-

lent wakes in incompressible flow, and a relation suggested by 

Tetervin is used to account for the effect of the shock waves. 

As the validity of these assumptions is dubious, it is believed 

more accurate to estimate the profile drag by calculating the 

skin friction drag and the change in wave drag separately from 

the local skin friction and the local changes of pressure dis-

tribution, respectively. 

2.5. Heat Transfer 

Unless otherwise stated, all the considerations of the 

present study are based on the assumption that the aerofoil 

surface is a perfect thermal insulator and no heat is trans-

ferred from the boundary layer. 

In actual fact, with Bach numbers of the order of 2 

or higher, heat transfer may be of considerable importance, 

particularly from the point of view of the stability of the 

laminar boundary layer (c.f. para.5). However, owing to the 

manner in which the coefficients of viscosity and heat transfer 

enter the boundary layer equations, the thermal and viscous 

effects are qualitatively similar and do not fundamentally 

affect the nature of the boundary layer phenomena. Consequently, 

it was considered that, for the present purpose, neglecting the 

heat transfer was justified by the resulting simplification of 

the mathematical treatment and it is hoped that quantitative 

results are no .1-  unduly affected. 

2.6. Vorticiv 

Another effect which has been neglected is that of 

vorticity generated by the leading edge shock waves. When the 

surface of an aerofoil is curved, the expansion waves interact 

/with the 
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with the leading edge shook wave which is then curved and the 

flow downstream of the shock wave is rotational. The simple-

wave flow relations then hold only approximately, and for a more 

accurate determination of the surface pressure distribution the 

method of characteristics for rotational flow (refs. 18 and 19) 

should be used. However, as this method involves a laborious 

process of successive approximations and since in most cases of 

practical interest the effects of vorticity are very snail, they 

are usually neglected. 

The vorticity behind a curved shock can be shown to be 
as given by (e.g. ref. 39): 4 = R 7rj; 

where R is the universal gas constant and y is Crocco's 

stream function. 	Along the aerofoil surface 	= const., 

hence 4 is proportional to the static pressure. 	On a conve,c 

aerofoil the static pressure is highest at the leading edge and 

decreases towards the rear, therefore, the effects of vorticity 

are greatest near the leading edge. 	The pressure gradient 

immediately downstream of the leading edge shock wave can be 

determined analytically from the curved-shock relations first 

obtained by Crocco (L'Aerotechnica, 17, 193'7), and, more rec-

ently, by Lin and Rubinov (ref. 39) 

	

yp  112 	nr  y+1 sin 2E 
apt 	 o 	2 cos t  cos kE-5)-.1 K 

2t 
sin ( -s) (M2- - Y+1 sin 28 

I 	4 sin 

where the suffix 1 refers to conditions just downstream of the 

shock 

6 = deflection of flow across the shock at that point 

= local angle of inclination of the shock relative 
to the free stream direction 

a8 K = -6-73  = curvature of the streamline just downstream 
of the shock. 

s = length of arc of the streamline 

If simple wave flow is assumed downstream of the 

shock, with the streamline having the same curvature K, we 

have from the Prandt141eyer relation 

Y M
2 dp

1 	1 	a8  

.v "1 
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For the particular case of a 10 per cent circular arc 

profile at M0  = 2.13, the following values were obtained for the 

ratio of the pressure gradient behind the curved shock at the 

top surface, to that given by the simple-wave flow theorys 

a 
- — — -- - -- - - - - — 

M,
-  

--.1 

''P 	(2Z\ 
as / a3),S. 71. 

12.5° 

 1.10 

1.053 

10°  7.3° 

 1.40  

-7  

	

0.1 0 	1 
  -10 

	

1.70 	i 2.07 

-11.4°  

f 	2.13 
--I 

1.27 

11.024 

i 

1.012 -1-1--  1.003 i 1.001 
t 
L 

1.0000 

Thus, the simple-wave flow gives a v ery good approximation even 

at the leading edge, except when the Mach number there (M1 ) 

	

I 	
Y 

aZ, 

) 
approaches unity an 	- k d 	---4 c----.. ' * the approximation becomes 

 .
as S.W. 

progressively better downstream, as 4 c.v.- P. 

On wedge sections, conditions at the surface are not 

affected by the vorticity, since regions where the shock waves 

become curved are well away from the surface, provided that the 

shock waves are attached. The .,hock-expansion theory is then 

an exact inviscid theory. 

3. EXAkTINAmION  OF LOCAL FLOW CONDITIONS  

We now turn our attention to a more detailed examina-

tion of the local flow conditions, to which the considerations 

of the preceding section do not strictly apply. 

3.1. Conditions at the Leading Edge 

As was already mentioned in para. 2.1, the flow pat-

terns found in practice near the leading edges of supersonic 

aerofoils differ appreciably from those predicted theoretically. 

The most striking discrepancies are found in cases when, accord-

ing to the inviscid theory, the flow should undergo a Prandtl-

Meyer expansion round the sharp edge. 	In practice, there is 

always a weak shock wave preceding the expansion and, in some 

cases, this expansion is associated with a local separation of 

/the ... 
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the boundary layer, followed by another weak shock (figs. 5a,b,c). 

Such patterns have been observed in many experimental investi-

gations, the details of which will be found in ref. 4,5,10,14-16. 

If one attemps to explain this phenomenon, two altern-

atives suggest themselves: the effect of bluntness of the lead-

ing edge which, of course, cannot be made perfectly sharp, or, 

the effect of the initial high rate of growth of the boundary 

layer. 	Bardsley (ref. 16) claims that the first alternative is 

the only possible explanation, and that the existence of the 

shook wave cannot be explained by considerations of viscous 

effects. His argument is based. on the fact that at the point 

where the rate of growth of the boundary layer displacement 

thickness is sufficiently high to cause a compression of the 

stream at the leading edge instead of an expansion, the displace-

ment thickness would be of the some order of magnitude as the 

thickness of the leading edge, so that its effect on the forma-

tion of the shock would be negligible compared to that of the 

leading edge itself. Now, whilst it is obvious that the mere 

fact of the leading edge being blunt does explain the formation 

of the shock wave without any considerations of the viscous 

effects, it is not true to say that this is the only possible 

explanation. 	It can be shown just as easily that, were it poss- 

ible to have a perfectly sharp leading edge, one should still 

expect the formation of a shock wave preceding the Prandtl-Meyer 

expansion. 

Consider the idealised case of an infinitely thin flat 

plate (fig. 6a), so that the question of the finite thickness of 

the leading edge does not enter into the argument. ABC is the 

streamline just outside the surface of the plate. Along AB 

the flow is uniform and has the supersonic free stream velocity 

u. At B, according to the usual boundary condition at the 

surface of a body in a real fluid, the velocity is zero. 	In 

actual fact, there will probably be initially some slip at the 

surface, but even so, the flow along ABC would have to decelerate 

violently at B to reach at least a subsonic velocity within a 

very short distance from B. This is very much like the change 

that flow undergoes inside a shock wave. 	If there is to be no 

shock wave forced, this process would have to occur at constant 

pressure. The difficulty of imagining a process in which an 

almost discontinuous decrease of velocity in the direction of 

flow is not associated with a corresponding pressure increase, 

is obviated if one postulates the existence of a stagnation 

point at the leading edge, preceded by a normal shock (fig. Gb). 

/The 
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The velocity at D (just downstream of the shock) would then be 

subsonic; from D to B the flow would be gradually compressed 

and brought to rest at the stagnation point, and the boundary 

layer would start there with a finite thickness. Outside the 

boundary layer, the flow would accelerate to sonic velocity and 

then expand to return the main stream to the required direction. 

The strong expansion waves would interact with the bow-wave, re-

ducing its strength, so that within a short distance from the 

leading edge it would become a weak compression wave. 

This qualitative argument is supported by some of the 

results of the fundamental investigation of the theory of vis-

cous compressible fluids, which is being carried out at the 

C.I.T. by Lagerstrom, Cole and Trilling (ref. 17). 	Since the 

existing theory of differential equations appears to be inade-

quate for the general solution of the full Navier-Stokes equa-

tions for viscous compressible fluids, the approach adopted in 

ref. 17 is to deal with the linearised form of these equations 

and to consider their application to certain idealised cases. 

So far, no complete analytic solution has been obtained even for 

the simple problem of a flat plate at zero incidence in super-

sonic flow, but general properties of the solution are fairly 

clear. It is found that transverse and longitudinal waves are 

propagated by the plate into the stream. The longitudinal waves 

are of maximum strength near the leading edge and consist of 

compression  waves followed by expansion waves. Moreover, there 

are also pressure disturbances propagated upstream even in the 

supersonic case, though they are subject to heavy exponential 

damping. The boundary layer theory applied to the Navier-Stokes 

equations accounts only for a part of the transverse wave com-

ponent, and the application of the concept of the displacement 

thickness - for some of the longitudinal  waves. Far downstream 

(on a semi-infinite flat plate), the full solution approaches 

asymptotically the boundary layer solution. 

The possibility just considered, that the viscous 

effects alone can cause the formation of a shock wave in front 

of the Prandtl-Meyer expansion round a perfectly sharp leading 

edge, though interesting in itself, is of rather academic im-

portance, as in practice no perfectly sharp leading edge can be 

made; on the other hand, it does demonstrate that even when the 

bluntness of the leading edge is the primary cause of the presence 

of the shock wave, one can still expect the boundary layer to 

have at least some important modifying effects on the flow 

pattern. 	In particular, it hel-es to explain why a local flow 

separation just downstream of the leading edge is sometimes 

/observed 0.. 
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observed. 

For simplicity consider a leading edge of a regular 

shape (fig. 5IIa,b), with square corners and of thickness t . 

The position of the stagnation point on -td will depend on the 

incidence, but for the present purpose it can be taken to be 

situated halfway between the two corners A and B. The bound-

ary layer has some finite displacement thickness at A and B, 

(6 )! ' say. 	If 4! is of the same order of magnitude as (6 1 ) ; , 
1k 

the effective thickness of the leading edge is considerably in-

creased and results in the formation of a stronger shock wave 

than would be the case if there were no boundary laver. For 
`, (8 ) 	this effect will be obviously negligible. 	On the y,e  

other hand, when conditions at the corner A or B are consid-

ered, it will be seen that as on the surface the velocity of 

flow is zero, the region of flow in a thin layer next to the 

surface must have subsonic velocity. 	Now, subsonic compressible 

flow round a sharp corner is impossible, as according to the 

incompressible flow theory the velocity would be infinite there, 

which in turn implies that compressible flow would become super-

sonic. Thus, if the flow is to remain subsonic near the sur-

face, as it must, it has to separate at some distance from the 

corner and continue along a finite radius (figs. 7a,b). 	Physi- 

cally, the separation can be explained as induced by the suction, 

which is created by the high curvature of the streamlines of the 

subsonic flow round the corner. 

The extent of the separated region will be much smaller 

than .e , as in incompressible flow the region in which the 
velocity tends to infinity is confined to the immediate vicinity 

of the sharp corner. Hence, when 4: is of the same order of 

magnitude as (6 1  )V  or smaller, the separation will hardly in-

fluence the outer edge of the boundary layer and the external 

flow (fig. 5IIb). 	When 	(3 
1 
	, ) 	the size of the separated 

region may well be of the sacAe order as the boundary layer 

thickness, and a flow pattern as in fig. 5IIa would result. 

The extent of the separation will also depend on the amount of 

expansion that the main stream undergoes outside the separated 

boundary layer. Expansion to a high supersonic Mach number 

would create a further suction effect and enhance separation. 

This suggests that the boundary layer has a consid-

erable influence on the conditions near the leading edge and 

may explain why the local separation has been observed in some 

/cases 
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cases and not in others. 	Thus e.g., on the wedge used by 

Bardsley, with 	A 8 x 10-4cm, no evidence of separation was 

found, whilst Valensi and Pruden observed separation on a wedge 

which had a relatively much thicker leading edge (f; 5 x 10-3  cm). 

Pig. 8 shows shadowgraphs and a schlieren photograph 

taken at the N.P.L. in the course of investigations reported in 

refs. 6 and 7, and illustrating typical flow patterns near the 

blunt noses of thick flat plates. 	In (a), the flaw pattern 

corresponds to that described above (c.f. fig. 51Ia), but (b) 

and (c) exhibit some novel features. 	In (b) separation followed 

by a weak shock can be observed, though the nose of the plate is 

elliptic and there are no sharp corners; in (c) there is no 

evidence of separation, but the weak compression wave does not 

disappear. 	It is suggested that this is probably caused by the 

high favourable pressure gradient inducing a local thinning of 

the boundary layer. That such thinning is possible, can be 

readily demonstrated for the case of the self-induced pressure 

gradient on a flat plate.- 

According to the concept of the displacement thickness, 

the flow is displaced from the surface by an angle 0, such 
d 

that 	
= 	

dx . Combining this with the Prandtl-Meyer rela- 

tion we have 

NA L-  -  
_ dx2 	Y 112  

1 e._12, 
p d'. ... .... 3.1.1 

Integrating 3.1.1 once 

41,b1 2  
2 Y 

where the suffices 1 and 2 

of the plate (2 is downstr 

somewhere between 1 and 2. 

- 	' I log -- e i 
i 's\ 	P2 C81) 	 3 1  2 

M-  I 	4- d7)  PI 	1 , 

refer to two stations on the surface 
 

NIM -1 \ , 
7"-  i is evaluated 

hl ! 
Now, with a favourable pressure 

eam of 1) /  

gradient p 1  p2  and if this gradient 

d28, 
(i.e `3-(9 	2 

sufficiently large), 
dx  

is sufficiently high 

m - 1  _ 
Y 	lit2  

P9 1/4., 7d6 1 
log 	7-1:x  ,f 

so that at station 2 the rate of growth of the boundary layer 

is negative and a flow pattern similar to that shown in fig. 9 

/may 



may result. In general, the curvature of the boundary layer 

would have to be high to induce sufficiently high pressure grad-

ients, and the concept of the displacement thickness would not 

strictly apply. 	However, at Mach numbers near 1 (as is the case 

with flow round blunt noses) flow is very sensitive to changes 

of direction and high pressure gradients can be induced by only 

small curvatures. 

To explore this possibility further, calculations were 

made using pressure distributions obtained on elliptical nosed 

flat plates at the N.P.L. (fig. 10), 	It was assumed that the 

direction of flow at the body sonic point was the same as that 

just downstream of the bow-wave sonic point, and that downstream 

of the body sonic point simple-wave flow relations hold. The 

slope of the equivalent surface (o) was then calculated from the 

experimental pressure distributions and the rate of growth of 

the boundary layer displacement thickness found from the rela-

tion 

d8
1 

dx tan (0-0 

is . where p = tan-1 	
Is the slope of the surface of the plate. dx 

Finally, the development of the displacement thickness in terms 

of 8 1 at the sonic point was obtained by a numerical integra-

tion of the above relation. As will be seen from fig. 10, the 

result' appears to confirm the possibility of the thinning of the 

boundary layer. The actual numerical values should not be taken 

too literally, as in calculating the flow direction from the 

pressure distribution no account was taken of the possibility of 

transverse pressure gradients in the boundary layer. 	This, 

combined with the assumption of simple-wave flow probably makes 

the thinning of the boundary layer appear far more drastic than 

it actually is, but the result is believed to be at least qual-

itatively correct. 

An attempt was made to improve on these calculations 

by applying the method of characteristics for the rotational 

flow on the lines suggested by Ileyer and by Perri (references 

18 and 19), which involves a somewhat complicated iterative 

procedure. Unfortunately, it was found that owing to the prox-

imity of the sonic line (whose shape has to be assumed) the it-

erative process is very slowly convergent and depends critically 

on the assumed form of the sonic line, so that its results 

would be of doubtful accuracy, 

/Effect .,. 
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Effect of flow pattern at the leadin, edg on conditions down• 
stream. 

Analytic treatment of the effects so far discussed in 

this section appears to be, at present, out of reach. 	The 

difficulties are two-fold; the boundary layer theory which is, 

of course, an asymptotic theory for high Reynolds numbers obviously 

does not apply near the leading edge, and the problem of the flow 

outside the boundary is, essentially, a transonic one, Never-

theless, if one is to assess the overall boundary layer effects 

one must try to investigate how the leading edge flow pattern 

affects the conditions downstream. 

In ref. 13 it was found that although the leading edge 

shock is, strictly speaking, detached at all angles of incidence, 

the surface pressure distribution calculated assuming an att-

ached shock or an expansion (as may be the case), shows a very 

much better agreement with experiment than that obtained by 

applying the approximate method for flow behind detached shocks 

given in ref. 20. 

To confirm this, pressure distributions were calculated 

for the wedge sections tested by Liepmann (ref. 15) and at the 

R.A.E. (ref. 10). 	Leading edge shock angles were assumed to be 

these given by the inviscid shock-expansion theory, and allow-

ance for the boundary layer was made as indicated in para. 2,3., 

using Young's flat plate solution for laminar boundary layer 

(ref. 12). 	Fig, 11 shows that there is a very good agreement 

between the calculated and the experimental pressure distributions 

except very near the loading edge and near the sharp shoulder, 

and that the allowance for the boundary layer displacement thick-

ness results in a definite improvement on the inviscid theory. 

It is, therefore, concluded that for the purpose of assessing 

the boundary layer effects on the surface pressure distribution, 

the shock-expansion theory should be used to determine the flow 

conditions outside the boundary layer. 

Considerations of para. 2.2. suggest, however, that 

the local increase in shock strength at the leading edge may 

have a measurab7e effect on the wave drag. Magnitude of this 

effect can be assessed by assuming that the full stagnation 

pressure behind a normal shock acts on the leading edge. This 

somewhat crude assumption is justified by the fact that for a 

supersonic aerofoil the thickness of the leading edge, though by 

necessity finite, will be very small compared with the chord 

length and the maximum thickness of the profile. The contribution 
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of the leading edge to the wave drag is then given by 

(Dw)L.E. 
	(psi 	po)f 

where 	ps1 
= the stagnation pressure behind the normal shock, 

po 
= the free stream static pressure, 

to that 

(LCD  ) 

L.E . 

2 	Psi 	,) 
m2 	po 	c 

3 1  3 

= f (keio) 42  

From the normal shock relations we find that, with y = 1.4, 

M2 	-3 ' 5/ 	M2 3 ' 5  
+ 

6 M2  0, 

Psi = PSI Pso 0 m x 	= 7 0  - 
P o 	Pso Po 

and the numerical values of f(Mo
) are 

1,1 
0 

1 2 3 4 	
1_ 

 

4X) 

1.7:: f(M0 ) 1.28 1.66 1.76 1.79 

Hence for Mach numbers between 2 and 3 the value of f(11
o) can 

be taken as 1.7, say. 	Then, 

(,j'sl CD) 
T/it 	

1.7 	° 

L.E. 

• -' 

Thus, e.g., for a 2-inch chord aerofoil with .e/c = 0.001 as a 

typical value, ( LCD  ) 	= 0.0017 which can be a considerable 
VT L.E. 

percentage of the total wave drag (e. g. at N. = 2.13, a = 0 ° 

 and t/c = 10 per cent, CD  = 0.0288, so that 

('-CD ) 

= 0.06, or 6 per cent). 
CD 

 

w 

It is possible to develop a more elaborate treatment 

for estimating (4CD  ) 	, based on the approximate methods 

L.E. 

for detached shocks, but since in practice the shape of the 

leading edge is irregular (c.f. ref. 16), some arbitrary 

assumptions must, in any case, be made. 
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3.2. Conditions at Shoulders of Wedge Sections 

Flow conditions at sharp shoulders of wedge sections 

are in many respects similar to those near the leading edge. 

Although far less experimental evidence is available, the flow 

patterns appear, in most cases, to be rather like that shown 

diagrammatically in fig. 12b. The expansion fan which theor-

etically should originate from the vertex, starts a little up-

stream of the shoulder. The boundary layer appears to thin 

immediately downstream of the shoulder, becomes concave and 

causes a local compression (also c.f. fig. 17). 

The latter effect can be explained in terms of the 

thinning of the boundary layer caused by the high negative 

pressure gradient, as in the case of flow near the leading edge 

(c.f. p. 26 above). 	It is also suspected that there is a small 

region of local separation in the immediate vicinity of the 

vertex, for reasons stated in the preceding section (p. 25), and 

it is believed that this could be observed experimentally, if 

the flow configurations were examined on a sufficiently large 

scale. 

Experiments show that the expansion influences the 

surface pressures by diffusion of pressure through the subsonic 

part of the boundary layer. The extent of this diffusion will, 

of course, depend on the state of the boundary layer and the 

Reynolds number. 	At Rf.:-.10.5-1.0 x 10 °  and with a laminar 

boundary layer, the region affected by the expansion is, in each 

direction, of the order of 5-10 boundary layer thicknesses just 

upstream of the shoulder (see e.g. refs. 10 and 15). 	Two typ- 

ical examples of observed pressure distributions are given in 

fig. 11. As will be seen from the diagram 12d, the modified 

pressure distribution will have little effect on lift, but it 

may cause a noticeable reduction in wave drag. 

In addition to influencing the local surface pressures, 

the conditions at the shoulder may have important effects on 

the subsequent development of the boundary layer downstream of 

the shoulder. Until more experimental evidence is available, 

it is not possible to say on the basis of the existing theories, 

what these effects are likely to be. For the purpose of cal-

culating the boundary layer development on the aft part of a 

double-wedge profile, an acceptable assumption would be to 

consider the momentum thickness as being continuous across the 

shoulder, as a discontinuity in the momentum thickness there 

would imply, if taken literally, the existence of an infinite 

force. 

/As to 
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As to the possibility of the shoulder causing transi-

tion, the little experimental evidence available seems to indi-

cate that this is not the case. 	In the course of some tests 

at the N.P.L. it was observed that the spread of turbulence 

caused by a disturbance on the surface of a double-wedge aero-

foil was, in fact, suppressed by the expansion at the shoulder 

(fig. 12c). 

3.3. Conditions at the Trailing Edge  

The neighbourhood of the trailing edge of a two-dimen-

sional supersonic aerofoil is another region where flow config-

urations observed in wind-tunnel tests very often differ vastly 

from those predicted by the inviscid theory. 

The actual flow patterns depend on the particular test 

conditions and the aerofoil geometry. In general, however, at 

least one shock wave is formed at the trailing edge, to return 

the flow over the surface to approximately the free stream dir-

ection. Since in the subsonic part of the boundary layer no 

discontinuity of pressure can occur, the pressure rise across 

the shock is diffused upstream. This results in en adverse 

pressure gradient, the boundary layer thickens rapidly and in 

some cases separation of flow occurs at a point upstream of the 

shock. 

In fig. 13 are shown diagrammatically some typical flow 

patterns associated with the boundary layer separation. In gen-

eral, the following possibilities exist: 

(i) separation on both surfaces, 

(ii) separation on one surface only, 

(iii) no observable separation. 

Which of these possibilities does in fact occur, de-

pends primarily on the shock strength, the state and thickness 

of the boundary layer, the shape of the aerofoil contour near 

the trailing edge and - since the flow near the surface is sub-

sonic - on the conditions at the other surface. 

Effects of state of boundary layer shock EILmsth and pressure 

aa21Pnt 

Experiments on reflection of shock waves from bound-

ary layers on plane surfaces (refs. 21 and 22) have indicated 

that with the boundary layer laminar, even very weak shock waves 

with pressure ratios of the order of 1.01 cause the boundary 

layer to separate upstream and that it is, in fact, extremely 

difficult to obtain a reflection of an incident shock without 
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the separation taking place (c.f. rr: ,f. 21), 	On the other hand, 

with turbulent boundary layers, shock waves of pressure ratios 

Up to 1.8 have been found to cause no separation (refs. 21 - 23)). 

In a s.ailar manner, the extent of the upstream influence shook 

waves enert through the subsonic part of a laminar boundary lay-

er is found to be roughly 10 times that for the turbulent bound-

ary layer, typical figures being 100 and 10 displacement thick-

nesses respectively. Two suggestions have been put forward by 

various writers to alqplain these different reactions - first, 

the difference in the thickness of the subsonic region of laminar 

and turbulent boundary layers, this thickness being relatively 

smaller in the case of the turbulent layer, and second - the 

difference in the velocity profiles of the two layers. The 

latter alternative appears to be more plausible, as for given 

external flow conditions, the turbulent boundary layer is much 

thicker than the laminar and their subsonic sub-layers are, in 

fact, of similar thickness. 

Towards the rear of a convex supersonic aerofoil, the 

pressure gradient is favourable and one would expect the region 

of interaction to be more restricted in size than would be the 

case with a wedge aerofoil or a flat plate. However, the greater 

the curvature of the surface near the trailing edge, the greater 

is the trailing edge angle and, consequently, the greater the 

strength of the shock wave formed there for a given incidence 

and free stream Mach nrMber, which in turn tends to increase 

the exteAt of the shock wave - boundary layer interaction. 

Similarly with a concave trailing edge the shock strength is 

reduced but the pressure gradient is adverse. Thus, these two 

effootr. are intc-roonnected and tend to cancel out, so that one 

might ,.,:i=pect the separation to be governed mainly by the angle 

of incidence and the free stream conditions. Moreover, once 

the boundary layer has separated, the actual shape of the 

trailing edge region cannot have much influence on the condi-

tions of flow there, because of the presence of a 'dead-water' 

region between the main stream and the surface of the aerofoil, 

except at smoll angles of incidence, when the dead-water region 

is small and mixing takes place. This is, of course, only a 

crude and greatly oversimplified representation of the actual 

flow conditions, but the little experimental evidence that is 

at present available seems to support it, 

In figure 11 is shown the variation of the pressure 

in the separated region with the angle of incidence. The data 

are collected from the experimental results for a 10 per cent 

circular arc profile presented in refs. and 10, and from some 

/Unpublished 
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unpublished results of tests on a 9 per cent thick symmetrical 
aerofoil with a concave trailing edge of 4° angle. The Mach 
number range is 1.6 to 2.5 and the average Reynolds number is 

of the order of 0.7 x 10 6; the boundary layer is laminar in all 

cases. 	It is seen that p se p/po  the ratio of the pressure in 

the separated region to the free stream static pressure (Which 

is also approximately equal to the reciprocal of the pressure 

rise across the trailing edge shock), is practically independent 

of the free stream teach number, and that for angles of incidence 

greater than about 6 °  the trailing edge angle has no appreciable 

effect. With a(6° psep/o is higher for the concave 

trailing edge section than for the circular arc profile, but the 

difference is far less than one would expect from comparison of 

the theoretical shock strengths in the two cases. 	It must be 

emphasized, however, that these results do riot include the 

effects of the Reynolds number, which was of the same order of 

magnitude in all cases. Likewise, the apparently negligible 

effect of the Mach number is probably due to the small range of 

variation of M, and to the fact that II and r  were not varied 

independently. To obtain a true picture of the effects of 

these two parameters, tests should be made in which these effects 

are separated. 

In addition to the trailing edge shock wave, there is 

usually a weak shock formed at the point of separation of the 

boundary layer (fig. 13). This shock is usually more pronotnced 

in the case of a bi-convex profile than that of a double-wedge, 

where the compression is more gradual and spread over a larger 

distance. It is thought that on a convex surface this shock 

is the immediate cause of separation. The process through 

which flow stabilises itself might be as follows. 	The trail- 

ing edge shock initiates the separation and at the point of 

breakaway, where the boundary layer turns through some small 

angle to leave the surface, a weak shock is formed. This, in 

turn, induces further separation and the point of breakaway 

moves upstream until it reaches a region where the external 

pressure gradient is sufficiently high and the boundary layer 

sufficiently thin to prevent any further separation. 

Fig. 15 shows the variation of the pressure rise 

across this shock, for the 10 per cent circular arc profiles 

referred to above. It is seen that the strength of the shock 

increases both with the angle of incidence and free stream Mach 

number, but is subject to unknown Reynolds number effects. 

An attempt is made in ref. 10 to obtain an 

/empixical 
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empirical estimate of the strength of this shock wave, and also 

of the pressure in the separated region, by considering super-

sonic flow over forward and backward facing steps, which are 

claimed to be simplified models of the flow conditions near the 

trailing edge. 	In actual fact, there seems to be no direct 

analogy between the two problems, other than perhaps a super- 

ficial similarity in the real flow patterns. 	If one considers 

supersonic flow past a right-angled backward facing step, the 

necessity for a separation of flow in the corner ABC arises 

even in the inviscid case, as there is an absolute maximum on 

the shock deflection e, for a given upstream Mach number, M 0. 

In addition to the limiting solution, when 0 = 0 , there is 

an infinite number of possible solutions, all satisfying the 

boundary conditions far downstream. The inviscid solution not 

being unique one is led, in trying to find a guide to the choice 

of a particular solution, to the consideration of the viscous 

effects. 	Thus, the boundary layer cannot be said to cause 	the 

separation of flow, which must occur in any case, but on the 

other hand it is to be expected to have a governing influence 

on the flow pattern, which is otherwise indeterminate. 	This 

is fundamentally quite different from the phenomena occuring 

near the trailing edge, where the inviscid solution is unique 

and viscosity can only have a modifying influence. Therefore, 

it is not surprising that, as concluded in ref. 10, the flow 

over steps does not appear to have sufficient resemblance to 

the separation of flow from aerofoils. 

Pressure distributions in the separated region 

For aerofoils with either convex or concave trailing 

edges, experiments (refs. 24_ and 10) show that the pressure in 

the separated region remains approximately constant along the 

surface, between a point downstream of the separation point 

and the trailing edge (c.f. fig. 25). 	This indicates that 

there is little mixing in the dead-water region, except per-

haps near the point of breakaway, where the static pressure is 

lower than it is downstream. 	In fig. 16 is shown the variation 

of the extent of the separation, x s, with the angle of inci- 

dence, for the 10 per cent circular arc aerofoils. 	xs 
is 

/arbitrarily ... 
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arbitrarily defined as the distance upstream of the trailing edge 

within which the pressure is approximately constant. These 

data are subject to the limitations already mentioned in connec-

tion with figs. 14 and 15. 

When the trailing edge is straight, as in the case of 

a double-wedge profile, appreciable pressure gradients are some-

times observed in the separated region, at small or moderate 

angles of incidence (a typical example of such a pressure dis- 

tribution is shown in fig. 17). 	This implies that there is some 

considerable mixing, and reversed flow in the separated region, 

and it is thought that this is caused by the proximity of the 

separated jet to the aerofoil surface. 7ith the trailing edge 

convex or concave, or rith straight trailing edges at high inci- 

dences, the jet separates clear of the surface within a short 

distance from the point of breakaway and the reversed flow is 

less pronounced. There is also a possibility of the separated 

jet becoming turbulent and re-attaching itself to the surface 

before it reaches the trailing edge. 

In addition to decreasing the wave drag and lift, the 

pressure in the dead-water region has important effects on the 

conditions on the other surface. 	If this pressure is lower 

than that just upstream of the trailing edge on the other sur-

face, an expansion must occur there (as the pressure in the 

dead-water region must be continuous), and no separation takes 

place on the other surface; if it is higher, separation is 

likely to occur on both surfaces. 

Review of theoretical studies  

Even in the comparatively simple case of an oblique 

shock incident on a plane surface, little progress has been 

made with theoretical analysis of the shock rave boundary 

layer interaction. The basic difficulty derives from the 

fact that some of the fundamental assumptions of the boundary 

layer and of the shock wave theories are incompatible; for 

instance, the former assumes changes of velocity and pressure 

in the direction of flow to be negligible compared with those 
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normal to the direction of flow, whereas in the latter the re-

verse is assumed to be the case. 	It would appear that one has 

to use the full equations of motion of a viscous compressible 

fluid in the regions where both the boundary layer and the shock 

wave effects are important. Whilst it may be possible to dev-

elop some sort of a numerical process to solve these equations, 

such approach, apart from being of doubtful validity, would give 

no insight into the nature of the phenomena and their mechanism. 

Consequently, all the attempts at analytical treatment have so 

far been based on assumptions which are not, strictly speaking, 

justified and deal with idealised cases and flow models which 

have little immediate application to real flow problems. 

Howarth (ref. 24-) considers the reflection of com-

pression waves from the discontinuity surface between a super-

sonic stream bounded by a parallel subsonic stream and shows 

that the pressure disturbances would spread upstream through 

the subsonic field of flow. 

Tsien and Finston (ref. 25) extend this analysis to 

the case in which the subsonic stream is bounded on the other 

side by a solid surface, but neither of these investigations takes 

account of viscosity. 

Oswatitsch and Wieghardt (ref. 26) consider the inter-

action between the boundary layer and the main supersonic stream, 

by making use of the concept of the equivalent boundary defined 

by the boundary layer displacement thickness, and by satisfying 

von Kaman's momentum equation for flow within the boundary layer. 

They find that under these conditions, small pressure distur-

bances propagated along the surface grow exponentially with the 

distance along the surface in the limiting case of a vanishingly 

small pressure gradient. 

Lees (ref. 41) applies this approach to the problem 

of an oblique shock incidence on a flat plate. He uses the 

standard Pohlhausen method for laminar boundary layers, as modi-

fied by Dorodnitzyn to allow for the effects of compressibility, 

and finds that: 

(i) the pressure rise across the shock diffused up-

stream of the foot of the shock decreases exponentlally with 

the distance from the foot, 

(ii) the relaxation distance, (8 ) 
o 

, defined as 
1 

 

the distance in which the pressure rise decreases to 1/a of 

its original value, increases with the Reynolds number based 

on (5 1 ) 	and decreases with the Mach number M
o (the suffix o 

0 
 

/refers 
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refers to conditions far upstream, where the boundary layer can 

be considered to be undisturbed by the shock wave), 

(iii) for M >1.25, all incident shocks with deflec-

tions greater than about 1 °  will cause separation. 

Nov', whilst these results are, in themselves, of con-

siderable interest and appear to agree qualitatively with 

ment, it is doubtful whether they are very reliable quantitatively, 

owing to the nature of the. assumptions and simplifications in-

volved in the analysis. To begin with, the Pohlhausen approx-

imation is known to give unreliable results for boundary layers 

in adverse pressure gradients even in the incompressible case, 

and there is no reason to expect it to be any more accurate for 

compressible flow. Further, Lees assumes that the pressure 

gradient is small and linearises the differential equation for 

the modified Pohlhausen parameter 

1 	
d_u1 oi 2 

2 —dx 1 -u1 

This linearisation is a fairly good approximation for 0<(-)1)< - 6, 

but becomes progressively worse as (-:,\) approaches its value of 

12 (or 10, as arbitrarily assumed by Lees) at the separation. 

In common with other boundary layer methods, the transverse 

pressure gradients across the boundary layer are neglected, 

though they may have important effects near the point of separa-

tion, where the curvature of streamlines is large. 

'Thile all these approximations may be conceivably justi-

fied in the case of a shock wave of moderate strength incident 

on a plane surface, up to a point fairly close to the foot of 

the wave, their validity would be more than doubtful if one tried 

to apply Lees method, as it stands, to the more general case of 

strong shocks on curved surfaces, where external pressure grad-

ients would be high. 71hen one drops the assumptions as to the 

magnitude of these gradients, the resulting equations become 

unanenable to analytical treatment and an iterative numerical 

process becomes necessary. It was felt that such computations 

would not be justified until Lees' analysis is supported by 

experiment, but some calculations were made to test the validity 

of such a procedure, for one particular case of a 6 per cent 

double-wedge aerofoil at 14 0  = 1.57 and a = 8 °. From the ex-

perimental pressure distribution obtained at the N.P.L. the 

shape of the equivalent surface was deduced using the process 

	

already described in para. 3.1, 	It is seen from fig. 17 that 

the pressure gradient at the rear of the upper surface is fairly 
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high and that between the shoulder and the trailing edge the 

equivalent surface is displaced by about 2 per cent of the chord 

length. If the boundary layer were completely separated, there 

would have to be a very considerable amount of reversed flow in 

the dead-water region with speeds up to, in this case, 20 per-

cent of the free stream velocity. As such high velocities of 

the reversed flow are unlikely, it appears more reasonable to 

assume that the boundary layer was turbulent and had not separa-

ted. 	In that case, if the equivalent surface is taken to be 

the contour of the displacement thickness, the actual boundary 

layer thickness at the trailing edge would be of the order of 

15 - 20 per cent of the chord length. This shows clearly that 

the static pressure cannot be assumed to be constant across the 

boundary layer, and that the pressure gradient outside the bound-

ary layer is probably much smaller than that indicated by the 

surface pressures. 

4.. SUGGESTED hETHOD FOR ESTIMATING BOUNDARY 12.Y ER EFFECTS  

4.1. Summary of the Method 

On the basis of the considerations described so far, 

one can attempt to devise a method for an approximate assessment 

of the boundary layer effects on the aerodynamic characteristics 

of two-dimensional supersonic aerofoils. The method suggested 

here will be restricted to aerofoils with sharp leading and 

trailing edges ('sharp' is used here in the sense 'sharpest poss-

ible') and at incidences such that the leading edge shock waves 

are attached. 

4.1.1. Theoretical pressure distribution and aerodynamic  

characteristics  

The pressure distribution on both surfaces is obtained 

from the standard shock-expansion theory, assuming simple-wave 

flow along the surface. 

The force and moment coefficients (lift, wave drag 

and pitching moment) can then be obtained from equations 2.3.1. 

to 2.3.6. by numerical or graphical integration of pressure dis-

tributions. For wedge aerofoils these are simple to calculate 

since pressures are constant along straight surfaces. For other 

shapes, the numerical integration is straightforward but some-

what tedious. In the case of circular arc profiles of maximum 

thickness up to 10 - 12 per cent of chord, it was found that 

/the pressure ... 
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the pressure distribution can be approximated with a very good 

accuracy by an interpolating polynomial of the third degree and 

the force coefficients can then be expressed in terms of the 

angle of incidence, the leading edge angle and the values of 

pressure at four equally spaced points on the surface (just down-

stream of the leading edge, just upstream of the trailing edge 

and at two intermediate points). The derivation is given in the 

Appendix III and results in the following expressions: 

C = 	— cos Pr 	 f+ sin  PI: n=o 
	

gn Y 	go 	
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where an 
are coefficients depending on the value of pressure at 

the four points (eqn. A.III.11) and fn  and gn  are functions 

of the leading edge angle 	(eqn. A.III.10). 

4.1.2. Development of the  boundary layer 

Neglecting the effects of shock waves and separation 

(which are taken account of separately), any convenient method 

can be used for computing the development of the displacement 

thickness and the local skin friction coefficient, from the theo-

retical pressure distributions. 	The available methods are dis- 

cussed and summarised in ref. 12. 

For the laminar boundary layer with zero heat transfer 

and the Franatl number of unity, one has e. g. the approximate 

methods of Howarth (ref. 27), Young (ref. 28) and Dorodnitzyn 

(ref. 29), all based on the standard Pohlhausen approximation 

for the velocity profile. However, it will be found. that in 

the case of convex aerofoils with t/c..06 and. DU: ,-1.5 approx. 

the methods of Howarth and Dorodnitzyn break down at some point 

on the aerofoil surface, owing to a singularity in the differ-

ential equation for the modified Pohlhausen parameter /%, Which 

occurs at 	= 12. 	The range of validity of these methods 

can be extended to 	71‘e..,12 by assuming a quintic velocity dis- 

tribution as was done by Dryden for the incompressible case 

(ref. 30), but this would further increase the amount of labour 

involved in computations, which is very considerable even with 

the quartic velocity distribution. The method of Young is very 

/much 
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much simpler and does not cease to give results when ;\: -.1. 12 

(;,`P), is not used explicitly in that method), but owing to the 

nature of its simplifying assumptions, it cannot be expected to 

be very accurate in the case of comparatively thick aerofoils 

at high incidences. Consequently, it was decided to develop a 

new integral relation for laminar boundary layers in supersonic 

flow by adopting Young's general approach but relaxing his sim-

plifying assumptions. The resulting relations are derived in 

the Appendix I and discussed in section 4.2. 

Per turbulent boundary layers one can use e. g. one of 

the approximate methods developed by Young and Winterbottom (ref. 

31, also see ref. 13) and Tucker (ref. 32). 	It should be noted 

that the experimental results of ref. 32 indicate that wall den-

sity used as the reference value in the relation for the shear 

stress at the wall gives better agreement with experiment than 

the main stream density at the edge of the boundary layer. 

4.1.3. Effects of the bounder laler dis ■lacement thickness  

Changes in the local pressure due to the displacement 

of flow caused by the boundary layer are obtained from the dev-

elopment of the displacement thickness using eqn. 2.3.7. 	The 

corresponding increments of force and moment coefficients are 

computed from eqns. 2.3.8 - 2.3.12, by numerical or graphical 

integration. As very near the leading edge the rate of growth 

of the displacement thickness is, according to the boundary layer 

theory, infinite, it is suggested that the pressure increments 

are calculated from the eqn. 2.3.7. up to an arbitrary point 

downstream of the leading edge (at, say, 2 - 3 per cent chord) 
and extrapolated from there to the leading edge. 

If the local pressure increments are appreciable, it 

may be necessary to use the new pressure distribution to calcu-

late the second approximation to the boundary layer development, 

but inmost cases it will be found that the first approximation 

is sufficiently accurate. 

4.1.4. Skin friction  drab  

The total skin friction drag is obtained from eqn. 

2.42. by integrating the distribution of the local skin fric-

tion over the aerofoil. 	It should be noted that here again 

one is faced with a singularity at the leading edge, where 

f,--4 w. Now, on a flat plate with a laminar boundary layer 

f 	, where x is the distance downstream of the leading Nix 

/edge, • • 
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edge, and the integration can be carried out right to the lead-

ing edge. 	On a curved surface cpx,72 4. G. 	where F and G 

are functions of the external flow conditions. Near the lead-

ing edge -->G.1.91 , so that cf 	very nearly. 	But 

il2c4_,F, approximately (for a laminar boundary layer), hence it 

is suggested that upstream of a point near the leading edge 

(x/c = 0.02, say), c f  is assumed to vary with 
	

so that 

1 0 

	

	 x 

cf  dx in eqn. 2.4.2. becomes 

Cf 
dR = 

0 	J 0. 02 

0.04 (cf) :17  = 0.9 	8...4.1.5. 

For the turbulent boundary layer, c f x n
, where n depends 

on the power law assumed for the velocity profile (and is, gen-

erally, of the order of 0.2); hence 

pi 

c a = 	 em  0.02 cf  ex 
I 	f 
J o 	ei 0.02 

(cd_ 	• • . •4.1. 5a 
x = 0.02 

4.1.5. Effects of separation 

Until systematic experimental results are available 

which would permit the derivation of an empirical relationship 

for the prediction of separation, or until a reliable theory is 

developed, it is suL;gested that the data presented in figs. 14 

to 16 nay be used tentatively for biconvex aerofoils of the max-

imum thickness of the order of 10 per cent, for the range of 

Mach numbers of 1.6 - 2.5 and Reynolds numbers of 5 x 105 - 10
6

. 

The pressure changes due to separation,
sep  p, can be esti-

mated as shown in the diagram below.- 

Taco rc; II( At. 015111 ∎ BOriOri 

f 
	--ir 

RM551WCALOWili41101i 01 - 11.o.w.to  W6N0.4 
xs 	from fig. 16 NW SEMATION 

from fig. 14 Ar.: 2 (421 	sep 
p1 	from fig. 15 

Increments of the lift, wave drag and pitching moment coeff-

icients are then found, similarly to those due to the displace-

ment thickness, by integrating ZL sen  p over the region of 
separation. The change in the skin friction drag can be 

estimated by assuming that the local skin friction downstream 

of the point of separation is zero. 

/Men ... 



Men the boundary layer is assumed to be turbulent, 

(e.g. at flight Reynolds numbers), the effects of separation can 

be altogether neglected, since even if separation does occur, 

its extent would generally be limited to the immediate vicinity 

of the trailing edge. 

Nett values of the force and moment coefficients are 

then obtained by summing the various increments: 

CL}II  = 	) C '  b L
' - 	

sap L,J.11 	4. 1 6. 
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4.2. New InteRral Relation for Laminar Boundary  Layers in 

Supersonic Simple-7ave Flow and  Zero Heat Transfer  

The method of derivation of the new relation is essen-

tially an extension of Young's approach (ref. 28) and a comprom-

ise between his approximate method and that of Howarth (ref. 27). 

As in both these methods, use is made of the fact that when the 

Prandtl number is unity and ' = 1 in the relation 

the velocity distribution in the laminar boundary -  layer with zero 

heat transfer is independent of the ilach number, if expressed 

as a function of Y, where 

i ti  

	

Y 
	

an 	 4 2 1 

The velocity distribution is expressed in the standard Pohlhausen 

approximation (eqn. A.1.2.2.) and, following Young,:: relation 

is obtained between the local skin friction at the wall and the 

momentum thickness: 

1 u 
m.. . 	+ 

P1 Ill 

2  '1 

P i  u1  f 

 

4 2 2 

 

where 	f = 	and m = — 
11 1 

However, at this point Young assumes that m, f and also 

1 H = 	are constant along the surface and functions only of the 

free stream conditions; in Howarth's analogue of Pohlhausen's 

/method 



method these ratios are, of course, functions of the rain stream 

conditions at the edge of the boundary layer and of the boundary 

layer thickness in terms of Y, whereas in the present method 

they are assumed to be unique but arbitrary functions of the 

local main stream conditions only. Then, for the case of super-

sonic simple-wave flow 

P 5 	 , 	 8, 
= f(e) ; 	= m(0) ; H = r1  = k(e) ......4.2.3. 

where 0 is the direction of flow at the edge of the boundary 

layer, measured from some datum direction (taken as 0 = 0 at 

= 1). 

von Karman's momentum ,quation then becomes 

ae 	o' ° ) 

 

4.2.14. 
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where q-11 = 	2 and Y = 	= curvature of the surface , and 
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- as 
j(0), k(0) are functions of tho local main stream conditions 

defined in eqn. 

This equation can be either solved by a step-by-step 

process, or integrated directly to yield 
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In the case of a circular arc profile, this integral 

assumes a particularly simple form: 

= A J (0
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1
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whilst the displacement thickness and the skin friction are 

given by 
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where A, B and C (defined 1.n eqn. A.I.3.4a and 3.8a) depend on 

the aerofoil dimensions and the free stream conditions and are 

constant along the surface; J, K, L and are unique functions 

of 6 only, defined in eqns. A.I. 3.7a and 3.8a. 

Once these functions have been com -puted and tabulated 

for a range of 6, the calculation of the boundary layer devel-

opment in a particular case then involves only the determination 

of the quantities A, B and C and the use of tables to find the 

appropriate values of J, K, L and M, for the required points on 

the surface. 

For the present purpose it was assumed that the varia-
8 *  

and — tion of 4 , P1 
	

8 1 
with the local Mach number, :1 is the N, 

  
same as for a flat plate at zero incidence with the corresponding 

free stream Mach number M c  = M. Young's flat plate solution 

(refs. 12, 31) was used, so that 

H 	= k(6) = 2.59 (1 + 0.277 Mi2 ) 

9.072 	1 + C. 365 (y-1 )o-2  M.t1
i-1(  1-Go) 

poo 	
1:.1  l.  Mg 

with co = 8/9, 	= 0.72 and y = 

The variation of these functions and also of 3, rE, 
K, L and 11 with 0 is shown in fig. 18, and their values 

are tabulated in table I. 

Fig. 19 shows a comparison of the results of the pres-

ent method vrith those obtained by the methods of Tiowarth lE  and 

Young, for the momentum and the displacement thickness on the 

lower surface of a 1C per cent circular arc aerofoil, with 

M
o 

= 2.13 and R = 0.64 x 10
6
: It will be seen that the devel-

opment of the displacement thickness calculated from eqn. 

compares better with Howarth's method, than does that obtained 

by using Young's method; the agreement is not so good in the 

case of the momentum thickness, but even there the discrepancies 

are generally less than about 5 per cent. 

The obvious 

functions of >1 used in Howarth's Enthod are tabulated in 

table II for the range of 'A from 0 to 11.5. 
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The obvious advantage of the new relation is the mini-

mum amount of labour involved in computing and the ease with 

which & 1 , 1. 1' and c, can be obtained at discrete points on the 

surface of a circular arc profile. 

The method can be easily adapted to other ferns of re- 
8 ds  lations for H, 	and — , provided they are uniquely deter- 

mined by the local flow conditions. This allows the possibility 

of using empirical relations for the functions f, n and h, should 

such relations be found to give bettor agreement with experiment. 

4.3. aroarison with Experiment; Discussion of Results. 

The method of estimating the boundary layer effects, 

suggested in para. 4..1., was applied to the particular case of a 

10 per cent symmetrical circular arc profile at Ho  = 2.13 and 

R = 0.64 x 10 C, for a range of incidence from 0
o to 10o. The 

new integral relation was used for the development of the bound-

ary layer, which was assumed to be laminar throughout. 

4.3.1. Boundary layer displacement thickness• local ressure 

increments; skin friction. 

The development of the displacement thickness is shown 

in fig. 20a and its rate of growth in fig. 20b. 	It is seen that 

for any given point on the surface, the displacement thickness 

increases almost linearly with the incidence and so does its rate 

of growth. At as = 10 °, the values of 8 1  on the top surface 

are nearly twice as large as those at the corresponding points 

on the bottom surface. 

The resulting increments of the local pressure vary 

only little with incidence for x/c-.0.4 (fig. 21), but towards 

the leading edge increase fairly rapidly with increasing inci-

dence. 

The local skin friction (fig. 22) is seen to decrease 

with increase of the local Hach number, but the rate of varia-

tion is small. 

4..3.2. Effects of displacement thickness on force and 

moment coefficients  

The increments of lift and wave drag coefficients due 

to the displacement of flow by the bounc9ary layer are. - 
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a 	
Oo 

4 8°10° 

,000581 1H.000641 01).,7 1 .000486 .000528 

6,01,  0 x.00029 .00047 .00054 

The increments of pitching moment coefficient and the movement 

of the centre of pressure are negligible I 0(10 -5 }] 

r:hen expressed as percentages of the theoretical values 
.LX " L of the coefficients, --- 	and 	-Iv are found to decrease with 

DW 
incidence (fig. 23a) and are of the order of 0.2 per cent and 

1 per cent respectively. 

3 . 3 . • 3 3 Skin friction  drag 4,-  

The total skin friction drag is found to be practically 

independent of the incidence, the values of 0D  being.- 
f 

a 0°  4° 
8o o 	1 

10 	1 
--4 

,
H1 

.00461 .00460 .00460 .00466 

i 
It is of interest to note, that in ref. 13 the value of 0 D  for 

f 
the same section at the same Mach number find a = 0 °, obtained by 

Young's method, is 0.00465. 

4.3.4. Effects of separation 

These effects were estimated from the empirical data 

of figs. 14 - 16, as suggested in para. 4.1.5. 	The changes in 

force and moment coefficients are given in table III(c), and are 

plotted in fig. 23(b) as percentages of the corresponding theor-

etical values of the coefficients. 

It will be seen that the effects of separation are 

most marked in the case of the pitching moment, whose value is 

reduced by as much as 26 per cent at a = 4°, falling to just 

under 14 per cent at a = 10 ° . 

The lift coefficient is reduced by amounts varying 

from 12 per cent at a = 4°  to 7 per cent at a = 10° . 	The re- 

duction in the wave drag varies only little with incidence and 

is of the order of 10 per cent. 

Separation also results in a forward shift of the 

centre of pressure position, varying from 6.5 per cent chord at 

a = 40 to 3.2 per cent chord at a = 10 o 

The ... 
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The decrease of skin friction drag was estimated as 

4.4 per cent at a = 0 °  rising to 9.2 per cent at a = 10 0 . 

1+.3.5. Corn arison with ex eriment 

The Mach number and Reynolds number were chosen so 

that the above results can be compared directly with the experi-

mental results obtained by Ferri (ref. 4). 	The final calcula- 

ted values of the aerodynamic coefficients are given in table 

III(d), together with the theoretical values obtained from the 

inviscid shock-expansion theory (table IIIa) and the averaged 

results of Perri's experiments (table Ille); they are also shown 

plotted in fig. 24. 

The inviscid shock-expansion theory appears to be in 

very poor agreement with the experiment. The greatest discrep-

ancies occur in the lift and moment coefficients and the LA) 

ratio. At a = 10 °, the theoretical values of C C M 
and L/D 

are respectively 19 per cent, 30 per cent, and 17 per cent higher 

than the experimental values determined by force measurements. 

Taking account of the boundary layer effects, reduces these diff- 

erences to 11 per cent, 12 per cent and 12 per cent, respectively, 

which are still very considerable amounts. It is not known what 

is the probable experimental error, but scatter of the experi-

mental points is large and some of the numerical results are quo-

ted, in ref. 4, to two figures only. Further, there are large 

discrepancies between the lift and moment coefficients obtained 

from integration of the pressure distributions and those deter-

mined from force measurements (see table IVa) (the values of drag 

cannot be so compared, as C D  calculated from the pressure dis-

tributions obviously does not include the skin friction drag). 

Therefore, it is suggested that the force measurements in ref. 4 

are subject to serious experimental error. Moreover, there is 

also some doubt as to the precise geometrical characteristics 

of the aerofoil tested. 	It is stated in ref. 4 that the dim- 

ensions of the 10 per cent circular arc profile were: 60 mm 

chord, 6 mm maximum thickness, 150 mm radius of curvature and 

22°40' leading edge angle. Taking the chord length as the 

datum dimension, the correct value of the radius of curvature 

is 151.5 mm and the correct leading edge angle is 22 °50'. 

Though perhaps not very significant, these differences cast 

doubt on the accuracy of the other experimental data. It will 

also be seen from table lVb that numerical values of the pitch-

ing moment coefficient at positive angles of incidence are con-

sistently higher than those at the corresponding negative inci- 

dences, which indicates that either the aerofoil was not exactly 

/symmetrical ... 



symmetrical, or that the distribution of flow in the tunnel work-

ing-section was not uniform. 

This view is supported by the comparison of lift coeff-

icients and one typical example of pressure distributions obtain-

ed by Ferri for the 10 per cent circular arc profile at DI = 1.85 

(R = 0.72 x 10
6
), with those given in ref. 10 for the sane pro-

file at M = 1.86 OR = 0.66 x 10 6
) - fig. 25. 	The slight differ- 

ences in the pressure distribution cannot possibly account for 

the large difference in the lift coefficients for the two cases, 

which is some 24 per cent at a = 6 0, so that Ferri's force measure-

ments again appear to be in error. The differences in the pres-

sure distributions, though only small, can be explained by neither 

the slightly different Each numbers, nor by the boundary layer 

effects, but can be accounted for by asymmetry of the aerofoil, or 

non-uniformity of flow in the working-section. 

Results of ref. 10 appear to be far more reliable, but 

unfortunately they were not available until after the present 

calculations had been completed for the Mach number of 2.13. An 

attempt was made to interpolate some of the results for M = 1.85 

and M = 2.48 to E = 2.13, assuming that C L  and ( CD 
w6 =0 

are proportional 	 As can be seen from fig. 24 and 

\IM
2 

- 1 

table V, the agreement with the corresponding calculated values 

is very good. However, it should be noted that the results of 

ref. 10 may be subject to a certain amount of error, owing to the 

fact that 0L and CD wore calculated from the pressure distrib-

utions, which were extrapolated over some 20 per cent of chord. 

4.3.6. Assessment of the Method 

The method suggested here cannot be properly assessed 

until reliable experimental data are available, comprising both 

pressure and force measurements. 	The obviously weak point of 

the present method, as it stands, is the empirical correction 

for separation based on inadequate data, but here again the 

fault lies with the lack of comprehensive experimental results. 

Tith the laminar boundary layer, the effects of sep-

aration arc of much greater importance than the effects of the 

displacement thickness, but with the turbulent boundary layer, 

when separation is unlikely to occur, the latter effects become 

predominant and the method should give a reasonable estimate of 

the viscous effects. 



5. SOLE NOTES ON CHOICE OF AEROFOIL SECTIONS FOR-SUPERSONIC  

PINGS 

5.1. Inviscid Characteristics 

According to the two-dimensional inviscid theory, a 

symmetrical double-wedge section has a lower wave drag coeffic-

ient than sections of any other shape at the same Mach number and 

with the same maximum t/c ratio. However, since the minimum lim-

it on the thickness of a wing is governed by considerations of the 

structural strength and of storage capacity, drag in terms of the 

cross-section area or the 2nd moment of area (in the case of thin 

solid wings) rather than in terms of the t/c ratio is a more app-

ropriate criterion for comparing drag properties of various wing 

sections. 

Determination of the optimum shape of section using the 

shock-expansion theory cannot, unfortunately, be carried out anal-

ytically. However, the linearised theory is amenable to analyt-

ical treatment and whilst its results cannot be claimed to be very 

accurate, it affords at least a qualitative guide to the relative 

merits of various aerofoil sections. 

Using the linear theory, it can be shown quite simply 

by the calculus of variations that the section having the least 

wave drag for a given cross-section area is composed of two 

symmetrical parabolic arcs. Now, within the approximations of 

the linearised theory the wave drag of the parabolic profile is 

exactly the same as that of a circular arc profile of the same 

t/c ratio, since the equations of the two profiles are identisal 

to the first order in y/c. 

The table below shows some first order estimates of the 

wave drag coefficients of symmetrical parabolic and circular arc 

profiles as compared with the symmetrical double wedge of equal 

thickness/chord ratio, cross-section area or 2nd moment of area: 

CD C.A. 	P.A. for equal t/e, equal area equal 2nd moment CD 
D.W. 

a = 0 0  1.33 0.750 0.892 

= 10 °  1.07 0.897 0.950 

The drag of the double-wedge can of course, be further 

reduced without altering the section area or its 2nd moment by 

moving the point of maximum thickness beyond the mid-chord. 

/Moreover, ... 



Moreover, for a more accurate comparison the shock-expansion 

theory should be used, and the above ratios will then also de-

pend on the Mach number. Nevertheless, even the simple example 

considered here shows that when the structural strength is the 

primary consideration, the circular arc profile may be expected 

to offer a wave drag saving as compared with the corresponding 

double wedge profile. 

5.2. Effects  of Aerofoil Shape  on Stability of Laminar  

Boundary Lalrer 

A further important factor which should be considered 

is that of the viscous effects from the point of view of the 

stability of the laminar bovndary layer. The recent work of 

Lees (ref. 33), shows that favcurable pressure gradients may 

have important stabilising effects at Mach numbers up to about 2. 

Fig, 27 (adapted from ref. 33) shows the stability lim-

it in terms of the minimum critical Reynolds number based on the 

displacement thickness, for a 6 per cent circular arc profile at 

M = 1.5 and zero incidence, for a range of Reynolds numbers 

based on the chord length. 	It is seen that with R 3 
5 
x 105 

there is a region of instability near the leading edge, the size 

of which increases with R o. Fig. 26 shows the corresponding 

limits for a 6 per cent double-wedge section at the same Mach 

number and incidence (the values of R, 	were obtained from 
'crit 

ref. 3), calculated assuming the momentum thickness to be con-

tinuous at the shoulder. The boundary layer is almost complete-

ly unstable even at R o  = 5 x 10 5 . 

Whilst the considerations of stability cannot deter-

mine the probable position of the transition point, it is clear 

that transition is more likely to occur when the boundary layer 

is unstable than when it is completely stabilised. 	In fig. 28a 

is shown a comparison of the wave and skin friction drag coeff-

icients of the two aerofoils for various transition positions. 

Transition was assumed to occur suddenly and the skin friction 

drag calculated by integrating the local skin friction coeff-

icient along the surface, neglecting the effect of the trailing 

edge shock waves. Assuming that transition occurs at a point 

where R8 	= n(7115 , the values of CD 	CD obtained 

Gritor -oz. 

/wedge. • • • 

\or 	,, min 

with n = 4 and n = 12 are shown in fig. 28b. It will be 

observed that with R
o 

between 10
6 and 107 the drag of the 

circular arc is only slightly higher than that of the double- 



wedge. 

Similar calculations for aerofoils at other Mach num-

bers had been carried out in ref. 35, before Lees completed his 

analysis for the effects of pressure gradients on stability of 

the laminar boundary layer, and appear to indicate that at 

hi = 1.6 the drag of the circular arc profile can actually be less 

than that of the double-wedge of the same thickness. 

At Mach numbers higher than 2, the effect of aerodyn-

amic heating becomes predominant (c.f. ref. 33)  and cancels out 

the effect of the favourable pressure gradient, hence the circu-

lar arc profile no longer has the advantage over the double-wedge 

on the grounds of stability of the boundary layer. As suggested 

by Lees, withdrawal of heat from the surface may help to restore 

the stabilising effects of the favourable pressure gradients. 

5.3. Effects of Separation 

From the point of view of separation, th,re is little 

to choose between the various profiles, as with the boundary 

layer laminar, separation is just as likely to occur in one case 

as in another (c.f. para. 3.3. 0  page 32). 	Effects of separa- 

tion are not serious in the case of plain wings, since loss of 

lift is associated with a decrease of drag, but may cause dis-

astrous losses of control effectiveness. An obvious method of 

preventing or limiting separation at low Reynolds numbers is to 

induce turbulent flow over the rear part of the wing, but this 

would result in a serious increase of drag. An alternative 

might be to have blunt trailing edges, in which case the shock 

waves would move downstream of the trailing edge and would be 

preceded by expansions, which 

may suppress separation. This 

again would result in an in- 

creased drag, caused by a suction 

force on the blunt edge. 

5. L. Concluding Remarks  

The above considerations are only tentative and, in 

any case, concern only two-dimensional aerofoils. On finite 

wings the phenomena discussed may be even qualitatively differ-

ent. Much experimental and theoretical research is needed, 

before it is possible to say with any degree of certainty, what 

aerofoil sections should be used for supersonic wings in any 

particular case. 



-52- 

6. SOME  SUGGESTIONS FOR EXTERIMENTAL RESEARCH 

As there seems to be little hope of a complete theory 

of the shock wave - boundary layer interactions being developed 

in the immediate future, there is need for a systematic experi-

mental investigation of this phenomenon, particularly as it 

affects the conditions at the trailing edges of supersonic aero-

foils. It is believed essential to explore as fully as possible 

the scale effects, as it is reasonable to expect that at high 

Reynolds numbers the effects of separation at the trailing edge 

may well become of minor importance only. In the first instance, 

such experiments should be limited to two or three representative 

aerofoil sections tested over a wide range of Mach numbers, 

Reynolds numbers and the angle of incidence. It is thought that 

interferometry would prove very useful in exploring regions of 

flow, where static pressure measurements are difficult or im-

possible. Force measurements should also be made, both as a 

check on the pressure and optical measurements and as a means of 

determining the total drag. 

7. CONCLUSIONS  

Experiments show that real flow patterns Observed on 

two-dimensional supersonic aerofoils differ appreciably from those 

predicted by inviscid theory. 

The most striking discrepancies are found near the 

trailing edges, where separation of flow is often Observed. This 

separation is caused by the interaction of the trailing edge shock 

waves with the boundary layer and, on general grounds, it can be 

shown to result in a loss of lift and a decrease of wave drag. 

Examination of available experimental results shows that the 

pressure in the separated region and the extent of separation are 

mainly functions of the angle of incidence and of the free stream 

static pressure; the effect of the Mach number appears to be 

negligible. The scale effects are not known, but it can be 

expected that at high Reynolds numbers and with turbulent bound-

ary layers, the effects of separation should be of only minor 

importance. 

At the leading edges, at incidences when according 

to the inviscid theory the flow should undergo a simple Prandtl-

Meyer expansion, a weak shock wave is always observed. Though 

the bluntness of the leading edge appears to be the primary 

cause of the formation of the shock wave, the viscous effects 

have at least an important modifying influence and, in the case 

of appreciably thick leading edges, may result in a local sep-

aration of flow. The effect of the flow pattern at the leading 

/edge on ... 
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edge on the pressure distribution downstream is believed to be 

negligible and, as calculations show, is confined to the first 

few per cent of the chord length. 

At sharp shoulders of wedge sections, the flow patt-

erns observed are found to be fundamentally similar to those at 

the leading edge. 	It is believed that a very small region of 

locally separated flow exists at the sharp corner. The surface 

pressure distributions are affected by the diffusion of pressure 

through the subsonic part of the boundary layer within a dis-

tance of the order of 5 - 10 boundary layer thicknesses from the 
shoulder. 

In the regions of flax which are unaffected by shock 

waves boundary layer effects can be estimated by applying the 

concept of the equivalent profile, formed by the addition of the 

boundary layer displacement thickness to the contour of the 

aerofoil, and by computing the potential flow round the new shape 

(using the standard shock-expansion theory). 	The relative 

increments of lift and wave drag coefficients are found to be of 
8 

 e
1\ 

the order of 	( 	and vary approximately as 1/41 Ro for 
\-/T.E. 

the laminar boundary layer, and as 142n for the turbulent 

boundary layer, where n = 0(0.2). The lift increment is gen-

erally positive, but the drag increment may be negative if there 

is transition occuring near the point of the maximum thickness. 

In the absence of a general theory of the shock wave -

boundary layer interaction, the effects of separation of flow 

have to be allowed for empirically, on the basis of the available 

experimental data. 

For the particular case of a 10 per cent circular arc 

profile at M = 2.13 and R o  = 0.64 x 10 G  with a laminar bound-

ary layer, it is found that the effects of separation are far 

more important than those of the displacement thickness. At 

a = 10 °  the separation results in a reduction of CL, CM and 

CD of approx. 7 per cent, 14 per cent and 8 per cent respec- 
w 

tively, with a forward shift of the centre of pressure of 6.5 

per cent chord. The displacement of flow by the boundary 

layer increases CD  by amounts of the order of 1 per cent, 
iti 

whilst the increments of the lift coefficient are only of the 

order of 0.2 per cent. 	The skin friction drag coefficient is 

0.00461 at a, = 0 °  and is practically independent of the angle 

of incidence. The calculated nett values of the aerodynamic 

coefficients appear to be in poor agreement with the experimental 

results of Ferri (ref. 4). 	It is believed that those results 

are subject to serious experimental error, as they exhibit a 

/number ... 



number of inconsistencies. 	Interpolation of sane of the results 

obtained at the R.A.E. (ref. 10) gives a good agreement with the 

present calculations. 

A short examination of the relative merits of super-

sonic aerofoil sections indicated that there is a real possib-

ility of the total drag of a double-wedge profile being higher 

than that of a circular arc profile of the same maximum thick-

ness to chord ratio, owing to the stabilising effect of the 

favourable pressure gradients on the laminar boundary layer at 

low supersonic Itiach numbers (<2) and moderate Reynolds numbers 

(106  - 5 x 107 ). 

The new integral relation for laminar boundary layers 

in supersonic simple-wave flow with zero heat transfer is found 

to give results in good agreement with those obtained by the 

approximate method of Howarth. 

ACKNOINT ,T-41DGE71:i]NTS  

The authcx wishes to thank the Director of the 

National Physical Laboratory for permission to reproduce the 

pictures shown on Figures 8, 10 and 17. 

/APPENDIX I 



-55- 

AFFE'NDIX I 

A NET INTEGRAL  RELATION FOR LAMINAR BOUNDARY LAYERS ON TWO-DDIEEz. 

 SIONAL CYLINDERS IN SMITE-WAVE SUPERSONIC FLOW WITH ZERO BEAT  

TRAMS ER 

1. Boundary_Tayer Equations 

With the usual approximations of the laminar boundary 

layer theory the equations of motion are (ref. 12).- 

	

du 	GU 8 i au\ 
Pu ds + P v -crn: 

0 - - 8n 

ds 
(pu) 	67-n- (pv) c 0 

1.3 is the equation of continuity and is exact. 	von Kaman's 

momentum equation is 

u 
+ (H4-2) - 	 = - 2 

	

u
1 	PL,. 	Pi ui 

where dashes denote differentiation with respect to s, the 

suffix 1 refers to the main stream conditions at the edge of the 

boundary layer, and 

u ss  

	

= ! 211-- (1 	do the momentum thickness • 
P1 ul 	ulli  uo 

(,.y.„) 

8 	I 	
pu 	

dn, the displacement thickness, 

	

1 -  ! 	cluv 

au ■ T =   
van41.0  

= value of the local skin friction at the surface, 

and s,n are coordinates parallel and normal to the surface. 

2. Development of the kethod 

We transform the coordinate n to Y, where 

Y 	— 

Now, when w 1 in the relation pc:,:T w  and 

the Prandtl number is unity, the velocity distribution in the 

laminar ... 
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z . - 	u. 	('Y \ 	i Y 	/y \ -' 	Y 24' 

	

— u1 
	i —.0  f + 	— - + a-  —1 + a, --- 

w = — :.. 

	

1 	8 	2 	* l 6 t 	_5 1 	*1 	i-  k 6 4s) . 	/ \ / 

= a1  11 	a9  T1 2  + a_ 11 3 	a1  114 
 

  2. 

where 8 *  is the boundary l ayer thickness in terms of Y, and 

n = Y/6 *  

The boundary conditions are 

- 2- 
W 
- 	 w = 1, aw = 

on 
= 0 at 71 = 1 

4 

aT w = 0, 	= 0 (no heat transfer) at n = 0 	••2•3• 

2- 
= A, at 1 = 0 a w 

, 	du ') 	2E Frcm 1.1 	 = 	= - 	l o u u an 	an
/ 1n=0 	

as 	.1 

_ 
but from 2.1. 77 - 	, ana 	= 0 by the second eqn. 2.3. 

n 	P. 1 	. 'n=0 

2- w 	*2 
hence 2.4. yields 	9  = - 8 	u , 

3,11 - 	P 1 	
P.1 

where pw  is the value of t  at n = 0, 

2 r i  
Using the boundary conditions 2.3. to solve 2.2. for the coeff-

icients 'a', we have 

a1  = 2 + 	; a  
2 	3 

' • 	• 

The skin friction at the wall is, by definition 

au ! 
7-- 

w = w on 
, n=0 

/hence 

laminar boundary layer is independent of the Mach number, if 

expressed as a function of Y. Hence, using the standard 

Pohlhausen velocity distribution for incompressible flow, we 

have 

r. 

2 
so that 	= 	p1  25  
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hence 
[1 1 111 1 a; 	1 1 12 1 - 

do 	, 8 	\ 	6 

ti 

by 2.2. and 2.6. 

and 
tijy 	P  

p u * 	4. -6-) 

p 1 

 

122 1  
1 1 

or, substituting for 

1 11W 1 0 2P.1 Vg" 	 3 	 1 
2 	 u 	+ pu ,± a 1 	1 	1 1 P1 "1 

6* 	
5
1 We shall now assume that the ratios -7- , H = -7 and 

Pw  
— are functions only of the local flow conditions in the main 
P1  

stream at the edge of the boundary layer and are independent of 

8 *  Then, for the case of simple-wave supersonic flow, we can 

write 

641 	 8 1 	; 	w = f (0) ; H = 	 , h(e) 	= m(0) ...... 2 . 8. 

where e is the direction of flow at the edge of the boundary 

layer, measured from some datum direction. 

Eqn. 2.7. then becomes 

u 	 pl  
= 	 e ) f (0). 	+ 

2 
 ui  75 )  .   2.9. 

p 1  2 o u ml 

Substituting this into the momentum equation, we have 

ut 	o71 	1 a n(e) f 	2  /11 1 	L.  + 	(11(0) + 2) 	1  + 	/ ui 	= 	u 	" •
(e) 

 " • 	 r u 	-2)'• 

or, multiplying both sides by e i
2  
V and rearranging 

2 .2, 	/ 2 .2 	1 u 1  
(TT (p 1 	+ k p 	) 

rIT 
• 2 1 (h+2) - 	f.;11 	4 U:111); 

We note that the expression in the square brackets involves 

only the functions h, f and m and thus is, itself, a unique 

function of e, and tive can write 

2 I(h+2) -1 fm b = g( 0 ) 	 2  11. 

(as far as possible the notation of ref. 28 is used, so that a 

direct compliison with Young's method can be made). 

/Now, • • • 

7  
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d 	oe 
Now,  Ts" 	de 

hence d. 	_ 
as 	de 

 

2   12. 

  

de 
where - as = 	is the curvature of the wall. 

2 To simplify notation we shall write p i  • 

Then, using 2.11. and 2.12, eqn. 2.10 becomes 

de - 
1 (7.--) 	aul _ 41 1P1 

ui  de - fM u 	 .10a. 

du 	
1/1 P1 Now, both 	and - ,re unique functions of 0, hence u1 de 	u f 

1 
2.10a can be written in the form 

+ J(6) k(0) 	2.10b. 

(0  dui 	 4tL 1 e l where j(0) 	0 	
1 / 

" 	de  , and k(0) = 777 • u 
 

If the functions f and g are known, together with 

the velocity distribution along the surface, we can integrate 

2.10b by a step-by-step process and obtain the distribution of 

‘2.:./.  along the surface, whence 	, 8 1  and T
w 

can be readily 

evaluated. 

Alternatively, if we express i< , the curvature of the 

surface, as a function of the angle of inclination of the tangent 

to the surface, p, we shall have 

e = const. + 

de = d1.3   2.11. 

(0) 

2.10b can then be integrated to yield 

where C is a constant of integration and we require one 

boundary condition to determine its value. 	If the flow at the 

leading edge is not supersonic outside the boundary layer, the 

present method does not apply and some other method must be used 

/to determine ... 
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to determine the value of V , at the sonic point and supply the 

necessary boundary condition. Yiben the potential flow is super-

sonic at the leading edge, where 0 = 0
L 2 

say, vie muse have 

OL = 0 since [ul 
0 

0 and as we cannot have a finite loss 
1  

of momentum there, Me  = 0. Eqn. 2.12 then becomes 

e, 	 f‘e 
t ' j(e)acs 	 j(o)de 
0L 	Pei 	o 

—71 
= e  dO 

1VI OL 
 2  12a, 

so that 
I V° 	 c0 

-,2sr j( 0 )dO  
AA 	

I j(0)d0 

e 	

JOL 	1 	k(0 
de 

— e 
	 2.13. 

1 	 0L 

	•■■■•■•••■••11 

3. Laminar Boundary Layer on a Circular Arc Profile  

When the surface is a circular arc, the present method 

is considerably simplified. 

First, we note that for a circular arc profile 

g = constant 

and the solution of 2.101. is then 

de 
I 	

o + 0 
j

a
-1

1 K 

where C is again a constant of integration. 

Referring to fig. 3, let 0 be the centre of curvature 

of the top surface of a circular are profile; 0 is the angular 

distance from the leading edge along the surface, r is the 

radius of curvature of the surface, c is the chord length and 

0 is the angle which the direction of the tangent to the sur-

face makes with some datum direction; suffix 1 refers to 

the values of 0 and 0 at some point P on the surface. 

We then have 0 = 0 + OL 

 dO = d0 

 

32  

  

31  

/where 
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where 0L is the value of 0 at the leading edge. 

- 60 	_ 180 1 Further, we have #L = as = as  _ 	r  

(0 and 0 measured in degrees). 

To express eqn. 2.11 in a non-dimensional form, we 

introduce the following dimensionless quantities: 

IA- 11 	$ 	 c  r s  

p c R 	o 	. 
. 	

(F) 

0 

7 7 
• 

where q is the critical velocity, and the suffices o, 1 and 

s denote the free stream conditions ahead of the aerofoil, the 

main stream conditions at the edge of the boundary layer, and the 

stagnation (reservoir) conditions, respectively. 

2.10b is then transformed into 

d. "7' 
+ 3(0)ji = A 2  E(e) 

where 
	 du 	1 F1 

f(o) 

_ T r Pse Po uo 1 
5 cR Ps1 	o 

 

3  ii-a• 

 

We note that A
2 

is a function ef e and the incidence a 

only and is, therefore, constant along the surface. 

We shall now restrict the solution of 3.4. to the 

case of an attached shock or an expansion at the leading edge, 

so that 1- 	0 -(7).1 	= 0 , as before. 0= 

Solving 3.4. we have 

- 1 r0 1 -1 d0 r 	
(10 

j d0 

= A2  e ° 	 et) o 	a0 
L '41 	

7. 5• 

If we now let 0 = 0 when M = 1, as is usual when dealing 

with the simple-wave flew relations, we find it convenient to 

define some datum 0D'  0, to avoid the singularity 
at 0 = 0, 

/Where • • • 



7 
2 	eL = A e 

r 
do 	 j de 1e I  

' er„ 2  e 

0 

dO, by 3. 2., 

L 

3  6a. 
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or, 

where K(01  ) 

But, 

hence, 

and 

1.5fr = 

	

1 	
= 

	

8
1 	

= 

[C] = A`-  e 
D 1c(01 ) 

01  

' 10 1 
- 3 de 

r

e 

el 	
Je 

r _ 
j dO 

e 	de 

jeD  

A J
19 

 (01)K 

A Jo  (01  ) 	IC (0 1  ) - K (OL) 
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du 
where e 	- Eqn. 3. 5. can then be vrritten. 

   

1101  

- 3 dO  

2 JOB 

 

3 dO 

e  e D 

de -7  
'10 

d.0 	ke 	de 

eD 

  

= A 

 

or, 
0 

1 D 

     

        

36 

 -: d0 
D 

where 	J1 , (01  ) 
= 

 
P1 

and J
8 
 (6) = H , (0) J 

15-- 
3  7a. 

   

From °can. 2.9. the local skin friction coefficient 

can be determined and we find that 

2 
C 	122 - B . L(0)"0- + C. 1,1(0)
fPO U0 	 1_5•L 

38  

/where 



to 

- 	- p, Til,
2 
 du, 

where 	L(0) _ ----j- 	1  m(0) f(0) .. 	TT 	 I u1 
I  p.,  

M(e) = .--,cot 	 k.. .. 3.8a. 
I 
I 

1 	 1 Ps1 . c _ 	4 	1, B 
60 0 = — — 
'X 	r - 	2 	p 	' 	- - - 
	Ho  P M 	SO 	 p u 

0 0 	 0 0 

We note that the functions J, K, L anal M do not 

in 	the aerofoil dimensions and are unique functions of the 

flow direction. Once evaluated, these functions can be used to 

compute I*, 8 1  and c
f for any circular are profile, provided 

that the leading edge shocks are attached. 

So far, the method has been quite general and the only 

condition we have imposed on the functions f, h, and m was 

that they must be unique functions of G. 	It is now suggested 

that the variation of these functions with the local Mach number 

M1  can be taken to be the same as for a flat plate at zero inci-

dence with the corresponding free stream Mach number M
o 

= M1 . 

We could choose the flat plate solution for which w = cr = 1, to 

be consistent with the coordinato transformation 2.1. but it is 

believed more accurate to use the flat plate solution as given 

by Young in ref. 31. 	Young obtained. - 

H = 2.59 (1 	0.277 1.1)• 

9 -1(1 -17) 
= 9.072 1 	0.365 (y-1)44uS  H2  1 	...... 3.9. 

13— 

-11/T 1- P." " 
15. -  

o 	
o_t 

so that, taking w = 8/9, a' = 0.72 and y = 1.4, we have 

h(0) = H = 2.59 (1 	0.277 lei ) 

1 I9 
f(0) ; 

8* 
= 9.072 !I +0.12388 Mj 	....3.10. 

9 8/9  
m(e) 	= 	0.1697 M1 ) 

111 	
j 

Expressions for functions g, k, J, K , L and M then follow 

from their definitions. 

/2,_L-1J'ENDIX 11 ... 



L= I pv(u dy v dx) + 

C 
P d:.- P aY) YY 	Yx 

j 
1 3 

APPENDIX II 

DERIVATION  OF DRAG-ENTROPY  AND LIT'T REIATIONS PROM MOMENTUM THEOREM; 

VORTICITY  TRANSPORT 

1 . 

Consider a two-dimensional aerofoil in a uniform super-

sonic stream, enclosed by a simple-connected boundary C (fig.2a). 

The momentum theorem, which is a direct consequence of Newton's 

laws of motion, states that: 

Force exerted by a body on fluid in the positive direc-

tion = force exerted by the boundary C on the fluid inside it 

in the positive direction, 

- the nett flaw of momentum across the boundary C, 

provided the flow is steady and body forces negligible. This 

can be written 

R =F- 1pfin ds. g 	 1 1  

where 	2 is the resultant velocity vector at some point P on C, 

qn  is the velocity component normal to the length of 
arc element of C, and 

R is the resultant force on the body. 

It will be easily seen from fig. 2a that this results 

in the following expressions for lift and drag: 

D = C pu(u dy 	 ( v ax) + 1 ,pYx ax - Pxx  aY) 
C 

1  2. 

where p ,pYx 1pYY are the stress components given in the xx  
case of a compressible viscous fluid by 

Pxx = - (p  + 3 P '(°  + P exx = - (p + 3 P LI‘' ) -1- 2P "(57-:;i
c 

y a pyy  = - (p + i p. LA ) + p e
YY 	 1:,-- = - (p + i p e,) + 211 17-. ( 1.4. 

‘ 

/with 

(av au\ 	au 
XY 	 0Y 2 	 dY PYX = PXY = o  = 	a. 	, = 2P 	+ 



with 	D = the static pressure, 

au av 
ax ay 

au av 
ay ax 

, the 'dilation', 

the vorticity, 

El 
	

the coefficient of viscosity. 

2. Entropy-Drag Relation 

Let the boundary C /  be a rectangle with its horizon-

tal sides parallel to the free stream direction (fig. 21)) and 

enclosing a two-dimensional aerofoil. AB is taken to be far 

downstream (x =.:- 6) and the sides AD and BC at y mt ,  and 

y = -2c:J, respectively. 

The following assumptions are now made: 

(i) pressure on AB is equal '4.,o the free stream static 

pressure; 

(ii) velocity on AB has the free stream direction. 

These assumptions rest on the fact, supported by both 

the theory and the experimental evidence, that even immediately 

downstream of the trailing edge shocks, the downwash is very 

small (angle of downwash 	0 , c.f. ref. 40), and the static 

pressure is very nearly equal to the free stream static pressure. 

Now, on DC dx = 0, v = 4 = 0, u . uo, pp, 
p 	= - p o ; on AD and EC dy = 0, and since at ,-_...- the shock = 
waves become Mach waves, the flow is irrotational and 4 = 0, 
au 	 av 7  . 0, hence p

Yx 
 = 0; on AB dx = 0, ay = 0 by (ii) above, 

au 	 u 
is at most of the order of - and. -4- 0 as x-4,,,:, , hence lax 	 x  42 p 	= - p. 	The eqn. 1.2. then reduces to xx 	o  

2 D = 	pou0  dy put dy puv dx ...2.1. 

   

DC 	1 ? 	:I 

since 	p 0 ds = 0 

C 

Now along AD and BC the flow is isentropic with 

the entropy having its free stream value and since U 0  

di Accepting the usual boundary layer approximations for flow 
in the wake, this also holds on "L. Y, i.e. that part of AB 
which is in the wake. 
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v-4 0 and p -4 p 0  as 	 we can write 

= U0 	Li t, v=v ' , p = p o 	p 	2.2. 

where the suffix o refers to the free stream conditions and 

p 1 , u', v', are the usual perturbation quantities whose products 

and powers higher than 1 can be neglected. Then, 

puv = 0 u v o 

and e qn. 2.1 be 

D = 	p u
2 ay -- 	put dy 	p u viax 

o 
DA-0.B

o  
uEC 	 L) AB 

Continuity of mass flow in ABC] gives 

0 	 r 
p u dy - 1 pu ay = 	po  v' ax 	2.3. o o 

i DC 	 0 AB 	J DC-CB 

Hence, substituting for p ov' in 2.1a we have 

, 
D = 	pu (u-u)dy 

LiAB 

or, =pu (uo-u) ay + 	pu (uo-u) dy 	2, 5. 

/.) AB-VT 

where W denotes integration across the wake. 

In the case of incompressible flow, or shock-free 

compressible flow, u = u o  at infinity outside the wake, and 

2.5. reduces to the familiar expression for the profile drag 

of an aerofoil.- 

p u (u 	)dy cx., 	0 	i7.? ,  

where ' denotes conditions on AB (X. = (x.) 	This implies 

that the first integral in 2.5. gives the wave drag of the 

aerofoil in supersonic flow, i.e. 

Dw  = 	pu (u o-u 	 2.7. 
, 

/where ... 

2  ) 1_ 

D 26 
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where 	(41) - !.:x..") indicates integration excluding the wake. 

-We shall now assume that viscosity in the main stream 

is negligible, and that there is no heat transfer. The equa-

tion of energy is then 

2 	y 	z 
2  q + 	. 	const. = J 0 

	

y-1 	p 	 p 
T 
 so 

so that for conditions on DC and AB we have (ouside the wake): 

1 u' + -I.- -2  - '' ' .Y- 12.2  = J C T - z u + 
0 	P 	0 

o y-1 po 	y-1 p 	p so 

	

dropping the suffix 	and remembering that u and p refer to 

conditions at x = ,71.J. 

feeD11 2$84 

2. 8. yields !Ili- =%. (k+1) 	k f2. 	where 
O 

   

11. 2 09 0 
Y- i^t2 

 
O 

Fran 2.7. 
1‘. 

D  
V7 	 _ELI ili  _ 2_121 a Ll C 

D 
_ 

1_ 	9 	= 2 
,_ 	 p 0  U0  ‘, 	U

o) " 14,C) V7 	2 P OU0 C 	S.) ,''')=-'  (71) -or, 	' 
	 7. 1 0. 

Substituting 2. 9 into 2.10 and rearranging, we have 

r 
= 2 	

k 
 p 

(k+1 
2 

+ I (k+1) ' 44- - k 2-1 d
Y k Poi 	Pc_ 

.. 	 2  11 

where 5 = y/c. 

Now, along a streamline the change of entropy between 

LC and AB is 

AS S - So  = Cp 	log Pi.: so) 
\ 31/ 
	2.12. 

But pso 

ps1 	11.2o 

- 1 jy -1 
( 13 0 Y  

P 

- 	"CA' - 1 1 p f = 
\P 

as = pof 

Hence 	S = - C log 
Po) 

or, 2-- = e 	p 
Po 

 

2  13. 

 

/Substituting ... 



2 14. 

C
D 
 = 2 

-LS/b 	-6S/b 	-45/0 
k- (k+1)e 	Pi../(k+1)e 	P-ke -  • • 	P  

010(W):Tx2 

substituting this this into 2.11, we get 

Eqn. 2.14. relates the pressure drag of a supersonic aerofoil to 

the entropy change across the shock system associated with the 

aerofoil. For thin aerofoils at small incidences and moderate 

supersonic Each numbers, as will , in general be small and we 

can simplify the above relation 

and neglecting powers 

2.14 then reduces to 

considerably by expanding 

A of 	S  d= greater than 1. Eqn. 

	

AS 
a
- 	2 	 6 s d  (z) 

cD = k 	 Y 	 \,C 
o(W)-4>c, 	

1 
w 	 (y-1) 1V12  

!.psAvo-j 

r , 

 

2  15, 

 

or 	C 	2 	1 	 (s-s }a fr] 	2.15a. C 	 0 D
w (y-1 )140  P 

i.e., the pressure drag of a supersonic aerofoil is approximately 

proportional to the integral of entropy round the aerofoil. This 

is equivalent to the result obtained by Llepmann in ref. 11, viz.: 

Du
o 	r 63 . 

mR T
o -  y-1 	C ' where m = mass flow. 

Since the above derivation was obtained independently and the 

method of approach is somewhat different from Liepmann's, it was 

thought that its details would not be out of place in the pres-

ent report. 

It is to be noted that the approximation involved in 

obtaining 2.15 from 2.14 is equivalent to assuming that the 

linearised relations 2.2 hold not only at y = 4-42, but also 

for finite y at x =C', for then 

pu (u -u) 	- p u 
o
u' 

4. -1_ 	21 u u 	 from the linearised form of 
Y-1  p P o  

the energy equation, and the result 2.15 readily follows. 

3. Lift 

Consider now an aerofoil at an incidence enclosed by 

/a rectangular ... 



a rectangular boundary C 2, as shown in fig. 2c. FA is not 

necessarily far downstream, so that GP and HA are at finite 

distances from the aerofoil. 

On PA dx = O. FGHA lies in the undisturbed uni- 

form stream, hence in eqn. 1.3. 	= 0 , and 1.3 reduces to 
t.) FGHA. 

L = - j (puv -pyx)dy = IL2  (puv-2p. 	 — ay 
t, AF 

PX,) dy 3.1. 

If the viscosity caa be neglected outside the wake, 3.1. yields 

= 	puv dy 

AC,DF 

P tr 
,..TrAke 

 

')• 

 

since in the wake 2 p 
au

= 2p. 4 

The first term in 3.2 is the result obtained for inviscid flow 

in ref. 36. The second term can be shown to be either soro or 

negligibly small by the following argument. 

Integrating the second term of 3.2 and applying the 

mean value theorem 

- 1 P. 	4Y = I 	
7Y" 
8u dy  = 	du = p.m  (up - 120) 

4 
t.) 

 

3  2a. 

 

where µm is a mean value of p in the wake, and u p  , u0  are 

the velocities just outside the wake, below and above it. 	If 

the wake is symmetrical, up  = 110  and = O. 	If it is not 

symmetrical, we can estimate the order of magnitude of L p dy 

as follows. 	From 2.9 the velocity far downstream is, outside 

the wake 

u = 	- 	 u. 

Hence, to first order of /.\ S/C p  

CS  = 1 - 	( 0  = 1 - 	k (S-So} 
u
o 

so that 

where 

u k 
S 

L 

in entropy 

u k  0  

- 	 2 

f\S 

P 
= 2C 

22:,S7  = the difference between 

Cp  

the stream- 

lines just outside the wake. 

/The 
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The contribution of - µ dy to the lift coeffic-
) VT 

lent is then, 

L!au 	 1 	2 	trri 1 	
L`IS, 1 

uo  k 2 	y-1 p. 	2 	C 	R 
1Tpuc 	o Ma 	p 

0 o 

where R = 
o 

 
110 

Hence, in general = 0 (11-1)  
o Lwake 

and the effect of wake on lift is clearly negligible. 

Eqn. 3.2. then becomes 

L = - 	pu v ay 	 33  

AC,DF 

We now take C
2 

to be any simply-connected boundary 

enclosing the aerofoil and use the linear relations 2.2. 

Further, we neglect viscosity and changes of entropy. We then 

have 	pv (u dy - v dx) o o  uo 
 v'dy 

Bernoulli's eqn. is dp + pq dq dp + p(u du + v dv) = 0 3. 11- 

Substituting for u, v and p in 3.4. from 2.2, together with a 

corresponding relation for p, viz.: p = p o  + p', we have 

p' + p o  uo  u' = 0 	 3 5  

Eqn. 1.3. then becomes 

L = - 	l' p ouov'dy 	(po  + 

t; C 

= ^ 1p 
o  u  o 

 (y'dy + u'dx)-(p  u 
o
u'+ p')dx1 , 

since p
o
dx = 0 

C 

 

Hence 	L - 	p o u 
o (vIdy + u'dx) by 3.5. 

Now v'dy + u'dx = Q I . ds = al' by the definition of circulation, 
and 

L = p u 11-1  
o o ► c 

/whore 

36  
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where To  is the circulation round C (in the clockwise sense). 

Thus, in supersonic flow the lift-circulation theorem is true to 

the first order only, i.e. if the flow outside the wake is ass-

umed isentropic. The same result was obtained by Lighthill in 

ref. 36, by considering pressure distribution on a two-dimensional 

supersonic aerofoil as given by the linearised theory. 

Relation 3.6. can also be deduced directly from 

Temple's result for compressible subsonic flow (ref. 38), as 

neglecting changes of entropy amounts to treating the flow as 

isentropic. There is, however, one important difference in the 

argument - Temple shows that by expanding the boundary C to 

;,Le relation L = p ouo rc  becomes exact for the sub-

sonic compreesible case, as the terms neglected in the exact 

momentum equation are of the order of 1/r, where r is the 

distance from the aerofoil. This is not longer true for the 

supersonic case with shock waves present, since the change of 

entropy along the streamlines is independent of x, the distance 

downstream of the aerofoil, and does not become zero as x-4 oe , „ 

The terms in the momentum equatlon which depend on entropy are, 

in general, Q 	 and as one cannot have y =‘;‘,._. everywhere 

Yn  
on C, the relation 3.6. does not become exact even at infinity. 

/A1=1-h7CDIX III .., 
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LL-TENT= III 

INTERPOLATION  FMIULLE FOR FORCE COEFFICifiNTS ON TWO-DIMENSIONAL 

SUPERSONIC CIRCULAR  ARC  PROFILES  

Let the pressure p at any point P on the surface 

be expressed as a polynomial of degree n in 0 , with constant 

coefficients: 

P = 
j=0 

a
- 
	 1 

To determine the coefficients 'a', n equations are required. 

Choosing n equally spaced intervals of 0 we shall have 

1;3 	= k/n, k = 0, 1, 2, 	, n 	2 

so that 	(P) k  - 	,a. 	= 1,-" 7a3 (-1) , 
	3 

3  

But for k = 0, (p) 0  = 0_0  

hence 	P 	(P)k 	(p) 0  = 	j (\ 
	

4- 

k = 1,2,....,n 

Solving for the coefficients 'a', we have 

a. = A ./D 	5 

 

1 /n, (1 /n) 2 , 	, (1 /n) j, 	, (1 /n) n 

2/n, (2/n) 2 , 	. , (2/n) j , 	, (2/n) n  
• 	 • 

(k/n) , (1c/n) ,. 	, (k/n) j, • , (k/n) 

 

  

where D = 

k = 1,1,...,n 

   

   

/and 
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and A. is the determinant D with its j t  column replaced 

by 

k ' k = 1 , 2 , y *.., n 

Considering the lower surface only, the force coeffic-

ients are (eqns. 2.3.4 and 2.3.5) 

t pdf 
;so) O 

Ljo 

r sc 
p cos p as , since ax . cos p ds, 

1 	r 
Cl c 	

p cos P a0 , since s = Or V in radians), 
o 	0 o 

11 2p r, 1  
, r 

(10  c ! 
p cos 	0) , since p = 0,9 - 	= p, 	9,(c7 

Expanding and substituting for p from (I), 

CY e 	c 
= 	; (cos p, cos 0 	sin 	sin 0) 	(1  i 	 70

o-o 

7 
Similarly, 

fl r  

C - - 	(sin P, cos 0 - cos ['j. sin 95) 	> a 	dj 
Xgo c j 

O 	
7...--•% 	-5 

5̀=°  

	8 

Ems. (7) and (8) involve integrals of the form 

On  cos b0 010 ; 1. 0
n  sin b0 dO 

Using the reduction formulae 

'Pe 

j 0 
9Cc =2P9 

i cos 10 dO = 
n 

sin b0 - 
u 
 ! On-1  ; 	sin b0 dO 
 j 

A 

On  sin b0 dO = c co s b0 -n  10n-l cos 	dO 

egns. (7) and (8) can be written in the form 

2Pe 
C, cos 

-c 

P- 
a .r 

j=0 
+ sin 13_; 	a ,gj  (R4  ) 

j=0 

/c  • • • 

9 
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2130
sin p o  ; a f i (f3 ) - cos Po 	a. g.(1311 Cx  

 

	1 0 

where 	f .( g .(P )=. g 
0 
 (r, )- 	+ 	f 	(p ) 

 e 3 

f 	 g(13 	= 	- sin `;:p, ; 	0 (G) 	2 17- 	- cos 2P1.1 0 	2', 

	 11 

For aerofoils with the thickness ratio up to 10 - 12 

per cent, it will in general be found sufficiently accurate to 

use a third degree polynomial. with  n = 3, eqns. (5) and (6) 

give for the coefficients 'a' .- 

a0  = (p) 0  , 

94P - 54P + 63P 

a2  = -22.5 nl p + 1862p - 4.5 3p, 	12 

a3  = 13.5 A p — 13.5/\2p 4.5 6.310  

For the particular case of a 10 per cent thick circular arc 

profile 

°25 ; r/c = 2.525 

and the f and g functions have the following numerical values.- 

1 , , 3 

.97375 . 40035 . 31762 .23602 

g .19663 .13074 .09800 .07847 

Hence, 

C v = a [.99965(P) 0 	.364151.1 1  P 	.387456 2I) + .12214 

13 

CY: — g
o 

* 041 70/ 	— .014_116A2p - .01973/_pl 	 _ --1 

Example  

At M
c = 2.13 and with a = 10o 

it was found using 

the above formulae that 

C
L 

= 0.3928 , C
D 
 = 0.1007 

'ihich is in excellent agreement with the corresponding results 

obtained by a numerical integration of pressure distributions, 

viz. 

CL  = 0.3930, CD  = 0. 1004. w   
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Table T. Laminar Boundary Layer  Functions 

6 m(6) f(6) 	h.(0) 	1i 3(0) 2-. lo ko) K(e) L(6) m(e) 

o 1.150 9.191 5 .307 5.864 .09461 

1 1.170 9.206 3.429 .3064 5.014 .2559 .09633 
2 1.191 9.218 3.510 .2416 4.516 .2078 .09794 
3 1.206 9.231 3,584 .2098 4.142 .1843 .09942 

4 1.221 9.243 3.655 .1895 3.330 .1634 .1006 

5 1.235 9.253 3.723 .1753 3.554 1.986 0 .1584 .1016 

6 1.248 9.263 3.791 .1644 3.307 1.890 .0374 .1497 .1024 

7 1.267 9.274 3.857 .1560 3.071 1.810 .0764 .1426 .1032 
8 1.276 9.234 3.929 .1485 2.884 1.739 .1227 .1367 .1038 

9 1.291 9.294 3.995 .1425 2.697 1.677 .1711 .1316 .1042 
10 1.305 9.304 4.068 .1372 2.524 1,620 .2232 .1263 .1046 

11 1.324. 9.314 4.144 .1326 2.358 1.569 .2770 .1225 .1049 
12 1.335 9.324 4.210 .1286 2.218 1.523 .3387 .1187 .1052 
13 1.349 9.334 4.281 .1252 2.081 1.481 .4024 .1148 .1054

. 

14. 1.365 9.345 4.362 .1221 1.951 1.442 .4701 .1112 .1055 
15 1.380 9.356 4.439 .1193 1.832 1.407 .5419 .1080 .1096 

16 1.396 9.366 4.517 .1167 1.718 1.373 .6176 .1049 .1055 
17 1.413 9.377 4.598 .1143 1.611 1.347 .6977 .1019 .1054 
18 1.429 9.388 4.681 .1121 1.512 1.320 .7813 .09883 .1052 
19 1.445 9.4.10 4.765 .1102 1.420 1.29 6 .8701 .09593 .1050 
20 1.463 9.422 4.850 .1084 1.333 1.275 .9625 .09325 .1048 

21 1.4.81 9.434 4.941 .1068 1,249 1.254 1.059 .09033 .1045 
22 1.506 9.446 5.032 .1054 1.172 1.236 1.160 .08832 .1 041 
23 1.518 9.458 5.126 .1040 1.099 1.219 1.265 .08568 .1037 
24 1.537 9.470 5,222 .1027 1.030 1.204 1.374 .08319 .1033 
25 1.553 9.4.82 5.321 .1014 .9647 1,190 1.487 .08061 .1028 

26 1.578 9.482 5.422 .1002 .9033 1.177 1.604 .07831 .1023 
27 1.598 9.495 5.527 ,0992 .8450 1.167 1.726 .07602 .1017 
28 1.619 9.508 5.635 .0983 .7900 1.157 1.851 .07376 .1011 
29 1.641 9.521 5.745 .0974 .7391 1.148 1.980 .07153 .1004. 
30 1.663 9.535 5.859 .0965 .6912 1.140 2.113 .06932 .09975 

31 1.687 9.549 5.976 .0957 .6447 1.135 2.250 .06716 .09900 
32 1.711 9.562 6.098 .0951 .6026 1.130 2.391 .06514 .09824 
33 1.735 9.576 6.222 .0945 .5626 1.125 2.535 .06305 .09742 
34 1.760 9.591 6.351 .0939 .5246 1.122 2.683 .06110 .09660 
35 1.791 9.605 6.463 .0932 .4900 1.120 2.8344. .05919 .09571 
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/ e 	m(o) 	f(e) h(o) ::z 3(e) lo 2- 
 ko) .7(e) K(e) 	L(e) 	m(e) 

36 1.812 9.620 6.620 .0929 .4555 1.119 2.989 .05707 .09487 

37 1.841 9.636 6.762 .0924 .4236 1.119 3.147 .05519 .09389 

38 1.869 9.65o 6.908 .0920 .3938 1.120 3.307 .05331 .09294 

39 1.898 9.666 7.058 .0918 .3663 1.121 3.471 .05149 .09196 

40 1.928 9.683 7.214 .0913 .3402 1.123 3.639 .04966 .09099 

41 1.959 9.700 7.375 .0911 .3150 1.127 3.809 .04800 .08994. 

42 1.991 9.716 7.536 .0909 .2924 1.131 3.983 .04617 .08083 

43 2. 024 9.734 7.714 .0907 .2710 1.136 4.157 3 .04)) .08775 

44 2.059 9.751 7.892 .0905 .2506 1.142 4.334 .04264 .08660 

45 2. 094- 9.769 3.077 .0903 .2318 1.14.9 4.512 .04.119 .08551 

46 2.130 9.787 8.268 .0903 .2141 1.157 4.695 .03962 .08430 

47 2.169 9.806 8.466 .0902 .1976 1.166 4.878 .03809 .00311 

48 2.207 9.825 8.672 .0902 .1 822 1.176 5.064 .03656 .08190 

49 2.24-8 9.843 8.885 .0902 .1686 1. 1 U8 5.248 .03506 . 080 68 

5o 2.290 9.864 9.116 .0902 .1545 1.200 5.434 .03363 .07945 

For the definitions of the above functions see the Appendix Z. 

/TABLE II .,. 
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Table 11. Functions of the Modified Pohlhausen  Parameter ?\ used in 

Howarth's Approximate Method for Laminar Boundary Layers  

in Compressible Flow 

gW 	hiL/ 	 k 	Ai)1 

0 34.05 6.811 0 7.2 	-.8310 24,81 11.35 
0.2 33.00 7.041 .2006 7.4 	-1.992 26.04 12.01 

0.4 31.94 7.276 .4032 7.6 	-3.201 27.33 12.75 

0.6 30.91 7.518 .6075 7. 	-4.462 28.74 13.52 

0.8 29.89 7.768 . 8138 6.0 	-5.800 30.44 14.36 

1.0 28.88 8.026 1.023 

1.2 27.98 8.291 1.234 8.2 	-7.191 32.01 15.29 

1.4 26.90 8.565 1.48 8.4 	-8.682 34.15 16.31 

1.6 25.93 8.849 1.665 8.6 	-10.28 36.33 17.45 
1.8 24.96 9.140 1.836 8.8 	-12.01 38.77 18.71 

2.0 24.00 9.442 2.110 9.0 	-13.88 41.53 20.14 

2.2 23.05 9.756 2.339 9.2 	-15.96 44.70 21. 77 
2.4 22.11 10.08 2.571 9.4 	-18.25 48. 23. 62 

2.6 21.18 10.31 2.809 9.6 	-20.84 52.52 25.77 

2.8 20.25 10.77 3.052 9.8 	-23.81 57.50 28.30 

3.0 19.40 11.13 3.302 10.0 	-27.25 63.47 31.33 

3.2 18.41 11.50 3.555 10.1 	-29.16 66.78 33.01 
3.4 17.50 11.90 3.317 10.2 	-31.37 70.74 35.01 

3.6 16.59 12.31 4.086 10.3 	-33.72 75.02 37.17 

3.8 15.67 12.73 4.362 10.4 	-36.37 79.83 39.59 

4.0 14.76 13.17 4.646 10.5 	-39.33 85.27 42.33 

4.2 13.36 13.64 4.94.2 10.6 	-4 1 7.66 91. 49 45.47 

4. 4 12.94. 14. 1 3 5.246 10.7 	-46.46 98.66 49.07 
4.6 12.03 14.64. 5.562 10.3 	-50.88 107.0 53.27 

4.8 11.12 15.18 5.890 10.9 	-56.05 116.9 58.23 
5.0 10.19 15.71,- 6.230 11.0 	-62.20 128.8 65.28 

5.2 9.345 16.34 6.586 11.1 	-69.66 143,2 71.44 
5.4 8.329 16.97 6.957 11.2 	-73.93 161.3 30.49 
5.6 7.364 17 .64. 7. 345 11.3 	-90.77 134.6 92.15 
5.8 6.426 18.34 7.753 11.4 -106.5 215.6 107.7 
6.0 5.450 19.09 8.182 11.5 -128.40 259.0 129.4. 

6.2 4.472 19.89 8. 637 12.0 	- 00 .ae.) CA; 

6.4 3.461 20.74 9.112 

6.6 2.430 21.02 9.607 

6.8 1.369 22.63 10.16 

7.0 .2395 23. 67 10.74. 

The above functions are defined as (ref. 27): 
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g 0\) 

(1 2 	( 37 + 

k (,\) = 	 Y 	() 

ei0 = 	\2  hC\) 

8+  
3  where 	h ( _ 

9 5  
(12- ) (37 + 

j()) = 	
j008 	63 %\`  

(12- h) (37 + 

Table III. SuE2mt.lr._._y of rzesufoxti-12Ip per cent  s metrical 

Circular  Lrc Profile at iIo = 2. 1,3 and R o = 0.64 x  10
6 

{a) Force and moment coefficients  frm inyiscid theory (shock- 
expansion) 

a° C
L CD w 

Gil  L/D )7. 
c.p. 1 1  O

 -± 	
0 ,-- 

0 .0283 0 0 - 
0.1521 .0390 .0G45 3.90 .417 	1 
0. 3089 .074u .1330 4.13 .418 

0.39 30 .1004 .1 691 3.91 .41 8 

At a = 10 °, the linear theory gives 

CL  = 0.3710, CD  = 0.0950, Cm  = .0175, 3‹C.11.  = 0.50 

(b) Increments  due 'co the boundary layer disaacement thickness  

r 

a 0 4 3 10 

0
1a 0 .00029 .00047 .00054 

/10D  .000436 .000528 .000531 . 000 641 

I-  f -5 1 Om and nsi 	are negligible , c.p. 

Skin friction cir2.L coefficif.:nt  

a 0 4 
,-. (., 

--- 	r  
10 

CD . 00461 . 00460 . 00460 . 00465 
f -a 

/(c) 



(e) Increments  duo to 222212tien 

4_CL 
4:1 CD LI,' Cm  ., 	

Cif 
x 

o. p. 

0 0 -.00284 0 -.00026 

4 - .0189 -.00426 -.01692 -.00034 -.032 
3 -.0241 -.00696 -.02167 -.00042 -.039 

10 -.0267 -.00845 -.02294 -.00043 -.065 

(d) Nett calculated  values of the coefficients 

Cu C 
T.i 

C
D 

Cm  L/D - 

0
 

0 .0308 0 0 

.1335 .0395 .0476 3.45 .350 
H 

8 .2853 .0726 .1113 3.90 .380 	; 
10 .3668 .0960 .1462 3.77  .387 

(e) .averaged experimental  values (Perri ref.4 - force measure-
ments) 

7 

a. CL CD C M 

0 -.005 .0356 .005 

4 +.123 . 0436 .0395 
0 .262 .0748 .0985 

10 .329 .0982 .130 
5 

(0 Comparison  of exTerimental  and calculated  results at a. = 

C
L 17 _ C_ 

It x 
c. p. 

Experiflent • 
(average) .329 .0982 .130 3.35 .37 

Shock-expansion 
thAnry 

.3930 .1004 .1691 3.91 .413 

7 difference , 19.4 2.3 30.0  16.7 13.0 
• Lineal' theory .3710 .0930 .175 3.99 .50 

),,, difference 12.7 -5.3 34.6 19.0 35.0 
Present method .367 .0963 .1462 3.77 .387 
X difference 11.5 -1.5 12.5 12.5 4.5 

/Table TV-(a) 



a 
pressure distribution 

force measurements 

8 	10  

. 291 	.362 

.262 

.139 

.123 

if 

.392 

pressure distribution 

force measurements 	.0395 

.111 	.148 

. 099 	.430 
CM 

.04E2 

(i) Lift 

0L  

Table IV(a). Ccn]parison of pressure and force  measurements 

of ref. if 

Table IV(b) Pitchinspomont coefficients at )ositive and ne ative 

angles of incidence (rof.4)  

1:0 C i  

10 

13.0 -10.8 10.0 -9.7 

6 -6 

7.3 -6. 

a. ..1 1. 2 	i 	-2 	1 	0 (-0) 

100 C1 ' L.1 -3.C, 1.8 	1-1.4 0.4 -0.2 

Table V .Comparison of calculated results with those interpolated 

from ref. 10  

a if 8 10 

Interpolated 

Calculated 

0.141 

0.134 

0.291 

0.285 

0.367 

0.367 

(ii) Drag 

CD 	interpolated from ref. 10 
yr 

= 0.0263 (at a = 0 0) 

allowance for skin friction = 0.0045,.. (see tables HIM 
and (c) 	) 

0.0309 

Calculated 	CD 	(total) = 0.0303 
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