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SUMMARY

The phenomena of viscous flow over two-dimensional
supersonic aerofoils are investigated with a view to developing
a method for estimating their effects on the aerodynamic charact-

eristics of the aerofoils.

In regions where the flow is unaffected by shock waves
and where the assumptions of the boundary layer theory hold, the
doncept of the displacement thickness and the equivalent wing
profile is applied to determine the changes in the local pressure
distribution and the resulting increments of forece and moment
coefficients, It is found that the§e increments vary with the
Reynolds number approximately us R? for the laminar boundary
layer and as R, n==0,2, for the turbulent.

A drag-entropy relation and a 1lift relation are der-
ived from the momentum theorem and are used to demonstrate the
overall effects of the boundary layer - shock wave interaction.
Local flow conditions affected by this interaction are examined
in detail. On the basis of available experimental data an
empirical correction is suggested for the effects of flow separa-
tion at the trailing edge, and it is found that with the laminar
boundary layer these effects are of major importance, It is
expected that their influence will diminish at high Reynolds
numbers and will be negligible with turbulent boundary layers.

The suggested method of estimating the boundary layer
effects is applied to the particular case of a 10 ﬁer cent
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circular arc profile at M = 2,13 and R = 0,64 x 106 Com=-

parison with experiment is not conclusive, owing to the lack of
reliable data,

A new integral relation for laminar boundary layers in
simple-wave flow and zero heat transfer is developed and is found

to give good agreement with the approximate method of Howarth.

A Dbrief discussion is also given of the relative merits

of circular arc and double-wedge profiles.

——
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NOTATION

A,B,C functions of aerofoil dimensions and free stream
conditions (Appendix I)

Cy» Oy aerodynamic coefficients of force components in
directions x,y
CD basic wave drag coefficient
w
GD skin friction drag coefficient
5 2 T
Co 5 5 local skin friction coefficient
Po Yo
CM pitching moment coefficient about the leading
edge

£(6), g(0), m(6), j(6), 3g4(6), K(6), L(6), m(e) -

functions of simple-wave flow direction 6,
used in boundary layer equations (Appendix I)

on

HE= I% ratio of boundary layer displacement thickness
to momentum thickness

J mechanical equivalent of heat

k coefficient of conductivity of heat

X streamline curvature

o) static pressure

P, stagnation (reservoir) pressure

w1 & . _—
a, =7 P, UO free stream dynamic head
q resultant velocity
Uie
Ro & ~%— Reymnolds number based on chord
0
Rﬁ? R8 local Reynolds numbers based on nomentum and
1 displecement thicknesses, respectively

3 entropy

8 N curvilinear orthogonal coordinates parallel
and normal to the aerofoil surface

t maximum thickness of aerofolil sections

T static temperature

u, v velocity components in directions x,y or
s,n (as defined)

U0 free stream velocity

X ¥ rectangular Cartesian coordinates parallel and
normal to aerofoil chord (except when otherwise
stated)

% distance of centre of pressure from leading

°p edge
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trntsformed'boundary layer coordinate
(Appendix I)

angle of incidence

slope of the aerofoil surface
ratio of specific heats (taken as 1.4)

boundary layer thickness, also
deflection of flow across an oblique shock

boundary layer thickness in terms of Y
boundary layer displacement thickness
boundary layer momentum thickness

angle of simple-wave flow expansion from sonic
velocity

angular distance along surface of circular arc
profile

curvature
modified Pohlhausen parameter

coefficients of viscosity and kinematic vis-
coslty, respectively

density

Prandtl number (taken as 0,72)

shear stress at the wall

increment or change of a quantity

Suffix o refers to free stream conditions

A
Hy V
P
p C
CE&TE
=
w
0
1
s
oo

main stream conditions at the edge of
boundary layer

stagnation conditions

conditions at infinity

Bar (-) over a quantity denotes that the quantity is non-dim-

sional,

Standard symbols (CL’ M, etc.) are not included in

the above list.

introduced.

A1l other symbols are defined when first

/INTRODUCTION ...



1. INTRODUCTION

Whilst boundary layer phencmena on two-dimensional
aerof'oils in incompressible flow have been extensively studied,
both theoretically and experimentally, little work has so far
been done on the corresponding problem in the supersonic flow.
This may partly be ascribed to the fact that in incompressible
flow, a recourse to the boundary layer theory is the only means
of estimating theoretically the drag, whereas at supersonic
speeds the pressure or wave drag, which forms the major contribu-
tion to the total drag, is given by the inviscid flow theory and,

as a rule, the boundary layer can be expected to have only sec-
ondary effects.

The investigation reported here had been suggested by
the work of Preston (refs. 1,2 and 3), which was primarily con-
cerned with changes in circulation produced by the boundary
layer on two-dimensional aerofioils in incompressible flow.
Briefly, Preston's method is based on G.I. Taylor's theorem that
equal amounts of positive and negative vorticity are discharged
into the wake of an aerofoil. This permits the determination of
the velocities at the trailing edge; the aerofoil is then re-
placed by a new shape displaced from the original aerofoil by the
amount equal to the displacement thickness of the boundary layer,
and the changes in the circulation found by determining the thick-
ness and the camber effect of the displacenent thickness. The
changes in local pressure distribubtion can then be found in the

usual manner, by using the new value of the circulation.

It would appear, at first sight, that the corresponding
problem in the supersonic flow should be very much simpler,
since the changes in the pressure distribution can be determined
directly from the local changes of the direction of flow at the
surface, produced by the boundary layer displacement thickness.
A closer examination of the problem rewveals, however, that this
advantage is offset by the fact that on supersonic aerofoils
there exist regions of flow where the classical boundary layer
theory cannot be applied, These are the regions in the vicinity
of the leading and trailing edges and of the sharp shoulders of
wedge sections, where shock waves and strong expansion waves
interact with the boundary layer causing upstream and downstream
diffusion of pressure through the subsonic part of the boundary

layer and, in many cases, inducing flow separation.

The mechanism of this interaction is not yet fully
understood and presents a problem of such formidable complexity
that, although in recent years it has attracted the attention of

many research workers, only very limited progress has so far been
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repcrted (this is discussed in mors detail in section 3. 3. below).
In the majority of cases, even the positive results achieved are

c¢f Tittle practical use, as only the simplest idealised flow
conditions have so far proved amenable to mathematical treatment.
Conpequently, until a comprehensive theory for the boundary layer -
shook wave interaction is developed, it appears that the only
tpproach at one's disposal of theoretically assessing the bound-
ary layer effects is a discriminate use of the existing boundary
layer theory where it is applicable, combined with empirical or
semi~-empirical corrections for effects for which there is no

theory available.

The present study was carried out to investigate the
possibilities of such an assessment on the basis of the existing
theories and the available experimental evidence, Typical flow
patterns observed in wind tunnel +tests on two-dimensional super-
sonic aerofoils are briefly discussed and the overall effects of
flow separation are demonstrated by means of a drag-entropy and
a 1ift relation, derived from the momentum theorem, The effects
of the displacement of flow by the boundary layer are then found,
neglecting the shock wave - boundary layer interaction. This is
followed by a detailed examination of the regions of flow where
this interaction may be of major importance. Qualitative ex-
planations of the cbserved phenomena are suggested and, where
possible, quantitative assessments of their importance are
attempted. A new integral relation for laminar houndary layers
on supersonic aerofoils in simple-wave flow is derived and is
used to calculate the effects of the boundary layer on the force
and moment coefficients in the particular case of a 10 per cent
arc profile at the Mach number of 2.13 and the Reynolds number
of 0,64 x 106. Effects of separation are accounted for empiri-
cally and comparison is made with sone experimental results,
Finally, the relative merits of various aerofoil sections as

af'fected by the viscous effects are discussed briefly.

2. GENERAT, THEORETICAL CONSIDERATIONS

2.1, Prelimirary Remarks

The development of techniques of optical exploration
of two-dimensional supersonic flows has provided a most
attractive and useful tool of experimental research, and made
it possible to obtain directly a clear picture of the actual
flow conditions. With its aid, it soon became apparent that
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flow patterns found in practice differ appreciably from those
predicted by the inviseid theory. This was first conclusively
demonstrated by Ferri in a series of tests carried out at
Guidonia in 1939 (ref. L), on a mumber of two-dimensional super-
sonic aeorfoils at Mach numbers of 1,85 and 2.13. More recently,
similar results have been obtained at the N,P,L. by Valensi and
Pruden (ref. 5), Holder and others (refs. 6 to 9), and at the
R.A,E, by Beastall and Pallant (ref. 10). Although the results
of these experiments differ in minor details, they present a
fairly coherent and consistent picture of viscous flow over two=-
dimensional supersonic aerofoils. A detailed examination of
local flow conditions is given in section 3, and at this stage
only the general features will be discussed.

Referring to fig.1, the diagram (a) shows the flow
pattern over a typical supersonic acrofoil as given by the
inviscid shock-expansion theory, The incidence of the aerofoil
is such that on the upper surface the airstream undergoes a
Prandtl-Meyer expansion at the leading edge, expands gradually
along the surface and is returned to approximately the free stream
direction by the shock wave at the trailing edge; on the lower
surface this order is reversed - there is an attached shock wave
at the leading edge, followed by the expansion along the surface
and at the trailing edge. 1In fig. 1(b) is shown a typical
example of the actual flow over the same aerofoil with a laminar
boundary layer and the Reynolds number of the order of 5 x 105 —106.
The Prandtl-Meyer expansion at the leading edge is now preceded
by a weak shock, and that at the trailing edge followed by a
shock where the boundary layers from the top and bottom surfaces
join to form the wake. The most striking feature is the separa-
tion of flow occuring towards the rear of the upper surface,

At a high Reynolds number, when the boundary layer is turbulent
one would expect (for reasons explained later) either a complete
absence of separation or, at least, a very much smaller separated
region, limited to the immediate vicinity of the trailing edge
(fig. 1¢).

It is clear that these modified flow conditions result
in a surface pressure distribution which is different from that
determined by the inviscid theory, thus affecting the similarly
derived acrodynamic characteristics of the aerofoil, Although
one can account qualitatively for the flow patterns just des-
cribed, one must await the development of the theory of viscous
compressible flow, before a full theoretical treatment of the
boundary layer effects can be attempted. As was already pointed
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out in the Introduction, at the present stage one can only apply
the classical boundary layer theory to regions of flow where the
basic assumptions of the theory are valid, and try to establish
empirical corrections for the effects of separation. It is,
however, possible to demonstrate the nmature of the latter effects,
without having to go into their mechanism. This is shown in

the next paragraph by applying the momentum theorem to the flow
over an aerofoll, whilst the changes in the local flow conditions
are found by utilising the concept of the displacement thickness
and of the effective shape of the aerofoil.

2.2, Overall Effects of Separation - Momentum Theorem

The derivation of the results which follow is given in
detail in the Appendix II, and only an outline of the argument
will be repeated here.

By applying the momentum theorem to flow past a two-
dimensional supersonic aerofoil, the components of the aero=-

dynemic force acting on the aerofoil are found to be (egns.
AITI, 1.2 and 1.3):

) '

- D = pu(udy-vdx) + (pyxd:{-pxxdy) oo Lnlin 2
Vo 1 iC
il

-1 = ov(u dy - v éx) + (pyydx - Py dy) +0u2.2.1
LiC LC

where Py pyy, Pyx are stress components defined by eqn.
AIIL, 1.4, and C is a simply connected boundary enclosing the
aerofoil (fig. 2a).

If C is taken as a rectangular control surface C1
(shown in fig. 2b), and if it is assumed that on AB, which is
far downstream, the velocity of flow has the freec stream dir-
ection and that the static pressure is equal to the free stream
static pressure, the drag component of the aerodynamic force
becomes

A
D = pu (uo-u)dy+ J pu(uo-u)dy P e L8,
m(‘.‘f ) - w ;
where oo (W)=oo indicates integration from -0 tose, excluding
the wake., Tor low speed flow u = 1 outside the wake, far
downstream, and

DP= pu(uo—u)dy loon-.-ooo?—l2n3a
w
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which is the familiar expression for the profile drag at low
speeds, Hence, the first integral in eqgn. 2.2.3 must rep-

resent the wave drag in supersonic flow and we can write:

D=D + D
wo P
where r
D = pu(uo-u)dy
Jeo (W) =oo
so that Cp = - g - &2 ﬁ (1 - l{:—) a(y/e)..2.2.4
e i JooW)-e2 © 4

If we now assume that viscosity in the main stream is
negligible and use the energy equation for zero heat transfer

and the Prandtl number of unity, we can express CD in terms

: w
of the increase of entropy across the aerofoil shock system,

and we find that:

b

/
Cp =2 1 [? -(k+1)e‘£js/bp +~/Qk+1)e-2£§8/cp - ke‘KES/b
L U oo () —oo
veessssneslaled
jb,
where /S ES - SO = Cp x-;-;l log(Pbo\jz increase of entropy
Sq/ along a streamline,
¥ = a"é_'i h—{l'z'
[e}

To gain a better insight into the nature of the variation of

Cp with Z\S, we note that to the first order in /\S
w

eqn, 2.2.5 reduces to

§

AS aly/e) g Eiaikak i Bl

P oo (W) —oe

€2
i
OIPT

w

. This relation is equivalent to the one given by Liepmann in
ref., 11, but had been obtained independently, before a copy of

Liepmann's paper became available,

Referring again to fig.1, it will be seen that as the
separation near the trailing edge makes the contour ABDCA the
effective 'wave-making' contour of the aerofoil, the strength
of the trailing edge shock wave is less than that given by the

inviscid theory. Now, since /\S 1is approximately
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proportional to the third power of the static pressure rise
across ths shock, onc can expect the separation to result in a
decrease of the wave drag, owing to the decreased strength of
the trailing edge shock. On the other hand, the presence of

a weak shock wave Jjust upstream of the Prandtl-Meyer expansion
at the leading edge will have the opposite effect. In general,
the latter effect is far less significant than the former, as
the inferaction of expansion waves with the shock wave reduces
it, within a short distance from the aerofoil, to little more
than a Mach wave (this is discussed in more detail in para. 3.1.
below).

If the momentum theorem is now applied to the control
surface C, (shown in Pig, 2¢c) and vigcosity outsidq the wake
is neglected, the 1if't on the aercfolil is given by (eqn. AIL,
3.2):

L = - ou v dy - u & dy
AC, DR W

The second term represents the effect of the wake and, as shown
in the Appendix II, its contribution to the 1if't ccefficient

is OCR"1), where R is the Reynolds number based on the aero-
foil chord. This is clearly a very small quantity and can be
neglected. Hence

1

L:" puvdy IIIIC.IIOI2l2.?
U AC,DF
To demonstrate the effect of separation it is more

convenient to consider the linearised form of 2.2.7, which is
obtained by expressing p, u, and v as

- i, L 1o g
pEp, e, usu +u, v=v

where p', u', v' are perturbation quantities whose products
and powers higher than 1 can be neglected. Egn. 2.2,7 then
yields

Lé-‘pouo 'V" dy 1.’--.1c1.202|8
AC, DF

that is, 1ift is approximately proportional to the integral of
the 'downwash' velocity v', taken along a line downstream of the
aerofoil and perpendicular to the free strearm direction.
Referring again to fig, 1, it will be seen that in addition to
decreasing the strength of the trailing edge shock waves, the
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separated flow also decreases the 'downwash' velocity above the
upper swrface, so that the 1ift coefficient will also be less

than that predicted from the inviscid theory.

Summarising, it can be stated without going into the
mechanism of the separation at the trailing edge of a supersonic
aerofoil, or into the details of the surface pressure distribu-
tion, that one can, in general, expect the separation to reduce
both the 1ift and the wave drag. In addition, of course, there
is also a further reduction in the total drag, namely that
resulting from a decreased skin friction in the separated region

where it is either zero or negligibly small.

2,3, LEffects of Boundary Layer Displacement Thickness

2.3.1, Concept of the 'eguivalent profile'

The fundamental concept of the boundary layer dis-
placement thickness and the ‘displacement flux' is not new, but
it is only recently that it was successfully applied by Preston
(refs. 1 - 3) to assess boundary layer effects on two~dimensional
aerofoils in incompressible flow. In ref. 2 Preston shows in
detail how the problem of computing the potential flow extermal
to the boundary layer on an aerofoil reduces to the calculation
of the potential flow about an 'equivalent profile' formed by
adding the boundary layer displacement thickness, 61, to the
aerofoil; this proof is extended to compressible flow in
ref. 13,

In the simple=wave supersonic flow this leads to a
particularly simple relation for the change of the local pressure
due to the boundary layer which, in turn, pemits a direct
evaluation of changes in the farce coefficients to be made. In
the argument that follows the interaction of expansion and
shock waves with the boundary layer is ignored, as these effects

are dealt with separately.

2.3.2., Aercfoils of arbitrary shape

Consider an aerofoil (fig.3) of arbitrary shape in a
uniform supersonic airstream at lMach number MO ; the leading
and trailing edges are assumed to be sharp and the slopes of
the upper and lower surfaces continuous; the incidence, a, 1s
such that the leading edge shock waves are attached and the flow
is everywhere supersonic. The flow over the aerofoil outside
the boundary layer is assuried to be irrotational and vorticity

behind curved shocks is neglected (c.f. para. 2.6). x, y are
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Cartesian coordinates, origin at the leading edge and the x-axis
along the aerofoil chord; s, n are curvilinear orthogonal
coordinates parallel and normal to the aerofoil surface, re-
spectively, F is the resultant aerodynamic force on the
aerofoil, with comporents X and Y parallel to the x- and
y~axes respectively.

Lif't and drag coefficients arec then given by

CL =CY COS O = CX SinCL .-.ll.cll‘2l301
CD =GY SJ.nG.+CX cos q T e T
w :
o 2xX X o E 4
where C, = = = : PEe
& JgpoUg c YpOMg c %° 9°

The pitching moment coefficient about the leading edge is

X
- Ccpu T b
CM-_ c c.!.--xc.p. CY .oelucleo¢20333

where x, = distance of the centre of pressure from the

leading edge. Further, denoting by L and U the conditions

on the lower and upper surfaces respectively, we have

™ il
1 £33 X\
Graa;- PLd.\-(;} - | o d{\-c'} sesiinneesals B ly
Jo Jo ¢
; [ r'bL/c i‘r‘tU/ o &
CX="'— ] pLd;‘%)-l- pUd() ana g e e T
11 v o

am——h

28 | n @

.’bL/c . - E\tU/c
] Pz(%}d(-‘éé-}a oy (Z) aE)] ...2.3.6

W0

+

Now, let AAp be the local static pressure increment
due to the displacement of flow by the boundary layer. Re-
ferring to fig. L, '7;4', is the angle between the tangent to the
aerofoil surface at a point P and that at the leading edge.
At the corresponding point P! at the edge of the equivalent
surface formed by adding the boundary layer displacement thick-
ness, the corresponding angle will be W= ?a -4,

[where .,
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where e &51 651
e s g ok
Thus, the change in the local direction of flow due to the

presence of the boundary layer is also
d
b=
dg -

Now, since outside the boundary layer simple-wave flow
is assumed
2
_ap . XX as
P 2

\rfl"il

where © is the flow direction measured from some fixed datum,
gso that 6 =k + const; ad = dk

Thus, we have, approximately

.1

-3 _ 8 A7
Ap =58 =FLF
so that ad 2, .
e & LR L
&P = d.s da il s d.S nouc-onn002|317

= i
W i

Hence, the corresponding increments in the force coefficients

are
™ ol i\{'i i
i X . P A
NGy =3 Ay 4f5) | Livy aEI ceeeen2.3.8
°1Jo o s
- fiby/© pb/c
\ i / P Y
DGy we A, dE) + | Ang aF| oeee239
2 LL.— (8] \,50 e |
“-[\1 i
/ 3 (XY q(X) - T £ &)
Aok | [an @ o8)- | on (9 o8
Yo o

VY A (T @ - | An (D) 4D

i/ O ¥ ]

oiln.oancl21301o

where [lpl y 1s determined from eqn. %
's
The change in the position of the centre of pressure is given by

ASS 0%y A0

- ﬂtlllll!ll2l3011
xc.p. CM <
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Finally,
_{lCL =;‘f,\CY cos o -_,:‘_'_",;.CX sin o Z
.|¢0|¢|v§!2l3|12

}

’f
F & CDW =/\Cy sin o +/)Cy cos a |

If the distribution of the displacement thickness over
the surface is known, %.1 can be calculated and with egns,
2,3.,7 = 2.3.12 the increments of the force and moment coefficients
can be determined, As the first approximation the surface
pressure distribution, %:g y 1is taken as that given by the in~
visecid shock-expansion theory and, strictly speaking, one should
then use the modif'ied pressure distribution to recalculate the
development of the boundary layer, which would, in turn, lead
to a second approximation to /\p. In practice, however, it is
found that the process is rapidly convergent and the first
approximation is usually sufficiently accurate, unless the rate
of growth of the boundary layer is large.

The methods to be used for computing the development
of the boundary layer are discussed in section 4. Even neg-
lecting the heat transfer, & 4 will be a complicated function of
the flow conditions outside the boundary layer, the boundary

layer thickness and the Reynolds number:
F,r’
61 =fk}.{1%g, d_'E 6 R J ;R "'-9_' lll.l¢.2l3l13
S ds

and with the existing boundary layer theories it is not poss-
ible to express %%1' analytically, except for the simplest case
of a flat plate. In general, however, for given free stream
conditions, angle of incidence and aerofoil shape and with the

boundary layer laminar, 513{\;’?1: » very nearly so that, other
"R
0

factors being equal,

: 1
\ oz ER*
‘&CM’ 4 xc.p.m Ro

L\cL, FAYo

T »
w

When the boundary layer is turbulent & 1->f —11-; where n
R
o
depends on the index of power assumed for the power law vel-
ocity distribution, and is of the order of 0,2, Thus, the
effect of the Reynolds number will be more pronounced with ‘the |

laminar boundary layer than with the turbulent one.

We can gain some further insight into the magnitude
of these effects by considering the case of a thin circular

arc profile, where certain approximations can be made.

B%S aes
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2.3.3. Thin circular arc prcfiles

In addition to the system of coordinates used for
sections of arbitrary shape, @, the 'angular distance' along the
surface is introduced, such that

s=r§2f,8=SL-E‘+95

where ©r = the radius of the circular arc.

The pressure increment \p (eqn. 2,3.7) is then
& @
¥ B d; 1
AP P=""% &

Since the profile is assumed to be thin, 8 & x and

Imﬁp=“r_£d.x .to-ccoa--2c3v13

For simplicity, only the lower surface will be considered.
From 2.3.8

{-\'c {%
"y O SR W A
By smgipe g E™
o
By the mean value theorem
— e &
o r.(.d.a"r )
A0y = =~ o lax/ 3 &
o e i
;0
hence
y i » f&h*
‘fr._}) :"'-“"_"""""’F (6 ) |coo||.a-r2l301z{-
Cy q, © \dx, o5,

& | dp .
where (dx} is the value of I at some point between the

leading edge (x = 0) and the trailing cdge (x =c¢). Now, on
a circular arc profile the pressure gradient is highest at
the leading edge and hence

£
i

i
el |
L3Cy & E

«
X q0

o

dp [ G,) psperiess BB
\dX}LnEn 1 T'E'

Now, ?—1— {\g‘-ﬁ-} c is clearly of the same order of magnitude as

[®)
CY s hence
Ady _ e [84)
Oy N7 |el\on
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Similarly,
s{&c,/2 &
- & i -, O - -] o
Zlcx -— - qo 3 C dx L] Cl'X.’ QY fl"Cﬂ'l »—-1309
lio
f'l.c as
cndnk | Bl B K .
C]_O c | dx dx dx
i

Since % changes sign at x = ¢/2, the integral must be split

NG c/2
into [ + [‘ before the mean value theorem can be applied,
LJ /2 Jo
Hence [ -,
1ok ey ‘3p dp
AC .-=-———( ) - ®,) -6, + @©,)
&5 A dxﬂz_ {dx)z Vr,E, 1x:% aul 1:{:%

2

llil.l.l..2.5.16

where the suffices 1 and 2 refer to conditions at O xs&e/2

‘and ¢/28x§c, respectively,

The sign and value of L},GX depend on the relative
magnitudes of the terms in the 'eurly' brackets, If the rate
of growth of the displacement thickness downstream of the point
of maximum thickness is sufficiently large

&) l6) -6, ~(~‘3‘£) 6,)
(“2[1@& " T T e L

2 2
and C}.CX 1s negative. Such a state of affairs may arise when
the boundary layer is pPartly turbulent and the transition point
is near or at the point of maximum thickness, since for the

corresponding points (& 1) Bl () 1) :
turbulent laminar

Thus, with transition near the mid-chord point one can expect
that &CD < 0. This was actually found to be the case in

w
ref. 13 for a 6 per cent bi-convex aerofoil at Mo = 1,5,

The order of magnitude of the individual tems in
eqn. 2,3,16 can be found by noting that 05'%, <2 t/c for a
thin ecircular arc profile and hence,

8. YN Tary

a dx) (dx:)f = 0(cy)
| A0 r (%9 "
so that _El; = 0 !-5 \._:"IT'E.
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that is, I and G are of the same order of magnitude.
% X

One must remember, however, that the increments i‘.\GY on the

upper and lower surfaces are of the opposite sign, whilst the

corresponding increments /20y  are of the same sign (c.f.fig. L),

consequently, the resultant L'}EG-E- will tend to be much smaller
AC b

2.3.l4., Flat plafte at incidence
2
i
For a flat plate H_I@;—_- in eqn. 2.3.7 is constant
i)
VM1
along the surface, and is a function of the angle of incidence

and the free stream conditions only, 80 that we can write!

('151 b,
Ap =M ,0) 5 = £ ,o) 5%

2
where £(M ,a0) = po . N
o

Hence ,QCY

n
Q0
=

! U e dx 0o
“ L do i L Jo U
- il {6 e
4 L i
or = —| L (M o (—"‘) - £ (M £ e 9. B AT
Oy, e : a5 0 i Cfp. B,
and &CL = f_;lGY cos O , ’Q‘CD = /)0y sin @
: W

On a flat plate, the displacement thickness is a

function of MO,CL , and RO and 2.3.17 can be written
Ny = gL(Mo, R ) « gU(MO, R )

where

:E‘(B.IO, a) (B 1)
4 ¢/1.,E,

g(l‘.-IO, oR) =

For the laminar boundary layer with Prandtl nuber of unity and
wotl,

6 '.-
. 1208 (4 4 0,277 W) J%
- j

c
(o]
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(see e.g. Refs. 12, 27 and 28), and for given Mo and a

Fas WA .
Cy o

2.4, Skin Friction Drag

The total skin friction drag is obtained simply by
integrating the local skin friction ccefficisnt over the aerofoil.

Let B = tan™' %g% , where y = f(x) is the aerofoil
' contour,

-
=

c, = o & E‘H ,the local skin friction coefficient.
(0]
(e]

Then, contribution to the friction drag from the lower surface

is
1
L S )
(CD] - cos(.B'I'CL) Gf d(e} ..‘.llll'.f—i‘l-i—.1
f
. &Y o
fl
. )
- (cos ¢ cos f = =in a sin B) Cp d(&)
{fo
¥ (rst/c
. 22— A
or, E‘Df‘l = cos a Ce d(c) sin a Co c} ceselolie 2
2 0] (D

Unless the incidence is high (a-’l:\‘|5—-200) and the aerofoil thick
(t/c> 0.1), the second term in the above equation is much
smaller than the first and we can write without any significant

loss of accuracy
i »

X
LGD_J = 'oog'd Cp d(-;}
1y
L o

so that

g

- 1Y 1 ¥ TS
CD = Ccos @ l,-(’ Cf d:;:) + ( Fc‘f a-;c.) n-.olnlzl"-J--Qa
I Vo ¥ uJo Pestidl

In incompressible flow the skin friction drag is
usually determined together with the form drag from the momentum
thickness of the wake at infinity downstream (c.f. eqn. 2.2.3a).
In the supersonic case, this method would only give the skin
friction drag and a part of the form drag. To determine the
whole of the form drag (which in this case is equal %o the
change in wave drag due to the presence of the boundary layer),
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losses of the total head caused by the shock waves outside the
weke must also be considered. Inside the wake itself, two
effects are combined: losses of the total head due to the ro-
tational character of flow in the boundary layer, and those
caused by shock waves, as streamlines which enter the boundary
layer from the main stream have already suffered losses of stag-

nation pressure across the leading edge shock waves.

Furthermore, there is the additional difficulty of
determining what effects the trailing edge shock waves have on
the momentum thickness and what is the variation of the momentum
thickness between the trailing edge and infinity downstream.

In ref. 35 the latter is assumed to be the same as for turbu-
lent wakes in incompressible flow, and a relation suggested by
Tetervin is used to account for the effect of the shock waves.
As the validity of these assumptions is dubious, it is believed
more accurate to estimate the profile drag by calculating the
skin friction drag and the change in wave drag separately from
the local skin friction and the local changes of pressure dis-

tribution, respectively.

2.5. Heat Transfer

Unless otherwise stated, all the considerations of the
present study are based on the assumption that the aerofoil
surface is a perfect thermal insulator and no heat is trans-

ferred from the boundary layer.

In actunl fact, with Mach numbers of the order of 2
or higher, heat transfer may be of considerable importance,
particularly from the point of view of the stability of the
laminar boundary layer (c.f. para.5). However, owing to the
nanner in which the coefficients of viscosity and heat transfer
enter the boundary layer equations, the thermal and viscous
effects are qualitatively similar and do not fundamentally
af'fect the nature of the boundary layer pheromena. Consequently,
it was considered that, for the present purpose, neglecting the
heat transfer was justified by the resulting simplification of
the mathematical treatment and it is hoped that guantitative
results are not unduly affected.

2.6, Vorticity

Another effect which has been neglected is that of
vorticity generated by the leading edge shock waves. When the

surface of an aerofoil is cwrved, the expansion waves interact
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with the leading edge shock wave which is then curved and the
flow downstream of the shock wave is rotational. The simple-
wave flow relations then hold only approximately, and for a more
accurate determination of the surface pressure distribution the
method of characteristics for rotational flow (refs. 18 and 19)
should be used, However, as this method involves a laborious
process of successive approximations and since in most cases of
practical interest the effects of vorticity are very small, they
are usually neglected,

The vorticity behind a curved shock can be shown to be
given by (e.g. ref. L 4 =l% g—%
where R is the universal gas constant and '} is Crocco's
stream function. Along the aerofoil surface 1; = const.,
hence £ is proportional to the static pressure, On a convex
aerofoil the static pressure is highest at the leading edge and
decreases towards the rear, therefore, the effects of vorticity
are greatest near the leading edge. The pressure gradient
immediately downstream of the leading edge shock wave can be
determined analytically from the curved-shock relations first
obtained by Crocco (L‘Aerotechnica, 17, 1937), and, more rec-
ently, by Lin and Rubinov (vef. 39).

6p1

2 ; 41 sgin 2
TR, Mo [;1n 2 - hS 2
s =

M cosz(ggé__

K
i 2 2 ¥+1 sin 20
1 + sin (%;-6)(1‘:11-2) e
where the suffix 1 refers to conditions just downstream of the
shock

I

deflection of flow across the shock at that point

€ = local angle of inclination of the shock relative
to the free stream direction
K= %g = curvature of the streamline Just downstream

of the shock.
s = length of arc of the streamline

If simple wave flow is assumed downstream of the
shock, with the streamline having the same curvature K, we
have from the Prandtl-Meyer relation

0
ap, ¥ I
. Bl - e
\/M1-1
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. { ap1\ Y Py Mf Y p M (y+1)m12 sin’E
hence E_B-E;:} 2 fon | coimmmmenieis J i o 2.2 - K
~ S.W. ;
s of Mf . R'r—‘i )Mf sin® (Er-ﬁ)+;'y/1;$-'1
so that

y sin 22 “} I g .8 Lo
s:Ln 2F = (y=1)M5 sin® (F=0)+2{JMF =1
o, /(Bpﬂ) - C Y cost(e-8)l b : t

S. W, };-p 8in (g-&) (1\!"-2) ﬁl sin "5J (Y+1) Mf sinzg

sin 25

For the particular case of a 10 per cent circular arc
profile at M = 2,13, the following values were obtained for the
ratio of the 'oressure gradient behind the curved shock at the
top surface, to that given by the simple-wave flow theorys

o 12.5° + 40° | 7:3° | 0aa° | ~40° p-11e8®
M, 1,40 §1.27 | 1.0 1,70 12,07 | 213
3p /{3p 1,053 {1,024 | 1,012 | 1,003 | 1,001 | 1.0000
ds as_s', i |

Thus, the simple-wave flow gives a very good approximation cven
at the leading edge, excepu when the llach number there (].'11)

approaches unity and = k ) ) —%r.u » the approximation becomes
progressively better do*«mstream, ag Lol D,

On wedge sections, conditions at the surface arc not
affected by the vorticity, since regicns where the shock waves
become curved are well away from the surface, provided that the
shock waves are attached. The shock-expansion theory is then

an exact inviscid theory.

3, EXAMINATION OF LOCAL FLOW CONDITIONS

We now turn our attention to a more detailed examina-
tion of the local flow conditions, to which the considerations

of the preceding section do not strictly epply.

3,1, Conditions at the Leading Edge

As was already mentioned in para, 2.1, the flow pat-
terns found in practice near the leading edges of supersonic
aerofoils differ appreciably from thosc predicted theoretically.
The most striking discrepancies are found in cases when, accord=-
ing to the inviscid theory, the flow should undergo a Prandtl-
Meyer expansion round the sharp edge. In practice, there is
always a weak shock wave preceding the expansion and, in some

cases, this expansion is associated with a local seporation of
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the boundary layer, followed by another weak shock (figs. 5a,b,c).
Such patterns have been observed in many experimental investi-
gations, the details of which will be found in ref. 4,5,10,14~16.

If one attemps to explain this phenomenon, two altern-
atives suggest themselves: the effect of bluntness of the lead-
ing edge which, of course, cannot be made perfectly sharp, or,
the effect of the initial high rate of growth of the boundary
layer. Bardsley (vef. 16) claims that the first alternative is
the only possible explanation, and that the existence of the
shock wave cannot be explained by considerations of viscous
effects., His argument is based on the fact that at the point
where the rate of growth of the boundory layer displacement
thickness is sufficiently high to cause a compression of the
stream at the leading edge instead of an expansion, the dlsplace—
ment thickness would be of the same order of magnitude as the
thickness of the leading edge, so that its effect on the forma-
tion of the shock would be negligible comparcd to that of the
leading edge itself., Now, whilst it is obvious that the mere
fact of the leading edge being blunt does explain the formation
of the shock wave without any considerations of the viscous
effects, it is not true to say that this is the only possible
explanation, It can be shown just as easily that, were it poss-
ible to have a perfectly sharp leading edge, one should still
expect the formation of a shock wave preceding the Prandtl-Meyer

expansion,

Consider the idealised case of an infinitely thin flat
plate (fig. 6a), so that the question of the finite thickness of
the leading edge does not enter into the argument, ABC is the
streamline just outside the surface of the plate. Along AB
the flow is uniform and has the supersonic free stresm veloeity
u. 2% B, according to the usual boundary condition at the
surface of a body in a real fluid, the velocity is zero, In
actual fact, there will probably be initially some slip at the
surface, but even so, the flow along ABC would have to decelerate
violently at B to reach at least a subsonic velocity within a
very short distance from B. This is very much like the change
that flow undergoes inside a shock wave, If there is to be no
shock wave forred, this process would have to occur ot constant
pressure, The difficulty of imagining a process in which an
almost discontinuous decrease of veloeity in the direction of
flow is not associated with a corresponding pressure increase,
i1s obviated if one postulates the existence of a stagnation
point at the leading edge, preceded by a nomal shock (fig. 6b).
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The velocity at D (just downstream of the shock) would then be
subsonic; from D to B the flow would be gradually compressed
and brought to rest at the stagnation point, and the boundary
layer would start there with a finite thickness. Outside the
boundary layer, the flow would accelerate to sonic velccity and
then expand to return the main stream to the required direction.
The strong expansion waves would interact with the bow-wave, re-
ducing its strength, so that within a short distance from the

leading edge it would become a weak compression wave,

This qualitative argument is supported by some of the
results of the fundamental investigation of the theory of vis-
cous compressible fluids, which is being carried out at the
C.I.T. by Lagerstrom, Cole and Trilling (ref, 17). Since the
existing theory of differential equations appears to be inade-
quate for the general solution of the full Navier-Stokes equa-

tions for viscous compressible fluids, the approach adopted in
ref. 17 is to deal with the linearised form of these equations
and to consider their application to certain idealised cases.
So far, no complete analytic solution has been obtained even for
the simple problem of a flat plate at zero incidence in super-
sonic flow, but general properties of the solution are fairly
clear. It is found that transverse and longitudinal waves are
propagated by the plate into the stream. The longitudinal waves
are of maximum strength near the leading edge and consist of
compression waves followed by expansion waves. Moreover, there
are also pressure disturbances propagated upstream even in the
supersonic case, though they are subject to heavy exponential
damping. The boundary layer theory applied to the Navier-Stokes
equations accounts only for a part of the transverse wave con-
ponent, and the application of the concept of the displacement
thickness - for some of the longitudinal waves. Far downstream
(on a semi~-infinite flat plate), the full solution approaches

asymptotically the boundary layer solution.

The p;ssibility Just considered, that the viscous
effects alone can cause the formation of a shock wave in front
of the Prandtl-Meyer expansion round a perlectly sharp leading
edge, though interesting in itself, is of rather academic im-
portance, as in practice no perfectly sharp leading edge can be
made; on the other hand, it does demonstrate that even when the
bluntness of the leading edge is the primary cause of the presence
of the shock wave, one can still expect the boundary layer to
have at least some important modifying effects on the fiow
pattern, In particular, it helps to explain why a local flow

separation just downstream of the leading edge is sometimes
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For simplicity consider a leading edge of a regular
shape (fig. 5ITa,b), with square corners and of thickness E ~
The position of the stagnation point on {? will depend on the
incidence, but for the present purpose it can be taken to be
situated halfway between the two corners A and B. The bound-
ary layer has some finite displacement thickness at A and B,

(51?9, say, If § is of the same order of magnitude as (61)5},
P
the effective thickness of the leading edge is considerably in-

creased and results in the formation of a stronger shock wave
than would be the case if there were no boundary laver., For
{26 1)y » this effect will be obviously negligible. On the
other hand, when conditions at the corner A or B are consid-
ered, it will be seen that as on the surface the velocity of
flow is zero, the region of flow in a thin layer next to the
surface must have subsonic velocity. Now, subsonic compressible
flow round a sharp corner is impossible, as according to the
incompressible flow theory the velocity would be infinite there,
which in turn implies that compressible flow would become super-
sonic, Thus, if the flow is to remain subsonic near the sur-
face, as it must, it has to separate at some distance from the
corner and continue along a finite radius (figs. 7a,b). Physi-
cally, the separation can be explained as induced by the suction,
which is created by the high curvature of the streamlines of the

subsonic flow round the corner.

The extent of the separated region will be much smaller
than .E » a8 in incompressible flow the region in which the
velocity tends to infinity is confined to the immediate vicinity
of the sharp corner. Hence, when £ is of the same order of
magnitude as (61); or smaller, the separation will hardly in-
fluence the outer edge of the boundary layer and the external
flow (fig., 5ITb). When 4 > @H) » the size of the separated

5
region may well be of the same ord;; as the boundary layer
thickness, and a flow pattern as in fig, 5ITa would result.
The extent of the separation will also depend on the amount of
expansion that the main stream undergoes outside the separated
boundary layer, Expansion to a high supersonic Mach number

would create a further suction effect and enhance separation,

This suggests that the boundary layer has a consid-
erable influence on the conditions near the leading edge and

may explain why the local separation has been observed in some
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cases and not in others. Thus e.g., on the wedge used by
Bardsley, with f =8 x 10n4cm, no evidence of separation was
found, whilst Valensi and Pruden observed separation on a wedge

which had a relatively much thicker leading e&ge (éfé B 10_30m).

Fig. 8 shows shadowgraphs and a schlieren photograph
taken at the N,P.L. in the course of investigations reported in
refs. 6 and 7, and illustrating typical flow patterns near the
blunt noses of thick flat plates. In (a), the flow pattern
corresponds to that described above (c.f. fig. 5IIa), but (b)
and (c) exhibit some novel features. In Cb) separation followed
by a weak shock can be observed, though the nose of the plate is
elliptic and there are no sharp corners; in (c) there is no
evidence of separation, but the weak compression wave does not
disappear. It is suggested that this is probably caused by the
high favourable pressure gradient inducing a local thinning of
the boundary layer. That such thinning is possible, can be
readily demonstrated for the case of the self-induced pressure

gradient on a flat plate.-

According to the concept of the displacement thickness,

the flow is displaced from the surface by an angle 6, such

ad
that 8 = - — . Combining this with the Prandtl-leyer rela-

tion we have

2 /
4%, Wl -1 14p b
dx2 ¥ M2 Dtk

Integrating 3.1.1 once

(E'x'f =y ( } log (dé,") sk el il

where the suffices 1 and 2 refer to two statlons on the surface

_._ -

of the plate (2 is downstream of 1), an dL“M 51 is evaluated

M
somewhere between 1 and 2, Now, with a favourable pressure

gradient p,t,..p2 and if this gradient is sufficiently high
an a%

(i.e. 3% = — sufficiently large),

/a.'MQ-‘I' 4 po\ \
5 og o>
i 3

1
X Dy
so that at station 2 the rate of growth of the boundary layer

is negative and a flow pattern similar to that shown in fig. 9
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may result. In general, the curvature of the boundary layer
would have to be high to induce sufficiently high pressure grad-
ients, and the concept of the displacement thickness would not
strictly apply. However, at Mach numbers near 1 (as is the case
with flow round blunt noses) flow is very sensitive to changes
of direction and high pressure gradients can be induced by only

small curvatures.

To explore this possibility further, calculations were
made using pressure distributions obtained on elliptical nosed
flat plates at the N.P.L., (fig. 10). It was assumed that the
direction of flow at the body sonic point was the same as that
Just downstream of the bow-wave sonic point, and that downstream
of the body sonic point simple-wave flow relations hold. The
slope of the equivalent surface (6) was then calculated from the
experimental pressure distributions and the rate of growth of
the boundary layer displacement thickness found from the rela-

tion

— = tan (6-B)

where B = tan-1 g% is the slope of the surface of the plate.
Finally, the development of the displacement thickness in terms
of 61 at the sonic point was obtained by a numerical integra-
tion of the above relation. As will be seen from fig. 10, the
result appears to confirm the possibility of the thinning of the
boundary layer. The actual numerical values should not be taken
too literally, as in calculating the flow direction from the
pressure distribution no account was taken of the possibility of
transverse pressure gradients in the boundary layer. This,
combined with the assumption of simple-wave flow probably makes
the thimning of the boundary layer appear far more drastic than
it actually is, but the result is believed to be at least qual-

itatively correct.

An attempt was made to improve on these calculations
by applying the method of characteristics for the rotational
flow on the lines suggested by lleyer and by Forri (refcrences
18 and 19), which involves a somewhat complicated iterative
procedure., Unfortunately, it was found that owing to the prox-
imity of the sonic line (whose shape has to be assumed) the it-
erative proceés is very slowly convergent and depends critically
on the assumed form of the sonic line, so that its results
would be of doubtful accuracy,
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Effect of flow pattern at the leading edge on conditions down-
streamn.

Analytic treatment of the effects so far discussed in
this section appears to be, at present, out of reach. The
difficulties are two-fold: the boundary layer theory which is,
of course, an asymptotic theory for high Reynolds numbers obviously
does not apply near the leading edge, and the problem of the flow
outside the boundary is, essentially, a transonic one. Never-
theless, if one is to assess the overall boundary layer effects
one must try to investigate how the leading edge flow pattern

affects the conditions downstream.

In ref. 13 it was found that although the leading edge
shock is, strictly spéaking, detached at all angles of incidence,
the surface pressure distribution calculated assuming an att-
ached shock or an expansion (as may be the case), shows a very
much better agreement with experiment than that obtained by
applying the approximate method for flow behind detached shocks

given in ref. 20,

To confirm this, pressure distributions were calculated
for the wedge sections tested by Liepmann (ref. 15) and at the
R.A.E. (ref. 10). Ieading edge shock angles were assumed to be
- these given by the inviscid shock~-expansion theory, and allow-
ance for the boundary layer was made as irdicated in para. 2.3.,
using Young's flat plate solution for laminar boundary layer
(ref, 12). Fig., 11 shows that there is a very good agreement
between the caleculated and the experimental pressure distributions
except very near the leading edge and near the sharp shoulder,
and that the allowance for the boundary layer displacement thick-
ness results in a definite improvement on the inviscid theory.

It is, therefore, concluded that for the purposc of assessing
the boundary layer effects on the surface pressure distribution,
the shock-~expansion theory should be used to determine the {low

conditions outside the boundary layer.

Considerations of para, 2.2, suggest, however, that
the local increase in shock strength at the lesding edge may
have a measurable effect on the vave drag. lMagnitude of this
effect can be assessed by assuming that the full stagnation
pressure behind a normal shock acts on the leading edge. This
somewhat crude assumption is Justified by the fact that for a
supersonic aerofoil the thickness of the leading edge, though by
necessity finite, will be very small compered with the chord

length and the maximum thickness of the profile. The contribution
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of the leading edge to the wave drag is then given by

(4D, ) 2 (o, =-p )L
g /% 3 e
where Py = the stagnation pressure behind the normal shock,
Py = the free stream static pressure,
to that
rrp &1
(Go,) & 2_ (D1 4
D M2 (k P c _
WL.E. T8 "
r'till"!..}l‘}lj
4 [
= fﬂﬁo)‘g }

From the normal shock relations we find that, with y = 1l

) 2N R 2y3.5
Psq o an Pso il Syl 4N2 AU + 5} oy %f)
Py Pso P \g = Ej 6 Mg j.ff

and the numerical values of f(Mo) are

, M 1 2 3 h | oo

fomo) 1.28 11.66 1.76 11,79 | 1.8,

Hence for Mach numbers between 2 and 3 the value of -fCMO) can
be taken as 1.7, say, Then,

()./.\') &

He

1.7

D) E{ o-anlluo-u?}c“:ij-
. %

Thus, e.g., for a 2-inch chord aerofoil with f?b = 0.001 as a

typical value, (éﬁCD ) = 0.0017 which can be a considerable
%

percentage of the total wave drag (e.g. at If = 213, "a=0°

and t/c = 10 per cent, C. = 0.0288, so that

D
W
(e, )
w L.E,
" = 0,06, or 6 per cent).
D
W
It is possible to develop a more elaborate treatment
for estimating (élCD ) » based on the approximate methods

T L,
for detached shocks, but since in practice the shape of the
leading edge is irregular (c.f. yef, 16), some arbitrary
assunptions must, in any case, be made,
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3,2, Conditions at Shoulders of Wedgze Sections

Flow conditions at sharp shoulders of wedge scctions
are in many respects similar to those near the leading edge.
Although far less experimental evidence is available, the flow
patterns appear, in most cases, to be rather like that shown
diagrammatically in fig. 12b.  The expansion fan which theor-
etically should originate from the vertex, starts a little up-
stream of the shoulder, The boundary layer appears to thin
immediately downstream of the shoulder, becomes concave and

causes a local compression (also c.f. fig. 17 )

The latter effect can be explained in terms of the
thinning of the boundary layer ceused by the high negative
pressure gradient, as in the case of flow near the leading edge
(c.f. p. 26 above). It is also suspected that there is a small
region of local separation in the irmediate vicinity of the
vertex; for reasons stated in the preceding section (p. 25), and
it is believed that this could be observed experimentally, if
the flow configurations were examined on a sufficiently large
scale.

Experiments show that the expansion influences the
surface pressures by diffusion of pressure through the subsonic
part of the boundary layer. The extent of this diffusion will,
of course, depend on the state of the boundary layer and the
Reynolds nudber. At R%0.5-1.0 x 106 and with a laminar
boundary loyer, the region affected by the expansion is, in each
direction, of the order of 5-10 boundary layer thicknesses just
upstream of the shoulder (see e.g. refs, 10 and 15). Two typ=
ical examples of observed pressure distributions are given in
fig. 11. As will be seen from the diagram 12d, the modified
pressure distribution will have little effect on 1196, bud it

may cause a noticeable reduction in wave drag.

Tn addition to influencing the local surface pressures,
the conditions at the shoulder may have important effects on
the subsequent development of the boundary layer dovnstreanm of
the shoulder. Until more experimental evidence is available,
it is not possible to say on the basis of the existing theories,
what these effects are likely to be. For the purpose of cal-
culating the boundary layer development on the aft part of a
double-wedge profile, an acceptable assumption would be to
consider the nmomentun thickness as being continuocus across the
shoulder, as a discontinuity in the momentum thickness there
would imply, if taken literally, the existence of an infinite

force.
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As to the possibility of the shoulder causing transi~
tion, the little experimental evidence available seems to indi-
cate that this is not the case. In the course of some tests
at the N,P.L. it was observed that the spread of turbulence
caused by a disturbance on the surface of a double-wedge aero-
foil was, in fact, suppressed by the expansion at the shoulder
(Fig. 12¢).

3,3, Conditions at the Trailing Edge

The neighbourhood of the trailing edge of a two-dimen-
sional supersonic aerofoil is another region where flow config-
urations observed in wind-tunnel tests very often differ vﬁstly
from those predicted by the inviscid theory.

The actual flow patterns depend on the particular test
conditions and the aerofoil geometry. In general, however, at
least one shock wave is formed at the trailing edge, to return
the flow over the surface to approximately the free stream dir-
ection, Since in the subsonic part of the boundary layer no
discontinuity of pressure can occur, the pressure rise across
the shock is diffused upstrean. This results in an adverse
pressure gradient, the boundary layer thickens rapidly and in
sone cases separation of flow occurs at a point upstream of the
shock,

In fig. 13 are shown diagrammatically some typical flow
patterns associated with the boundary layer separation. In gen-
eral, the following possibilities exist:

(i) separation on both surfaces,

(1) separation on one surface only,

(iii) no observable separation.

Which of these possibilities does in fact occur, de-
pends primarily on the shock strength, the state and thickness
of the boundary layer, the shape of the aerofoil contour near
the trailing edge and - since the flow ncar the swrface is sube

sonic - on the conditions at the other surface.

Effects of state of boundary layer, shock strength and pressure
gradient

Experiments on reflection of shock waves from bound-
ary layers on plane surfaces (refs. £1 and 22) have indicated
that with the boundary layer leminar, even very weak shock waves
with pressure ratios of the order of 1.01 cause the boundaxy
layer to separate upstream and that it is, in fact, extremely

difTicult to obtain a reflection of ah incident shock without
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the separation taking place {(c.f. ref, 21), On the other hand,
with tuwrbulent boundary layers, shock waves of pressure ratios

up to 1.8 have been found to cause no separation (refs. 24 - 23).
In a similar manner, the extent of the upstream influence shock
waves exext through the subsonic part of a laminar boundary Ilay-
er is fcund tc be roughly 10 times that for the turbulent bound-
ary layer, typical figures haiﬁg 100 and 410 displacement thick-
neszes respectively. Two suggestions have been put forward by
various writers to explain these different reactions - first,

the @ifference in the thickness of the subsonic region of laminar
and turbulent boundary layers, this thickness being relatively
smaller in the case of the tuwrbulent layer, and second - the
difference in the velocity profiles of the two layers. The
latter alternative appears tc be more plausible, as for given
external flow conditions, the turbulent boundary layer is much
thicker than the laminar and their subsonic sub-layers are, in

fact, of similar thickness,

Towards the rear of a convex supersonic acrofoil, the
pressure gradient is favourable and one would expect the region
of interaction to be more restricted in size than would be the
case with a wedge aerofoil or a flat plates, However, the greater
the curvature of the surface near the trailing edge, the greater
is the trailing edge angle and, consequently,.the greater the
strength of the shock wave formed there for a given incidence
and fivase stream Mach muber, which in turn tends to increase
the extent of the shock wave -~ boundary layer interaction.
Similarly with a concave trailing edge the shock strength is
reducsd but the pressure gradient is adverse., Thus, these two
effeets sre interconnected and tend to cancel out, so that one
might expect the separation to be governed mainly by the angle
of incidence and the free stream conditions. loreover, once
the boundary layer has separated, the actual shape of the
trailing edge region camnot have much influence on the condi-
tions of flow there, because of the presence of a 'dead-water'
region between the main stream and the surface of the aerdafoil,
except at small angles of incidence, when the dead-water region
is small and mixing takes place. This is, of course, only a
crude and greatly oversimplified representation of the actual
flow conditions, but the little éxperimental evidence that is

at present available seems to support 1it,

In figure 14 is shown the variation of the pressure
in the separated region with the angle of incidence. The data
are collected from the experimental resulis for a 10 per cent

circular arc profile presented in refs. 4 and 10, and from some
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unpublished results of tests on a 9 per cent thick symetrical
aerofoll with a concave trailing edge of 40 angle, The Mach
nunber range is 1.6 to 2,5 and the average Reynolds number is

of the ordsr of 0,7 x 1065 the boundary layer is leminar in all
cases, It is seen that Pig P, » the ratio of the Pressure in
the separated region to the free stream static pressure (which
is also approximately equal to the reciprocal of the pressure
rise across the trailing edge shock), is practically independent
of the free stream lach number, and that for angles of incidence
greater than about 6° the trailing edge angle has no apprecisble
effect. With o< 6°, psep,/po

trailing edge section than for the circular are profile, but the

is higher for the concave

difference is far less than one would expect from comparison of
the theoretical shock strergths in the two cases. It must be
emphasized, however, that these results do not include the
effects of the Reymolds number, which was of the same order of
magnitude in all cases, Likewise, the apparently negligible
effect of the lMach number is probably due to the small range of
variation of M, and %o the fact that I and R were not varied
independently, To obtain a true picture of the effects of
these two parameters, tests should be made in which these effects

are separated,

In addition to the trailing edge shock wave, there is
usually a weak shock formed at the point of separation of the
boundary layer (fig. 13). This shock is usually more pronotinced
in the case of a bi-convex profile than that of a double~wedge,
where the compression is more gradual and spread over a larger
distance, It is thought that on a convex surface this shock
is the immediate cause of separation. The process through
which flow stabilises itself might be as follows, The trail-
ing edge shock initiates the separation and at the point of
breakaway, where the boundary layer turns through some small
angle to leave the surface, a weak shock is formed, This, in
turn, induces further separation and the point of breakaway
moves upstream until it veaches a region where the external
bressure gradient isg sufficiently high and the boundary layer
sufficiently thin to prevent any further separation,

Fig. 15 shows the variation of the Pressure rise
across this shock, for +ths 10 per cent circular arec profiles
referred to above., It is seen that the strength of the shock
increases both with the angle of incidence and free stream Mach

nunber, but is subject to unknown Reymolds number ef'fects,

An atterpt is made in ref. 10 to obtain an
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empirical estimate of the strength of this shock wave, and also
of the pressure in the separated region, by considering super-
sonic flow over forward and backward facing steps, which are
claimed to be simplified models of the flow conditions near the
trailing edge. In actual fact, there seems to be no direct
analogy between the two problems, other than perhaps a super-
ficial similarity in the real flow patterns. If one considers
supersonic flow past a right-angled backward facing step, the

necessity for a separation of flow in the corner ABC arises
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even in the inviscid case, as there is an absolute maximum on

the shock deflection 6, for a given upstream Mach number, Mo.
In addition to the limiting solution, when 6 = amax’
an infinite number of possible solutions, all satisfying the

there is

boundary conditions far downstream. The inviscid solution not
being unique one is led, in trying to find a guide to the choice
of a particular solution, to the consideration of the viscous
effects., Thus, the boundary layer cannot be said to cause the
separation of flow, which must occur in any case, but on the
other hand it is to be expected to have a governing influence
on the flow pattern, which is otherwise indeterminate, This
is fundamentally quite different from the phenomena occuring
near the trailing edge, where the inviscid solution is unique
and viscosity can only have a modifying influence. Therefore,
it is not surprising that, as concluded in ref, 10, the flow
over steps does not appear to have sufficient resemblance to

the separation of flow from aerofoils,

Pregsure distributions in the separated recion

For aerofoils with either convex or concave trailing
edges, experiments (refs. 4 and 10) show that the pressure in
the separated region remains approximately constant along the
surface, between a point dowvmstrecam of the separation point
and the trailing edge (c.f. fig. 25). This indicates that
there is little mixing in the dead-water region, except per-
haps near the point of breakaway, where the static pressure is
lower than it is dowmstrean. In fig. 16 is shown the variation
of the extent of the separation, oo with the angle of inci-

dence, for the 10 per cent circular arc aerofoils. X is
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arbitrarily defined as the distance upstream of the trailing edge
within which the pressure is approximately constant. These
data are subject to the limitations already mentioned in connec-
tion with figs. 14 and 15.

When the trailing edge is straight, as in the case of
a double-wedge profile, appreciable pressure gradients are some-
times observed in the separated region, at small or moderate
angles of incidence (a typical example of such a pressure dis-
tribution is shown in fig. 17). This implies that there is some
considerable mixing and reversed flow in the separated region,
and it is thought that this is caused by the proximity of the
separated jet to the acrofoil swface. With the trailing edge
coavex or concave, or with straight trailing edges at high inci-

dences, the jet separates clear of the surface within a short
distance from the point of breakaway and the reversed flow ia
less pronounced, There is also a possibility of the separated
Jet becoming turbulent and re-attaching itsclf to the surface
before it reaches the trailing edge.

In addition to decreasing the wave drag and 1ift, the
pressure in the dead-water region has inportant effects on the
conditions on the other surface. If this pressure is lower
than that just upstreanm of +the trailing edge on the other sur-
face, an expansion must occur there (as the pressure in the
dead-water region must be continuous), and no separation takes
place on the other swface; if it is higher, separation is
likely to occur on both surfaces.

Review of theoretical studies

Bven in the comparatively simple case of an cbligue
shock incident on a plane surface, little progress has been
made with theoretical analysis of the shock wave - boundary
layer interaction. The basic difficulty derives from the
fact that some of the fundamental assumptions of the boundary
layer and of the shock wave theories are incompatible; for
instance, the former nssunes changes of velocity and pressure

in the direction of flow to be negligible compared with those
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normal to the direction of flow, whereas in the latter the re-
verse is assumed to be the case. It would appear that one has
to use the full equations of motion of a viscous compressible
fluid in the regions where both the boundary layer and the shock
wave effects are important. Thilst it may be possible to dev-
elop some sort of a numerical process to solve these equations,
such approach, apart from being of doubtful validity, would give
no insight into the nature of the phenomena and their mechanism.
Consequently, all the attempts at analytical treatment have so
far been based on assumptions which are not, strictly speaking,
Justified and deal with idealised cases and flow models which

have little immediate application to real flow problems.

Howarth (ref. 24) considers the reflection of com-
pression waves from the discontinuity surface between a supsr-
sonic stream bounded by a parallel subsonic stream and shows
that the pressure disturbances would spread upstream through
the subsonic field of flow,

Tsien and Finston (ref. 25) extend this analysis to
the case in which the subsonic stream is bounded on the other
side by a solid surface, but neither of these investigations takes

account of viscosity.

Oswatitsch and Wieghardt (ref. 26) consider the inter-
action between the boundary layer and the main supersonic stream,
by moking use of the concept of the equivalent boundary defined
by the boundary layer displacement thickness, and by satisfying
von Karman's momentum equation for flow within the boundary layer.
They find that under these conditions, small pressure distur-
bances propagated along the surface grow exponentially with the
distance along the surface in the limiting case of a vanishingly
small pressure gradient,

Lees (ref. 41) applies this approach to the problem
of an oblique shock incidence on a flat plate. He uses the
standard Pohlhausen method for laminar boundary layers, as modi-
fied by Dorodnitzyn to allow for the effects of compressibility,
and finds that:

(i) the pressurc rise across the shock diffused up-
stream of the foot of the shock decreases exponentially with
the distance from the foot,

(i) the relasation distance, Ty defined as
51 0
the distance in which the pressure rise decreases to 1/e of

its original value, increases with the Reynolds number based

on (51) and decreases with the Mach number M (the suffix o

o

/refers ...



=57

refers to conditions far upstream, where the boundary layer can

be considered to be undisturbed by the shock wave),

(iii) for M >1.25, all incident shocks with deflec-

)
tions greater than about 1° will cause separation.

Now, whilst thesec results are, in themselves, of con-
siderable interest and appear to agree qualitatively with experi-
ment, it is doubtful whether they are very reliable quantitatively,
owing to the nature of the. assumptions and simplifications in-
volved in the analysis. To begin with, the Pohlhausen approx-
imation is known to give unreliable results for boundary layers
in adverse pressure gradients even in the incompressible case,
and there is no reason to expect it to be any more accurate for
compressible flow, Further, Lees assumes that the pressure
gradient is small and linearises the differential equation for

the modified Pohlhausen parameter

1 -1112

This linearisation is a fairly good approximation for 0< (-A)< 6,
but becomes progressively worse as (-\) approaches its value of
12 (or 10, as arbitrarily assumed by Lees) at the separation.

In common with other boundary layer methods, the tronsverse
pressure gradients across the boundary layer are neglected,
though they may have important effects near the point of scpara-

tion, where the curvature of streamlines is large,

"hile all these approximations may be conceivably justi-
fied in the case of a shock wave of moderate strength incident
on a plane surface, up to 2 point fairly close to the foot of
the wave, their validity would be more than doubtful if one tried
to apply Lees method, as it stands, to the more general case of
strong shocks on curved surfaces, where extermal pressure grad-
ients would be high, When one drops the assumptions as to the
magnitude of these gradients, the resulting equations becone
unanienable to analytical treatment and an iterative nunerical
process becomes necessary. It was felt that such computations
would not be justified until Lees' analysis is supported by
experiment, but some calculations were made to test the validity
of such a procedure, for one particular case of a 6 per cent
double~wedge aecrofoil at Mo = 1.57 2nd o = 8°, From the ex-
perimental pressure distribution obtained at the N.P.L. the
shape of the equivalent surface was deduced using the process
already described in pars. 2.1, It is seen from fig, 17 that

the pressure gradient ot the rear of the upper surface is fairly
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high and that between the shoulder and the trailing edge the
equivalent surface is displaced by about 2 per cent of the chord
length. If the boundary layer were completely separated, there
would have to be a very considerable amount of reversed flow in
the dead~water region with speeds up to, in this case, 20 per-
cent of the free stream velocity. As such high velocities of
the reversed flow are unlikely, it appears more reasonablc to
assume that the boundary layer was turbulent and had not separa-
ted. In that case, if the equivalent surface is taken to be
the contour of the displacement thickness, the actual boundary
layer thickness at the trailing edge would be of the order of

15 - 20 per cent of the chord length. This shows clearly that
the static pressure cannot be assumed to be constant across the
boundary layer, and that the pressure gradient outside the bound-
ary layer is probably much smaller than that indicated by the

surface pressures.

L. SUGGESTED METHOD FOR ESTIMATING BOUNDARY ILAYER EFFECTS

L,1., Summary of the lMethod

On the basis of the considerations described so far,
one can attempt to devise a method for an approximate assessment
of the boundary layer effects on the aerodynamic characteristics
of two-dimensional supersonic aerofoils. The method suggested
here will be restricted to aesrofoils with sharp leading and
trailing edges ('sharp' is used here in the sense 'sharpest poss-
ible') and at incidences such that the leading edge shock waves

are attached,

4.1.1. Theoretical pressure distribution and aerodynamic

characteristics

The pressure distribution on both surfaces is obtained
from the standerd shock-expansion theory, assuming simple-wave

flow along the swrface,

The force and moment coefficients (1ift, wave drag
and pitching morent) can then be obtained from equations 2, 3.1,
to 2,3.6. by numerical or graphical integration of pressure dis-
tributions. For wedge aerofoils these are simple to calculate
since pressures are constant along straight surfeces. For other
shapes, the numerical integration is straightforward but sone-
what tedious. In the case of circular arc profiles of maximum

thickness up to 10 = 12 per cent of chord, it was found that
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the pressure distribution can be approximated with a very good
accuracy by an interpolating polynomial of the third degree and
the force coefficients can then be expressed in terms of the
angle of incidence, the leading edge angle and the values of
pressure at four equally spaced points on the surface (just down-
stream of the leading edge, Jjust upstream of the trailing edge
and at two intermediate points). The derivation is given in the

Appendix IIT and results in the following expressions;:

2!3}) r = ,_'_-> - "‘i:"j“'t’ F
b e o c]%™e8 2 B L 4 win ch' <% Bn |
0 = n=o : o ....j
--000-:-.-1}-!1'1
25! r . cé-ﬁ e )
o iy — i s " > )L
Gy - l?ln %’ tﬂlmaahf 058 5 =
0 - * n=o n=0 e

Illo-o.l..}-}'01l2

where a are cocfficients depending on the value of pressure at
the four points (egn. A,IIT.11) and £, and g, are functions
of the leading edge angle BF (eqn. AITEAQ),

4.1.2. Development of the boundary layer

Neglecting the effects of shock waves and separation
(which are taken account of separately), any convenient method
can be used for computing the development of the displacement
thickness and the local skin friction coefficient, from the theo-~
retical pressure distributions. The available methods are dis-

cussed and summarised in reof, )

For the laminer boundary layer with zero heat transfer
and the Prandtl number of unity, one has e.g., the approximate
methods of Howarth (ref. 27), Young (ref. 28) and Dorodnitzyn
(ref. 29), all based on the standard Pohlhausen approximation
for the velocity profile, However, it will be found that in
the case of convex aecrofoils with t/e> 0,06 and M>1,5 approx.
the methods of Howarth and Dorodnitzyn break down at some point
on the aerofoil su ace, owing to a singularity in the differ-
ential equation for the modified Pohlhausen parameter », which
ocours at A =12, The range of validity of these methods
can be extended to A w12 by assuning a quintic velocity dis-
tribution as was done by Dryden far the incompressible case
(rer, 30), but this would further increase the amount of labour
involved in computations, which is very considerable even with

the quartic velocity distribution., The nethod of Young is very
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much simpler and does not cease to give resulits when.)ﬁ_k~12
(A is not used explicitly in that method), but owing to the
nature of its simplifying assumptions, it cannot be expected to
be very accurate in the case of comparatively thick aerofoils
at high incidences, Consequently, it was dscided to develop a
new integral relation for laminar boundary layers in supersonic
"~ flow by adopting Young's general approach but relaxing his sim-
plifying assumptions. The resulting relations are derived in
the Appendix I and discusscd in section L.2.

For turbulent boundary layers one can use e.g. one of
the approximate methods developed by Young and Winterbottom (ref.
315 salso see ref. 13) and Tucker (ref. 32). It should be noted
that the experimental results of ref. 32 indicate that wall den-
sity used as the reference value in the relation for the shear
stress at the wall gives better agreement with experiment than

the main stream density at the edge of the boundary layer.

4.1.3. Effects of the boundary laver displacement thickness

Changes in the local pressure due to the displacement
of flow caused by the boundary leayer are cbtained from the dev-
elopment of the displacement thickness using egn. 2.3.7. The
corresponding increments of force and moment coefficients are
computed from egns. 2.3.8 - 2.3.12, by numerical or graphical
integration. As very near the leading edge the rate of growth
of the displacement thickness is, according to the boundary layer
theory, infinite, it is suggested that the pressure increments
are calculated from the egn. 2.3.7. up to an arbitrary point
downstream of the leading edge (at, say, 2 = 3 per cent chord)

and extrapolated from there to the leading edge.

If the local pressure increments are appreciable, it
may be necessary to use the new pressure distribution to calcu-~
late the second approximation to the boundary layer development,
but in most cases it will be found that the first approximation

is sufficiently accurate.

Letsl, Skin friction drag

The total skin friction drag is obtained from egn.
2.4.2. by integrating the distribution of the local skin fric-
tion over the aerofoil, It should be noted that here again
one is faced with a singularity at the leading edge, where
Cpm o Now, on a flat plate with a laminar boundary layer

cfcﬂ"é , Where x 1is the distance downstream of the leading
ps
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edge, and the integration can be carried out right to the lead-
ing edge. On a cuwrved surface cfa:%Lf G.TﬁL, where F and G
are functions of the external flow conditions. Near the lead~-
ing edge JEL}>Gn*ﬁL, so that cfcx‘gL » Very nearly., But
BouJx, approxinately (for a laminsr boundary layer), hence it
is suggested that upstream of a point near the leading edge

(x/c = 0,02, say), ¢, is assumed to vary with - , so that

£ X

i -
] Ca dx in egn. 2.4,2, becomes
Uo

A1
$ = |

Cfﬁb(:= C:f,d.}-:"l'ogo}—}- (cf);E:O.Q 10104-1151
{

[}

Yo 0.02

For the twrbulent boundary layer, cfcx.x_n, where n depends
on the power law assumed for the velocity profile (and is, gen~
erally, of the order of 0.2); hence

1 i

- = 0,02
Cf d.'x = ‘ Cf dJC + 1"11 (cf)— o..oz-i-o'qlsa
1J O J0.0E

o= 008

bo1.5. Effects of separation

Until systematic experimental results are available
which would permit the derivation of an empirical relationship
for the prediction of separation, or until a reliable theory is
developed, it is suggested that the data presented in figs, 14
to 16 may be used tentatively for biconvex aercfoils of the max-
imun thickﬁess of the order of 10 per cent, for the ranpge of
Hach numbers of 1.6 - 2.5 and Reynolds numbers of 5 x 105 ~ 105,
The pressure changes due to separation, Alsep P, can be csti-
mated as shown in the diagram below, -

4 TEORETICAL  DISTRBOTON or FRESSORC (ALLOWNG FoR DISPLACEMENT Tsess)
FAIRING % from fig, 16

PoiNT oF  SEFAGATION .
(“.cwi from fig, 14
Py from fig., 15

N

Increments of the 1ift, wave drag and pitching moment coeff-
icients are then found, similarly to those due to the displace-
ment thickness, by integrating A sep P oOver the region of
separation, The change in the skin friction drag can be
estimated by assuning that the local skin friction downstrean
of the point of separation is zero,
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"hen the boundary layer is assumed to be turbulent,
(e.g. at flight Reynolds nuibers), the effects of separation can
be altogether neglected, since even if separation does occur,
its extent would generally be limited to the immediate vicinity

of the trailing edge.

Nett values of the force and moment coefficients are

then obtained by suming the various increments:

Cra = ©p ) £

+‘—'.61CL,1'I + Asep CL,I‘I .o.-..l{..1-6c

b (CD ) +‘£’i\6 CD +Z"~’sep CD' % 0. &2d) C
W 1 W W D sep D

f £

ll..ll'ln.}-l-.1l?

CaDs _ _CsDs )TH +‘£kse;o xc.p. 'ﬁ"% xc.p.
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ho2. New Integral Relation for Laminer Boundary Layers in

Supersonic Simple~Tave Flow and Zero Heat Transfer

The method of derivation of the new relation is cssen-
tially an extension of Young's approach (rer. 28) and a compron-
ise between his approximate method and that of Hownrth (ref. 27).
As in both these methods, use is made of the fact that when the
Prandtl number is unity and ® =1 in the relation pac Tw,
the velocity distribution in the laminar boundary layer with zero
heat transfer is independent of the lMach number, if expressed

as a function of Y, where

=

i
(;[..

Y = an . oo.noa--coll-c2-1a
The velocity distribution is expressed in the standard Pohlhausen
approxinmation (eqn. A.I.2.2.) and, following Young,a relation

is obtained between the local skin friction at the wall and the

momentun thickness:

T u' 21 ]
o ?=%.u._1m'f. '&‘+ 111 :1%-‘ j- lllul..lll"-‘»‘Qozo
P4 1-11' 4 P1y 7
o 1]
where = 5 and m = —2
!"Lg" }"1-1

However, at this point Young assumes that n, £ and also

H= —g are constant along the surface and functions only of the

free streon conditions; in Howarth's analogue of Pohlhausen's
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method these ratios are, of course, functions of the main strean
conditions at the edge of the boundary layer and of the boundary
layer thickness in terms of Y, whereas in the present method
they are assumed to be unique but arbltrary functions of the
local min stream conditions only. Then, for the case of super-
sonic simple-wave flow

5% o Sy . 61
:._I‘ = f(e) ’ = L'l(e) » H = _!2 S k(e) ooolaaﬁl-l-i2031
L }-"1 (

where 0 is the direction of flow at the edge of the boundary
layer, measured from some datum direction (taken as 0 = 0 at
M=1).

von Karman's momentun ¢quation then beccmes

)
d\‘::_-' 5 ,,::\2- _1_
a6 + J(e) L= )Lk(S) o.ococn-c|2{-n2n1§.

where @ = pf q?rz and K = %g = curvature of the surface, and

3(6), k(6) are functions of the loeal main stream conditions
defined in eqn. A.I,2.10b,

This equation can be either solved by a step-by-step
process, or integrated directly to yield

1 e R R

In the case of a circular arc profile, this integral
assumes a particularly simple form:

[P] =4 3,06 ko)) =xle) .ozt
1

whilst the displacement thickness and the skin friction are
given by

[.5‘1-' = HE%JG :.o-ocalocii-ozo?
e 81 1
2 % =
¢ 2 = BL@O)Wsom(e) L ... .28
pOUO ¥
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where A, B and C (defined in egn. A.I.3.42 and 3.8a) depend on

the aerofoil dimensions and the free stream conditions and are

constant along the surface; J, K, L and M are unique functions
of €& only, defined in egns. A.I.3.72a and 3.8a.

Once these functions have been computed and tabulated
for a range of ©, the calculation of the boundary layer devel-
opment in a particular case then involves only the determination
of the quantities A, B and C and the use of tables to find the
appropriate values of J, K, L and M, for the required points on

the surface.

Eor the present purpose it was assumed that the varia-

& T ) :
tion of f; i EE and 1% with the local llach number, H1, is the
L 1 iy

same as for a flat plate at zero incidence with the corresponding

free stream Mach number Mo — Mﬂ. Young's flat plate solution

(refs. 12, 31) was used, so that

H = k(8) =259 (1 + 0.277 1)

5 P 1 2‘“}(‘1-«»)
il 9.072 |j + 0.365 (y-1)d? Mlj
Bova, i‘ y=-1 & 2|

i = _j + " o° MIJ

with © = 8/9, o = 0.72 and ¥ = 1.4

The variation of these functions and also of J, k,
Jios K, L and M with 0 is shown in fig. 18, and their values
are tabulated in table I.

Fig, 19 shows a camparison of the results of the pres-
ent method with those obtained by the methods of Howarth® and
Young, for the momentun and the displacement thickness on the
lower surface of a 1C per cent circular arc aerofoil, with
'MO = 2,13 and R = 0,64 x 106: It will be seen that the devel-
opment of the displacement thickness ealculated from egn. 4.3.8.
compares better with Howarth's method, than does that obtained
by using Young's method; +the agreement is not so good in the
case of the momentum thickness, but even there the discrepancies

are generally less than about 5 per cent,
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The obvious advantage of the new relation is the mini-
mum amount of labour involved in computing and the ease with
which 61 ,:dL and C, can be obtained at discrete points on the
surface of a circular arc profile.

The metgod canpbe easily adapted to other forms of re-

lations for H, % and ;‘1 , provided they are uniquely deter-
: 1

mined by the local flow conditions. This allows the possibility
of using empirical relations for the functions £, m and h, should

such relations be found to give better agreecnent with experiment,

4.3, Comparison with Experiment: Discussion of Results.

The method of estimating the boundary layer effects,
suggested in para. L4.1., was applied to the particular case of a
10 per cent symmetrical circuler are profile at Mo = 2313 and
R =0.64x 106, for a range of incidence from 0° to 10°, The
new integral relation was used for the development of the bound-

ary layer, which was assuned to be laminar throughout,

4.3.1. Boundary layer displacerent thickness; local pressure

increments; skin friction,

The development of the displacement thickness is shown
in fig. 20a and its rate of growth in fig. 20b. It is seen that
for any given point on the surface, the displacement thickness
increases almost linearly with the incidence and so does its rate
of growth, At o = 100, the values of 61 on the top surface
are nearly twice as large as those at the corresponding points
on the bottom surface.

The resulting increments of the local pressure vary
only little with incidence for x/c»0.4 (fig. 21), but towards
the leading edge increase fairly rapidly with increasing inci-

dence.

The local skin friction (fig, 22) is seen to decrease
with increase of the local Mach number, but the rate of varia-
tion is small,

4.3.2. Effects of displacement thickness on force and
moment coefficients

The increments of 1ift and wave drag coefficients due

to the displacement of flow by the boundary layer are,-



a 0° 40 8° 10°

_&CD .000486 | ,000528 |,000584 | ,0006/1
W

AC o |.00029 |.00047 | .0005%

The increments of pitching mement coefficient and the movement
of the centre of presswre are negligible [“p(10_55].
When expressed as percentages of the theoretical values

ZAC ﬁﬁCDW
5 and __35; are found to decrease with

of the coefficients,
L
w
incidence (fig. 23a) and are of the order of 0.2 per cent and
1 per cent respectively.

4.3.3. Skin friction drag

The total skin friction drag is found to be practically

independent of the incidence, the values of CD being. -
 §

a 0° 59 g° 10°

CD .00461 | ,00460 |,00460 |.00466
£

It is of interest to note, that in ref. 13 the valuwe of C. for

D

- f

the same section at the same Mach number snd o = OO, obtained by
Young's method, is 0,00465.

Ly 3.4 BEffects of separation

These effects were estimated from the empirical data
of figs. 14 - 16, as suggested in para. 4.1.5. The changes in
force and moment coefficients are given in table III(c), and are
plotted in fig. 23(b) as percentages of the corresponding theor-
etical velues of the coefficients.

It will be seen that the effects of separation are
most marked in the case of the pitching moment, whose value is

(o]

reduced by as much as 26 per cent at o = 4, falling to just

under 14 per cent at o = 10°,

The 1ift coefficient is reduced by amounis varying
from 12 per cent at o = 40 to 7 per cent at o = 100. The re-
duction in the wave drag varies only little with incidence and

is of the order of 10 per cent.

Separation also results in a forward shift of the
centre of pressure position, varying from 6.5 per cent chord at
a = 40 to 3.2 per cent chord at a = 10°,

/e 0.
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The decrease of skin friction drag was estimated as

L4 per cent at a = 0° rising to 9.2 per cent at a = 10°,

L,3.5. Comparison with experiment

The Mach number and Reynolds number were chosen so
that the above results can be compared directly with the experi-
mental results obtained by Ferri (ref. 4). The final calcula-
ted values of the aerodynamic coefficients are given in table
I11(d), together with the theoretical values obtained from the
inviscid shock-expansion theory (table IIIa) and the averaged
results of Ferri's experiments (table IITe); they are also showm
plotted in fig. 2L,

The inviscid shock-expansion theory appears to be in
very poor agreement with the experiment, The greatest discrep-
ancies occur in the 1lift and moment coefficients and the I,/D
ratio, At a = 10°, the theoretical values of Cp» Cy and /D
are respectively 19 per cent, 30 per cent, and 17 per cent higher
than the experimental values determined by force measurements.
Taking account of the boundary layer effects, reduces these diff-
erences to 11 per cent, 12 per cent and 12 per cent, respectively,
which are still very considerable amounts. It is not known what
is the probable experimental error, but scatter of the experi-
mental points is large and some of the numerical results are quo-
ted, in ref. L4, to two figures only. Further, there are large
discrepancies betwecn the 1ift and moment coefficients obtained
from integration of the pressure distributions and those deter-
mined from force measurements (see table IVa) (the values of drag
cannot be so compared, as CD calculated from the pressure dis-
tributions obviously does not include the skin friction drag).
Therefore, it is suggested that the force measurements in ref. 4
are subject to serious experimental error. Moreover, there is
also some doubt as to the precise geometrical characteristics
of the aerofoil tested. It is stated in ref., L that the dim-
ensions of the 10 per cent circular arc profile were: 60 mm
chord, 6 mm maximum thickness, 150 mm radius of curvature and
22°40' leading edge angle. Taking the chord length as the
datun dimension, the correct value of the radius of curvature
is 151.5 mm and the correct leading edge angle is 2290°,

Though perhaps not very significant, these differcnces cast

doubt on the accuracy of the other experimental data. It will
also be seen from table IVb that numerical values of the pitch-
ing moment coefficient at positive angles of incidence are con-
sistently highsr than those at the corresponding negative ineci-

dences, which indicates that either the asrofoil was not exactly

| /syrmetrical ..,
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symmetrical, or that the distribution of flow in the tunnel work-

ing-section was not uniform,

This view is supported by the comparison of 1ift coeff-
icients and one typical example of pressure distributions obtain~
ed by Perri for the 10 per cent circular arc profile at M = 1,85
R =0.72 x 106), with those given in ref. 10 for the same pro-
file at M = 1,86 (R = 0,66 x 106) - fig, 25, The slight differ~
ences in the pressure distribution cannot possibly account for
the large difference in the 1lift cocfficients for the two cases,
which is some 24 per cent at a = 60, so that Ferri's force measure-
ments again appear to be in error. The differences in the pres-
sure distributions, though only small, can be explained by neither
the slightly different Mach numbers, nor by the boundary layer
effects, but can be accounted for by asymmetry of the aerofoil, or

non-uniformity of flow in the working-section.

Results of ref. 10 appear to be far more reliasble, but
unfortunately they were not available until af'ter the present
calculations had been completed for the Mach number of 2.13. An
attempt was made to interpolate some of the results for M = 1.85
and M = 2.48 to M = 2.13, assuming that G, and {“CD 3

wé =0
=
——J—za. As can be seen from fig., 24 and
L2
N =1

are proportional to,

table V, the agreement with the corresponding calculated values
is very good. However, it should be noted that the results of
ref. 10 may be subject to a certain amount of error, owing to the
fact that OL and CD were calculated from the pressure distrib-

utions, which were extrapolated over some 20 per cent of chord,

4.3.6., Assessment of the Method

The method suggested here cannot be properly assessed
until reliable experimental data are available, comprising both
pressure and florce measurements. The obviously weak point of
the present method, as it stands, is the empirical correction
for separation based on inadequate data, but here again the

fault lies with the lack of comprehensive experimental results.

With the laminar boundary layer, the effects of sep-
aration are of much greater importance than the effects of the
displacement thickness, but with the turbulent boundary layer,
when separation is unlikely to occur, the latter effects become
predominant and the method should give a reasonsble estimate of

the viscous effects.
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5. SOME NOTES ON CHOICE OF AFROFOIL SECTIONS FOR -SUPERSONIC
WINGS

5.1, Invisecid Characteristics

According to the two-dimensional inviscid theory, a
syrmmetrical double-wedge section has a lower wave drag coeffic-
ient than sections of any other shape at the same Mach number and
with the same maximum t/c ratio. However, since the minimum lim-
it on the thickness of a wing is governed by considerations of the
structural strength and of storage capacity, drag in terms of the
cross-section area or the 2nd moment of area (in the case of thin
s0lid wings) rather than in terms of the t/c ratio is a more app-
ropriate criterion for comparing drag properties of various wing

sections.

Determination of the optimum shape of section using the
shock-expansion theory cannot, unfortunately, be carried out anal-
ytically. However, the linearised theory is amenable to analyt-
ical treatment and whilst its results camnot be claimed to be very
accurate, it affords at least a qualitative guide to the relative

merits of various aerofoil sections.

Using the linear theory, it can be shown quite simply
by the calculus of variations that the section having the least
wave drag for a given cross=-section area is composed of two
symmetrical parabolic arcs. Now, within the approximations of
the linearised theory the wave drag of the parabolic profile is
exactly the same as that of a circular arc profile of the same
t/c ratio, since the equations of the two profiles are identizal
to the first order in y/c.

The table below shows some first order estimates of the
wave drag coefficients of symmetrical parabolic and circular arc
profiles as compared with the symmetrical double wedge of equal
thickness/chord ratio, cross-section area or 2nd moment of areas

C
D
c.A P.A.
Er—-—dg———- for equal t/c | equal arca | equal 2nd moment
Dp,w.
a = 0° 1.33 0. 750 0.892
@ = 10° 1.07 0.897 0.950

The drag of the double-wedge can of course, be further
reduced without altering the section area or its 2nd moment by

moving the point of maximum thickness beyond the mid-chord,

/Moreover, ...
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Moreover, for a more accurate comparison the shock-expansion
theory should be used, and the above ratios will then also de-
pend on the Mach number, Nevertheless, cven the simple example
considered here shows that wﬁen.the structural strength is the
primary consideration, the circular arc profile may be expected
to offer a wave drag saving as compared with the corresponding
double wedge profile.

5.2, Effects of Aerofoil Shape on Stability of Laminar

Boundary Laver

A further important factor which should be considered
is that of the viscous effects from the point of view of the
stablility of the laminar bovndary layer. The recent work of
Lees (ref. 33), shows that favcurable pressure gradients may

have important stabilising effects at Mach numbers up to about 2.

Fig. 27 (adapted from ref. 33) shows the stability lim-
it in terms of the minimum critical Reynolds number based on the
displacement thickness, for a 6 per cent circular arc profile at
Mo = 1.5 and zero incidence, for a range of Reynolds numbers "
based on the chord length, It is seen that with Rd} 5 x 10”
there is a region of instability near the leading edge, the size
of which increases with Ro' Pig. 26 shows the corresponding
limits for a 6 per cent double-wedge section at the same Iach

number and incidence (the values of R were obtained from
it
ref. 3.), calculated assuming the momentum thickness to be con-

tinuous at the shoulder. The boundary laycr is almost complete-
1y unsteble even at R_ = 5 x 10°,

Whilst the considerations of stability cannot deter-
mine the probable position of the transition point, it is clear
that transition is mcre likely to occur when the houndary layer
is unstable than when it is completely stabilised. In fig., 28a
is shown a comparison of the wave and skin friction drag coeff-
icients of the two aerofoils for various transition positions.
Transition was assumed to occur suddenly and the skin friction
drag calculated by integrating the local skin friction coeff-
icient along the surface, neglecting the effect of the trailing

edge shock waves, Assuming that transition occurs at a point

where Ry =n ”R5 “\\ » the values of C, + C obtained
1 w £
L

critj

or St T
\Qmﬁfffmn

with n=4 and n =12 arc shown in fig. 28b, It will be
observed that with RO between 106 and 107 the drag of the
circular arc is only slightly higher than that of the double-
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wedge.

Similar calculations for acrofoils at other Mach num-
bers had been carried out in ref. 35, before Leecs completed his
analysis for the effects of pressure gradients on stability of
the laminar boundary layer, and appear to indicate that at
M = 1,6 the drag of the circular arc profile can actually be less
than that of the double~-wedge of the same thickness,

At Mach numbers higher than 2, the effect of aerodyn-
amic heating becomes predominant (c.f. ref, 33) and cancels out
the effect of the favourable pressure gradient, hence the circu-
lar arc profile no longer has the advantage over the double-wedge
on the grounds of stability of the boundary layer. As suggested
by Lees, withdrawal of heat from the surface may help to restore
the stabilising effects of the favourable bressure gradients,

5.3, Effects of Separation

From the point of view of separation, there is little
to choose between the various profiiles, as with the boundéry
layer laminar, separation is Just as likely to occur in one case
as in another (e.f. para. 3.3., page 32). Effects of separa-
tion are not serious in the case of plain wings, since loss of
1ift is associated with a decrease of drag, but may cause dis-
astrous losses of control effectiveness, An obvious method of
preventing or limiting separation at low Reynolds numbers is to
induce turbulent flow over the rear part of the wing, but this
would result in a serious increase of drag. An alternative
might be to have blunt trailing edges, in which case the shock
waves would move downstream of the trailing edge and would be
. preceded by expansions, which
may suppress separation. This
again would result in an in-
creased drag, caused by a suction
force on the blunt edge,

5.4. Concluding Remarks

The above considerations are only tentative and, in
any case, concern only two-dimensional aercfoils, On finite
wings the phenomena discussed may be even qualitatively differ-
ent.  Much experimental and theoretical research is needed,
before it is possible to say with any degree of certainty, what
aerof'oil sections should be used for supersonic wings in any
particular case,

fBe ous
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6. SOME SUGGESTIONS FOR EXFERIMENTAI RESEARCH

As there seems to be little hope of a complete theory
of the shock wave - boundary layer interactions being developed
in the immediate future, there is need for a systemetic experi-
mental investigation of this phenomenon, particularly as it
affects the conditions at the trailing edges of supersonic aero-
foils, It is believed essential to explore as fully as possible
the scale effects, as it is reasonable to expect that at high
Reynolds numbers the effects of separation at the trailing edge
may well become of minor importance only. In the first instance,
such experiments should be limited to two or three representative
aerofoil sections tested over a wide range of Mach numbers,
-‘Reynolds numbers and the angle of incidence, It is thought that
interferometry would prove very useful in exploring regions of
flow, where static pressure mecasurements are difficult or im-
possible. Force measurements should also be made, both as a
check on the pressure and optical measurements and 2s a means of
determining the total drag.

7. CONCLUSIONS

Experiments show that real flow patterns observed on
two-dimensional supersonic aerofoils differ appreciably from those

predicted by inviscid theory.

The most striking discrepancies are found near the
trailing edges, where separation of flow is of'ten observed., This
separation is caused by the interaction of the trailing edge shock
waves with the boundary layer and, on general grounds, it can be
shown to result in a loss of 1ift and a decrecse of wave drag,
Examination of available experimental results shows that the
pressure in the separated region and the extent of separation are
mainly functions of the angle of incidence and of the free stream
static pressure; the effect of the Mach mumber appears to be
negligible, The scale effects are not known, but it can be
expected that at high Reynolds numbers and with turbulent bound-
ary layers, the effects of separation should be of only minor
importance.

At the leading edges, at incidences when according
to the inviscid theory the flow should undergo a2 simple Prandtl-
Meyer expansion, a weak shock wave is alwnys observed. Though
the bluntness of the leading edge appears to be the primary
cause of the formation of the shock wave, the viscous effects
have at least an important modifying influence and, in the case
of appreciably thick leading edges, may result in a local sep-
aration of flow. The effect of the flow pattern at the leading

/edge o g U
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edge on the pressure distribution downstream is believed to be
negligible and, as calculations show, is confined to the first

few per cent of the chord length,

AT sharp shoulders of wedge sectioﬁs, the flow patt-
.erns observed are found to be fundamentally similar to those at
the leading edge. It is believed that a very small region of
locally separated flow exists at the sharp corner. The surface
pressure distributions are affected by the diffusion of pressure
through the subsonic part of the boundary layer within a dis-
tance of the order of 5 - 10 boundary layer thicknesses from the
shoulder,

In the regions of flow which are unaffected by shock
waves boundary layer effects can be estimated by applying the
concept of the equivalent profile, formed by the addition of the
boundary layer displacement thickness to the contour of the

aerofoil, and by computing the potential flow round the new shape

(using the standard shock-expansion theory). The relative
increments of 1ift5and wave drag coefficients are found to be of
the order of % 0—1 and vary approximately as 1/ J_I‘E; for

T.E.
the laminar boundary layer, and as 1ZR2 for the turbulent

boundary layer, where n = 0(0.2). The 1ift increment is gen-
erally positive, but the drag increment may be negative if there
is transition occuring near the point of the maximum thickness.

In the absence of a general theory of the shock wave -
boundary layer interaction, the effects of separation of flow
have to be allowed for empirically, on the basis of the available
experimental data.

For the particular case of a 10 per cent circular arc
profile at M = 2,13 and R0 = 0,64 x 106 with a laminar bound-
ary layer, it is found that the effects of separation arc far
more important than those of the displacement thickness. At
a = 10° the separation results in a reduction of CL’ QM and

CD of approx. 7 per cent, 14 per cent and 8 per cent respec-
W

tively, with a forward shift of the centre of pressure of 6,5

per cent chord. The displacement of flow by the boundary

layer increases CD by amounts of the order of 1 per cent,
w

whilst the increments of the 1ift coefficient are only of the
order of 0.2 per cent, The skin friction drag coefficient is
0.00461 at o = 0° and is practically independent of the angle
of incidence. The calculated nett values of the aerodynamic
coefficients appear to be in poor agreement with the experimental
results of Ferri (ref. 4). It is believed that those results

are subject to serious experimental error, as they exhibit a
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number of inconsistencies. Interpolation of same of the results
obtained at the R.A.E, (ref. 10) gives a good agreement with the
present calculations,

A short examination of the relative merits of super-
sonic aerofoil sections indicated that there is a real possib-
ility of the total drag of a double-wedge profile being higher
than that of a circular arc profile of the same maximun thick-
ness to chord ratio, owing to the stabilising effect of the
favourable pressure gradients on the laminar boundary layer at
low supersonic Mach numbers (<2) and moderate Reynolds mumbers
(106 -5x 107).

The new integral relation for laminar boundary layers
in supersonic simple-wave flow with zero heat transfer is found
to give results in good agreement with those obtained by the
approximate method of Howarth.
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APPENDIX I

A NEW INTEGRAT, RETATION FOR LAMINAR BOUNDARY LAYFRS ON. TWO-DIMEN-
SIONAT, CYLINDERS IN SIMPIE-WAVE SUPERSONIC FIOW WITH ZERO HEAT
TEANSFER

1. Boundary Ioyer Equations

With the usual approximations of the laminar boundary
layer theory the equations of motion are (ref, 12).-

3 du 8w i dal\
puég+ va"ﬁ = 5; L“EE-‘I .'.-.'....1'1'
e /
O = g“E t-o...uul-1¢2|
n
d d
'é'; (pu) +'é'1'1" (PV) = 0 l.lll..!ll1.3l
1.3 is the equation of continuity and is exact, von Karman's
momentum equation is
) u/! p'T T
. 1 1t W
”EE“' +[(H+2) bl iRt B 38 =0 oc-aucc--.1o‘j-l-
Yo Py Pyt

where dashes denote differentiation with respect to s, the
suffix 1 refers to the main stream conditions at the edge of the
boundary layer, and

?50
j Y
5= | EEE— - % } dn, the momentum thickness,
J P 1/
0
agw vy
L2 By
k]
61= i {1 —-Eﬁ—i dn, the displacement thickness,
P Py
Yo
au
I ) f{""".’
W wion/ o

value of the local skin friction at the surface,

and s,n are coordinates parallel and normal to the surface,

2., Development of the Method

We transform the coordinate n +o Y, where
d‘.] .O'lll‘lll2I1.

Now, when w =1 in the relation pec.T® and o,

the Prandtl number is unity, the velocity distribution in the
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laminar boundary laysr is independent of the Mach number, if
expressed as a function of Y, Hence, using the standard
Pohlhausen velocity distribution for incompressible flow, we
have

vuPew g (0% BN - . 12V, . [E3*
= i { | 2 f
u1 , 1{ 6 ,J; * 15 .af! 2 !\6‘;‘! 4‘\6*}

2 3 L
a’.}nq.azn +a‘3n +a‘4'r] ".l'l.|2l2.

where &% is the boundary layer thickness in terms of Y, and

T | = Y/E)*

The boundary conditions are

- 2.
\?:1,%‘%:6—%:0 atn =1 p
on /
1;:
i
- aT \ s
w=0, 5-=0 (no heat transfer) atm = 0 / L)
0w :
2_3 = - }\, &t =0 \
n* /
SRR T 0T R 2.
L an ‘\‘-I‘J‘ nj as - {1 .1 1 LR O B R B L] L]
“n=0
X _p_ du™ - ‘ "
but from 2,1, = = s and |s= = 0 by the second egn. 2.3.
on ", mn/ o
s = 5 0
hence 2.4. yields Q_% i =B u; Py -g—
am My
where Yo is the value of p at n =0,
: ﬁ|2 I-LW'
BO 'that ?\ -'-"6 '|.11l P1 """2' c-.-o--lni2150

ty
Using the boundary conditions 2.3. to solve 2.2, for the coeff=-

icients 'a', we have

%\

0.-.1...0.2'60

The skin friction at the wall is, by definition

/hence oo



M0, 7=y w,u, 7 5\
henos  t, ==L (S} < LL (o4 2luy 20 and 2.6,
&7 NTvm=0 0 % J
T I_,l. 5 \
and = = ! f/2 + él‘:
2 6* 1 f
% BH
or, substituting for '
T T U 21,
w22% ‘E u_1'6*+ ::!l '1_*' llllll.lllzl?.
o, W, By W P4 &
® & 1
We shall now assume that the ratios =, H=-— and
p L™
f—"r are functions only of the local flow conditions in the main
‘1
stream at the edge of the boundary layer and are independent of
6%, Then, for the case of simple-wave supersonic flow, we can
write
&
5* ‘ 1 . Uy
= = f£(e) ; H = ok n(e) ; o 1(8) coeese:B.

where 6 1is the direction of flow at the edge of the boundary

layer, measured from some datum direction.

Egn. 2.7. then becomes

v 5 im(e) £(6). + E—-ﬁ- - .17..........2.9.
Pq u;|2 : 5 o v
Substituting this into the momentum equation, we have
&+ f:(:h(t’-i) + 2) Ei:+ E{I ‘if*"=% 1:-;—m(e).f(e).“tfL + i;: f—1®
or, multiplying both sides by p127.-'? and rearranging
'd'% (Pf Qﬁ) + (p12 E;f.?) -Ei i Bh+2) ~ jg f.mg = : ?P} w10

1 - 1

We note that the expression in the square brackets involves
only the functions h, f and m and thus is, itself, a unique
function of 6, and we can write

2 Emz) - % fn{] = g(6) wone s+ BT

(as far as possible the notation of ref. 28 is used, so that a

direct compaaison with Young's method can be made).
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» @ ~\3s/ @6
d a4
hence '&g = AR E’g 'll...lc.l2112l

where /= gg is the curvature of the wall,

N
y
i

i
YA

To simplify notation we shall write pf i
Then, using 2,11, and 2.12, egn. 2.10 becomes

- 5 du Ly, p
S (O . DB sl wid A d
de L."-n-’,.r+ \--*}J u1 de SE :‘:_( u1 f l.lc.aoal.2|10ao
g o HqPy . .
Now, both u, 36 and -1—1-;-? are unique functions of 0, hence
2.10a can be written in the form
-d-a%-’- * j(B){E?:%-{-k(B) coveeseses2:10D,

e a x(0) s
" qp 2ok - - w,£(6)

If the functions f and g are known, together with
the velocity distribution along the surface, we can integrate
2.10b by a step-by-step process and obtain the distribution of
@ along the surface, whence % ; B 4 @nd T can be readily
evaluated,

Alternatively, if we express /4 , the curvature of the
surface, as a function of the angle of inclination of the tangent
to the surface, £, we shall have

& = const. + £
de: dﬁ ..ll...li|2l11l
K o= 1 (6)

rt

2.10b can then be integrated to yield

40 # C| seeee2ei2,

where C 1is a constant of integration and we require one
boundary condition to determine its value. If the flow at the
leading edge is not supersonic outside the boundary layer, the
present method does not apply and some other method must be used
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L i
to determine the value of (7~} at the sonic point and supply the
necessary boundary condition. When the potential flow is super-
sonic at the leading edge, where 6 = BL s say, we must have

Egﬂe =0 since [P} #0 and as we cannot have a finite loss
L

A
%,
of momentum there, E..f}]_e = 0, Egn. 2,12 then becomes
L
;ﬁ1 pe
-1 d(e)ae { J(e)ae
i i0 i
e 7 M) Yoy
I_r'..‘l = o k e dO
o, 4. H4\®
‘-.xaL .'l.'l.ll.2I12a.
so that Pe 0 g
~51 J(o)ae j(e)ao “'i 8
] ;“8
i O43) t 1 ¢ i
{:41 = e L 1 k g e & do
) .

1 -0y ' i

l.l..lllll2013.

3. Laminar Boundary Layer on a Circular Arc Profile

Vhen the surface is a circular arc, the present method
is considerably simplified.

First, we note that for a circular are profile
@i = constant

and the solution of 2,10b is then

1
- jj B . a

o & E | J ae
(‘j;-}z }? i K eV dé + ¢ ..---o-o--3o1o

£, J
where C 1is again a constant of integration.

Referring to fig, 3, let O be the centre of curvature
of the top surface of a circular arc profile; @ is the angular
distance from the leading edge along the surface, r is the
radius of curvature of the surface, ¢ is the chord length and
0 1is the angle which the direction of the tangent to the sur-
face makes with some datum dircction; suffix 1 refers to

the values of @ and 6 at some point P on the surface,

We then have 6 =¢ + oy

dozdﬁ naoc‘--.--3-2n
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where GL is the value of 6 at the leading edge.

Fur‘ther, wehave,!-i_ ":“"g—sqzl—;gzl%-g%

(6 and @ measured in degrees).

To express eqn. 2.11 in a non-dimensional form, we

introduce the following dimensionless quentities:

. 5
Salk, ws@p8l: = g b me, le 2 5
u q*.vp"Pss “—us"’}‘"c’g’l"c (
0..3]3’
Upec o
R, & vl = (¢ §)°
@] .

where q’ is the critical velocity, and the suffices o, 1 and
s denote the free strecam conditions ahead of the aerofoil, the
main stream conditions at the edge of the boundary layerw, and the
stagnation (reservoir) conditions, respectively.

Bqn. 2.10b is then transformed into

e

d\:'} - o —
57+ 3OO = 4% (o) -
- alol, B o 4Py
where j(e) e E; k(e) = =
u, u1f‘(8)
.. 0.1
2 T T 80 0. o 1
A =— = e -— .'.’.ll.l'}li}—a.
4 8 ps‘l Ro p.o

We note that A2 is a function of MO and the incidence o

only and is, therefore, constant along the surface.

We shall now restrict the solution of 3.4. ‘to the

case of an attached shock or an expansion at the lcading edge,

so that !:@19.:0 = 0, as before.

Solving 3.4. we have

(O] SR

llli.lt..l305l

1

If we now let © =0 when M =1, as is usual when dealing
with the simple-wave flow relations, we find it convenient to
define some datum BD_‘:. 0, to avoid the singularity at © = 0,
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where %%«ﬁ&ga. Egn. 3.5. can then be written
81 . 15)
- jae o | Jae
A 2 UG ' o I
,@_[ L % e a0, by 3.2.,
=l
1 b OL
1;61 "';e ‘!6
RPN | ao
H‘J g a8 9 % J ao 160
S Je 1 Je L o
or, [(31] ikt or £ &l dO—E keaD
61 _I-i-d' eD L}GD
C..l.!l.'.3'6i
f‘\81
- j ae
a I
OI" '-(’9] =A2 e < l K.(91) - K(GLH o--untBosac
81
3 ae
181 " ;}BD
where K(81) = ke ae
deD
2. j&u
But, =[5
P
hence, V) = AJ, (01)/K(01) - K(6,)
and 5, = 43 (e) /k(o,) -x(e) Vot
i
i
= !.J@D 4 48
e
where Iy (6,) = =% and Jg (0) = H Jg, (6)
p1 Ill.lv‘llt}!?as

From eqn. 2,9, the local skin friction coefficient

can be determined and we find that

2 s
c, = —=_ =B, L(0)2% + 0. u(p)
P 2

pO UD

-'.|o|c0103.8-

i

Jwhere ...
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o
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0
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We note that the functions J, K, L and M do not
involve the aerofoil dimensions and are unique functions of the
flow direction. Once evaluated, these functions can be used to
compute 1%, 61 and ¢, for any circular arc profile, provided
that the leading edge shocks are attached.,

So far, the method has been quite general and the only
condition we have imposed on the functions f, h, and m was
that they must be unique functions of 0. It is now suggested
that the variation of these functions with the local Mach number
M1 can be taken to be the same as for a flat plate at zero ineci-
dence with the corresponding free stream Mach number MO & M1.
We could choose the flat plate solution for which w = o =1, to
be consistent with the coordinate transformation 2,1. but it is
believed more accurate to use the flat plate solution as given

by Young in ref. 31. Young cbtained, -

H = 2.59 (1 + 0.277 1-;1(2))-

5* K 2 2"!(1"-‘?)

i Lj + 0,365 (y-1)c MO_J SERRPRP, v
by gl ko2 ¥

W R Mqﬁl

so that, taking w=8/9, o =0.72 and ¥ = 1.4, we have

n(e) = H=25 (1 + 0,277 Mfi’) )
5 ” ,71/9 |

f(e) E :";-‘: 9.0?2 1 + 0012388 M1] 10'131101
" 8/9

m(0) = X = (1+0.1697 ¥2) i
Hy ' J

Expressions for functions g, k, J, K, L and M then follow
from their definitions.

/APPENDIX IT ...
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APPENDIX IT

DERIVATION OF DRAG-ENTROPY AND LTFT RELATIONS FROM MOMENTUM THEOREM;

VORTICITY TRANSPORT

1.

Consider a two-dimensional aerofoil in a uniform super-
sonic stream, enclosed by a simple-connected boundary OC (f‘ig. 2a).
The momentum theorem, which is a direct consequence of Newton's

laws of motion, states that!

Force exerted by a body on fluid in the positive direc-
tion = force exerted by the boundary C on the fluid inside it
in the positive direction,
- the nett flow of momentum across the boundary C,
provided the flow is steady and body forces negligible. This

can be written
iﬁ
RﬂF" dS. .llt..llll1l1-
R=F Uqun q

where g is the resultant velocity vector at some point P on C,

is the velocity component normal to the length of
arc element of C, and

R is the resultant force on the body.

Tt will be easily seen from fig., 2a that this results

in the following expressions for 1ift and drag:

1[! pu(udy-vdx)+ ‘

R —

-D = (Pyxa:‘{_?:p:d?)
ve LiC
: .".".ll.1l2l
P i
-1 = dy - dat 1 =
J pvludy - v ax) + | (o ax-p d)
Jo Jo

‘..Ol.l‘l.113.

where Pyy pyx » pw are the stress components given in the

case of a compressible viscous fluid by

I
it

Bl -(P+2§,u,{l)+uem —(p+%u£‘h)+2u%§)

2 2 v |

= - +ZpdN) + = - = k A
Py (b+Sudd) +pey (p+3u£..~)+2pay Ak

{

ov  dul Ju )

= = e = S el A e 1

Pyx pxy H Xy “(\ax * ay/_;l b oy ol /

Ll .



wiblie
with p = the static pressure,

D@ AR B2 . dbe tdiTationt,

ox oy
du dv S
£ = il the vorticity,
g = the coefficient of viscosity.

2. Entropy-Drag Relation

Let the boundary 01 be a rectangle with its horizon-
tal sides parallel to the free stream direction (fig. 2b) and
encloging a two-dimensional aerofoil. AB is taken to be far
downstream (x =o¢) and the sides AD and BC at y =« and

y = =%, respectively.

The following assumptions are now made:

(1) pressure on AB is equal 1o the free stream static
pressure;
(1) velocity on AB has the free stream direction.

These assumptions rest on the fact, supported by both
the theory and the experimental evidence, that even immediately
downstream of the trailing edge shocks, the downwash is very
small (angle of downwash << 10, c.f. ref. 40), and the static

pressure is very nearly equal to the free stream static pressure.

Now, on IC dx =0, v S = 'Ll:uo, p:po,

P, =-DP,; on AD and IC dy = 0, and since at o= the shock

waves become Mach waves, the flow is irrotational and &£ = O,

du ov -
T " O, hence pyx =0; on AB d&x =0, p ol 0 by (ii) above,
ou

is at most of the order of % and ~» 0 as x-=, hence

%
-]
Pxx = AP The egn. 1.2. then reduces to

D= poui dy - pu? dy - puv dx ...2:%.
o IC 1/ AB 1/ DA-CB
0
since P, ds =2 0
uC

Now along AD and BC the flow is isentropic with

the entropy having its free stream value and since u-su o,

/v=30

& Accepting the usual boundary layer approximations for flow
in the wake, this also holds on W, i.e. that part of AB
which is in the wake.
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v—>0 and p-+p  as y~-» iow, We can write

L]
00010000001-2.

t = t =
u=u +u'y, v=v', p=p +p

where the suffix o refers to the free stream conditions and
p', u', v', are the usual perturbation quantities whose products
and powers higher than 1 can be neglected. Then,

puv =p_ u_v'
o O

and eqn. 2.1 becomes

P n 3
D = ° & ¢ - u_ v'dx
= J Po Uy & - pu- dy Ps Yy
DC i/ AB L DA-CB
-ll..'.'..2.1a.

Continuity of mass flow in ABCD gives

N n
{ p uo dy -
t}IC -

%
;
} Pu dyz % PO V"ax 001'0213.
il AB » DC-CB

Hence, substituting for pov' in 2,12 we have

i“‘.
D: ‘ Pu (uo"u)dy -lcnaac--ozn)-}-l
i/ AB
P i
] ¢
or, D = 5 pu(uo-u)dy + ; pu(uo-u)dy Ve e e e e
o) AB-W Jw

where W denotes integration across the walke.

In the case of incompressible flow, or shock-free
compressible flow, u = u, at infinity outside the wake, and
2.5. reduces to the familiar expression for the profile drag
of an aerofoil,~

y
D, = ( B N (020, )y e i
uwW
where o< denotes conditions on AB (x =), This implies

that the first integral in 2.5. gives the wave drag of the

aerofoil in supersoniec flow, i.e,

Dw, = f P{rﬁ:’ug}ﬁ(uongf;&‘)dff -ac;cno-aozl?-
|J -‘—"'U(-‘.".T)—::x:- S

/Where see
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where ¢ (-W)- o0 indicates integration excluding the wake.

We shall now assume that viscosity in the mein stream
is negligible, and that there is no heat transfer. The equa-
tion of energy is then

oo . B &
q +Y-1 - = const. "Jcsto

so that for conditions on DC and AB we have (ouside the walke ) s

o P o P
Jgu;+—x- =2zt u+L-2=-70

— T LA B = ] .
™ Y1 P p so e

dropping the suffix < and remembering that u and p refer to
conditions at x =00,

o ——— St

Po 2
2.8, yields ﬁ-——\//(kﬂ) —kE—-' s Where k = i e onln e

o o Mi
From 2.7,
ﬁ
D d 0
NP N S B R
L SR . NE R uO/} Lc/
® % fle® J o= (W) oo o

.llll"l..2.10.

Substituting 2.9 into 2,10 and rearranging, we have

CDW= 2J Ll -fé—; (1c41) +w’(k+1)‘p0/ k{?)— ] ay

c*«"(W)—cw-?
ll...lal-|2‘11

where ¥ = y/e.

Now, along a streamline the change of entropy betwsen
IC and AB is

" .
AS=8-8_ =0 I——-1og ( SOJ IR X
P \511
I Y e
Pso p_(po /o
But ——— f e =[\-—';. s 25 D =D
s1 Py \p.f - P
Hence &S ==C_log P—J
Po
b ™
-As/c
OI‘, E"‘: 2 P o...--o-c.2-151

/Substituting ...
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substituting this into 2.11, we get

| ~48/C -A8/6.  -AS/C.
0, =2 k - (k+1)e p+\/(k+1)e Pye - {L;

o2 (W) =0 PECTICEER - . E .

Egn, 2,14, relates the pressure drag of a supersonic aerofoil to
the entropy change across the shock system associated with the
aerofoil, For thin aerofoils at small incidences and moderate
supersonic Mach numbers, Z\S will, in general be small and we

can si/mplify the above relation considerably by expanding
-As/C

e P ana neglecting powers of g‘ﬁ greater than 1. Egn.
P
2,14 then reduces to
0O P i
“"A‘—S” —= "‘""g'_'- ﬁd(x)lﬂoll'2l15.
C o (8] 2 0] (e
8 D (r=1) M (i) =P
o2()~cc RN
§
e e ¥ ) :
or CDW -( -1)M2 C J (S SO)&{C/] cnooloooo02|153'
Y o P :x«(‘ﬁ.f)—w

i.e., the pressure drag of a supersonic aerofoil is approximately
proportional to the integral of entropy round the aerofoil. This
is equivalent to the result obtained by Lliepmamn in ref. 11, viz.!:

Du
ng & ‘IT %§ , where m = mass tlow.
B, wt D

Since the above derivation was obtained independently and the
method of approach is somewhat different from Liepmann's, it was
thought that its details would not be out of place in the pres-
ent report.

It is to be noted that the approximation involved in
obtaining 2.15 from 2.14 is equivalent to assuming that the
lincarised relations 2.2 hold not only at y = + &2, but also
faor finite y at =x =0¢, for then

- £ !
pu (u-u) £ - p uu
Py '

uu' & == 2 £ from the linearised fom of
L) pO pO

the energy equation, ard the result 2.15 readily follows,

5., Lif't

Consider now an aerofoil at an incidence enclosed by

/a. rectangular ...
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a rectangular boundary 02, as shown 1n fig., 2c. FA is not
necessarily far downstream, so that GF and HA are at finite

distances from the aerofoil.

On FA dx = 0. FGHA: lies in the undistuwrbed uni-

form stream, hence in eqn. 1.3. ? =0, and 1.3 reduces to
v FGHA

fi 1
{ -

L=-} (pwp oy =-| (puv-2u %;,3 ~ug) &y 3.1,
i AR AR

If the viscosity can be neglected outside the weke, 3.1. yields

R
|

H

i.
puvﬂy— g pédy onoa¢01000302|
i

Lz -
s AC,DF s Wake
i i Ju .
since in the wake 2 p E; = .m 20 7

The first term in 3.2 is the result obtained for inviscid flow
in ref. 36. The second term can be shown to be either zero or

negligibly small by the following argument.

Integrating the second term of 3.2 and applying the

mean value theorem

|
L e | tdnen o wxd 3,28
u y-' i L —uln LD .lJ'C LB B B ) . .
-
o)

where B is a mean value of p in the wake, and Uy 5 Uy are

the velocities just outside the wake, below and above it. o
()

the wake is symmetrical, uy = Uy and E =0, If it is not
o ("
symmetrical, we can estimate the order of magnitude of j p & dy
W
as follows, From 2,9 the velocity far downstream is, outside

the wake

1
u = (k+1 - ke"ﬁs/cp)2 .

Hence, to first order of JXS/CP

. 1 u 8 i v
m k= 2k(sso)
o P

uk -
O 0
oo et Lk 8 [E.".O"SD“J e

where /\S_ = the difference in entropy between the stream-
lines Just outside the wake.

/The (N )
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The contribution of =~ i B & dy to the 1lift coeffic-~
(W
ient is then,

e o A " 1 2 Mpog A% 4
A 6] C SRR B Tliaget g 2 R
W P ¥ P, ub (e} o] Mo P o
P’
where R_=
o n
o

Hence, in general JAN GL — R (R:)

and the effect of wake on 1lift is clearly negligible.

Egn. 3.2, then becomes

=
|
1

puvdy -.“.l....slj.
J AC,DF

e now take 02

enclosing the aerofoil and use the linear relations 2.2.

to be any simply-connected boundary

Further, we neglect viscosity and changes of entropy. We then
= o= !

have ov (udy - v ax) & Pou, v'dy

Bernoulli's eqn. is dp + pq dq S dp + p(u du + v dv) = 0 3.4.

Substituting for u, v and p in 3.4. from 2.2, together with a

corresponding relation for p, viz.: p = P, + p', we have

1 1 IR
p . Pouou "'O !l‘.ltc--c305l

Egn. 1.3. then becomes

£t
It
1

since

'C.'..\...-......r-—:,
Q

n
Hence L =z - l

P, (V'dy + u'dx) by 3.5.
L!C

Now v'dy + u'dx = g', ds = di? by the definition of circulation,
and

..l.‘l.Il‘.3.6.

/where ...
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where Iﬁ; is the circulation round C (in the clockwise sense).
Thus, in supersonic flow the lift~-circulation theorem is true +o
the first order only, i.e. if the flow outside the wake is ass-
umed isentropic. The same result was cbtained by Lighthill in
ref., 36, by considering pressure distribution on a two-dimensional

supersonic aerofoil as given by the linearised theory.

Relation 3.6. can also be deduced directly from
Temple's result for compressible subsonic flow (vef. 38), as
neglecting changes of entropy amounts to treating the flow as
isentropic. There isg, however, one important differcnce in the
argment = Tcmple shows that by expanding the boundary C to
infinity, ihe relation L = Pouo}.nc becomes exact for the sub-
sonic comprescible case, as the terms neglected in the exact
momentun equation are of the order of 1/r, where r is the
distance from the aerofoil. This is not longer true for the
supersonic case with shock waves present, since the change of
entropy along the streamlines is independent of %, the distance
downstream of the aerofoil, and dces not become gzero as x—s oo,
The terms in the momentum equation which depend on entropy are,

in general, O( 1;1-) and as one camnot have y =o< everywhere

on C, the relation 3.6. does not become exact even at infinity.

/APPENDIX IIT ...,
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APPENDIX TIT

INTERPOTATTON FORMULAE FOR FORCE COEFFICIENTS ON

TWO~DTMENSTONAL
SUFERSONIC CIRGCULAR ARC FROFIIES

Q%) {#J F——

o E;, gt 0

Let the pressure P at any point P on the surface
be expressed as a polynomial of degree n in ¢

» With constant
coefficients:
o -
p= >a.f Rt
Jj=0 J

To determine the coefficients 'a!

&' n equations are required.

Choosing n equally spaced intervals of 5 we shall have

ﬁk = k/n, k:o, '1, 2, c1ase,y, N T e

n

- n J
so that (P)k= S A2 s g]i-'-'- Ea(%’c{), veerevecan)
R j=0 7
But for k = 0, (p)o =a,
n"?
hence. . .. Ly p & (), ~ (o) = a

kyY
R j:‘f‘ j(n'} .loovinl.|4

k = 1,2,00--,1’1

Solving for the coefficients 'a', we have

. = A,
8y = Ay

nlnc---..-5

where D =

/n, (/m)%.ee, O/0)3,...., (1/m)"
By () s sne (), oo ak2/u)®

(k/n), (&/n)2,..., (k/n)j””_’(k/n)n TR

1, . 1

prersreanasy 1,!...-.1, 1

/and ,.
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and A is the deterninant D with its S i et ased
by
di.‘akp, I [ . , |

Considering the lower surface only, the force coeffic-

ients are (egqns. 2.3.4 and 2.3.5)

Q
!

c
j&;c jpcosﬁds,sincedx:cosﬁds,

E

0

= t 'xc; i poos f df , since s = Jr (¢ in radians),
(o
28y U
= —=Z | pocos (B #)aF, since p =8 -F =6, - 4P
% ° | s ot
J o gc = 2%‘;‘
Expanding and substituting for p from (1),

1

28y f =1 Ty

r . p T J
Cy = EO— - J (cos Bjﬁ cos @ + sin ﬁi sin @) ‘:-‘i"ola-j @Y ag
' J=
o
l.'.‘.l...?
Similarly,
¢l
2By i n__ E)
C, = L (sin B, cos @ - cos B, sin @) zma.ﬁadﬁ
X q, c J f 4 =5 9
{ 0 - Lo - vt

Oco.nantnta

Eqns. (7) and (8) involve integrals of the form

\ n
}ﬁncosbﬁdﬁ; i}ﬁnsinbﬁdﬁ

Using the reduction formulae

(1 ~

“ n ) . f‘n- )
Jﬁnoosbﬁdﬁ=%—smbﬁ—% ]:525 'sin vf af
i'l

:
L

. - A
Jﬁnsinbﬁdﬁ'z-%cosbﬁ+% ‘Q’n-1cosbﬁd,€5

eqns, (7) and (8) can be written in the form



where

) - Egg gj_1(§t); gs

= fO(BP
= -2-%— sin 28 ; g (
) £

)
o
o
i
{321
—
w3
—
1
y
+

- 5 R

..l....!l.11

For aerofioils with the thickness ratio up to 10 - 12

per cent, it will in general be found sufficiently accurate %o

use a third degree polynomial,

give for the coefficients 'a',-

w
I

Mo
i

(P)O ]

With n = 3, eqns. (5) and (6)

9&19 = 4-5&2P +¢.’.}13P ’
-22.5&1}?"‘ 18A2P "l&-cBASP, 100001103.12
13.540yp = 13.500 + k550

For the particular case of a 10 per cent thick circular arc

profile

ﬁl} -

-

11951

s 1r/c = 2,525

and the £ and g functions have the following numerical values,-

Hence,

C.

1
CX =3 04170
o)
Example

n

0

1

2

f

97575

48035 |.31762

-~
. 23602

g

19663

13074 |.09800

.078),7 ‘

1 e

..-asusnot13

é;p -.o4416£%; -.cn9?3£%€} s on T

At M = 2,13 and with a = 10° it was found using
the above formulaec that

C. = 0.3928,

L

GIJ = 0,1007
w

which is in excellent agreement with the corresponding results

obtained by a numerical integration of pressure distributions,

viz,:

G, =0.3930,

C, = 0,100k,

D
w
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Laminar Boundary Layer Functions

L6, I G SR < T -]

o W0 o~ o

—

12
v
14
15

16
17
18
19
20

21
22
23
2
25

26
27
28
29
30

b
I
33
3k
35

m(6)

£(6)

h(e)=H

3(6) 10%E(0) I4(0)

K(6)

L(6)

M (6)

1.150
1.170
1191
1.206
1221
1.235

1.248
1.267
1.276
1.291
1. 305

14325
1.335
1.349
1.365
1. 380

1.396
1.413
10429
1445
1,463

1.481
1,506
1.518
1.537
1.553

1,578
1,598
1.619
14641
1,663

1,687
1. 711

1+735
1,760
1s ™1

9.191
9.206
9.218
9.2%
9.243
9,253

9.263
.27
9.28),
9,294
9. 304

9. 314
9.324
94 334
9. 345
94356

9.366
9.377
9.388
9.410
9.422

9+ 430
9446
9.458
9.470
9.482

9.482
9.495
9.508
9.521
9.535

9.549
9.562
9.576
94591
9. 605

3. 307
34429
3.510
34 584
3. 655
nTes

00
. 3064
2416
. 2098
.1895
5

1644
1560
1485
425
1372

.1326
.1286
1252
1221
«1193

1167
1143
1121
« 1102
. 1084

. 1068
1054
1040
1027
1014

.1002
0992
.0983
. 0974
.0965

- 0957
. 0951
0945
.0939
.0932

5. 864
5,014
4,516
o 142
3.820
3554

3. 307
3.071
2,884
2.697
2524

2.358
2.218
2,081
1.951
1.,83%2

1.718
1,611
512
1.420
1.333

1.249
1«¥72
1,099
1,030
9647

+9033
+ 8450
« 71900
-+ 7391
<6912

<6447
. 6028
. 5626
5246
<4900

1.986

1,890
1.810
1.739
1.677
1.620

1,569
1.523
1,481
1.442
1.407

1.373
1 347
1,320
1.296
1.275

1984
1,236
1.219
1,204
14190

0374
0784
1227
1711
2232

. 2770
. 3387
4024
4701
5419

. 6178
6977
7818
. 8701
9625

1.059
1.160
1.265
1.374
1.487

1,604
1.726
1.851
1.980
2.113

2,250
2, 391
2,535
683
. 834

o S s

. 2559
. 2078
1843
169
. 1581

497
+ 1426
«1367
A6
.1268

w1225
w1197
1148
N f e
. 1080

1049
1019
.09883%
09595
.09325

. 09063
.08832
. 08568
.08319
. 08061

. 07831
.07602
. 07376
07153
06932

.06718
. 06514
06305
06110
05919

. 0961
. 09633
. 09794
.09942
. 1006
1016

1024
.1032
.1038
. 1042
. 1046

L1049
. 1052
« 1054
.1055
.1056

. 1055
. 1054
. 1052
. 1050
. 1048

.1045
A0
<1037
.1033
.1028

w1023
.1017
L1017
« 1004,
.09975

.09900
.09824
09742
. 09660
09571
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o m(e) £(0) n(e)= (o) 10°E (6) 7,(6) K(6) L(0)

n(6)

36 1,812 9,620 6.620 .0929 L4555 1.119 2,989 . 05707
37 1.841 9,636 6.762 ,0924 4236 1.119 3.147 .05519
38 1,869 9.650 6,908 ,0920 .3938 1.120 3.307 .0533
39 1.898 9.666 7.058 ,0918 .3663 1.121 3.L71 .05149
40 1,928 9.683 7.214 .0913 .3402 1.123% 3.639 .0L966

B 4,959 9.700 7.375 JO911 oFB0 1,127 3.809 JOLBOO
42 1,991 9.716 7.536 .0909 ,2924 1.131 3.983 .OL617
43 2,02k 9.73% T.714 ,0907 2710 1.13%6 L. 157 .OLLAS
Ly 2,059 9.751 7.892° ,0905 ,2506 1,142 L4e33 .OL28L
45 2,094 9.769 8,077 .0903 .2318 1.149 L4512 0419

46 2,130 9.787 8.268 ,0903 .2141 1.157 L.695 .03962
47 2,169 9.806 8.466 ,0902 ,1976 1.166 L.878 ,03809
48 2,207 9,825 8,672 .0902 ,1822 1,176 5.064 .03656
L9 2,248 9.843 6,885 .0902 .1686 1.188 5,248 ,03506
50 2,290 9.864 9,116 .0902 ,1545 1,200 5.434 .03363

For the definitions of the above functions see the Appendix

/DABIR IT ..

. 09487

09389 -

09294
.09196
. 00099

. 08994,
.08883
08775
. 08660
. 08551

. 08430
.08311
.08190
. 08068
07945



~79-

Table IT, Functions of the Modified Pohlhausen Parameter A used in

Howarth's Approximate lMethod for Leminar Boundary Layers

in Compressible Flow

{0 k(A) ¢ 2 gl Q) 4
0 34,05 6.811 0 ne -. 8310 24, 81 14.55
0.2 33.00 7.044 . 2008 7o =1.992 26.0L 12,00
0.4 31.94 1276 . 4032 7.6 =3,201 27.38 12,75
0.6 30,91 7.518 . 6075 7.8 =462 28.74  13.52
0.8 29.89 7.768 .8138 8.0 =5,800 30044 1436

1.0 28,68 8.026 1.023

27.98 8,291  1.234 8.2 =7.1M 32,01 15,29
1.4 26,90 8.565 1.448 8.4 =8.682 34,15 16, 31
1.6 25.93 8.849 1.665 8.6 =10,28 36,33 17.45
168 24,96 9.140 1,886 8.8 ~12.01 38,77 18.74
2.0 214,00 Sbh2 2,410 9.0 =13,88 41.53 20,14
2.2 23,05 9.756 2,339 9.2 =15.96 Ly, 70 g
2.4 22,11  10.08 2.571 9ol =18,25 48, 20 23.62
2.6 Zi.98 103 2.809 9.6 =20,84 52,52 25,77
2.8 20,25 . 40,77 3,052 9.8 =23,81 57.50 28, 30
3.0 19.40 11,13 3,308 10,0 =27.25 63.47 35
3.2 18.41 11,50 5.555 10.1 =29.16 66,78 3%.0
30h 17.50 11,90 3.817 10,2 =31.37 70. 74 35.01
346 16.59 12.3 4. 086 10.3 «33.72 75.02 L7 M
%8 15,67 12.73 L, 362 10.4 =36, 37 79.83 2.59
4.0 %76 13,47 b, 646 0.5 =39.5 85.27 42,33
I 2 13.86 13,64 4942 10.6 ~42,66 49 45,47
Lolp 12.94  14.13 5.246 10,7 46,46 98. 66 49,07
b6 12,03 4. 6k 5.562 10.8 =50,88 107.0 52,27
4,8 11.12 15,18 5.890 10.9 =56,05 116,9 58.23
5.0 10.19 45,74 6. 230 11.0 =62,20 128.8 65.28
5.2 9.345- 16.34 6. 586 11.1 =69.66 143, 2 71 Ly
Soly 8.329 16,97 6.957 11.2 =78.93 161.3 80,49
5.6 7.384 17.64 7. 345 1.3 =90.77 164, 6 92.15
5.8 6,426 18.34.  7.753 1.4 -106,5 215.6  107.7

6.0 5.450 19,09 8.182 11.5 =128,40 259.0 129, 4

6.2 472 19.89  8.637 12,0 - o0 " (e

6.4 3.461 20,7 9.112
6.6 2,430 21,02 9.607
6.8 1.369 22,63 10.16
7.0 . 2895 23.67 10.7L

The above functions are defined as (ref. 27):

i
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15120 = 2784+ 79 N° + 55,\3

g =
(12 =N (37 + 2 0)
kN = Lo +y £O)
g = A+ X Q)
8 + E-A
where h(N = 2 5
(12-R) (37 + $50)
15120 = 1008 N+ 63 A°
(12-2) (37 + 22)\)
Jable ITI, Sumary of Results for the 10 per cent Symmetrical

Circular Arc Profile at MO = 2,13.and R = 0,64 x 106

£
(0]

(a) Force and moment coefficients from inviscid theory (shock-

expansion)
' = 7
0
“ cL CD GM L/D Jcc.p.
. W
0 0 , 0288 0 0] o
0.1521 0390 | .0645 | 3.90 | 417
10 {0.3930 | 1004 | .1691 |  3.91 ;.MB
At o = 100, the linear theory gives
Gy, = 0.3710, CDW = 0,0930, Cy = .0175, :'cc_ _ =0.50

Cb) Increments due co the boundary layer displacement thickness

a 0 I 8 10
AGL 0 . 00029 00047 . 00054,
AC 1.000486 | .000528 | ,000581 | .000641
w
z},cM and gj‘;i&c- _ are negligible, Eo(1o"5)_].
Skin friction drag coefficient
| a 0 L 8 10
Cp |+00461 | .00460 |,00460 | .00465
P

/(c) oo



B

(c)

Increments duc

to separation

a .,f},CL ,{_\CD ,{_‘;cy &OD ‘Q’_‘cp
W ot f . L]

0 0 -. 0028 0 -, 00026 -

=0189 | -,00426 |-,01692 | -,0003 | -,032 ol
8 | =-.0241 |~,00696 | =,02167 | -,00042 | -,0%9
10 | -.0267 |~-.00845 |=-,02294 | =,00043 | -.065

(@) Nett calculated values of the coefficients

& O Cp Cy L/D gc.n.

0 0 .0308 0 0 -

4 |.1335 [.0395 [.0476 | 3.45 | .350 g

8 1.2853 [.0726 {.1113 | 3.90 | .380

10 1.3668 1.0968 1.1462 | 3,77 | .387

(e) Averaged experimental valuss (Ferri - ref.L - force measure-

ments)
a CL GD QM
0 {=.005 | .0356 | .005
4 | +.123 | ,0436 | ,0395
3} . 262 0748 | ,0585
10 « 329 +0982 | 4130

(f) Comparison of experimental and calculated results at o = 10°

. ? Cp Cn il 1.9
Experiment :
(average) . 329 0982 130 3,35 37
Shock-expansion . 3930 « 1004 1691 3691 418
Theory
JZ difference |19..4 2.3 30.0 16.7 }43.0
Linear theory 3710 .09301 .175 3.99 1 .50
|y difference [12.7  [5.3 | 3.6 19,0 135.0
Present method . 367 .0968 ALED 577 . 387
;g difference [11.5 ~1.5 12.5 12.5 45

/Table IV (a) ...
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Table IV(a), Comparison of pressure and force neasurements
of ref, L
Q L 8 10
pressure distribution | .139 | .291 . 362
O, force measurements 123 § .262 | ,392
c pressure distribution | .0482 1| .111 A48
| M1 force measurements 0395 1.099 | .430 |

Table IV(b) Pitching moment ccefficients at positive and negative

angles of incidence (ref.l)

) 10 =10 8 -8 6 -
100 Gy |13.0 | ~10.8 10,0 |=9.7 | 7.3 | =6.4

a L &b 2 -2 0 (~0)
100 CI“I L‘~11 _308 118 ' "1-2{- OILI-' "0-2

Iable V Comparison of calculated results with those interpolated
from ref. 10

(i) 1irs a I 8 10
c Interpolated | 0,144 0.291 { 0,367
L' 1 calculatea | 0.434 | 0.285 | 0. 367
(ii) Drag
Op interpolated from ref. 10 = 0,0263 (at a = 0°)
w
allowance for skin friction = 0.00455 (see tables IIIfb)
----------- and () )

Calculated C

|

D (total) = 0.0308
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