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SUMMARY

EXpressions are derived for the yawing deri-
vatives on the assumptions of the linearised theory of
flow for a delta wing with small dihedral flying at
supersonic speeds at small incidence,

The non-dimensional derivatives are numerically
decreasing functions of Mach number. The non-
dimensional rolling and yawing derivatives are also
numerically decreasing functions of aspect ratio.

When the wing lies entirely within the apex
Mach cone there is a leading edge suction force
proportional to incidence which makes a destabilising
contribution to the yawing moment and side force which may
be of the same magnitude as that from the induced excess

pressure distribution,
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14 Introduction

A number of papers have been published during
the past two years in which expressions are derived on
the basis of the linearised theory for the various force
coefficients acting on a delta wing flying at supersonic
speeds. (CL, Cps Cy in Refs. 1 and 2; L,,N,,Y,  in Ref.5:
Lp,Mq in Ref.l) The present paper, in which the
serodynamic derivatives with respect to yawing are calculated,
completes the list of derivatives with respect to linear
and angular velocities relevant to the stability calculations
for the delta wing.

It is clear that a steady rate of yaw is not
possible if small deviations from a neutral pnosition are
only to be considered. In consequence the interpretation
of derivative with respect to yawing is a matter of
convention. In this paper the forces are taken to
be those that would result from a hypothetical steady
motion with the same instantaneous velocity distribution
at the boundaries: the pitching derivatives are calculated
on the same basis in Ref.lL. The hy»sothetical pressure
distribution at the aerofoil differs from the true by
an amount of the same order in the freguency oarameter,l‘c/v.
(for notation see next section): the errors in the
resultant force derivatives are reduced to second order
in rc¢/V by the addition of apnronriate sideslip acceleration
derivatives. The latter may be of the same magnitude as
the yawing derivatives in the form assumed here,
and a chort ac-~at of them will be given in a subsequent
report.

The present investigation is confined to a
wing of small dihedral at small incidence, of which the
two halves are flat. The deviations from the neutral
position are assumed small and in particular it is
assumed that, if both leading edges lie within the apex
Mach cone when in neutral position, they will remain so
when disturbed, and vice versa.
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When the leading edges lie within the apex Mach
cone, a solution to the potential equation is obtained by
extending the method of cone fields introduced by Stewart
(Ref.1) to cover velocity distributions which are of the
first degree in the space co-ordinates. When the leading
edges protrude through the Mach cone the problem reduces
to the integration of a simple source distribution.

2. Notation

1l

Free stream velocity
= Angle of dihedral
= Semi vertex angle

i i

= Angle of incidence

Max. chord

= Wing area

= semi span

= Aspect ratio.(hsz/ S)
Rolling moment

]

Yawing moment
Side force
Angular rate of yaw

Air density

I

Free stream Mach No.
fiZ-1
ﬁtan 3’
2:1—1{'9=1A2,{¢1
= Complete elliptic integrals of 1st and 2nd
kind of modulus k

n n {l

=

{; & le/efSS = non-dimensional rolling moment
an derivativs

n, = ng/?VSsz = non-dimensional yawing moment
oA derivative

Yo = ji}/QVSc = non-dimensional side force
N derivative
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Ais Results

The non-dimensional aerodynamic derivatives
quoted are referred to body axes and not to wind axes.
The rolling axis is taken to be the axis of the aerofoil,
that is the line common to the two halves. It will be
noted that the signs of n, and y, are reversed if the
X and z axes are taken in directions opposite to the
arrangement of Fig. La.

For the wing entirely within the apex Mach cone

(A <<1):-

(1) £, = £.08-7 %5 - oy - 3 A%

6 f2- A"IB -~ A%

(11) n, =-1 §° cot Yy (- 5A2)E - M3(3 - oAk
T (2= [°)u - A°x

]

* lO(SCOtY cosec Y (2E —AQK)(‘I i 12)3/2
. (2 = 4%® - Kx

-4 $%anY (6 - 5028 - A3 - 2f)k
3T (2« Lo)E ~ K

+ L4 olfeos Y (28 = N)(1 - J&)3/2

5B (2 = )z « Mg

(1ii) y .,

For the leading edges nrotruding through the
apex Mach cone (X > 1):-

1y L, = §rK

(ii) n, = - Sg‘cot V E + 2/&2 ~ 3 ecﬂi(
w2 ] o °

(iii)yr = - uggtank ;1 + 2/@ . sec_l /

SFUS- N - )
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It can be shown that the derivatives are
continuous as the parameter A passes through unity.

In Fig. 1 the quantity fr/g is plotted against
Mach number for different aspect ratios.
In Fig. 2 the quantity nr/qu for zero incidence and
the contribution to nrﬁgag due to leading edge suction
are plotted similarly. In a like manner the variation
of yzhwith Mach number and aspect ratio is shown in
Fig. 3.

4. Delta Wing Enclosed within the Apex Mach Cone

Linearising the equation of continuity for
steady supersonic flow gives the Prandtl-Glauert
equation: ~

- (52?;2+?_53+31 =0
2% AT s
where u,v,w are the induced velocity components in the

X,¥,2 directions in the cartesian co-ordinate system
indicated at Fig. La.

When the flow is irrotational there exists an
induced velocity potential,t%?, and it and u,v,w all
satisfy the equation:-

I = S = P S (1)
3x°2 Jy° dz°
Define (J = 474—1:? = f v+ iz

x +j&2*:h/42&2—- /3§zE

From the analorue of ankin's general solution
of degree zero of Laplace's equation in three dimensions
(Ref. 5) it follows that the real part of any analytic
function of ) is a solution of degree zero of equation
(1) also satisfying Laplace's equation in'?, T

X K. ‘
Suppose u ,v ,W are functions of

degree zero
in x,y,2, derived from a potential (Qg', and satisfying
equation (1); we can take them to be the real parts of

functions U,V,W of J. It was shown in Ref.1 (compare
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Ref.3) that in these circumstances:-

- ifay = i1av - = __aw (2)
2 (L P R N

It can be shown by dimensional arguments in
our present problem in which the aerofoil has an
angular velocity about the z-axis that the induced
velocity components are functions of degree one in
X, ¥, 2 1in the region ahead of the trailing edge.
It is assumed that the motion is irrotational. Therefore,
the first derivatives of the velocity components with
respect to x are of degree zero, are deriveble from
a potential function and satisfy eguation (1), In
consequence these derivatives are the real parts of

functions U L Wy of ws , which are connected by

X g
a relation of the form (2); it follows likewise that
the derivatives with respect to y and z are the real

parts of functions U Wy and U?, VZ, Wz respectively,

v Vy
which are similarly connected.

For the boundary conditions at the aerofoil
we make the usual assumpticns of the linearised theory
of thin wings with small incidence and dihedral that the
kinematic boundary conditions are fulfilled at the normal
projection of the aerofoil on the x y - plane ra*hcr than
at the aerofoil itself. In calculating the aerodynamic
derivatives with respect to yawing, retrerred to body
axes, we can, except for the purpose of assessing the
suction forces at the leading edges, ignore the incidence
without loss of generality. Therefore, the boundary
‘condition at the aerofoil reduces to 7 = - r X¢§ s ¥ 20

and W =+ 1 xé;, vy<£ o0, a} Z = 0.

The other relevant boundary is the shock wave
emanating frcem the apex of the delta wing, which in
accordance with the principles of the linearised theory
is taken to be the Mach cone corpresponding to undisturbed
flow. It is further assumed in the present problem
of a wing with small dihedral lying entirely within the
Mach cone that the shock wnve is infinitely weak. The
- boundary condition reduces to the requirement that the
induced velocity should vanish at the apex cone. Clearly
a sufficient condition, which will also be shown to be
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necessary, is that the velocity components shall vanish
at one point and their first derivatives at all points
on the Mach cone.

Since the induced velocity vanishes at the Mach
cone we can write a number of relations of the form:-
¢ 1 14 1
u{x,y,2) ~u{x,y,2) = §y -7¥.u({x,y,2) -u(x,v,2) ,
X w 31 X X y1— y

where (x,y,2) and(xjylz) are points on the Mach cone, from
which it can be shown that in any region on the Mach cone
where one velocity derivative is finite the remainder are
finite.

If v 1is to be zero over the Mach cone then at
the Mach cone in a region where its derivatives are
defined the following conditions hold:-

XU +y A + zdu =0

2% 27 2%
z9u - ydu = O (3)
a2y 02
so that
xz du + (¥° + 22)23 = 0
X b 7
; 2 248 2
Since Pu = dw  everywhere and x° = F; (¥y° + 2°) on the
2% ¥

Mach cone, the last equation can be rewritten as :-

ﬁgé& + D__“: = 0D
X X (L)
Put
aw 2
— = J%l P()
dw (W
so that
a 24
%= 1 oP(W)
d o (A
and equation (4) reduces to:-
R T 2iFdw)  + 4 o qu}iﬁo
&
o W j
kag i.g_)j g
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Wheregj1,¢J2 are points in the same region in which

2u and 3w are defined

X - B
Since on the Mach cone fa)( =1, we may
substitute eig for ;) in the last equation and obtain:-

0 B2 '
R sinangdﬁ-SFsinedgzzo

JB, gi J)
whence Bo

R j cosﬁs jGF d'+ :1&9 = 0
e

by |
from which it follows that P is pure imaginary onl u}f = }
so that Eo
3X X »
ai a 182 (3 ﬁ‘

Therefore Ju and similarly Bu, du are
DX Y 22
constant and clearly from equations (3) zero, in the

region on the Mach cone where they are all three defined.
In a like manner it may be shown that the other derivatives
vanish in the same regions. Since these functions are
continuous at points just inside the Mach cone it follows
that they canndt be infinite in some regions and zero

in the remainder and therefore either zero or infinite
everywhere on the cone.

Now for thin aerofoils which are approximately
in the xy - plane and which are symmetrical with respect
to ¥y the induced velocity potential is antisymmetrical

with respect to 2z, so that }E,_éx,'gg, 3% vanish at all
X X Y 5
points in the xy - plane not on the aerofoil. Therefore

all the derivatives vanish everywhere on the Mach cone.

Consider the transformation:-

en(t)k) = on(Q + 16,k) = 21
WP
where cn(Y,k) is the Jacobian elliptic function of
modulus k in Glaisher's notation. The interior of the
Mach cone is represented in the 7 - plane by the interior
of the rectangle with vertices + 2iK',K + 2iK', the imaginary

axis between + 2iK' corrcsnonding to the iinch cone and the
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parallel line between K  2iK' to the aerofoil. (See Fig.
Le).

Since the flow is irrotational it is clear that

Vz - Wy = Wx - UZ = Uy - VX = 0. and it will be
seen that in the /7”7 - plane
ﬁdux = 440 x dUZ % 1dV§ (5)
en sn g 8n Y
- = L) e - 4 |"-I“|,r — !:Tl.‘l
= av 1dVZ dwx ian a "
/&snisct ffgscﬂ; {+sc fAne ¥
£

It now remains to choose one function, say

I
dmx , satisfying the boundary conditions in such a way

d g
that the velocity potential is single valued and the
aerodynamic forces are finite.

B y reasons of symmetry 9w = Oony= 0
X
and therefore, referring to Fig. Le, d&w_ must be pure
at

imaginary on the lines OC,AB and A'B'. On integrating
awr ; :

x along OCB QW must jump in value from O to = r&
a7 »X i
at the point C and on integrating a long OCB' to - ]?S. in
order that the boundary conditions at the asrofoil may be
met: hence dwx must have a simple pole with a residue

T
d %
of imaginary part 2r§/4r at C(7 = K) and similarly poles

with residues of opposite sign at B,B' (7'= K % 2ix'). 1In

addition we require ;ﬁg to be constant and 3w to vanish
2X »Y
over the two halves of the aerofoil, which need is met by
choosing dW, to be real on BB'.
d v .
The boundary condition at the Mach cone that the

first derivatives of the velocity components should vanish

requires dﬁi to be real on the imaginary gxis, AA', to have
a"‘:}f
no singularities on AA' that contribute to the real part
of its integral and to have at least a simple zero at P and
P'(T= x 1iK').
For the velocity components to be single

/valued ...




10=-

valued dwx must have no branch points or poles with
a

residues inside the rectangle AA'B'B. The aerodynamic

forces will be finite provided de and dU_ do not

d7
have any singularities of too high an order on the aerofoil,

BB'.
The necessary function is found to be: -
E“_Wic_ = ise? ndu’r (A an’v + Bk‘z) (6)
wheredpi and B are real constants such that 3w
X
and B_s_v_v_ have the correct values on the two halves of the
J

aerofoil, Any other function of this form would lead to

an inadmissible singularity of one or more of the functions

such as aw, at either T = £ iK' or T = =k # 1K’ |
a< 3 |
This function has a residue - i(A + B)/k' |
at the point ¢, T = K, and therefore A + B = =- 2 r5x3
‘T

From ’etquations (5) and (6) we have:-

dv = 3 {?S‘sczf‘c’ndu"t(ﬁxdn2f + Bk'2)a’Y
oY / 2

i

1 ;;,2 + UB)K(T) - (24 + $(7+k2)B)E(+
;Eﬁﬁ, (& + YBIR(D) ~ (24 + $(7+65)B)B(D)

#—kz(A - %(u+k2)B)snTach+ (A+B)snTecd T
+ % Bk 23n’z'cn?“ha3r}

i

[ .2 2
1 _fk"5(A + UB)K - (24 + $(7+k°)B)E
;{_'E, 2 ( =K 3 ( 3( )
forT =K + i6~

o SR

Therefore in order that bﬂ may vanish on the

¥y
aerofoil: - 2
B = 6k'2rd. 2m - k'
o K (R+E) - (K-E)
/A].SO L
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Also from equations (5) and (6) we have:-

Y

s

i
A

WS
M=

R‘J isnlfndui“ (Aan}f + Bk'z)dqr

Kt

-

= -1 __Rj(4+ B)icdn -%Blchcd3t, f
L P

k! 2_13

Now enV = 2iw = ily on z = 0, 8o
0y S o

e . s e T

Hencn .
au = - 1 (A + Bly . o - @kzyB i}
ax k'zlé (xztan“}” -y°)2 3(xdtanzk"‘ - yg)j/g

on the upper surface of the aerofoil with opposite sign
on the lower surface.

Again from equations (5) and (6)

T :

Yu RJ s2? e aty(am®v s Be 2)a
0 A .
t - 2 )
= RJA+B/chlael -x'sar/ - 1827 {

= = A+ B i en™" xtan Y - x tan 'f/“ y

3 | v/ sztan“?’—yz 5

o

+ Bk2x3

on the upper surface and with opposite sign on the lower
surface.

Hence u=- A+ 3B, en™! x tan ¥ + Bk xy tan Y
' [v] 3k' 2 /x“tan” ¥<y®
(7)

on the upper surface of the aerofoil.

/The excess ...
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The eXxcess pressure is asproximately - qu
and therefore the force derivatives at zero incidence
may be readily calculated from expression (7). However,
when the aerofoil is at incidence the interaction between
the two fields give rise to a leading edge suction which
contributes to the yawing moment and sideforce.

It is shown in Appendix IV of Ref.2. that, if
the total induced velocity perwnendicular to the leading
edge is of the form fcié'% + bounded terms g, where & is
the distance in from the leading edge, then‘ihe suction

force is TT‘Yczk cos ¥ per unit length.

The velocity along the leading edge y = x tan¥
induced by the yawing is (u cosY¥ + v sin ¥ ) and

I
2 (ucos¥ +vsin¥) =1 cos¥ R Hk’sn“f_"+ icerl
BX {2 -:(cn'?fdnu"‘{?'

, snT(Adn2"Z’ + sz’}d 4

which vanishes at the leading edge ("I = K - iK'),
and @ (u cosY + v sinY) vanishes in like manner.

3y

Hence the velocity induced by the yawing perpendicular
to the leading edge is (u cosecY + bounded terms).
The velocity potential induced by incidence alone is by

Ref, 2 m&df£2%an2}; - y%/ﬁ

Theréfore the total induced velocity perpendicular

to the leading edge is:-

S A + Bk%y | x sec ?f .____ + Dbounded terms
31:‘3) ’/x “tan® F-y

=<

bt

= (v + BK° xb‘i /xﬂtanﬁfvsec'f“ + bounded terms
B 31:*3’)\, 2 €

where x = xq + 'Egsin}”and Yy = Xotan § - £ cos Y.

Neglecting second order quantities the suction
force resulting from yawing when at incidence is therefore:-

T § A vekOxtan ¥ /3mk (8)

/Integration ...
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Integration of the pressure distribution
obtained from expression (7) and of the suction forces
at expression (8) yields the values of the non-dimensional

derivatives af n . given in Section 3%, for }\dm 1.

P’

B Delta Wing with Leading Edges outside the Apex

Mach cone

Since the region of influence of a disturbance
at a noint is contained within the Mach cone emanating
from that point , the flow at the upper surface of the
aerofoil is independent of the conditions at the lower
surface, and vice versa, when the leading edges »nrotrude
through the apex Mach cone, The flow at the unper surface
is represented, therefore, by a potential function which
satisfies the boundary conditions at the ton surfaces
without regard to the lower surface, and such a function
is obtained by integrating a distribution of elementary
solutions or sources thet give the correct values of the
normal velocity locally. The required source distribution
is of strength - g&g for y 2 0 and + gég for y £ O
for the upper surfagg. e

The induced potential at the upper surface is
therefore: -

G?(x,y)

,ﬁ X tan}/
0
g X dx dy
O-"0 "0

|1

{l

'/(}:-J'CO) Z—ﬁ?(y_y_;_)‘ 2

o

+ _f;} X, ax dy
(X X ﬁr-;?(y -y,

-x tanrf

Aop?

In Pig. L4 P is the point (x,¥), 0Ly and OL,

the leading edges, and °L1 and PL, are the boundaries
where (x-x ) "ﬁﬁ(y T )
1412 2t

y ¥ = ¥-qQ
g P futs

Put X = X =- A
o~ 4

/The value ...
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The value of q and t vary as follows:-

WWhen (xo,yo) is on (i) PL,, t = -1
(li) png t =+ 1 m
(114)op, % =t = x =Jx° 5
BY
52
(iv) 0X, @ = q_ = * 1=t
| 4 ;)

(v) OL,, a = Q= (x tan)’-y)(1 t2)
_A(1+t ) - 2t

(vi) 0L2, Q= g,= (x taan+y)L1 t )
J((1+t )+ 2t

When P is inside the Mach cone so that x ;ﬁﬁy > 0,
we have :

iR N T
(,, . erg)f fji ; jﬁg‘“ Sxﬁ—t‘?)aﬁgimg}dq at 7
5%, (o 1ot gt (1=57) ,j

Having integrated with respect to q we can differentiate
under the integral signs with respect to X, since

g = U = A when t = to, and; -
:t.;o 4
u = 2r$}\ J X tan }/. " glt(x tan Y -y) at
| g (At=1)% L°-1 Lﬁ&t-1)2+“f-1'12
; 2 | =
| - or§ K \% x tan ¥~ + 2lt(x tanY’+y) }dt
A 4 s 2 ;2
l {f tO\(‘A‘t-,-JI) +‘ -1 £ /{t+1) +j. -1 Jj
+ o2rd [ yat (9)
"?T‘ u_tot 5
= 2pd v tan~1]) « tanY’/ /L2 -1
T (,(_2—1)3/2 Jx tangr-}g EJ
¢ 2ok (A2.5)x tan ¥ tan" v / "“,;{‘:LMI + 2r§yen'x
T (45-1) 73 “tan® - BP ) T gy

the same result being obtained for x > ?Eyy-o

/For a .,,
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For a point outside the Mach cone,fg’y > X,
a4 _/+1
Q = 2rSJ J x(1-t2)-8q(1+t°) dq at
- 242
m 0 o (1: = t%)

By putting to = 1 in equation (9), we obtain

u = r.;g x tan?‘(i2-2) + ¥ ,
(}\2 ks 1)3/2

and similarly for /73 YV &£ =X
§

W=-1rd x tan¥ ( f°- 2) - ¥
(L= - 172

By integrating the pressure distribution given
by these expressions for u, the values of the derivatives
quoted in Section 3, for A > 1 are obtained.
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