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SUMMARY  

Expressions are derived for the yawing deri-

vatives on the assumptions of the linearised theory of 

flow for a delta wing with small dihedral flying at 

supersonic speeds at small incidence. 

The non-dimensional derivatives are numerically 

decreasing functions of Mach number. 	The non- 

dimensional rolling and yawing derivatives are also 

numerically decreasing functions of aspect ratio. 

When the wing lies entirely within the apex 

Mach cone there is a leading edge suction force 

proportional to incidence which makes a destabilising 

contribution to the yawing moment and side force which may 

be of the same magnitude as that from the induced excess 

pressure distribution. 
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1. 	Introduction 

A number of papers have been published during 

the past two years in which expressions are derived on 

the basis of the linearised theory for the various force 

coefficients acting on a delta wing flying at supersonic 

speeds. 	(CL, C D , CM in Refs. 1 and 2; L V,NV ,YV  in Ref.3; 

Lp ,Mg  in Ref.4) 	The present paper, in which the 

aerodynamic derivatives with respect to yawing are calculated, 

completes the list of derivatives with respect to linear 

and angular velocities relevant to the stability calculations 

for the delta wing. 

It is clear that a steady rate of yaw is not 

possible if small deviations from a neutral position are 

only to he considered. 	In consequence the interpretation 

of derivative with respect to yawing is a matter of 

convention 	In this paper the forces are taken to 

be those that would result from a hypothetical steady 

motion with the same instantaneous velocity distribution 

at the boundaries: the pitching derivatives are calculated 

on the same basis in Ref.4. 	The hyiothetical pressure 

distribution at the aerofoil differs from the true by 

an amount of the same order in the frequency parameter, r c/V 

(for notation see next section). the errors in the 

resultant force derivatives are reduced to second order 

in rc/V by the addition of appropriate sideslip acceleration 

derivatives. 	The latter may be of the same magnitude as 

the yawing derivatives in the form assumed here, 

and a E72.ort !7 ,...1- 1.t of them will be given in a subsequent 

report. 

The present investigation is confined to a 

wing of small dihedral at small incidence, of which the 

two halves are flat. 	The deviations from the neutral 

position are assumed small and in particular it is 

assumed that, if both leading edges lie within the apex 

Mach cone when in neutral position, they will remain so 

when disturbed, and vice versa. 
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When the leading edges lie within the apex Mach 

cone, a solution to the potential equation is obtained by 

extending the method of cone fields introduced by Stewart 

(Ref.1) to cover velocity distributions which are of the 

first degree in the space co-ordinates. 	When the leading 

edges protrude through the Mach cone the problem reduces 

to the integration of a simple source distribution. 

2. 	Notation 

V = Free stream velocity 
S = Angle of dihedral 
r= Semi vertex angle 

04. Angle of incidence 
= Max. chord 

S = Wing area 

s = semi span 

A = Aspect ratio (4s2/3) 

L = Rolling moment 

N = Yawing moment 
Y. = Side force 

r = Angular rate of yaw 

P= Air density 

M = Free stream Mach No. 

= .11\771  
A = (s tan 6-- 

= i _k t 2 = i _ ek2 jek 1  

K,E = Complete elliptic integrals of 1st and 2nd 

kind of modulus k 

= 	
' 	

= non-dimensional rolling moment 
et.1/4 	 derivative 

nr  = 	LTAN'Ss 2 = non-dimensional yawing moment a,t, 	
derivative 

Yr  = 	Y/pArSc 	= non-dimensional side force 
4) /t 	 derivative 



3. 	Results  

The non-dimensional aerodynamic derivatives 

quoted are referred to body axes and not to wind axes. 

The rolling axis is taken to be the axis of the aerofoil, 

that is the line common to the two halves. 	It will be 

noted that the signs of nr  and yr  are reversed if the 

x and z axes are taken in directions opposite b the 

arrangement of Fig. 4a. 

For the wing entirely within the apex Mach cone 

1):- 

= 	. ( 8 	7/(2)E 
 — 

 A204. 
— 
 3i42),K 

6 	(2 — 1(2)E — 11(2K 

(ii) 	nr 	
— 1 S2  cot y  (6 — 5A2 )E — A?(3 	2 t0K  
ir 	 / 	12 (2 — 2  A )E -A K 

( 1 ) 

2 3/2 + 10( 4ccotycosecy 2E 	K) 
E 	 (2 -A )E - 

= — L g 2tan y-  (6 — 5A)E — 2 (3— 2Js2 )K 

3 1r 	(2 — /1„,2 )E — 2K 

+L 04.scos y (2E -)2K)(1 	g) 3/2 
3E 	( 2 _ 	_ 

For the leading edges protruding through the 
apex Mach cone (j,;› 1):- 

(i) r 	S'  /2.k 

(ii) nr 	= 	S 2c0t r 	2A2 - 3 sec X 
TiGL2  

= - 4S2 tani,"  + 2 
37T(A2_ 

2A2  - sec , 
t2 	-1 
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It can be shown that the derivatives are 

continuous as the parameter )1 passes through unity. 

In Fig. 1 the quantity 4/g is plotted against 

Mach number for different aspect ratios. 

In Fig. 2 the quantity n r/6 2 for zero incidence and 

the contribution to nr4,( 6 due to leading edge suction 

are plotted similarly. 	In a like manner the variation 

of y r  with Mach number and aspect ratio is shown in 

Fig. 3. 

4, 	Delta Wing Enclosed within the Apex Mach Cone 

Linearising the equation of continuity for 

steady supersonic flow gives the P•andtl-Glauert 

equation:- 

- 4. 2 	+ L. + 	= 
 
ru 

	

zoc 	2)y 	)z 
0 

where u,v,w are the induced velocity components in the 

x,y,z directions in the cartesian co-ordinate system 

indicated at Fig. 4a. 

When the flow is irrotational there exists an 

induced velocity potential, cp, and it and u,v,w all 
satisfy the equation:- 

- (432 \.2 

	

0 f 	2f 	 = 0 

	

x2 	) y 2 	3 z 2 

Define 6-1 . 11 + iy = y+ iZ 

x 	y - 	z 

From the analcvue of Donkin's general solution 
of degree zero of Laplace's equation in three dimensions 

(Ref. 5) it follows that the real part of any analytic 

function of IA) is a_solution of degree zero of equation 

(1) also satisfying Laplace's equation 

x  ,v ,w Suppose u, 	are functions of degree zero 

in x,y,z, derived from a potential O, and satisfying 

equation (1); we can take them to be the real parts of 

functions U,V,W of 6j. It was shown in Ref.I (compare 

tRef.3) 

.] 

( 1  ) 
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Ref.3) that in these circumstances:- 

(dU 	= 	idV - = 	(IN 	 (2) 
2 L) 
	1 	)2 	1 - 	

2 

It can be shown by dimensional arguments in 

our present problem in which the aerofoil has an 

angular velocity about the z-axis that the induced 

velocity components are functions of degree one in 

x, y, z in the region ahead of the trailing edge. 

It is assumed that the motion is irrotational. 	Therefore, 
the first derivatives of the velocity components with 

respect to x are of degree zero, are derivable from 

a potential function and satisfy equation (1). 	In 

consequence these derivatives are the real parts of 

functions Ux' Vx' Wx  of IA/ , which are connected by 

a relation of the form (2): it follows likewise that 

the derivatives with respect to y and z are the real 

parts of functions Uy , Vy , tidy and Uz , Vz , Wz  respectively, 

which are similarly connected. 

For the boundary conditions at the aerofoil 

we make the usual assumpticns of the linearised theory 

of thin wings with small incidence and dihedral that the 

kinematic boundary conditions are fulfilled at the normal 

projection of the aerofoil on the x y plane rather than 

at the aerofoil itself. 	In calculating the aerodynamic 

derivatives with respect to yawing, rererred to body 

axes, we can, except for the purpose of assessing the 

suction forces at the leading edges, ignore the incidence 

without loss of generality. 	Therefore, the boundary 

condition at the aerofoil reduces to -7 	- r xg 	y 0 

and v = + r xg, y 0, at z = 0. 

The other relevant boundary is the shock wave 

emanating from the apex of the delta wing, which in 

accordance with the principles of the linearised theory 

is taken to be the Mach cone corresponding to undisturbed 

flow. 	It is further assumed in the present problem 

of a wing with small dihedral lying entirely within the 

Mach cone that the shock wave is infinitely weak. 	The 

boundary condition reduces to the requirement that the 

induced velocity should vanish at the apex cone. 	Clearly 

a sufficient condition, which will also be shown to be 

/necessary ... 
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necessary, is that the velocity components shall vanish 

at one point and their first derivatives at all points 

on the Mach cone. 

Since the induced velocity vanishes at the Mach 

cone we can write a number of relations of the form:- 

1 	 1 u(x,y,z)  -u(x,y,z)  =  y1 	
1 

- y. u(x,y_LI  z) 
1
- u(x,y,z)  , 

 x x 	 x- x 	y- Y 

where (x,y,z) and(X,1  y,1  z) are points on the Mach cone, from 

which it can be shown that in any region on the Mach cone 

where one velocity derivative is finite the remainder are 

finite. 

If u is to be zero over the Mach cone then at 

the Mach cone in a region where its derivatives are 

defined the following conditions hold:- 

x u + y )1u 	z 	= 0 
zoc 

z 	- y )u = 0 
	

( 3) 

∎ Y 	6z 

so that 

xzu + (y 2 	z 2 )bu = 0 
bx 

Since 	everywhere and x 2 = 2 (y2 + z 2 ) on the 
z 

Mach cone, the last equation can be rewritten as :- 

fu + 17.  = 0 
x 
	

(4) 

Put 

dW x = 1 - () 2 F(1,4) 

dtAi 

so that 

.)c 	
= 	1 P(tA.)) 

(IL) 

and equation (4) reduces to:- 
0-4  

	 + 	1 - LJ  F di")  = 0 
2 

, 

/where „. 
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where01' ti2 are points in the same region in which 

and 	are defined 
iz) x 

Since on the Mach cone f&)1 = 1, we may 

substitute e 	for k) in the last equation and obtain:- 

r02 	 -0 2 
sin 9 2 	F da - 	F sine d '

= 0 

J 
whence 43 2  

cos 	F 	de 	= 0 

51 	el 

from which it follows that F is pure imaginary on 1 	= 1 

so that 	 -(92 
)xL4 - (al) 	= 2 R 	F 0 

,.„ 

Therefore Li and similarly 'bu, '13. are 
Z)x 	 )y 

constant and clearly from equations (3) zero, in the 

region on the Mach cone where they are all three defined. 

In a like manner it may be shown that the other derivatives 

vanish in the same regions. 	Since these functions are 

continuous at points just inside the Mach cone it follows 

that they cannot be infinite in some regions and zero 

in the remainder and therefore either zero or infinite 

everywhere on the cone. 

Now for thin aerofoils which are approximately 

in the xy - plane and which are symmetrical with respect 

to y the induced velocity potential is antisymmetrical 

with respect to z, so thatlE, 1.11 vanish at all 

	

x x 	)z 
points in the xy - plane not on the aerofoil. 	Therefore 

all the derivatives vanish everywhere on the Mach cone. 

Consider the transformation:- 

cn(fr,k) = cn( + 	= 

1 -02  

where cn('`',k) is the Jacobian elliptic function of 

modulus k in Glaisher's notation. 	The interior of the 

Mach cone is represented in the 	plane by the interior 

of the rectangle with vertices + 	 2iP, the imaginary 

bet;;cen + 2irt corrosllondin:; to the 	cone and the 

Jai  
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parallel line between K 	21K' to the aerofoil. (See Fig. 

4c). 

Since the flow is irrotational it is clear that 

Vz  -Wy  =Wx -Uz  =U -Vx  = O. and it will be 

seen that in the /Z:1  - plane 

dUx  = idUv  = dUz = idVx 
••■•■ • 	 (5) 
sn -t 	 sn 

= - dV 	= idVz = dWx ,=- i ,f7 	dPI z 
snZscT e3sc,r 	 t 	/1,nc-'',', (  

It now remains to choose one function, say 

a7? 

that the velocity potential is single valued and the 

aerodynamic forces are finite. 

B y reasons of symmetry aw = 0 ony= 0 

and therefore, referring to Fig. 4c, dWx  must be pure 

imaginary on on the lines OC,AB and A'B'. 	On integrating 

dWx along OCB 	must jump in value from 0 to # r sr 
t )c 

at the point C and on integrating a long OCB' to - 	. in 

order that the boundary conditions at the aerofoil may be 

met: hence dWx  must have a simple pole with a residue 

377 
of imaginary part 2r6hr at C(X= K) and similarly poles 

with residues of opposite sign at B,B' 	K 	2iK'). 	In 

addition we require w to be constant and 	to vanish 
15 Y.  

over the two halves of the aerofoil, which need is met by 

choosing dWx  to be real on BB'. 

The boundary condition at the Mach cone that the 

first derivatives of the velocity components should vanish 

requires dW to be real on the imaginary axis, AA', to have 

no singularities on AA' that contribute to the real part 

of its integral and to have at least a simple zero at P and 

P'Cr= ± iK'). 

For the velocity components to be single 

dW x 	satisfying the boundary conditions in such a way 
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valued dWx must have no branch points or poles with 

d-r 
residues inside the rectangle AA'B'B. 	The aerodynamic 

forces will be finite provided dU x  and dU do not 

have any singularities of too high an order on the aerofoil, 

BB'. 

The necessary function is found to be:- 

dW 	= iser nd4 ^15 (A dn2 	Bk' 2 ) 
	

(6) 

where A and B are real constants such that w 

and 21u have the correct values on the two halves of the 
) 1r  

aerofoil. 	Any other function of this form would lead to 

an inadmissible singularity of one or more of the functions 

such as dWx at either r = + iK' or lr = = K + iK' 
a-t 
This function has a residue - i(A + B)/k' 3  

at the point C, 	= K, and therefore A + B = - 2 rSk' 3  
Tr 

From equations (5) and (6) we have:- 

= 	j  b: sc 2  nd4  er(Adn2 	Bkf 2 )d ft 
by 	0 

2 ( A + 4B)K(T) - (2A + 1(7+k 2 )B)E(i7) 
ki 

+1-k 2 (A +!--T(4+k 2 )B)sniacT+ (A+B)snicdit; 

+ Bk210 2 snibrirnd3ri 

.7., 1 414; k i2 (A + 4B)K - (2A + is(7+k2 )B)Ei 
 k' 	 3 

forr= K + 

Therefore in order that .bw may vanish on the 

aerofoil:- 

B = 6ki 3r . 2E - k' 2K  

	

17- 	k2(K+E) - (K-E) 



Henc- .1 
= - 1 ,  

?loc 

Also from equations (5) and ( 6) we have:- 

= 1 R 
?fx. 

= - I 	R 

177S,  

isnC nd 4  t .  (Adn Bk ,  )d r  

A + 	 - I Bk 2 icd3 "4 
3 

Now cn'T = 2i LJ 	= i t y on z = 0, so 
2 	/77"----2-7-  

-t,.1 	ix 	Y 

that icdT = y/ x2tan2  y' - y2 for z = +0 and is 

of opposite sign for z = -0 

(A + B)y  
D 1  -I- 	

2 3 

(x2tan 2r 	3(x 2 tan 	- y27 2  

on the upper surface of the aerofoil with opposite sign 

on the lower surface. 

Again from equations (5) and (6) 

t 
Su = R 	sn 2-15ncl'nd141"(Adn 2  + TIk' 2 )d 

1 
= E1A+B 

k' 

ch-I  der - k' sdls 	- 1Bk 2
s 3-L. 

3 

- A + B 	xtan 	- 

k' 3 	t, 	1 Y  
x tan  1'r  

tan-  r -y 

• Bk2x3 

3.13 (x2 tan2 /' - y2 )  3/2 

on the upper surface and with opposite sign on the lower 

surface. 

Hence u = - A B  ch-1  x an Y' 	Bk2  xy tan 'r 
le 3 	

I Y i 
3k , 3  /7CW7f? 

(7 ) 

on the upper surface of the aerofoil. 

/The excess ... 



2 Vo4. + Bk2 f x sec Y- 
1 

+ bounded terms 

E 	3k # ) jx tan r -Y 
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The excess pressure is approximately - ?uV 

and therefore the force derivatives at zero incidence 

may be readily calculated from expression (7). 	However
, 

when the aerofoil is at incidence the interaction between 

the two fields give rise to a leading edge suction which 

contributes to the yawing moment and sideforce. 

It is shown in Appendix IV of Ref.2. that, if 

the total induced velocity perpendicular to the leading 

edge is of the form the 

	

+ bounded terms , where y, is 

the distance in from the leading edge, then the suction 

force is h C 2k cosY- per unit length. 

The velocity along the leading edge y = x tan gy 

 induced by the yawing is (u cos"( + v sin ) and 

-Z1 (u cos'Ir+ v sin 	= i cosr- R c kisnlr+ icrR  

 'tx 	 ii:,1 	Jo  cnIrdn4 T 

snT(Adn2 1-  + B210 d'r 

which vanishes at the leading edge ( ° Y = K - iK'), 

and ?i (u cos Y + v sin V-) vanishes in like manner. 
Y 

Hence the velocity induced by the yawing perpendicular 

to the leading edge is (u cosecY+ bounded terms). 

The velocity  potential  induced by incidence alone is by 
4.--=/ Ref. 2 Vo(j6 2  ta-7n 1.-  - y E 

Ther6fore the total induced velocity perpendicular 

to the leading edge is:- 

V 	+ Bk2 xo  ( 	x tanr sec 	+ bounded terms 
E 	3k 43  ,) 2 

'- where x = x o  + 	 y = xotan r — cosY: 

Neglecting second order quantities the suction 

force resulting from yawing when at incidence is therefore:- 

'Tr S4  V131c3x2tan Y73Ek ' 3 	 (8) 

/Integration ... 
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Integration of the pressure distribution 

obtained from expression (7) and of the suction forces 

at expression (8) yields the values of the non-dimensional 

derivatives 4 r  ,nr ,yr 	given in Section 3. for et 4' 1. 

5. 	Delta Wing with Leadin 
Mach cone  

Ed es outside the Apex 

 

Since the region of influence of a disturbance 

at a noint is contained within the Mach cone emanating 

from that point , the flow at the upper surface of the 

aerofoil is independent of the conditions at the lower 

surface, and vice versa, when the leading edges protrude 

through the apex Mach cone. 	The flow at the upper surface 

is represented, therefore, by a potential function which 

satisfies the boundary conditions at the to surfaces 

without regard to the lower surface, and such a function 

is obtained by integrating a distribution of elementary 

solutions or sources that give the correct values of the 

normal velocity locally. 	The required source distribution 

is of strength - rgx  for y,› 0 and + rSx for y L 0 
m- 

for the upper surface. 	 IT- 

The induced potential at the upper surface is 

therefore:- 

(fc)(x,y) = - rg 
1; 

o
tan)---  

x dx dy o o o 

1(x-x 0 ) -4/3(y-yo) 2 

o 

r 
7T 

Lro 

xodxodyo  

‘il(x-x)1--.;!(y-y o 

otane.  

In Fig. 4d 7 is the point (x,Y), OL 1  and OL 2 

 the leading edges, and 71, 1  and PL 2  are the boundaries 
2 where (x-x0 ) 2  7/3 (y-yo ) 2 =0 

l+t 2 
Put xo  = x 	 9 Y o  = y q2t 2 

/ 	1 -t 	 1 -t 

/The value ... 



The value of q and t vary as follows:- 

When (x0 ,y0 ) is on (i) ?L i , t = - 1 

(ii) nL 2 , t = 

(iii)OP, t = t o  = x 4x24y2  

(iv) OX, q = qo = ' 1-t 2  

	

2t 	y  

(v) OL1 , q = ql = (x tanY--y)(1-t 2 ) 

,k(1+t 2 ) - 2t 

(vi) OL2 , q = q2- (x tanY+y)(1-t 2 ) 

_4(1+t 2 )+ 2t 

	

When P is inside the Mach cone so that x 	> 0, 
we have 

(/ = 2r S c to (10 	
q
2 

1 

4-5 	 x( 1 -t
2  )7i -ic2(1-,A,21dq  at 

'lb -1 0 t o  go  t o 	(1-t  

Having integrated with respect to q we can differentiate 

under the integral signs with respect to x, since 
go = q1 = q2 w1en t = t o, and:- 

t o f 
u = 	 x tan r 	- 2jt(x tan 'r 	dt 

77-- 	(At-1) 2+ j..2-1 	ipt-1 ) 2 4.  _, 2 

- 	x tan r 	2,(t(x tanr+y)  ! dt 

	

IT- 	t  CA, t +1 ) 2 +h2 -1 	 t+1) 

+ 2r S 	ydt 
	

( 9) 

	

-Tr 	''t ot 

  

= 2rS 	y 	tan 
F (A.2 -1 ) 3/2  

x tanY- 

  

+ 2rfc (A2-2)x tan)  tan-1  y —I  
11-0 ,F ..1  3/2 ) VI/x 2tan2  

2rSych-l x 

fflYi 

the same result being obtained for x > -fiy7 0 

/For a ... 
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For a point outside the Mach cone,(2 y > x, 

(1 1 	+1  
2r A, 	x(1 -t 2 )-ito (1  t 2 do dt 

❑ 	-1 	(12)2 

By putting t o  = 1 in equation (9), we obtain 

u = rS x tanA 	4. 
(k 2 - 1) 3/2 

and similarly for j3  y -x 

u 	rS x tan(/( 2- 2) -  
) 3/2 

By integrating the pressure distribution given 

by these expressions for u, the values of the derivatives 

quoted in Section 3. for A >1 are obtained. 
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