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Abstract

Mycotoxins in agricultural commodities are a hazard to human and animal health.
Their heterogeneous spatial distribution in bulk storage or transport makes it particularly
difficult to design effective and efficient sampling plans. There has been considerable
emphasis on identifying the different sources of uncertainty associated with mycotoxin
concentration estimations, but much less on identifying the effect of the spatial location of the
sampling points. This study used a two-dimensional statistical modelling approach to produce
detailed information on appropriate sampling strategies for surveillance of mycotoxinsin raw
food commodities. The emphasis was on deoxynivalenol (DON) and ochratoxin A (OTA) in
large lots of grain in storage or bulk transport. The am was to simulate a range of plausible
distributions of mycotoxins in grain from a set of parameters characterising the distributions.
For this purpose, a model was developed to generate data sets which were repeatedly sampled
to investigate the effect that sampling strategy and the number of incremental samples has on
determining the statistical properties of mycotoxin concentration. Results showed that for
most sample sizes, aregular grid proved to be more consistent and accurate in the estimation
of the mean concentration of DON, which suggests that regular sampling strategies should be
preferred to random sampling, where possible. For both strategies, the accuracy of the
estimation of the mean concentration increased significantly up to sample sizes of 40-60
(depending on the ssimulation). The effect of sample size was small when it exceeded 60
points, which suggests that the maximum sample size required is of this order. Similar
conclusions about the sample size apply to OTA, athough the difference between regular and
random sampling was small and probably negligible for most sample sizes.
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I ntroduction

For consumer health to be effectively protected it isimportant that consumer exposure
to natural toxic contaminants in food, such as mycotoxins, is minimised. The ability to obtain
a representative sample for analysis, from a raw material or processed product, is critical as
part of a prevention strategy. Previous studies have proved that designing sampling plans for
mycotoxins is particularly problematical because of the heterogeneous distribution of these



contaminants in bulk lots of different commodities (Stroka et al., 2004, Schatzki, 1995a and
1995b and Jewers et al., 1988). Because mycotoxin sampling is time-consuming and
expensive, a limited number of samples are taken to obtain an estimate of the mean
concentration. Normal practice isto take several small quantities of the commodity, known as
incremental samples, from different locations (European Commission, 2005). These are
mixed together to form the aggregate sample, from which a portion is extracted for analysis.
In this paper, the process of collecting several incremental samplesis referred to as sampling,
the set of discrete incremental samples is called the sample, and the number of incremental
samplesisthe sample size.

Previous studies have looked at the complexities associated with the estimation of the
mean mycotoxin concentration in bulk commodities. For example, Johansson et al. (2006)
looked at the distribution of fumonisin and aflatoxin concentration in maize. They divided
test maize samples into damaged kernels, whole kernels and other materials and found that
toxins were concentrated in the poor quality components. As a result, they suggested that
anayses in smaller samples of poor quality components of the sample provided a better
prediction of the level of these mycotoxins in the bulk lot. Whitaker (2003) investigated the
sources of error in the mycotoxin test procedure for aflatoxin in raw shelled peanuts and
described it as the combination of number of errorsincluding at sampling, sample preparation
method, and analytical method stages. In his study, the sampling step was identified as the
largest source of error. Other studies have looked at the coefficients of variation in relation to
sampling, sample preparation and anaysis for different aflatoxins (Whitaker, 2004, Whitaker
2006 and Whitaker and Wiser, 1969) and proved that the type of commodity affects the
variation in percentage error at the sampling stage. Coker et al. (1995) reviewed the
complexities associated with the design of sampling plans for different commodity types,
sample composition, sample preparation method, analytica sample and batch acceptance
level. Their review concluded that approximately 100 incremental samples are required to
obtain a 10 kg representative aggregate sample in commodities composed of large particles.
For oilseed cakes and medl, fifty incremental samples are sufficient to obtain a representative
5 kg aggregate sample. Miraglia et al. (2005) identified another source of error associated
with the sampling steps. They divided the sampling procedure into primary and secondary
sampling. The primary sampling focuses on determining where, why and when to take
samples along the food chain. The secondary sampling aims at determining and establishing
how samples should actually be collected, and more importantly how many samples to take
to obtain a representative sample. Other studies have identified the difficulties of sampling
the spatial aggregation of plant disease and have proposed different methodol ogies to address
this limitation (Maanen and Xu, 2003). Macarthur et al. (2006) identified the need to design
adequate sampling programmes that take into account the heterogeneity in the spatial
distribution of mycotoxins so that decisions on acceptance/rejection of contaminated lots are
more accurate. Whitaker (2006) discussed methods to reduce sampling error and stated that
these methods should focus on defining the number of samples required to obtain a specific
level of confidence on the mean mycotoxin concentration and on determining the location of
the samples to be taken so the likelihood of detecting the mycotoxins is maximised.

There has been considerable emphasis on identifying the different sources of
uncertainty associated with mycotoxin concentration estimations, but much less on
developing the statistical basis for robust sampling plans that account for the spatia
distribution of the mycotoxins in bulk commodities. Recent studies (Rivas Casado et al.,
2009 and Parsons et al., 2007) have looked at the potential of geostatistics to characterise the
gpatia distribution of deoxynivaenol (DON) and ochratoxin A (OTA). Results showed that
while no spatial structure could be identified for OTA due to its random occurrence,
geostatistics was a useful tool to describe the spatial distribution of DON. Some studies have



successfully looked at the application of geostatistics to characterise the spatial structure of
Apergillus flavus in soil (Orum et al., 1999), fusarium crown and root rot in tomatoes (Rekah
et al., 1999), plant pathogens in diseased plants (Chellemi et al., 1988), the downy mildew
pathogen (Peronospora parasitica) in cabbage (Stein et al., 1994) and citrus tristeza virus
(Gottwald et al. 1996).

This study used a two-dimensional statistical modelling approach to produce detailed
information on sampling strategies for surveillance of mycotoxins in raw food commodities.
The emphasis was on DON and OTA in large lots of grain.

Method

The moded was developed using the R statistical programming language (R
Development Core Team, 2007) to investigate the effect that sample size and strategy have
on determining the mean concentration of DON and OTA in bulk commodities. The method
was divided in four sequential steps. generation of mycotoxin concentration data, spatial
distribution of the generated data, repeated generation of samples and assessment of the
performance of each sample size and strategy combination. The model was then run for a
range of scenarios.

Data generation

Rivas Casado et al. (2009) analysed the spatia structure of DON and OTA ina 26t
truck of wheat with atotal of 100 sampled points, from a data set collected by Biselli et al.
(2005). The results showed that the distribution of DON was best described by a log-normal
distribution of mean 1342 pg kg and standard deviation 340, and presented spatial structure.
In contrast, OTA was best described by an exponential distribution with mean 0.57 ug kg™
and standard deviation 1.13, and was randomly distributed in space. Rivas Casado et al.
(2009) used geostatistical techniques to investigate the spatial distribution of DON in the
truck in more detail.

Geostatistics analyses the spatia structure of a variable (in this case mycotoxin
concentration) using the variogram, a graph that relates the distance between any two points,
known as the lag distance, with their semivariance (Figure 1). Generaly, points close
together have more similar values than those farther apart, giving low semivariance, or
conversely high autocorrelation, at short lag distances. Each variogram can be described by a
set of parameters: the sill, the range and the nugget. The sill isthe a priori variance, 62, of the
process and is generally assumed to be equal to the variance of the population (Barnes, 1991).
The range is the point at which the semivariance approaches the sill, so the autocorrelation
between pairs of points becomes 0, marking the limit of spatial dependence: points farther
apart than this lag distance are spatially independent. The nugget is the semivariance at alag
distance of 0, and identifies the measurement error and the variations that occur over lag
distances less than the shortest sampling interval (Webster and Oliver, 2000). Geostatistical
anaysis is more effective when the variable has a norma (Gaussian) distribution. For this
purpose, the data were log transformed (natural 10g) to meet the normality requirement. The
results showed that the spatial structure of DON could be described by a variogram with
range 4.35 m, sill 0.07 and nugget 0.013. The spatial structure defined by these parameters
was assumed to be representative of DON in bulk commodities, in the absence of other data,
and was therefore used as areference condition for data generation.

Two different procedures for data generation were used based on the findings
described by Rivas Casado et al. (2009): classical statistics for OTA and geostatistics for
generation of DON concentration. The classical statistics procedure allowed the generation of
random deviates of an exponential distribution with a density function:
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where X is the concentration of the mycotoxin and A (4 > 0) is the rate parameter estimated
through maximum likelihood (Equation 2)

A= 2
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where X is the sample mean concentration. This only required the mean concentration of the
mycotoxin as an input parameter for the generation of data.

The geostatistical procedure generated simulations of normal random fields for the
given variogram parameters. This was implemented using the geoR and RandomFields
packages from the R programming language (R Development Core Team, 2007). This
procedure required values for the sill, the range and the mean of the DON population to be
generated. It was assumed that the data represented values that had been transformed to give
anormal distribution, for example by alog transform, so the mean and sill should be those of
the transformed data. The results were transformed back to the original units for
interpretation. The procedure could not fully control the properties of the simulated
population due to processes for random generation of values, so several were generated for
each set of parameters, then the variogram for each was displayed and compared to the target
variogram to select the one that best represented the target spatial distribution.

Spatial distribution

The sampled area was always represented by a 1 unit x 1 unit square, which could be
scaled to the required dimensions. The data values were generated on aregular grid of 2500
points (50 x 50) in this area according to the chosen spatial distribution. For OTA, the
generated values were randomly assigned to the grid points. For DON, the values were
distributed in the space according to the specified sill and range values. The grf function from
the RandomFields package in R was used for this purpose. This function generates
simulations of normal random fields and distributes them in a unit square accordingly to a
given a set of variogram parameters. The generated data set was treated as the true
representation of DON or OTA concentration in a bulk commodity from which samples were
to be taken.

For each set of parameters for either the geostatistical or classical method, M data sets
were generated, where M was usually set at 30. The variability of the redisations generated
was derived from these M simulations (Figure 2).

Repeated generation of samples

The simulated distribution was sampled using different sample sizes and two
sampling strategies, regular square grid and random, to derive statistics to allow them to be
compared. Each sample size between 4 and 100 was then selected R times per simulation,
where R was fixed at 30. For random sampling, the required number of values was drawn
from randomly selected points, so al sample sizes between 4 and 100 were possible, and
repetition used new random samples. For regular grids, the only sample sizes considered
were those that formed squares, that is the nine regular grids with 2-10 points in each
direction giving 4, 9, 16, 25, 36, 49, 64, 81 and 100 points. In this case, repeated samples
from the same distribution were taken by changing the origin of the grid. There were thus a



total of 87300 (30 x 97 x 30) and 8100 (30 x 9 x 30) automated results for the random and
regular grid sampling strategies respectively (Figure 2).

Assessment of the performance of sample size-strategy combinations

Two statistics must be considered for the quantification of sample and population
differences. accuracy and precision. Accuracy is measured by the bias b, which is the
difference between the sample mean concentration 4 and the population mean concentration

u. (Equation 3). If the mean of the sample is equal to the mean of the population, then £ is
said to be unbiased, otherwiseit is said to be biased

b=/j-p ©)

Precision is the degree of mutual agreement between al the points in the sample and
is estimated by the standard deviation of the sample & :

(4)

The performance of each of the combinations of sample size and sampling strategy
was assessed using the Root Mean Squared Error (Equation 5). This statistic combines
accuracy and precision. The smaller the RM SE, the better the estimation of the sample mean.
The RMSE has the advantage of having the same units as the variable under study (ug kg™).

RMSE = /62 + b? (5)

A set of RMSE;; where i is the ssmulation number (1 <i < 30), n is the sample size
(4<n<100) and r is the repetition (1<r <30) was obtained by repeatedly calculating
RMSE values for a specific sample size. The distribution of RMSE values is approximately
norma when more than 30 repetitions are calculated (Cochran, 1953) and therefore,
confidence intervals can be calculated. The size of the confidence interval for each sample
Size and strategy was calculated by multiplying the standard error of the 30 RM SE values by
the standard normal value c for a specified probability level. To model the effect that the
sample size had on the RMSE, a locally weighted regression smoothing (LOESS) function
(Higgins, 2004) was fitted to the RMSE confidence interval with the sample size as the
independent variable.

Level of contamination

The analysis was repeated using three different means, for both DON and OTA, to
have a representative result for a range of concentrations. The selected concentrations were
below, close and above the maximum level of DON (1250 ug kg™?) and OTA (5 ug kg™) set
by the European Commission (European Commission, 2006). For DON the model was run
with log-normal DON data sets with mean 6.43, 7.14 and 7.82, that is 10g625 pg kg,
l0ge1261 pug kg™t and 10962490 g kg™, respectively. For OTA, the model was run with
concentrations 0.6 ug kg™ (found in the data from Biselli et al. 2005), 5pugkg”® and
10 ug kg™. The spatia structure parameters found in the data from Biselli et al. were used as
reference values to generate DON data for any of the three mean concentrations considered.
The variogram parameters used were sill 0.07, range 4 m, and nugget O.



A total of 30 simulations (M=30) of log-norma DON data sets with mean 7.14 and 30
simulations of exponential OTA data sets with mean 0.6 pg kg™ were generated to assess the
reliability of the methods for data generation. The results showed that there was little
variation between simulation, so subsequently only one was run for each set of parameters.

Results

For DON, the results for the assessment of the reliability of the geostatistical method
for data generation showed that the approximations to the requested population mean and
standard deviation were close to the target values: for the 30 simulations the average of the
population mean was 7.15, which was close to the 7.14 target mean. The maximum and
minimum popul ation mean obtained were 7.26 and 7.00, respectively. The standard deviation
(o = 0.27) obtained was also very close to the target value (o = 0.23), this being determined
by the sill of the spatial structure.

The simulated DON spatia structure showed that the nugget and the sill were close to
the required values. The mean sill was 0.069 with a standard deviation of 0.0068 which was
very close to the 0.07 target. This was consistent with the results obtained for the standard
deviation of the population. The mean nugget was 0.0010 with a standard deviation of 0.0037
which was also very close to the O target nugget. The values of the range did not accurately
adjust to the target value. The mean range obtained for the 30 repetitions was 0.165 units with
astandard deviation of 0.056, which differed considerably from the target value of 0.4 units.

For OTA and atarget mean of 0.6 ug kg™, the thirty simulations had a mean value of
0.602 pg kg and a standard deviation of 0.012. This showed that there was little variation
between generated data sets for the same target value.

For both cases, the statistics derived by repeated sampling from different simulations
with the same parameters differed little between simulations. As noted above, it was
concluded that it was sufficient to generate one simulated population for each set of
parameters.

The RMSE changed in proportion to the mean concentration. For example, for the
simulation of DON with mean concentration of 625 ug kg™ and for different samples, the
RMSE was 90-300 ug kgt (14-48% of the mean) and for the simulation with mean
concentration of 2490 pg kg™ it was 300-1100 pg kg™ (12-44%). Similar results were seen
for OTA.

The genera pattern observed for the mgjority of the LOESS equations fitted showed a
decrease in the slope of the curve at 40-60 samples (Figure 3), beyond which the RMSE did
not decrease as significantly for each increment in the sample size. The RMSE is made up of
the sample standard deviation and the bias. The bias should tend to O when increasing the
sample size and therefore the main contribution to the RMSE for large samples is the
standard deviation of the sample. For sample sizes close to the population size, the RMSE
would be very close to the standard deviation of the population and no further gain in
accuracy could be obtained. This point was reached at 40-60 samples.

For DON, the graphs of RM SE + 95% confidence interval (Figure 4a) showed that the
results of regular grid sampling were more consistent than random sampling. For a given
sample size, the RM SE for random sampling was sometimes as low as or lower than that for
regular grid sampling, but in most cases it was higher. This is probably the result of bias
introduced by clusters of relatively closely spaced, and therefore correlated, points. This
suggests that it is better to use regular grid sampling strategies when spatia structure is
expected for the mycotoxin concentration. For OTA (Figure 4b), the difference between the
strategies was small. The scatter-plots for the RMSE + 95% confidence interval showed



overlapping results for the two methods. In general, for the OTA data sets the difference
between the two sampling strategies was negligible.

Discussion

The assumptions made in the model and its limitations, particularly the distributions
used, must be considered when interpreting the results and should be verified in practice.

The model was reliable at generating data sets with the target DON and OTA mean
concentration. However, in some cases the model failed to reproduce the target spatia
structure for DON. When the maximum range value generated was below the target range, a
less smooth spatial distribution than intended was generated. In genera this would be
expected to reduce the differences between random and regular sampling, and to increase the
bias. Despite this, clear differences were found between the two sampling methods. If the
intention in future was to simulate a particular observed distribution, this could be done by
increasing the target value of the range until the result from the simulated data matched the
observation. In this case the aim was to examine a range of possible distributions. Consistent
results were obtained across al mean concentrations, and contrasts were found between
random and regular sampling.

For both strategies and both mycotoxins, the accuracy of the estimation of the mean
concentration increased significantly up to sample sizes of 40-60 (depending on the
simulation). The effect of sample size was small when it exceeded 60 points, which suggests
that the maximum sample size required is of this order. European Commission regulations
specify 60 incremental samples from grain lots of 10-20 t and 100 incremental samples from
lots over 20 t (European Commission, 2005). The model results show that these would be
adequate in the cases simulated. On this basis, there is no evidence to recommend either a
reduction or an increase in the number of incremental samples. These results are also
consistent with the findings of Coker et a. (1995) that 50-100 samples are required for
different aggregate sample masses.

The model was designed to simulate lots of the order of 10-100t. There is no
evidence on the spatia structure at smaller or larger scales so the results should not be
extended at these scales without further data collection and anaysis.

The samples used in the simulation are idealised: each is the exact value a a single
point, and the mean is calculated precisaly. In practice each incremental sample takes a small
mass of grain, these are mixed and the concentration is measured in a subsample. Thus there
are two additional sources of error: the difference between finite incremental samples and
point measurements, and the difference between the mean of the idealised samples and the
concentration measured from the aggregated sample. The effects of mixing and subsampling
have been investigated by Whitaker (2004, 2006), and should be considered when examining
the total uncertainty. The mass of an incremental sample is normally 0.1-1.0 kg, which
implies that the dimensions are of the order of 0.1 m. This is small compared to the scale at
which the model is intended to operate. It is therefore reasonable to treat the incremental
samples as point measurements.

The random sampling method in the modé is truly random: al points are equally
likely to be sampled, independent of which others have been selected. In practice, when
someone samples from a bed of grain, they are unlikely to take two samples very close
together, so rea sampling behaviour is likely to be intermediate between random sampling
and regular grid sampling.

The model was based on a single set of data for DON and OTA. Further research
would be needed before drawing more general conclusions.



The model does not consider the variation in mycotoxin concentration with depth, but
only in two horizontal dimensions, because no data were available. Indeed, sampling using a
conventional sample spear aggregates over the depth from one point on the surface. The data
used to develop the model came from this type of sampling, so it is intended to be an
empirically based representation of normal practice. Recent works on geostatistical science
provide a methodology to develop 3D geostatistical models (Culshaw, 2005 and
Stavropoulou et al., 2007) and could be applied to mycotoxin concentration, if suitable data
sets were collected.

Conclusions

The model focused on the effect that the sampling protocol has on determining the
statistical properties of mycotoxin concentration. The conclusions drawn in this study must
be understood as preliminary outcomes of the model. The assumptions made in the
development of the model and its limitations must be considered when interpreting the
conclusions.

This study showed that the accuracy of the estimation of the mean concentration
increased significantly up to sample sizes of 40-60, which is consistent with the number of
incremental samples taken from bulk lots under EU regulations. This applied to both spatially
structured and randomly distributed data across the range of mean concentrations used.

A regular grid proved to be more consistent and accurate in the estimation of the
mean concentration where there was spatial structure (DON). The difference between the two
sampling strategies was negligible for randomly distributed data (OTA). This suggests that
regular sampling strategies should be preferred to random sampling, where possible.
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Figure 1. Example of avariogram function showing the sill, range and nugget parameters.



[ Data generation ]
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Figure 2. The iterative process followed by the model.
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observed for DON for random (a) and regular (b) sampling strategies. The model was run to
simulate a bulk commodity with mean DON concentration 7.14 (10ge1260 pg kg!) and a
gpatial distribution described by a variogram with range 4 m, sill 0.07 and nugget 0. The final
simulated values were mean 6.5, range 3.66, sill 0.067 and nugget 0.0091.
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strategies. The model was run to ssimulate a bulk commodity with (a) a mean DON
concentration of 7.14 (10ge1260 ug kg) and a spatial distribution described by a variogram
with range 4 m, sill 0.07 and nugget 0; and (b) a mean OTA concentration of 0.6 ug kg™ and
random spatial distribution. The final simulated values were mean 6.5, range 3.66, sill 0.067
and nugget 0.0091 for DON and mean 0.577 for OTA.



