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1. Introduction

The aim is to find a good aircraft noise annoyance Dose-Response curve, ie to
measure how people’s annoyance varies with their exposure to aircraft noise. The
focus is on practical and robust techniques with the minimum of modelling
assumptions. Useful background sources are Brooker (2004) and Fidell & Silvati
(2004).

The starting point here is what an ‘ideal’ Dose-Response relationship might be like.
An examination of some real UK data then puts this into perspective. The kinds of
practical problems indicated by the real data show the potential complexity of the
Dose-Response functional dependence. Moving average techniques could be useful
because they provide large ‘synthetic’ samples – some explorations of a large
dataset confirm that this would be a worthwhile approach.

2. The Ideal

Two key concepts are Response and Dose:

Dose: physically measurable combination of noise parameters, combination of
objective physical, measurable parameters about aircraft noise at a particular
location

Response: expression of annoyance, ie measure – or combination of
measures – of people’s feelings about aircraft noise at that location.

Figure 1 shows the ideal: there is a relationship between Dose and the Response,
something like an S-shaped curve. The graph describes an average person and the
dose is also some kind of average – both issues are explored further here. People
are not annoyed when there is no noise, possibly 100% of people are annoyed at
extremely high noise, and the two extremes have to be joined smoothly. However, it
is difficult to rule out a quite complicated monotonic curve.

Policy makers want to know if there is some Dose value below which people ‘are not
annoyed’, but the evidence is that this is a very low Dose value. There might be
some value of the Dose marking the ‘Onset’ of rapidly increasing Response. Where
one would place such an Onset is open to debate. More usually, policy makers
decide upon one or more Response/Dose Standard values. Airport noise exposure
contours generally use particular Standard values.
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Figure 1. Ideal Dose-Response relationship

3. Reality in the UK – and elsewhere

In reality, Dose-Response relationships are more complicated. Figure 2 is taken
from the ‘ANIS’ data in Brooker et al (1985). This is rather middle-aged data, but
serves to illustrate some issues well because the data on noise and socio-economic
variables are extensive. Note that this is a dataset from a single exercise, ie the
context/questionnaire is the same for all respondents.
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Figure 2. ANIS data on %HA and Ldn
[The large Feltham A symbol conceals a ‘Feltham B’ point.]

The Response in Figure 2 is taken to be the percentage of people at a particular
location who say that they are ‘Highly Annoyed’ – %HA (Fidell & Silvati, 2004). The
Dose is the noise measure Ldn. The values shown are approximate – conversions
from the usual UK Leq metric. Ldn is widely used for international comparisons.
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The scatter plot data in Figure 2 are for a variety of social surveyed sites near the
major UK airports. The dotted line is an exponential fit to the dataset. Is there a
better fit? And why are some points well above or below the fitted curve?

First, consider the Feltham A data point, a large round symbol above the fitted curve.
It has also been marked with a vertical confidence band. The %HA data points in the
Figures are actually approximately binomial samples. Suppose p is the proportion of
HA in a population for a specific Ldn value. The survey data is a random sample of
size n; if X is the count of HA in the sample, and, if n is small relative to the
population size, X is an approximately binomial random variable with mean and
standard deviation:

For Feltham A, n = 88 and p = 0.52, so the standard deviation is 4.7. This produces
an approximate statistical 95% confidence band of 10.4% either side of the plotted
percentage point. But the typical observed standard deviation for a particular Ldn
value is much larger. This cannot be a simple sampling fluctuation. The rest of the
points in the Figure have similar-sized sampling confidence band sizes to the
Feltham A point.

First, Feltham A, which is to the south east of Heathrow airport and mainly affected
by easterly takeoffs. A possible explanation for the high point is that people are
rating their disturbance when affected by the recent operations of the airport rather
than averaging out the Leq energies (?) for the different airport runway operation
modes – different ‘noise climates’ – over a long period. Brooker et al (1985) shows
that people’s surveyed reactions were more highly correlated with their exposure
during the previous week than with longer periods or at the worst times. For this
dataset, Heathrow operated easterly for 27.5% of the time during the summer period
for the Ldn estimate in the Figure. But during the week before the social survey at
Feltham A, the easterly percentage during the daytime was 67.5% – a huge
difference. This meant that the Ldn value for that period was nearly four decibels
higher than the summer average. A four decibel shift to the right on the Figure would
put the Feltham A point just about on the fitted curve.

If people’s annoyance attitudes vary markedly with their most recent experience, then
the question is how to estimate a sensible ‘average’ value for their annoyance? The
estimated average annoyance over a summer period would be a sum of an
appropriate weighted average of the Ldn values (assuming that was the best physical
measure correlating with annoyance).

For estimates of future aircraft noise contours around an airport, it would be
necessary to decide upon some kind of standard mix and duration of noise climates.
Note that simply using ‘Worst Mode’ contours would not work: it would be inequitable
to (say) treat two places with the same worst mode value as suffering equivalent
disturbance if one place gets it 75% of the time and the other 25% of the time.

The Colnbrook example has even more possible contributing factors. Colnbrook is to
the north west of Heathrow airport. Its main noise exposure is from westerly airport
operations. Similarly to Feltham A, the ANIS survey at Colnbrook was during a
period with a high proportion of easterly operations. In the week before the survey,

and (1 )   X Xnp np p
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the Ldn was slightly more than four decibels lower than the summer average. A four-
decibel shift to the left would bring the Colnbrook point only slightly below the fitted
curve.

Even the average Ldn estimates used in Figure 2 – and any of the studies discussed
later – are subject to some inaccuracy. This arises from the facts that the noise
estimates quoted for one location probably cover a widespread community (Brooker
et al, 1985 – Appendix E); and that noise estimates involve some extrapolation from
a sample data collection.

Socio-economic factors also could affect the Colnbrook responses. About 18% of
the respondents in that survey had work connections with the airport. ANIS showed
that this connection with the airport was the major confounding factor, to high levels
of statistical significance. High noise exposure had been a feature of living in
Colnbrook for some years prior to the study – particularly since the operations of
types such the Trident, B747-100 and Concorde. The likelihood is that there had
been some ‘sensitivity sorting’ in the Colnbrook housing market, so that people living
there during the ANIS data collection might not be typical of the general population.

Thus, there are at least four potential factors to explain why individual data points
would not be on the underlying Dose-Response curve:

Sampling variations, dependent on the survey sample size

Variations due to airport operation mode if there are annoyance 'recency'
effects

Employment connection with the airport tending to imply reduced annoyance

Sensitivity differences, with population sorting at the highest noise exposure
locations.

Housing mobility does vary considerably between countries, depending on the
balance between supply and demand, and the total costs of moving home. In the
USA/Canada, the legal costs of moving home are generally much less than in
Europe, although the UK has low moving costs compared with continental countries.

Thus observed social survey data points have a potentially very complex functional
dependence on noise, socio-economic and airport operation variables. Previous
work enables identification of prima facie explanatory factors, but large-scale social
surveys and noise estimation programmes would be necessary to measure their
effects with statistical confidence, ie to ‘see through’ the inherent sampling variations.

4. A ‘Best’ Fit: Some Attempted Solutions

Most of the past effort on developing a best fit to aircraft noise annoyance data has
concentrated on combining data from different studies and then finding a curve fit
that best matches the data as a whole. The usual technique is non-linear regression
analysis. One of the most quoted early papers on this approach was by Schultz
(1978); recent reviews are Miedema & Vos (1998) and Fidell & Silvati (2004).

Some of the curve fitting studies used datasets with air, road and rail transport noise
doses. However, factors such as the airport mode of operation and employment
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connection with the airport are much less important for these other kinds of transport.
Road and rail operations are generally similar in nature from day to day – and not
much affected by the wind direction! Major airports employ large numbers of people
and have a substantial infrastructure employing many more, and most of these
people tend to live within commuting distance of the airport, ie in comparatively high
noise exposure locations. The following analysis uses air transport data.

The curve fitting approaches start with a scatter plot and then fit the data to the ‘best’
functional form. Examples of this method are Fidell & Silvati (2004) – the dataset in
Figure 3: it is vital to scrutinise raw data. The average sample size in the Fidell &
Silvati dataset is about 160 – but with wide variations (hence the data points shown
are not of equal statistical value), corresponding to a typical 95% sampling error bar
of ±7%.

The major problem is determining an appropriate fitting function f(x, a, b). If the fit
between the curve and the data is not very good, then the residuals, ie the
differences between the data points and the fitted curve values, will show strong
patterns when plotted against their xi values. There is not agreement about what is
the best f(x, a, b) for aircraft noise annoyance as function of Ldn. Fidell & Silvati
quote seven different functions.
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Figure 3. Fidell & Silvati Dataset.

5. Pragmatic ways around the Inherent Problems?

If the aim is to get the best fit using the large amount of extant data, then some
problems are inherent. The variability of data points around the ‘true’ curve arises for
a complicated set of reasons. Sampling variation is obviously there: the only cure for
that is much larger samples. Similarly, the fitted estimates assume some kind of
average questionnaire/survey context, again based on the variations in the past set
of studies. The amount of variation should be less for more recent survey work if
researchers are tending to move towards some kind of best practice, but that does
not solve issues arising from past work, so a current best fit is a kind of average
across past studies.

Population sorting because of people’s sensitivities and the effects of employment
connected with the airport are intrinsic. The actual effects depend on the relevant
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socio-economic factors – nature of industrial patterns near the airport, the efficiency
of housing markets, etc. This limits the applicability of average results, even from
large data sets, to countries with similar average housing markets (note population
sorting in Amsterdam – van Praag and Baarsma, 2005). Predictions of future
disturbance assume the average effects in the combined data set. Excluding such
respondents from analyses would presumably not be ethical, because these are real
people living around the airport, whose views should surely be included.

Finally, there is the problem of modal effects. These represent a defect in the
existing Dose-Response model, in that the ‘true’ Dose is not the estimate used in the
dataset. This corresponds to an error in the presumed independent variable, and so
complicates the usual framework for regression analysis.

Most of these modifying factors represent variations in the surveyed airports’
environs and their modes of operations. The observed statistical variations arising
from these factors are properties of their past distributional characteristics, and hence
would – at best – be repeated approximately in future research studies.

Is there, perhaps as pre-model processing before curve fitting is attempted, a
smoothing process that properly averages the large amounts of data? Can this be
done in a way that reduces sampling variations, averages out variations in study
context/questionnaire, and makes an effort to ‘balance out’ modal effects? An
approach is to apply a moving average to the data. This combines (purportedly)
consistent sample data to generate much larger ‘synthetic samples’. Moving
averages’ main use is in the analysis of time series data, but they are equally suitable
as a generic smoothing operation where data has a natural sequence. The use of a
moving average does not add modelling assumptions about the underlying curve
shape.

The smoothing form adopted here is a centred moving average – a 7-point average.
This effectively multiplies the data point’s sample size by 7, and hence reduces the
sampling standard deviation typically by about a factor of 2.6, producing a typical
95% sampling error bar of ±2.5%. An n-point average is appropriate in cases when
the number of data points is much larger than n.

The first step is to rank the raw data is in ascending Ldn order. Then, let xi be the
Ldn value for the ith data point, Wi be the number of people responding in the ith

survey, and yi be the percentage of people saying they are highly annoyed in the ith

survey. The 7-point centred moving average value Ŷi at xi is found from:

Ŝi = yi-3.Wi-3 + yi-2.Wi-2 + yi-1.Wi-1 + yi.Wi + yi+1.Wi+1 + yi+2.Wi+2 + yi+3.Wi+3

Ŵi = Wi-3 + Wi-2 + Wi-1 + Wi + Wi+1 + Wi+2 + Wi+3

Ŷi = Ŝi / Ŵi

As the points in the Fidell & Silvati dataset – 326 of them – are dense in the usual
Ldn range, the average spacing between the successive (ranked) x-values xi-3 to xi+3

is on average very small (probably markedly smaller than the precision of the Ldn
estimation). This is a good reason for asserting that Ŷi is a good estimate of the
%HA value at xi, with a sample size of Ŵi. Moving averages should generally match
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the underlying shape of Dose-Response curves, ie with smooth monotonic variations
and without strong points of inflection.

6. Moving Average Explorations

What does the Fidell & Silvati dataset generate with a 7-point centred moving
average? Figure 4 shows the results, which also includes a simple cubic fit to the
moving average points.
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Figure 4. Fidell & Silvati 7-Point Moving Average Data, with cubic fit

The %HA values are squeezed together vertically in Figure 4, but the scatter plot is
still messy. Many of the data points are well away from the fitted cubic trend line,
even when allowing for the data points’ vertical sampling confidence bands. There is
still a great deal of statistical structure/variability in the data.

One obvious possibility is that the true Dose-Response curve is somehow changing
over time (compare with Brooker, 2008). The data is therefore divided into three
time-periods: Pre-1980, 1980s, and 1990s/2000s. This results in the three diagrams
in Figure 5. The first and third now look very encouraging, ie much more like a
smooth curve – the data is combined but otherwise unprocessed. The fact that long
segments of these datasets naturally fall onto a smooth curve is strong evidence that
these are near to best-fit relationships.

However, part (b) of Figure 5 is much less successful. From an examination of the
studies involved, there seem to be two potential reasons why this might occur: some
of the studies are of military operations and others are for ‘New Effects’ airports. The
reason for filtering military operations data is simply that people’s reactions to military
aircraft might be different to that from ‘equivalent’ amounts of noise from civil flights
(eg Waitz, 2005). A New Effects airport has no immediate definition, but it would
usually be one at which large numbers of extra flights took place over affected
populations in the recent past, eg because of the opening of new runways. This
would have two effects on people’s annoyance: first, the affected people would be
responding not just the actual Ldn but also to marked increases in its recent values;
second, people with high sensitivity would be getting much higher noise exposure,
but would not yet able to move to a lower noise exposure location. There is ample
evidence from the earliest literature – eg Fidell et al (1985) – that New Effects traffic
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changes shift the Dose-Response curve markedly upwards: how large this effect is
and how long it persists are complex questions to answer.
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Figure 5. Fidell & Silvati %HA data, time groups, 7-point moving average, fitted lines
(a) and (c) cubic, (b) exponential

The obvious New Effects airports and military operations studies in the Fidell & Silvati
dataset are: Vancouver Round 2, Burbank Aircraft, Orange County Aircraft, Bodø
Lufthavn, U.S. Airbase, and Long Beach. Most of these studies are in the 1980s, so
excluding them markedly reduces the number of data points in that period.
Arbitrarily, the remaining data is divided into Pre-1990 (157 data points) and
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1990s/2000s (85) data points. Figures 6 (a) and (b) show the results for this filtered
data, including approximate 95% sampling bands for the moving average points.

These appear to be good fits. The structure in the processed data beyond a smooth
curve variation probably arises arise from the inclusion of some datasets at New
Effects airports, very strong socio-economic/industrial and airport modal effects, and
survey mode differences. Note also that the quality of some of the very early data is
likely to be much poorer than that of later studies (Brooker, 2008).
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Figure 6. Fidell & Silvati %HA data in time groups, filtered (see text), approximate
95% sampling bands and cubic fitted lines

7. Conclusions

The aim has been to find a good aircraft noise annoyance Dose-Response curve,
using practical and robust techniques with the minimum of modelling assumptions.

Several socio-economic/industrial and airport operation factors affected Dose-
Response data. This includes ‘population sorting’ at higher noise exposure locations
and employment connections, which are likely to reduce annoyance reactions at
higher Ldn values; and airport modal effects on people’s recent noise exposure
experience, which will produce a defective Dose-Response relationship.
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Simple moving average smoothing of the data is a useful procedure. This enables
the construction of synthetic large samples – without curve modelling assumptions. It
makes apparent the Dose-Response data’s underlying structure. It is straightforward
to fit simple curves to this processed data, and to indicate statistical confidence.
Note that the large amount of Dose-Response data available is not sampled from a
single curve, but rather from a variety of such curves. The assumption is that there is
the same underlying ‘mix’ of characteristics in the future.

The analysis has to exclude data from new runways, etc airports. The affected
people would be responding to marked Ldn increases over a comparatively short
time, not just the actual Ldn at the time of survey. The degree of population sorting is
an issue, ie people with high sensitivity moving to a lower noise exposure location.
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