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SUMMARY

The fundamental problem of structural design is the determination
of structures of minimum weight which safely equilibrate a given
system of external forces. The classical theorem of Michell gave the
basic requirements for such a structure. The first part of this paper
analyses the geometrical layout of two-dimnensional structures which
satisfy these requirements, making use of the analogy with the theory
of plane plastic flow. Expressions for the calculation of sizes and the
total volume of the structural members are developed., Method of
graphical construction of the siructural layout is also given.

In the second part, the analogy with a known solution of plastic
flow is used to develop solutions for a cantilever under tip shear
force and a beam under uniform bending moment. Comparisons with
the conventional types of construction are made and the superiority
of the Michell structures are demonstrated,
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NOTATION

A, B L.ame's Parameters, defined in eq. (1)
a, b +1 or -1 {eq.11)

C compregsive forces in members

d depth of cantilever or beam at the supports
e sirain

f siress

B external applied forces

G Green's function, defined in eq. (26)

I Modified Bessgel Functions

Jd Bessel Functions

4 span of cantilever or beam

M external applied moment

T radius of circular arcs

¢

g3

distance along any line

t, 1, eguivalent thicknesses of sheets of elements
T, T, = t,B and t A respectively as defined in eq. (32)
T tensile forces in members

U, v virtual displacements in «,f directidnﬁ

v volume of structure

%, ¥ rectangular co-ordinates

a s ff curvilinear rco-cardinaﬁes

& angle between o-direction and x-direction

o, T ancther set of %ariables defined in eq. (57)

W rotation

Gther symbols are defined in the text.



PART 1

MICHELL OPTIMUM STRUCTURES

1. Introduction

The basic problem of structural design, as opposed to structural
analysis, is the determination of structures of minimum weight, which
equilibrate, with safety, a given system of external forces. The
classical thecrem in this subject is due to Michell (Ref. 1}. Recent
interest in Michell structures has stemmed from two saurce% Cox
{Ref. 2,3) and Hemp (Bef. 4) have considered the application of
Michell's results to 'elastic' design problems, while Dfucker and
Shield (Ref, 5} and Prager (Ref. 8) have leveloped and applied the
corresponding resulis in the field of 'limit design'. These two problems
are closely related mathematically and owe much to the techniques
developed in the field of perfect plastic flow, accounts of which are
given by, for example, Geiringer (Ref. 7), Hill (Ref. 8) and Prager
{Ref. 2}. The present paper makes much use of this analogy.

2. Michell's Theorem

Consider the problem of designing a2 frame structure S, within
a given region of space R, io equilibrate a given system of forces
or to transmit their action to given surfaceg of 1gld support. Let
us assume that there exists such a framework S which satisfies
the following conditions:

{1) The stresses in all members are equal to i, where { is

the 'allowable stress' for tension and compresgsion.
{2) There exists a virtual deformation of the region R, with
displacement vanishing on the surfaces of support and Wlth
strains along the members of s* equal to *e, where the sign
agrees with that of the end load carried by the particular member,
and such that no linear strain in R exceeds e, which is a small
positive number, in absolute value,

Michell's Theorem then states that the velume of the structure 8
is less than or equal to that of ﬂnv other frame work 5, which safely
eguilibrates the given forces. Proofs of this result are tc be found
in Refs. 1 and 4.

One immediate consequence may be noted. If in a particular problem
it is found possible to design a structure all of whose members are in
tension, or alternatively compression, then the optimum design
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hag been achieved, since a uniforin dilatation of space with linear
strain e, or alternatively {-e}, clearly satisfies condition (2) above.
This special case will not be considered any further in this paper.

In general it is clear that the members of the optimum structure
must lie along lines of principal strain in the virtual deformation, since,
if this were not so, a direction couid be found, at a point on a member,
for which the direct strain had a magnitude greater than e, conirary
to condition (2). Also a tension and compression member, which meet
at a node, must be orthogonal, since they lie along principal directions
with unequal principal strains e and {-e). The layout lines for members
of 8% are thus lines of principal strain in a strain field whose principal
strains are T e. A study of this kind of strain field is thus a necessary
pre-requisite for the construction of Michell optirnum frame works,

3. Analysis of the Virtual Deformation

Attention will be cenfined, for simplicity, to the special case of
two-dimensional frameworks and those corresponding deformation
patterns for which the principal strains are e and {-e). The lines of
principal strain then form a plane net of orthogonal curves, which may
be used to desine, in at least a limited region of the plane, a right-
handed curvilinear co~ordinate system (o, f) for which the line element
ds is given by

ds? = A?da® + B 4p° {1)

where A, B are pcsitive functions of «, 7. Positive directions along
the co~ordinate curves are taken as those for which « and 5 are
increagsing and at any point in the plane these directionsg may be used
to define componentsof virtual displacement (u,v) (see Fig, 1. The
direct strain in the a-direction will be taken as (e) and that in the

£ -~direction as {(~-e). The associated shear strain is zero, since these
directions are principal directions, ¥Finally the rotation at (« , £) will
be denoted by w.

The relations between the displacement components and the strains
and rotation are given for curvilinear co-ordinates by Love (Ref, 10).
Using these results one obtains the equations:
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t St As ot e | (3)

R E e () =0, (@)
and Wr’%‘ﬁ :%&(Bv) - 3;) (& J = 2w, (5)

Further transformation is facilitated by the introduction of
the angle ¢ between the positive « -direction and a fixed reference
direction, which may be taken as 'i;he x-axis of a right-handed orthogonal
Cartesian systemsO({x,y) {see Fig. 1). It may be shown as in Ref. 4,
Appendix A that

8¢ . _1 a4 8¢ . L 3B, (6)

Ba B 08 7 o = A da ° ’

Solving equations (2} ... ({(5) for the derivativ fu, v
and eliminating the derivatives of A, B by (6) gives

ou . _ 9% ou o4 :

m—— = A @ = - W s {

da A M 9 B VR (7)

ov ‘ o OV - O )

e DS £ st e - Y= b o 13

I S rr B - =e - (8)

Eli mination of u, v between {7) and (8) gives

0 2 = 0 L 92ed) = 0, £}

mgn;é w - 2ed} = 0, 3/’7 {w + 2e¢) = 0, {9)
and elimination of v gives

D7 ¢ .
e o g, (10)

Adedy

Eguation (10) is the compatibility equation for the Michell
virtual strain system. If expresses a geometrical restriction on the
form of the layout lines, which is identical with that expressed by
Hencky's Theorem for the slip-lines in plane plastic flow. The analogy
with plastic flow is seen even more closely in equations {9}, due to
Prager (Ref. 6}, which may be compared with the Hencky resulis as
given for example in Hill (Ref. 8).
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. Imtroduction of Special Co-ordinate Systems

(A) Case 1.

34 o) - )
5 and ..,5.? do not vanish

in the region of our co-ordinate system which is of interesi to us.

This means that in this region the co-ordinate curves have no inflexions.
In this case it is convenient to choose the co-ordinates e, £ as numerically
equal to the values of ¢ on a fixed pair of co-ordinate curves (Fig. 2j.
Equation (10}then integrates as

Consider first of all the curves where

¢ = aw + bf (a, b = =z1), (11)

{cf Ref. 7}, and the varicus cases are illustrated in the diagrams
{a) to {d) of Fig. 2. A formula for v follows from (9}, which gives

w = 2efaa -Dbpf) + O (12)
where w is the value of w when «= g = 0. Equations for A, B follow
from (6), giving

a /ji\, GE s

T = - aB, = = bA, {13}

afs de
and hence,

~n2 Lil

o £ b

Setoe 4 abA = O, -

duaps L ; (14)

SE L aeB = 0, J

oadf

Finally, (7) and (8) give for u, v the squations

6 u au

] au _ ~
i av = fe | e bv = - Buw, i

- (&) 5

/! =

ov o v | (15)
% : . 5 ) |
Hn TAu = AL, w5 + bu = - Be , 4

which may be integrated, since « is known by {12}, as soon as A, B are
determined.



(B) Case 2,

&

Conswder next the case where 5 = 0 everywhere in the region under

consideration. The a co-ordinate curves are then straight lines, which
in ge 1 envelope an 'evolute'. The p-co-ordinate curves are then
'mvohﬁe {Fig. 3). It is now convenient to choose « as the distance
measured along the «-lines from a fixed involute { ¢ = 0) and, in the case
when the f-curves have no inflexions, to take f# as the angle between
the corresponding c-lines and a fixed «-line (/5 = 0), {see Fig. 3},

We now have,

tg'i\ = .E.g B = Ewi I }; QS = };.. g égéﬂ;}
where F{ £) is the distance from « = 0 to the evolute and ¢ is measured

from the ‘.‘Lme B = 0., Equations {8) give

W = = 20{% -+ W {1?}
3

o b
o= e, - ¥ = -~ 3w ,
du :
{ (18)
/} Y 8 v . 3
e =, ==+ u = - Be =t
0294 ao

where B, w are given by {16} and {17}, These can be readily integrated
when I'{ 8 ) is known.

(C) Case 3.
Finally, when 0? = =k o= 0w

(.»",q

Larte sian co-~ordinates with

..-,

V]

can take o, f as orthogounal

A =B = 1. (19)
In this case wis constant by {8), or

@ = ug (20)

and (7}, (8) give

H

u e = o £ +u
of tu

(21)

o

v = - 4+ wa +v .,
8] 0



5, Construction of Layouts by Analytical Method

Michell layouts are thus determired in the first place by a specification
of the functions A, B as in (18) or in {(18), with F( £) given a definite form,
or as integrals of (13). The corresponding function ¢ ie also known in each
case., Cartesian equations for the layout lines can then be determined by
an integration of the relations

1 ox 1 oy
’ ﬁ’) = omsmomam T3 . e
cos ¢ A olel B oF  ? }
l‘? Ly RS
.. .1 oy 1 oax ? (22)
sin 9 = = 3y T T®IE ¢ =

which, recalling equation (1), are easily recognised as the usual formulae
for the direction cosines of the tangent lines to the co-ordinate curves.
Equations (22) give

fla,s)
X = | {Adacosg - Bdp sin ¢) , 1

pé{{y@)} ; (2‘3}
y o= | (Adc gin¢ + Bdg cosd) |, -

which take their simplest form when integrated along layout lines a or g2
constant.

Cur outstanding problem ig thus the determination of A, B in cage (1)
Wf z:‘“raﬁraph 4, This requires the integration of {13), which leads to (14},
he integration of an equation of the form

32 }T : T - ’ 3

3 T abH = 0. (24)
This can be carried out by Riemann's Method, If the value of H and one of
its derivatives say 3H are given along a curve TI' (Fig.4), then the other

. . H ot‘/ .
derivative g—;}m iz also known cn T and the value of Hat apoint P{&, n )
’F

is also given by

Al
1 [, Py, 80H 5
H(P) = 5 H{AY) + H(B") ‘ ;;]; / e} %‘z;’ -~ K gg\dgL
L J o I\ /
- /'/-F.i- C ?F -Q‘E:lf.



where G is a Green's Tunction given in our case by

&G o= JQ vhen ab = +1, ’p
;‘-; P -
(25"
i
G o= E") when ab = -1, -
14

and the points BY, A' are the intersections of I' with the ¢« and 2 co-ordinate
curves through P

If the b unéary values of H are given zlong the co-ordinate curves
through the origin G where o = g = 0, the value cﬁ" I at point P becomes
simply

YL L ey OE,
HZ, (‘3 J= (P = Vablz - T |7= 1
ﬁ, (27)

8 ‘%Ey on a pair of intersecting
co-ordinate curves, we can integrate {M} 0 obtain the value of A elsewhere,
The value of B then follows from (13) ) then gives us the layout lines
ior the region OAPB of Fig. 4

QJ
Qa
P
™)
[y

6. Construction of Layouis by Graphical Method

Owing to the difficulty of carrying out the integrations in equations

(23) and %2‘:} it is not always easy to consiruct a Mya ut a alyizcahyﬁ
Graphical methods are however available as an alternative., It was mentioned
in paragraph 3 that the geometrical properties of the layout lines of the
Michell framework are identical with those of the slip-lines in plcme plas
flow. The technique of graphical construction of the sglip~lines, which ha
been very well developed for the study of the theory of plasticity (Ref. 8 VI),
can thus be employed for our purpose.

.4.
51l
o
a5

o
e

JO and 10 are the Bessel and Modified Bessel Functions of zero order.



The most convenient method, though perhaps not the most accurate,

requires the knowledge of the angle ¢ only, Integrating eguation (10 gives
¢ = fla) + gl . (28)

which means that the change of angle ¢ for a finite increment of « along
any a-co-ordinate curve is independent of £, and the change of ¢ for a
finite increment of £ along any f-co-ordinate curve is independent of « .
Hence, between any two co-ordinate lines of one family, the co-ordinate
lines of the other family turn through a constant angle (Fig. 3). This is
known as Hencky's Theorem in plane plastic flow theory and will also be
called by that name in its present application.

This property enables the layout to be drawn graphically when suitable
boundary conditions are given. One of the simplest cases is when two
intersecting layout lines, one belonging to each family, are known.

L.et the given lines OA and OB be used as the axes of a curvilinear
co-ordinate system « and § respeatively (Fig., 6), A point {m,n) is
defined by the « and/ co-ordinate lines through this point. The g -line
intersects the caxis at {in, o) and the « -line intersects the fF-axis at {o, n).
Then by Hencky's Theorem we have

d{m, n}) - oo, nj = &{m, o) - ¢{c, o} {29)

The fixed reference axes O(x, y) may be chosen so that they are tangential
£ &

to the «,/ axes at the origin G. In that case ¢ (o, o) = 0 and {29) is
simplified into

S{m, n¥ = ¢{m, o) + ¢{o, n}. {(30)
Since OA and CB are given, the angles ¢{m, o) gnd ¢{o, n) are known.

The angle ¢{m, n) at any point in the region that is#®efined by CA and OB
can therefore be calculated from {36).

The layout lines can now ke constructed approximately step by step,
starting from the points {1, 0) and (0,1). Point {1,1) is locaied by drawing
straight lines through these two end points, making angles with the
reference directions equal to the average value of ¢ at the end points of
each line ({Fig. 7). The point {2, 1} can next be located from lines drawn
through the point {2,0) and {1,1) by the same method, and so on. The
layout lines in the whole region defined by OA and OB can therefore be
drawn. They are approximated by broken segments of straight lines.



It may be seen that if we divide the two known curves OA and OB
such that the change of angle /¢ between the consecutive points {0, 0},
(0,1}, {0, 2 «.. (0,n}and (0,0}, {1,0}, {(2,0) ... {m,0) is kept constant,
the change of angle along any layout line at any intersection will also be
constant and equal to 4¢ by Hencky's Theorem (F ig. 8). This enables
the whole layout to be drawn rapidly on a draughting machine without the
necesgsity to calculate ¢ at every intersecting peint. Furthermore, the
configuration at every intersection is identical, an advantage which can
be usefully exploited in the calculation of loads in the members of the
layout.

The case when cother boundarv conditions are given can be resolved
if an analogy with a corresponding problem in plane plastic flow can be
found. The method used for the construction of the slip-lines in such a
problem can then be utilised for the layout lines. The details of various
cther boundary value problems are given in Ref. 8.

7. Calculation of 3ize of Structural Members

The framework which is determined by the Michell layouts of paragraphs
5, 6 must be considered as two families of closely spaced fibres lying
along the « , B co-~ordinate curves, one set carrying a stress (+f) and the
other {-f}, with perhaps concentrated members along isclated lines, for
example along edges., Since the structural elements are continuously
distributed, their cross-sectional areas are properly described by their
equivalent thicknesg t, and t, in the cand £ directions respectively,
Thus across a width Bd# normal to the «-direction, there pass members
whose total crogs-zectional area is t BdS and which transmit a total force
ft, Bdg . Bimilarly, normal to the g-direction, the force on the element
of width Ade  is -ft, Adc .

To determine t, and t, , we consider the equilibrium of our two
dimensional layout. Using the differential equation of equilibrium in
curvilinear co-ordinates given in Ref, 10 we find, recalling {6}, that

e, . a} " ’ -
= {t B+t A = o= 0, }
Do 2 a L 1o
: ’f {313

o
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¥or the various co-ordinate systems considered in paragraph 4,
we have the following cases -

(A) Case 1, Here equation (11) gives ¢ = ac + bf , and so if we write

T ipr =0, Holap -0, (33)
ac 2 8f i

from which we deduce

~ 2
0 _ i? — -y
Do + ab L = 0 , L
{ ¥
a 2 ’}':“ ~ % i ek }
«éw;\mw%mf - 23.b ‘1‘ = @ @ ok
heli]] 2

&

These are in the same form &8 {24) and their solution can be found in
the form of equation {(25) or {27). Bince T T A and B are now known,
q 1 )

2
t, and t, can readily be found.

{B) Case e

[ —

o } . ) . .
it L. 0 and the co-ordinates are as chosen in Case 2 of paragranh
aa

4, then A = 1, B = a +8{(F)and ¢ =pF by equation (16). Equations {31)
reduce to

ot

op = s (Bt )+t = 0. (35)
Differentiating and using {(32) gives

ot, Q2T

B = 0, M= 0, 36

o . ool 0 {36

which can be integrated to give

T, T («) + %{8), 1

J {37)
= -I"{a«),

i

L
{
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where T and x are arbitrary functions which must be determined to
satisfy the boundary conditions at the edge of the region.

(C) Case 3.

Finally, if «, # are taken as orthogonal co-ordinates with A = B = 1,

9. - 9 - 0, thent =1t (B)andt, = 1t {(a). Each fibre iz straight
du e 1 1 2 2

and is of constant thickness along its length. These thicknesses are
again determined by the equilibrium conditions at the boundary of the
region. '

The equilibrium conditions at a boundary can be written using Fig. 9.
Let E‘n, Ft be the components of external traction per unit length in the

direction of the normal and tangent respectively, and T the end load in the

edge member at the boundary, if any. Let also the angle between the

« -curve and the tangent to the boundary be 0, the radius of curvature

of the boundary curve be p, and the arc length of a small element of the

boundary curve be do . Then the components of T in the normal and

tangential directions of the boundary are - T i and 9T . The equilibrium
’ 0o

of forces in the «o,2 directions give

T. a'T,
i 8in® = (F -~ =) si +{F, 4+ =) cos0
ft, sinf { o p) sin® {_._t t 5=) cos O, %
. { {39)
I1g o BT A el
ft cos0 = (F, + =sine =-(F - =) cosb . i
2 t oo 3

These equations determine the values of t, and 1, at the boundary, and
may be used in appropriate cases o specify the arbitrary functions of the
various integrals.

The conception of a framework as two continuous sheets of fibres,
although appropriate to the mathematical treatment, has little value in
practical application. For one thing, the connection between the two
sheets presents a formidable engineering prcblem. However, the
graphical method of layout discussed in paragraph 6 readily suggests an
approximation. We may replace the two sheeis of fibres in a curvilinear
element Ada x Bdf by two concentrated straight members along the
mean « ,/ lines, Thus the framework consisis of two sets of members
arranged along the layout lines as constructed in paragraph 8, one carrying
a tensile stress (f) and the other a compressive stress (-f), with pinned
joints at the junctions,
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Since the members are to carry direct stresses only, loads on the
boundary must be considered as applied at the joints. The sizes of the
members can be calculated once the forces carried by them become
known. Equilibrium considerations at the joints provide such information
in statically determinate cases.

8. Calculation of Velume of Michel] Structures

For a framework S* satsifying Michell's Theorem, if i;iﬁ e 1, ... n)
are the external forces acting on the structure, and v, are the virtual
displacements at their points of application, the virtual work of the
external forces is ;‘ ?ﬁ"*i“{%i . The virtual deformation produces

i=1
straing (+e) along all the members carrying a stress (+f), and (~e) along
all the members carrying a siress (-f), and so the total change of strain
energy in 5% is z {fA) {el) = efy AL = ef V", where the summation is
taken over all the members of area A and length L, and V* is the total
vclume of the framework. By the Principal of Virtual Work, we have

PR i T
efVv = 5 B, v.
& i3
i=1
or ‘ n
AN S (39)
fe i=1 ii

The virtual displacements :{;ifoilew from u and v of equations {15),
{18} or {21) for the various co-ordinate systems. The volume of the
structure can then be calculated from (39).

The knowledge of the volume of a Michell structure, when it can be
found, is most valuable. It represents the ultimate structural efficiency.
If for any reason the optimum structure cannot be used and another form
of construction is substituted, the penalty involved is readily calculated
by comparing the weight of the proposed construction with the Michell
structure, '

The approximate framework with concerirated members replacing the
two sheets of fibres is strictly speaking one of such cases. The volume
of the framework can be calculated by summing over all members once
their size is known. This may be compared with the volume of {39). It
may be expected that since the framework follows the exact framework
in layout and differs only in the distribution of materials, the difference
in weight between the two will be very small indeed.
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PART 1

SPECIAL APPLICATIONDS

i. Development of the Solution for a Cantilever

Consider the three~force problem of Fig, 10. The points of application
of the forces form an isosceles triangle CDC' with CD = C'D. The force
F at D acts in a direction parallel to CC' and equal forces at C, 7,
directed along CD, C'D respectively, are in equilibrium with the force F.
Cur problem is to construct a Michell structure which equilibrates these
forces.

Concentrated forces can be dealf with in two ways in Michell layouts.
The point of action of such a force can be made a singular point of the layout,
with an infinite number of fibres passing through (Fig. 1la); or special
members, with finite cross-seclional area, can be introduced along the
two layout lines which intersect at this point of action (Fig, 11b). Let us
apply the first of these methods to the points C, C' of Fig. 10 and assume,
as the &;1mp3_est solution, that the lines which meet at C, C' are straight
ineg. This gives us two fans of ralial lines and conceniric circles
entred on C and C', which may be extended until they meet at O, the
vertex of an isosceles right angled triangle with nypot nuse C C' (Fig. 12).

f,...nr

¢}

We now have a situation familiar in the plastic flow theory. Two
orthogonal layout lines OA, CB {Fig. 12) are now given and it is required
to extend this layout into the region which contains the point D. This
problem is solved in Ref. 8, VI.7 and the resulting layout, continued
until two layout lines meet at D, is shown in Iig, 13.

Introducing concentrated members aleng CD, C'D we can accommaodate
the concentrated force &t D. The member CD will be in tension and the
member C'D in compression. All the members which meet at C must
therefore be in tension and all those which meet at C' in compression, in
accordance with the general theory of Mi chell structures. The curved
member AD is in tension and therefore requires the compressgive forces
in members through C', which meet it at right angles, to maintain the
equilibrium. In the same way the member BD requires the tensile forces
in the members through C. The circular members in the fans centred C
and C' are ciearly not required and so have been omitted from Fig. 13.

The structure of Fig. 13 appears to be qualitatively satisfactory, but
before it can be accepted a check must be made that suitable positive areas
may be given to all its members., A similar situation arises in p15§?01t3r
problems, where it is necessary to demonstrate that a consistent velocity
distribution is possible. (Ref. 8, VII. 1)}
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2. l.ayout Geometry

The layout lines for our cantilever structure can be taken as the co-
ordinate curves of a curvilinear co-ordinate system (a,p). Referring
to Fig. 14 we take the circular arc OA as the line £ = 0 and define the
values of ¢ at points, such as A1 , on OA, by the angle between the
tangent at A, and that at O, which is taken as the x-axis of a right
handed Cartesian co-ordinate system O(x, y). Taking the direction O
to A as positive and taking clock-wise rotations as defining positive angles,
we see that the values of « on QA are all positive. The arc OB ig taken
as a = 0 and the vaiue of g for a point such as B, is then defined as the
angle between the tangents at B, and O. The positive direction on a= 0
is taken as from O to B. Taking anti-clockwise rotations as positive we
see that the values of # on OB are also positive. The co-ordinates of a
point P are then given by the value of « at the point A , where a layout
line through P meets OA, and by the value of 5 at B,, where the other
layout line through P meets OR,

L.et us denote the angle between the tangent to the a-curve through P
and the x-axis by ¢. The co-ordinate system is then the same as that
in Fig. 2c and Hencky's Theorem {eq. 10) gives the relation

¢ = - +F, {40)
which corresponds to (11) with a = -1 and b = +1.

The arc lengths ds, , ds, of the «,p curves are given by Adc,
Bd # respectively. Since du¢, df are now numerically equal to the change
of angle along the respective co-ordinate curves, &, B are the radii of
curvature of o, # curves, Equations (13), (14) for A and B become in this
case

gA - o8 _

35 2o e A (41)
and 5% A 2R

LA =0, 922 .3 =o0. (42)

Jodf auof

The boundary values are

A = =— = 1r on CA{F= 0},

eed
A

P

where r ig the radius of the circles centred on C and Y.

‘

{43)

Lo,

B =

t

1}
<
e

-

r on OB«



=1. We have,

IH
i

The solution for A is given by equation (27) with ab
at a point P (&, 1)

Y d

AP) = r1 (2T 4] 1| 2B | e as

! |
- [1 (2E7) + |4

A
5,

after transformation using the substitution % = 2 vZ { 7~3) in the integral.

Similarly, _
=

B{P}) = v I (2VEn)+ j I

o o

fioms

- { o VEFY + g ) JE
r ‘IO (2 V&n) fn I (2v&En) .

2 «/"zm“”ﬁ; r da

|
N

Hence, at a point with current co-ordinates {«, 8), the radii of curvature
A, B are given by:
~ - -
) H o e s . e oy
Mea,p) = v |I_(2¥Vf )+ (5= 1 (2 ¥ap) } ) i
_© N i 3 44)
Ir——{' - ; is‘t;
e fo .
B{e,p) = v |I (2@ )+ ,\],75” ié (2 Vop) I‘ . |
N
Equation (1) now gives the line element ds, which, together with the
angle ¢ from (40), give the intrinsic equation of the co-ordinate lines in
parametric form. The Cartesian co-ordinates (x, y) are given by (23).
If the integration is performed along the «-lines (£ = constant), starting
from the arc OB, where « = 0, equations {23) become
o
x - x = | Acos¢ dao |, ?
0 &!
0 ,
g (45)
!./’ & i
y -~ y. = | Asing de , =
o Jo
where _
XO: ”EQE”COS[’?} ] %
s { (48)

yq‘j% rsin 5.

It does not seem possible to get an analytical expression for x and
y from (43). However values may be obtained hy numerical integration,
and the co-ordinate curves «,53 can then be plotted. The pair of curves



- 16 -

which intersect at point D furnish the boundary of the structure.

3. Graphical Construction of the Layout

Following the general method discussed in paragraph 6, Pari I,
the layout lines can be constructed approximately on the basis of
equation {(40). It is particularly easy when the pair of given layout lines
are circular arcs, as we have in the present case, since they can be
conveniently divided info equiangular segments containing and angle 4¢
{(Fig. 15). The layout lines are the continuation of the radial lines from
the centres C and C’. It can be shown that each line turns through an angle

%53 on leaving the circular arc, and thereafier turns through an angle Ad
&
at every intersection with the other family of lines. The two sets of
co~-ordinate lines then form a quadrilateral mesh., Given three corners
of a quadrilateral the fourth corner can always be located. The two seis
of lines can therefore be drawn step by step, starting at the three corner
peints 0, 1, and 17, and continuing until two lines meet at the loading
point D as shown in Fig. 13. Needless fo say, the smaller the angle Ag,
the finer the mesh and the better the approximation will be,

Examples o1 the layouts consiructed by this method are shown in
Figs, 16 ~18. Fig. 16 shows the layout defined by two right-angled
circular arcs of equal radii %nd was drawn with an equiangular mesh of 5°.
All the other figures have 10 meshes. Fig. 17 shows the limiting angles
which two circular arcs of equal radii may subtend, These angles are
seen to be just over 240°, Beyond this limit, the two systems of layout
lines will overlap and will thus be unacceptable. There is therefore a
definite boundary associated with a given pair of circular arcs which limits
the region of the structure. The loading point D must clearly be situated
inside this region. Fig. 18a - e show the layouts defined by right-angied
circular arcs of different radii. The last of them {18e) shows the case
when one radius becomes zero and the corresponding arc degenerates
into a point,

4, Calculation of sizes of a symmetrical cantilever

Having constructed the layout, we can now calculate the sizes of the
members required to carry a load F applied at D (Fig. 13). To start
with, two concentrated members along the co-ordinate lines passing through
D will be needed. The loads in these members at the point D is  *F/ V 2,
since the members intersect the line of symmetry OD at 457, The
fibres intersecting these members at right angles cannot alter the
magnitude of these loads. Hence the gizes of these two members remain
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constant from peint D to C and C', with areas equal to FfV2f,

A1l membersg radiating from C carry a tensile stress (f} and those
from C! carry a compressive stress {-f}. To find the equivalent thickness
t andt, of the continuously distributed fibres we use {34) and (35),
with a = -1 and b = +1 for the chosen co-ordinate system. They give

8'1‘1 GTZ
e + T, = 0, e v T, = 0, {47)
and
narp a2
9 ) S TR {48)
NSy = § Ondfy 2 ’
Dc0f 4 P ;
where T1 = tB and T, =1t A as given in {32).
The boundary conditions are given by the eguilibrium of the edge
members., Thus on BD, we have by Fig. 19,
F
- Va4
¥ )
or A‘ia = T ) S . {49a)
Var

This equation can also be obtained from (38). The boundary curve
coincides here with a c-curve, hence 0 =0 and p= A, The components
of boundary traction F, = F =0and T = F/VE = constant.

Similarly, on AD we have

Bt = T = e (495)
! ! vaf
The equations (48} are of the same form as (24), with boundary
conditions {492) and {49b). Their solutions, by equations {25), give
at the origin O(Fig. 20)
Lo - E 1 @ - | E0 e v
Ly -\@f o Sl J \/'?f o j
B
Foor. . E - -
S Ll (2 VEm)+ & 1 (2 V&9 )} . (50a)
v af o S _
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3 = o
and T O} = —— (1 RN AR (50b)
o &

& V2t A

The values of T, and T, at a point P{«, ) can be obtained by
making P the origin lnutf“dd of 0. The co-ordinates of D then becom
(£ ~«, n-R). Hence from (50),

P e TR pe— 3
@, f) = == I 1 2V¥E-a)(n-p) + |=—=1 2VE-Adn-F),
Pl T Gl T ' /J VRSN 1
- - . {51}
3 F r s e i I}”[:' 1 R, -\1
{c,p) = m“jﬂ‘“i I |2 Y(zE-0 iﬁé;@«'}i + ~ 1, l?iﬁ%'“C} {(n-g31.
varl O L . MeTE T 1

Therefore, at any point in the region of OABD, we can calculate
T, T, by {561) and A, B by (44). The equivalent thicknesses are then
given by {33). Since T , T, , A and B are always positive, the same
is true for t, and t, and the solution ie therefore acceptable.

73 fr t
The values of __ in a vegion defined by two right-angled
E\
circular arcs are plotted in Fig. 41. The same figure can be used {o
o V3 frt . . e Cos o
find values of 1 by interchanging ¢ and f. The position of the

points A and B in the figure will then be interchanged.

The layout lines within the circular arc OB are radial lines from
centre € and conceniric arcs, forming a fan structure. Since there is
no load on the edge of the fan, no material is required along the arcs.
Each tensile element from the arc OB will continue radially towards the
singular point C with an unchanged area of section. The same applies
to the compression material in the fan C'OA.

The cantilever structure tnerefore consists of {wo concentrated
edge members CD and C'D of constant areas, a continuum of {ensile
material spreading from the singular point C to the edge AD, and a
similar continuum of compression materisl in the region C'BD. The
sizes of these structural elements has been determined.

For the approximate framework with concentrated members
replacing the continuous sheets, the sizes of the members are known
once the loads they carry are calculated. These can be found by
consideration of the equilibrium at every joint, starting from the loading
point D, The structure is statically determinate, since it is built up by
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adding two members to every joint, starting from the tip D. It is also
to be noticed that if the layout lines form an equiangular network, the
configuration at every joint of one or other of two similar types is the
same, The forces in the members can therefore be calculated by using
the same formulae throughout the whole region. Furthermore, for a
symmetrical layout with a load applied normal to the axis of symmetry,
only one half of the structure needs to be considered.

We consider only the top half of the structure, where the edge
member BD is in tension. At point D, where the two members intersect

the axis of symmetry at angles(/g; . Ag@\ {(Fig, 22a), the forces in the
: \ 4 2 ;
B . . B,

members are * - {compared with %;: in the exact

ron(5 - 5)

§

structure). The forces in the rest of the members can now be calculated
from joint to joint, knowing always the tension T in the member nearest
to D, and the compression C in the member nearest to the edge BD.
There are two types of joints in the region according to their position,

{a} For joints outside the arc OB, the geometry is shown in Fig. 22b.
The unknown force in the tensile member is

T = T sec Ay + Ctan bp {52a)
and in the compression member
C' = Csechg+ Ttan Ag . {52b)

{(b) For joints on OB, the geometry is glightly different {(Fig. 22c),
The unknwon forces are given by

T = T sec 4321- + 2C sin &8
2
(53)
L
C o= C**Ttanw?i .
The joints un the edge BD have the same geomeiry, the only difference
being that C = 0.

An example of the calculation is given in Fig. 23, where the forces
in the members due to a unit load F at D are shown. The structure is
an equianguiar layout, with 4¢ = IQO, defined by two right-angled
circular arcs. The forces on the edge member from D to C now increase
gradually instead of remaining constant as in the exact structure.



5, Calculation of Virtual Displacemernts and Voiume

FEquation (39) gives the volume V™ of the Michell structure which
is proportional to the virtual work of the external forces., In our
cantilever there is only one force applied and we have to find the
virtual displacement in the direction of this force,

Equation (15) gives the components of the virtual displacement
u, v in the direction of ¢ , 5 co-ordinate curves. For the co-ordinate

system chosen, we have a = -1 and b = +1. Hence the equations become

ou
e Y= Ae s ou T -
o4 Fycul A A -Bw s i
G :
oV av ; (54)
= - = Aw = ko= -Be w
o]0 of
where w = - 2elurp) + W {(55)

which follows from (12},

Adding the equations (54) in pairs we arrive at the following
results :

Ju ou
gm.. + ,:}m: = Ap - fu R
dex o
’ (56)
- : fele
ov av !
3 T 3 ° "Be *Au,

where A, B are functions of ¢ ,/# given by (44).
We now change the variables and let
o = oa+ 5, To= oa ~f {57)

The lines o = constant and 7 = constant, when drawn in the
¢,/ plane, iniersect the «, f co-crdinate lineg at 45%. These lines
can be regarded as a new set of co-ordinate lines (Fig. 24), The origin
of the o, 7 co-ordinate system reimaing at O, The positive o-axis
lies in the first quadrant while the positive 7-axis lies in the fourth
quadrant of the « , £ plane, thus forming a left-handed system.

From (57), we have the inverse transformation

1 1 )
o o= ;2?(0‘%-77), 5= §(G~T), {58}



. Ju au . u -
and also = = e omm= !
GO ole] T
. {59)
ju _ du  du !
] 5o~ Br ¢ .
e oV ov
and similarly for R e
ax ap
Equations (56) then become
au v .
26*"0‘: = fe - Bu, 2y = -Be + Auw, {60}

where A and B are now to be expressed as functions of ¢ and 7 by
(44) and (58). These two equations can be integrated along the o -lines
(r = constant) starting from a boundary where u (or v) is given.

For our cantilever siructure, the cenires of the circular fans C
and C' can be regarded as fixed. The viritual deformation imposes a
strain (+e) on all tensile members and (-e) on all compression members,
Hence, on the arc OB at a radius r froimn the centre, the virtual displacement
u in the direction ofthe «-lines is {er). Similarly v on OA is {-er), the
negative sign indicates that the direction of the displacement is opposite
to the positive direction of the B-lines. These are then the boundary
conditions for (60).

The value of w in (565) is the rotation at the origin when «w= f = 0,
, . . . a
At the origin of our co-ordinate system A =B =r, u= -v = er, and 55

av - . s
= 53 = 0. Hence by (54), we have

Substituting (44), (55), (58) and (61} into {60) gives

e -

o OU [ FE TS [ =T STy
Mo oer 2 + [S2L (VRS A
255 7 & Lig (Voir®) + NOFT I {o®-77%) |
o
- S [Py e
+ (e +elr| I (V&P -8 +|22L 1 (V6* - 7% |,
O A O T 1 .
av - e e N - 693
2%= = ~er|I (o= + L1 (Yo%) j (62)
uG O /\‘,—G - 4 _ .
- (26 TL (LA 49T 1 (T
{(2e0 + e}r IO Vo® -7 %‘\! ST 11 (Voi-79 | e
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Integration of (6&,} gives u, v at any point P(«, 7) in the giructure,
The details of the integration are presented in Appendix A and the
result gives

er | (1+2a)1 (2Vif) + /A1 wzm‘ )
- © 1 - (63)

5

ule,p)

[

-~er i“{i +26) 1 {2V ) + 2Vap 1,(2 ﬁiﬁ")J . 4

i

vie ,B)

Let the co-ordinates of the loading point D be {a=yu, A= ), then

. -
wD) = -v{D) = er {(1 + ?;';u}l@ (24) + 2/111{2/.1}‘1 . (64)
The virtual displacement in the direction of the applied force F,
which makes angles of 7 and 37 with the«, S co-ordinate curves

4 4
at I, is

v = D) cos - - v(D) sin T = V7 u(D). (65)

The volume of the structure then follows from (39}, giving

F¥ _ V2Fr |
vE s 2 - Z‘fﬂi (L+2p)1 (2u)+2u1 (2. (686)
fe £ 1 o 1

-4

For the framework with concentrated members replacing the continuous
sheets, the total volume V is the sum of the volumes of all the members,
which are known once the loads are calculaied and their length measured,

It has been calculated for a number of symmetrical cantilever layouts, and
the following table gives the results compared with those obtained by (66)
for the 'exact' structure.
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{d eeg) f_{ (e 66) _Y_f_ {for framework with
poceEre Fr oo Fr concentrated members)

0 1.414 1,414
10 2,053 2.056
20 3,070 3,065
30 4,632 4,634
40 6,994 7,02
50 10.53 10,57
60 15.80 15.89
70 23.61 23,76
80 35.12 35,39
90 52.04 52.56

100 76.87 77.80

110 113.20 114.78

In spite of the fact that a coarse network {( A9 = 10°) has been used,
the volume obtained by the approximate calculation is within 1.5% of
that f@g the exact theory, even when the angle of the fans is as large
as 110°. The closeness of the agreement is remarkable and the
approximate method of analysis can therefore be considered as highly
satisfactory. ‘ :

8., Comparison of the Weight of Michell Cauntilever with that of other
types of Cantilever Structures.

The volume of the Michell framework is plotied in the form of the
non-dimensional quantity VIid against the ratio of ¢ in Fig. 25.

ngz d
The distance d is the depth between the singular points CC!' and ¢is

the span of the cantilever from the root CC' to the loading point D.
The length ¢ has been measured directly from the layout drawings.

In the same figure, the volumes of three other types of conventional
cantilever structures having length £ and depth d at the base are also
plotied. All the allowable tensile and compressive stresses are assumed
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to be *f, and the load ¥ is applied at a point D on the perpendicular
pigector of CC'. The volumes are calculated as follows:

{£A) For the simple friangular structure consisting of a tie CD and a
strut C'D (Fig. 26a}, the volume is

Foo(e?+d?/4)

V=g o

hence oy 2
Y sog 1 fh ) (67)
F 4 4t )

{B) The simple webbed-beam (Fig, 26b) with parallel spars carrying
end loads and a web carrying uniform pure shear is assured to be
fixed at C and C' s0 as to make it strictly comparable with the Michell
framework. A shear post is therefore necessary at each end. The
allowable stress in the web is assumed to be £/2., The volumes of the
items are

) . }51'62
spars Vf = 2 % 55
i are
web = Lo
VW £ !
. . d
and shear posts YV o= 2 %X =
8 4f
The total volume V = Vf + Vw + V_ and hence
Vid ) 2
VA oy, opd ., &2 (68)
s ’ 242

C) For *he Warren girder (Fig., 26¢), the volume can be calculated
£
from

Fe? n?

: - G4 " 2
Vid _ 3.464 i 1,154 (% + n)+0.433 |, (69)

where n = number of joints cutside the supports C and C'. The value
0.433 in the bracket gives the contribution of the link from the last
joint of the structure fo the loading point D at the centre,

Strictly speaking, the Warren girder can only be built when ¢ and
d satisfy the relation €= 0.577nd, where n is an integer., A continuous



curve ig nevertheless drawn through these pomfc to represent the volume
of this type of structure.

The curves in Fig. 25 show the superiority of the Michell framework
over the conventional fype of structure, especially ot large values of £/d.

7. Application to a Beam under Uniform Bending Moment

Another application of the layout has been suggested by H. L. Cox.
The layout lines defined by two equal fans OCE and OC'A are continued
until the tangents of the «-line CBE and the p-line C'AE' are parallel
to the axis of symmetry at the points E and E' {Fig. 27). The line
joining E and E' is then tangential to the ¢-line CE! and the g-line C'E
and is perpendicular to the axis of symmetry. The layout is now joined
to another which is its own image about the line EE'. Let the singular
points of this image layout be ¥ and ¥, the line CEF is then a continuous
curve, The two lines i_,’ Eand F'E are b(}m normal to CEF at E and form
p., The lengih of the layout from CC!' and FF' is governed by the
angles of the fans,

If a moment ia now applied at each end in the form of a set of egusl
and opposite torces at the singular points €, Cf, and I, ¥', it can be
carried by a structure placed along this double system of layout lines
{(Fig, 28). It is easy to see that the sets of lines from C and ¥ are in
tension and those from Cf and F' are in compression. At the centre
section EE', the moment produces a pair of equal and -zmpovit@ iorces
at B and E' parallel to the line of symmetry GO!. Since EE' ic a line of
symmetry, our atteniion may be confined to one half of the structure
from CC' to EE', If the distance between E and E' ig d', then the forces
at these points due to a moment M are +*M/d'. The calculation of gize
of members can now be started from these two corners in exactly the
same manner as for the cantilever. The same kind of approximate
framework with concentrated members can also be constructed
The weight of the beam can be estimated by using {39) for the
volume and {83} for the virtual displacements u and v, The forces are
applied in the same direction ag8 u at E and (~v) at E'. These two
displacements are equal and opposite by symmetry. The volume of half
of the structure is therefore

Vv 2Fu(E) | 2Mu(E)

S fe dife :

or in non dimensional form



v 2u(E)
2M  d'e  ° (70)

- A <

: : T }.,m{q 3 5 _g{m 3 nt s
The quantity STi corresponds directly with 5oy Fig. 4 of

Ref. 3, where beams under pure bending were considered. This figure
is reproducad in Fig. 29 with an additional curve which is calculated
according to {70). The depth d' and length ¢ used in the calculated are
measured from the layout drawings and are therefore approximate,
Comparison shows that for large values of 4/d, our layout has an
advantage over even the more efficient beams proposed in Ref. 3.

In the calculation of the volume of half of the beam, we have asgsumed
that the singular points C and C' are fixed, and the points E and E' are
allowed to move. But in order to match the displacements of the two
halves of the beam, E and E' must be brought back to rest. To do so
we notice that when C and C' are fixed, the displacements of E and E'
are anti-symmetrical. The vertical displacements of the two points
are the same and in the same direction, while the horizontal displacements
are equal and upposite., They can therefore be brought back to their
original position by a rigid body rotation about a point on the axis of
symmetry O0O', plus a rigid body translation in the vertical direction.
These rigid body movements have no effect on the calculation of the volume.

The Michell Theorem demands that the strain must not exceed (e)
along any linear element in the region of the structure. This requirement
is not fulfilled in the central region EGE'G'. In fact it can be shown
{Appendix B) that in the cusp formed by the lines C'GE and F'G'E, the
sirain along a linear element near the point E parallel to the horizontal
line OO' is infinite. This region must therefore be excluded from the
permissible region for the structural layout, and the two halves of the
beam join together at the singular points E and E' only. This exclusion
of the central region leaves open the question as to whether a lighter beam
could not be constructed, if members were allowed to lie in if.
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Caleculation of Virtual Displacementis for the

Michell Cantilever

[xal

To find the virtual displacement u at a point P{«, ) , within the

region ODB of Fig. 24, we integrate the first equation of (62) along a

o -line from a point @ on OB, where the boundary condition u = er is

given. Let the «, p co-ordinates of @ be {(0,7), the ¢, 7 co-ordinates

of @ are then {n, -n) by (67). Since P lies on the same o -line as @, the

value of 7 at PP must also be {-7). We nctice also that on this line o > 7,

The first equation of (62) therefore becomes

2/,‘%@“\" = er 1 oz T ) + (g (Vo2 - 1
\65) .~ i

TE=1]

{4

No=-n 1

-+

O W —
(2ec + elr 5-0 i‘/-o‘?'m n9 + nmml, E.{\/ﬂczw 7

. S
Jer ’ I Ll TER——

if

s 6 € 0 3 éAi)

Integrating along the o-line from @ to ¥, we have

wP) - uw@)

{A2)

Now let 4% = o - 7, {A3)
Then zdZ = odo and
when oo o, Z = 0 ;

Q
§
Q
-
AR
&
o
]
=0



The terms in (A2) give

o o - rrozZL (Z2)dL
';[‘ am‘:-in:-s—m \ {'\/625_772 }dd = | =.=.£L=..;mnm,m_
J VGZ - 772 . J &
n . 0
I 4
ak m] - 1 (VEE) - 1.
o i} o
o
”:\’5' V/, e e e I ‘i [ ‘_7;:
] P - . AT , y
[o1, 0@ = [T21 0z = |21 ) |
7 "o o
- w/g_z ";"7','}"2 11 {\/-0—25,-,72} .
o
y 2 P EI8% [ e ]
[ e I, (Vo?-n2do = [od | 1 (V&) Z
J —\/’:g = [72 ;7’] . © J
_— - O o e
o I {(VE-p2) - | 1 (Vo?- Ao
| o g i 8]
L. o 4
g 2 s
= ol (Vo®n®) - n- /' I, o®-nfldo .
7

Substituting these into (A2) we have

WP -wR) = er | -1 +{1+ o -7 (02 -12) +Vo? - 2 Eii'vﬁoig;"ﬁé}~ )
O

But w{@) = er, hence

WP) = er ﬁ;_ o -l (V) + VP 13‘/}53’%@ :
- ceess (A4)

Now transforming back into «,7 co-ordinateg, we have o =0 + /|
. . . - 2 [
and along this o-line, 7= -7 = « -3, Hence 'o°-1n" = 2Vup,
Substituting these into (A4) gives

ule, §) = er | (1 +20)0 (2Va5 )+ 2Ve8 1,02V ) } . (AB)

Similarly, the virtual displacement v at a point P! in the regionOAD

(Fig. 24) can be found by a line integration of the second equation of (62)

from a point Q' on OA on the same ¢ ~line. The «,f co~ordinates of &'
are (&, o) and so its ¢, 7 co-ordinates are (E€,8)., The 0,7 co-ordinates



of P are then (o, Z) where ¢>%.
with u changed into v, 7 into &
performed on a o-line with r=
is then

The formulae of A1 -4 are then applicable
, and e into (-e). The integration is now
&. 'The corresponding formula of {A5)

a,5) = -er[ (L+2p)1 (2 Vep) + 2¥ap 102 faﬁ)}., (A6)

Equations (AB) and {A6) give the values of u in the region BOD and v
in AOD, resulting from a known u on OB and v on OA. The values of u
in AOD and v in BOD can be obtained from (54) by integrating along the «
or S lines. The details of thesge integrations are omitted but when they
are carried out, the resulting expressions for u and v are found to be
identical with those given in (A5) and (A6). These two formulae can
therefore be applied {o the whole region of the structure as given in (63)

It is interesting to note that we can obtain u and v from the pair of
equations (see eq. 54).

gu o

o + v = Ae
a7 .

e oy o= =Be |
ap ?

where A and B are known functions of «, f.

Differeniiating and substituting
from (41} we get

2
2%u _ . -
BT u = 2 Be |, : §

7

i A
aZv . J %[2‘_?}
Er -2 Ae ,
VL‘J;‘)

'hese differential equations are second order and are of the same form

as (24). They can be integrated by Riemann's method and the resulting
expressions are identical with those given in (A5) and (AB).
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APPENDIZ B

Strain in the Cusp GEG! of Fig. 27

Let the axis of symmetry of the beam GO' be the horizontal axis
of a Cartesian co-ordinate system G{H, V) and denote virtual displace-

menig referred to these axes by u, and u {Fig. 27). Let the angle

from the H-axis to the tangent of the «-line be 6(counter-clockwise
being poszitive}, Then

w i

O = - g caHl- 7 (B1)

4 4

We will now try to find the strain aloag a linear element near the
point B parallel to the H-axis in the cusp formed by the lines GE and
G'E. To do so, we have to find the rate of change of the horizontal
displacement u_, and the rate of change of the horizontal length of the
line element, along the p-line GE near the singular point E,

hen the structure is fixed at C and C', the virtusl displacements

11

mbﬁg ucos @-vesin 0,

R
@,
ex]
AV
Srge”

(udg v cos 6+ usin 6,
v v

where u and v are given by (63).

In order to maich the displacements of the two halves of the beam,
the points I' and E' must be brought back to rest by a rigid body trans-
lation in the vertical direction and a rigid body rotation about a point on UH. The
centre of rotation can conveniently be chosen at the origin GO, The
actual displacements uy and u_ can be written as

{uh)o - C, vV,

i

1

Y

u = {u) + CH +C, .
v v o 2

where C, 1is proportional to the rotation and C, the vertical translation,

making U and u, zero at point E. We find
(v, ) -~
h
c, = °

4 §
- V E

= - [(uv)a + CH L .

(B4)

@]
1

Ceomstrmmscn, s meerne
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Using the first equation of {B3), we have, along the p-line C'GE,

N ¢ 5
auh ) G\Hh; o .. oV (B5)
o Gl o

The H, V co~ordinates are relafed to the x, y co-ordinactes by

1
H = = {x+y) "l
V2 i %
! (B6)
i1 i
V = = {y-x) . ’
&
&3
Hence 0" 1 {?X a%, (B7)
O Tyg VO oF - !
Now from (232),
a3 ax - e .
= = Bcos ¢ s =5 F 0 Bsin ¢ s iB%}
afs Ofs
. av B A }
hence E - ={cos ¢ + sin ¢ }, {(BO)
; 2
where B is given in (44).
Differentiating the first of eq. (B2) we obtain
ofu, )
h'o .
e néwu;;{u cog 0~ v gin6)
0F ~
Ju _ v . v
= i"g'f - v)cos € - {3”5""" u) sin § . {(B10)
But ov
' : %—-7 +u = - Be, and
4"’
5 -V = - By = Bel2¢ + 25 + 1)
by equations (54}, 3) and {§1), hence
by equat (54), (55) and (61), 1}
) (uh)a N )
e = @B | 8in 6+ (20 + 25 + 1) cos GJ . (B11)

ap .
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At a point E, the tangent to the «-line ié parallel {o the H-axis,
Hence 6 = 0 and ¢ = 7, and equations (B9), (B1l) give

4
v
(6’5— = B)E H
!( a:éuhﬁo }
4 = e{B)_ (2¢ +2p5 +1)_
fed i t" 1
L a.'j -
)

Then by equations {B4) and (BS5),

!/8 uh N\
e | L = ofB
) L e

B t
L i D

qu guantity in the square bracket is generally not zero. For
example, when the co-ordinates of the point E are a= 60" and g-= 105°
2c + ?g. +1 = 8.76. It is also found by (B1), (B2) and (63) that

éuh)G = u = 21.48 er.

The vertical distance V is measured from the layout drawing and found to
be 3.8 r. Hence
21.48

; 0N o
4+ 8AH = s D o mem— 10
(2a + 205 + 1) <7 16 - = 1.10,

which shows that - at E as given by (B.12) is generally finite.
J&;

Next let the horizontal distance from a point on the £-line C'GE
to the vertical ine EE' be e (Fig. 30). Near the point E, the change
de due to a small change d / is represented by the distance PQ. By
simple geometry, we can see that approximatelyde = PE. df , o

1‘,5;% is of the order of PE. But PE = Bdp, where B is the radius of

curvature, and is of small order when dF is small., Hence near the
point E de is of the same order as df .
das
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N

de A N N
The fact that <-«==_-; » 0 while <_,,_,,,..) is finite means
ar/ B dé ; E
that the strain along a horizontal line element becomes infinite in the
cusp near the point E. This violates the Michell Theorem and the region
must therefore be excluded from the region available for the structural

layouts.
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