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ABSTRACT

Three topics on modern shock capturing methods for the time-dependent Euler
equations of Gas Dynamics are addressed. First we present the Weighted Average
Flux Method {or WAF), one of several Riemann-problem based shock capturing
methods. Then we deal with the Riemann problem. We present an efficient exact
Riemann solver, a robust non-iterative Riemann solver based on the behaviour
of the exact solver, and an improved version of the Harten-Lax-van Leer
Riemann solver . Also, a very simple linearised Riemann solver is presented
together with a Riemann solver adaptation procedure. We also present a
Riemann-solver adaptation procedure that has proved successful. Applications

of the WAF method with the various Riemann solvers are presented.

1. INTRODUCTION.

A significant contribution to the current state of modern Computational
Fluid Dynamics (CFD) has come via Riemann-problem based, or Godunov-type,
numerical methods. These are extensions of the first-order accurate method of
Godunov (1959). Riemann-problem based methods (or RP methods for short) are
directly applicable to time-dependent one-dimensional systems of hyperbolic
conservation laws or to two-dimensional systems that are hyperbolic in a
time-like  variable (e.g. the two-dimensional steady supersonic Euler
equations). Extensions of these methods to multidimensional problems is
carried out via the finite volume method coupled with one-dimensional physics
in the direction normal to the control volume interface.

Many workers have contributed to the development of RP methods;
outstanding examples are Godunov (1959), van Leer (1979), Roe (1981), Harten
(1983), Osher (1984).

RP methods use the solution of the Riemann problem with data in volumes



(i,i+1) to define an intercell numerical flux F'+1/2 to be wused in the
1

conservative, explicit formula

U UL S
i i Ax i~1/2 i+1/2

The various RP methods differ in the definition for the intercell flux
Fm/z , in the way the local Riemann problem solution is used and in the way
higher accuracy without the spurious oscillations of traditional methods is
achieved.

The weigthed average flux (WAF) approach for systems of hyperbolic
conservation laws was presented by Toro (1989a). This method achieves
second-order accuracy using the conventional piece-wise constant data Riemann
problem. Also, it is sufficiently flexible to accept virtually any
approximation to the solution of the local Riemann problem as well as the
exact solution . This second feature can be be taken advantage of by, for
example, constructing a hierarchy of Riemann solvers to be used in an adaptive
Riemann solver fashion.

The WAF method has been applied to a variety of realistic flow situations
(Toro,1989b, 1991). The experience gained in the exercise has resulted in
further developments and wuseful simplifications to the technique. In this
paper we present the method as applied specifically to the Euler equations in
one and two space dimensions. An efficient exact Riemann solver as well as a
variety of approximate Riemann solvers that can be used with WAF are
presented.

The paper is organized as follows: In section 2 the WAF method is
presented; section 3 deals with Riemann solvers; in section 4 we present

numerical results and conclusions are drawn in section 5.

2. THE WEIGHTED AVERAGE FLUX METHOD (WAF)

For the purpose of this section we shall restrict ourselves to the
time-dependent one~dimensional Euler equations written in conservation form,
namely

U +[F(U)] =0 (1)
t x

Here U is the vector of conserved variables and F(U) is the vector of the



corresponding fluxes, i.e.

p pu
U= pu}], F= pu2+p (2)
E u(E+p)

The conserved variables are: the density p, the momentum pu, where u is the
velocity, and the total energy E, where E = %pu2 + pe with e denoting the

specific internal, or intrinsic, energy.

The symbols t and x denote time and space and are the independent variables.
The associated subscripts in Eq.(1) denote partial differentiation. Note that
there are more dependent variables than there are equations and thus a closure
condition is required. We take the ideal gas equation of state as the closure

condition, namely
e = elp,p) = WFTE (3)

with ¥ denoting ratio of specific heats.

The Euler equations have discontinuous solutions (shock waves, contacts) and
it is therefore more appropriate to recast the differential equations (1) in
integral form as

§ [Udx - F(U)dt] = 0 4)

2.1 DESCRIPTION OF THE WAF METHOD.

Consider a domain in the x-t plane discretised by a grid of dimensions Axl and

At as shown in Fig.l. Evaluation of the integral (4) around cell i produces

U“”=U“-A—t[F -F ] (5)
i i Axl 1+1/2 i-1/2

with suitable interpretations for the the discrete values of the conserved
variables and fluxes. This explicit conservative formula gives a time-marching
scheme in terms of the data U‘;, the grid dimensions and the intercell fluxes
F and F The notation U’; means the discrete value of U in cell i

14172 1-172°
at time level n. For convenience, we often omit the superscript n.



The scheme (5) is completely defined once the fluxes have been specified.
Let us consider Fi+1/2' The WAF method assumes that all conserved variables
have a piece-wise constant distribution in x at any time level n. Locally,
two neighbouring constant states (Ul, Um) are the initial data for the
relevant differential (or integral) equations. This initial value problem is

known as the Riemann problem. In general, this local problem is simpler to

solve than the global problem. The global solution can be constructed by
using the sequence of local Riemann problems {RP(i,i+1)} in a variety of ways,
depending on the particular method in use. The solution of the Riemann
problem for the unsteady one-dimensional Euler equations (1), when represented
on the x-t plane, looks as depicted in Fig.2. There are three waves. The
middle wave is always a contact discontinuity. The left and right waves are
called the acoustic waves and can be either shocks or rarefactions. Contacts
and shocks are discontinuities, rarefaction waves are continuous solutions.
* * 1+1 oy
U (x/t, Ul, U1+1) or simply by U (x/t). It is only a function of the
similarity variable x/t. Note that we centre the Riemann problem at the origin

(0,0) in the x-t plane.

We shall denote the solution of the Riemann problem with data U1 and U

Godunov (1959) is credited with being the first to use the solution of
the local Riemann problems to evaluate the numerical intercell flux F1+1/2 in
(5). Godunov’s flux is given by

*
Fioy, = FIU (QU,U )] (6)
*
Note that U (O’Ul’U1+1) is constant for t > 0. The density (and thus the
internal energy and the temperature) is constant in between the waves with
discontinuous jumps across shocks and contacts. The structure of the solution
of the Riemar;n problem contains tEer‘ef ore four constant states: Ui (left
state data), UL (left of contact), UR (right of contact) and U1+1 (right state
data). Special care is needed in the case when the value x/t = O lies inside

a rarefaction fan (sonic flow). The Godunov Method is only first-order

accurate and is therefore too inaccurate to be used in practice.

The WAF Method is a second-order extension of Godunov’s Method. Higher

accuracy is achieved by simply defining the inter cell flux F1+1/2 as an

integral average of the flux function F(U) in (1) evaluated at the solution



*
U (x/t) of the Riemann problem with data U, U, at time t = %At.

b4

Suppose . the neighbouring cells i and i +1 have spacings Axi and AX1+
then the WAF flux is

1

0 x2
praR o 1 JF(U')dx P JF(U’)dx
'le 2X

1+1/2

(7

n
141
at time At/2. The integration in (7) goes from the centre of the left cell i

where U“b = U(x/At/2) is the solution of the Riemann problem with data U‘;, U

to the centre of the right cell i+l at time t = At/2 = constant. A simpler

- . 1. .
expression results by choosing x. = -- min{Ax, Ax _}, X = min {Ax, Ax }.
1 2 i i+1 2 i 1+1

The integration can be made as accurate as desired, but the presence of
rarefaction fans makes it more complicated, which for practical applications
is undesirable. Experience has indicated to us that acknowledging fans is
only important in the presence of sonic flow, that is when one of the acoustic
waves is a rarefaction centred around the t-axis, and even in this case one
may simplify the wave structure somewhat, as we shall explain later. In any
event, we assume that the solution of the Riemann problem has N waves with N
associated wave speeds Ak. For simplicity let us consider the regular grid
case with Axl = Axm = Ax. The Courant numbers v, associated with the wave

speeds Ak are

v = A /(Ax/At) (8)
K K

The WAF flux can then be written as

=y wr® (9)

k i+1/2



where the coefficients Wk (or weights) are the geometric extents of the

constant states in the integral (7). Ffﬁ/z is the flux function F in (1)
1

evaluated at the solution of the Riemann problem in region k. Fig.3

illustrates the situation. It is easy to see that the weights Wk can be

written in terms of the Courant numbers vk as follows

1
Wk - E(Vk_vk-l)

(10)
v =-landv, = +1
0 N+1
N+1
Note that W = 0 for all k and that ZWk = 1.
k=1

Clearly AR
1+1/2

ifWK=1ande=0forallk¢Kin(9)Fvlv

gives an extension of the first-order Godunov Method, for
AF

+1/2
The region K is that associated with x/t = 0. The wave structure of the local

reproduces the Godunov flux.

Riemann problem RP(i,i+1) determines which weight corresponds to the Godunov’s
Method. For instance, if the flow is fully supersonic i.e. 7\1 > O then W1 is
the Godunov’s weight. If the local flow is fully subsonic (As < 0) then the
Godunov’s weight is W4, etc. The case of t-axis centred expansion fans will

be dealt with later when discussing solutions of the Riemann problem.

The Godunov’s weight represents the upwind bias of the WAF scheme and
controls stability. All other weights represent downwind contributions; they

increase accuracy. When applied to the model hyperbolic equation
u +au = 0 , a = constant (1)

the WAF method reduces identically to the Lax-Wendroff method and it is
therefore, for this model equation, second order accurate in space and time.
For non-linear hyperbolic systems the numerical results are like those
obtained by typical second-order accurate methods.

A disadvantage of the added accuracy of the WAF scheme is that spurious
oscillations near high gradients are produced. This is in accordance with the
well known Godunov’s theorem (Godunov, 1959). An oscillation free version of

the method will be presented in the following section. This is different from



that given in the original paper (Toro, 1989a) and simpler to implement in

practice..

As observed in the paper by Toro (1989b) the WAF flux can be expressed,

after using (10) in (9), as

N
FrAr o l[F +F ] N (12)
1+i/2 2{ 1 i+1 2 Z K 2
where
AFR o gD | g0 13)
14172 1+1/2 14172
is the flux jump across wave k.
Formulae (12)-(13) are more revealing. In particular, they expose the
flux-difference splitting character of the method. Also, expression (12)

makes it easier to compare the similarities and differences of the WAF method

with those of other modern methods, such as Roe’s method (Roe, 1981)

An alternative formulation of the WAF method is

WAF -
Fi 172 F(Vi+l/2) (14)

where \-/i+ is obtained by replacing the flux F in (9) by an actual state V.

172
There are at least two choices for V, namely the vector of primitive variables
(p,u,p) or the vector of conserved variables (p,pu,E). In either case the

average state can be written as

N
= [v v ] -1y pavt® (15)
172 2} 1 141 2 2 kK 1+1/2
where
W ) | 0 (16)
i+1/2 i+1/2 1+1/2

is the jump in V across the wave k and V?Z/z is the value of V in region k.



From the point of view of computational efficiency, formulae (14) -~ (16)
are more attractive than (12) - (13); there are fewer operations involved.
Numerical experiments show that the results of these two formulations are
virtually indistinguishable. The same remark applies to the choice of
variables for the states V in (14) - (16). From a theoretical point of view
it is of interest to note that if the state V in (15) represents the conserved
variables then this formulation of the WAF method makes it analagous to the
Richtmyer-Morton method , or two-step Lax-Wendroff method as it is sometimes

called, where

>3

v —l[v +V.]—1—t[F —F] (17)
i+1/2 211 i+l 2 Ax i+1 i

This can be immediately seen by integrating the conservation laws (1), or (4),

in the rectangle
-_I.Axsxsle,OstS—l—At
2 2 2

As a point of interest it is worth remarking that formulation (15) - (16)
of WAF, under certain special circumstances, may lead to entropy violating
solutions (rarefaction shocks). This depends entirely on the solution of the

Riemann problem and will be addressed later.

4.2 TVD VERSION OF THE WAF METHQD.

Given the second-order character of the WAF method spurious oscillations
near high gradients are expected. In the original paper (Toro, 1989a) it was
demonstrated that an oscillation-free version of WAF based on the flux-
limiter concept can be constructed. In this paper we present an alternative
interpretation of the oscillation-free method. = Strictly speaking both
oscillation-free versions are mathematically equivalent, but the present
formulation has some computational advantages, the resulting scheme is neater

and coding is significantly simpler.

We follow Toro (1989d), where a detailed oscillation-free construction
for a model equation was carried out. Consider the linear advection equation
u + au = 0. Unless otherwise stated we shall assume that the constant speed

t b 4
a is positive. Here u is the conserved quantity and F(u) = au. At this stage



we introduce the concept of total variation of a discrete solution {u?} The

total variation of the solution at time level n, denoted by TV(un), is defined

as
n n n
TV() = iZ | u- | (18)

Note that this is essentially a measure of the oscillatory character of the

solution.

A large class of wuseful difference schemes are those whose total

variation diminishes with time, i.e.
V™) = TV(™)

Such schemes are called total variation diminishing schemes, or TVD schemes

for short (Harten, 1983).

In order to apply WAF to eqn.(1l1) the Riemann problem for (11) must be

solved. If the initial data at time level n for the local Riemann problem
RP(i,i+1) centred at x is ut"x) = u" if x < x and u(t",x) = u"

i+1/2 i 1+1/2 i+1
if x> X1+1/2 then the solution is trivial and can be written as

u'; , if (x—xm/z)/t <a
u(x,t) = (19)

u L if (xx Wt>a
141/2

i+l 1
Having solved the local Riemann problem RP(i,i+1) we can now evaluate the
intercell flux F To this end it is instructive to use definition (9)

1+1/2°
for F1+1/2' Since we are considering the case a > 0, the upwind (or upstream)
region lies to the left of the characteristic line dx/dt = a and the downwind
(or downstream) region lies to the right of dx/dt = a. The respective

normalised lengths associated with these regions are the weights
W o= (1), W_ = 2(1-v) (20)
1 2 T2 2

where v = aAt/Ax is the Courant number associated with the wave speed a. Fig.

4 ijllusttrates the meaning of the weights.



The intercell flux F becomes
14172

=1 n 1. n
= 2(1+1})aul + 2(1 v)au (21)

i+1/2 141

which is effectively a weighted average of the upwind and downwind parts of
the solution of the local Riemann problem. Note that W1 + W2 = 1 and that
WI,W2 = 0. If W1 = 1 and W2 = 0 the flux (21) gives the Godunov’s method
(first order upwind); if W1 = 0 and W2 = 1 the flux (21) gives a downwind
method, which is unstable. The upwind method is stable but very inaccurate.
If the weights in eqgn.(21) are unaltered then the Lax-Wendroff method results;
this is second-order accurate in space and time. In a sense the flux (21) is
an average between a stable and an unstable scheme. The weight W1 (upwind)

controls stability and the weight W2 (downwind) gives higher accuracy.

It is the inherent higher accuracy of the scheme given by (21) what
produces the spurious oscillations near high gradients. In what follows we

present a mechanism for eliminating the spurious oscillations.

2.2.1 TVD REGIONS AND WAVE-SPEED AMPLIFIERS

In the presence of high gradients or oscillatory data we need to reduce
the role of the downwind weight W2 and increase that of the upwind weight Wl.
This can be accomplished by altering the wave speed a (see Fig. 4) via an
amplifying function A still to be found. Set a = Aa. The modified Courant

number becomes

v = = Av (22)

The modified flux (21) becomes

n

F = l(1+1_2)aun + L1-p)au
2 1 2 1+1

i+1/2

or, as in eqn.(12) with N=1 for the intercell flux

10



F = l[aun + au” } - [aun - aun] (23)
#1722 1 1+1 2 1+1 1

In order to find the amplifying function A in eqn.(22) we consider first
the case of positive speed a. Two obvious bounds for A are given by the fully
upwinding case w =1, Wl = 1, V_Vz = 0) and the fully downwinding case v = -1,

Wx = 0, V-'V2 = 1). Thus we choose A such that

-lapa=l (24)
v v
Substitution of the modified intercell fluxes Fm/z and F1-1/2 according to
eqn.(23) into the conservative scheme (5) gives
u™t = un—-l—v{ [un - ]+v [A [u"—un ]-A {un —un”} (25)
i 12 1+1 i-1 #1720 1 1+1) Ci-12| i1 i
On division through by urf L u;' and rearranging
i-
n+l n
YU TY 121 1
=—v[—{-——A ]+A +—] (26)
n n 2 riv i+1/2 i-1/2 v
u - u i
i-1 i
with
n n
YT
r = (27)
i n n
u -u
1+1 i

The "flow parameter" r is the ratio of the upwind change to the local change

in the conserved variable u.

A simple sufficient condition for avoiding overshoots or new extrema is

n

1< (28)
n

i

That is to say, the new value un+1 lies between the data values u?l and

ur;. From equations (26) and (28) it follows that

11



{ 3\
Os%vz[l%—A + A +l]51 (29)

r 1+1/2 i-172 Vv
i \ J
or
s 3
1 1 {1 2-v
——==|--A + A == (30)
v rlv 1+1/2) 1-1/2 2
i\ v

It is convenient to re-state the constraint given by the inequalities
(24) as

<A, <=, with L in [—-11;,1] (31)

If A = 1 the original scheme is unchanged. If A > 1 then A is strictly an
amplifying function. In the analysis that follows we shall also admit the
possibility of reducing the wave speed, that is to say of increasing the role
of the downwind part of the scheme. The lower bound L in (31) is now open to

choice within the interval [—% , 1].

The problem is to choose amplifying functions Al 41, SO that both
inequalities (30) - (31) are simultaneously satisfied. @ This can be achieved
by taking

141
-S _<__[_-A ]SS (32)
L rlv i+1/2 R
- l =< =< =< -1- (33)
v itirz v
with
S, =L+1v, s =20-v/w (34)

The analysis leading to (32) - (34) is based on the assumption that the
speed a in the model equation (12) is positive. For negative a the result is

identical but v is replaced by |v|. Hence the general case is
S, = r_i[m - A1+1/2] =5 (35)

—T‘_’T =L = it1/2 < m (36)

12



with SL and SR redefined as

2
s =L+ V||, s, =20-|v|)/|v] (37)

Now the main inequality (30) reads

lsL[l-A ]+A < 2 (38)
i+1/2

T =5 T

Clearly, the choices (35) =~ (36) satisfy (38) automatically, whose bounds we
now analyse. For convenience, we ignore subscripts of the functions A and the

parameter r

1| 1 1
From (35) SLSF[-IW—A]. If r > O then —SLrsm—A or

1
ASAL,AL—W'FSLF (39)

If r < O then
Az A (40)

The upper inequality (38) giveé
1 .
AzZA ,A = -Sr,ifr>0 (41)
[v] R

ASAR,ifr'<O (42)

For L > -1/|v| in (31) there are two TVD zones Z and Z on the r-A
plane. These are shown in Fig. 5. The horizontal bounds are A = L and A =
1/|v|. There are also two straight lines A and A with positive and negative

slopes respectively. These lines are defined in egns. (39) and (41).

The two TVD regions are, in set notation,

ZL = {(r,A) such that r = 0, A = AL, L=As l/lvl}

13



ZR = {(r,A) such that r 2 0, Az A, L = A= 1/[v|}

R
For the case L = -1/|v| the zone Z coalesce to the single line A =
1/|v|. This means that if r = O only upwind differencing is allowed in this

special case.

2.2.2 CONSTRUCTION OF AMPLIFIERS

There are an unlimited number of choices for A = A(r), where r is the
flow parameter defined by eqn.(27). A simple way forward is to use the

relationship that exists between our amplifiers A and flux limiters B. This

is found in Toro (1989d).
A=-—|—|-l—l—1' (i"’)B (43)

There exists an enormous amount of experience in constructing and
applying flux limiters B. We now profit from that experience and choose B
directly to compute A in (43). A popular flux limiter is the so called MINBEE

limiter with the associated A(r) given as

V|v| , r =0
A, =4l - G-vpPrViv| ,0=r =1 (44)
1 rzil
Another popular flux limiter is the so called SUPERBEE. The
corresponding amplifying function is
( — -
1 - 2(1-]v]) rz2
v
il €l Ld D PR (45)
v
1
A =<1 —=r =1
s 2
1-2ri-lvf) 4o o1
v 2
L 1/]v| r=0

Alternatively, one can construct amplifiers directly. Various choices

14



were tested by Toro (1989d)

The most important requirement for a function A is its performance in
problems other than the model equation u+ au = 0, in particular for
non-linear systems of hyperbolic conservation laws such as the Euler equations

(1). This is the subject of the next section.

2.2.3 OSCILLATION-FREE PROCEDURES FOR SYSTEMS OF EQUATIONS

The procedures described in the previous section are, strictly speaking,
valid only for the model equation u +au = 0. For decoupled linear systems
linear systems the extension is trivial. The problem arises when dealing with
non-linear systems such as the Euler equations. In this case the

oscillation-free procedures are empirical.

Suppose we are solving the one dimensional Euler equations (1). There
are three waves to take care of and consequently we must construct three
amplifying functions Ak, one for each wave. Also, there are three fluxes,
each one being affected by all three waves. Moreover, for the linear scalar

case the argument r of A is itself a function of the conserved variable u (eq.

27).

Having computed Ak for each wave one then generalises (23) to the system

case as follows.

A v AF™ (46)
1 k k i+1/2

nt~ =2

1 1
F =-{F +F - =
17z 2|1 1+1 2,

Compare this oscillation free flux to the fully second-order flux (12).
The modification is remarkably simple. If one chooses to use version (14) -
(16) of WAF then the modified oscillation free averaged state ‘—/m/z in (15)

becomes.

A v av® (47)
L k k 1+1/2

| ™~ =

\ =iv +v [ -1
1+172 2] 1 i+1 Zk

15



The computation of AR for each wave k, is based on a flow parameter r:k)

defined as follows:

(k)
i-1/2
(k)

r_(k) = i+1/2 (48)

(k)
i+3/2
AQ(k)

i+1/2

AQ
, if v >0
k

,if v <0
Kk

where Q is a suitable flow variable. The density and the specific internal

energy, or simply p/p , are good candidates.

In eq.(48) AQ?::/Zis the jump in Q across wave k in the solution of the

Riemann problem with data (Ul, Um)‘ We call AQ(k) the local jump. The

i+1/2
numerators in (48) are the upwind jumps in Q across the wave k. Their choice
depends on the wave direction (sign of vk). The flow parameter r:k) in (48)
is the ratio of the upwind to the local jumps in Q across the wave k.
The amplifier Ak is then simply
A = A" (49)
k i

where A is any of the amplifying functions given by equations (44) and(45).

2.2.4 AN ALGORITHM FOR THE ONE-DIMENSIONAL CASE

Here we summarise the main steps involved in the implementation of WAF as

applied to the homogeneous one-dimensional Euler equations (1).

Having specified the domain length, the number of computing cells M and

the grid size Ax the following operations are performed at every time step n:

(1) Solve the Riemann problem with data (Ul, Um) and store:
(i) the wave speeds into WS(1,i), WS(2,i), WS(3,i).

16



(ii) the p-jumps across each wave into WJ(1,i), WJ(2,i), WJ(3,i).
* * * *
(iii) the star-state values p , u, P, and Py into SS(k,i), k=1 to 4.

Here the loop runs from i = -1 to M+l.

(2) Apply the CFL condition, based on true wave speeds given by the solution

to local Riemann problems, to find At.
{(3) For each i, i=0 to M.

(i) Compute the local Courant numbers
vk = WS(k,i) At/8x, k =1, 3.
(ii) Compute the amplifiers Ak, k=1, 2, 3.

(iii) Modify Courant numbers f)k = Ak v,

(iv) Compute the intercell fluxes according to (46), say. Store
values into FI(1, i), FI(2, i), FI(3, i).

(4) Advance to the next time level n+l using the conservative formula (5).

3. RIEMANN SOLVERS.

In this section we present an exact Riemann solver as well as approximate

Riemann solvers for use with the WAF method.

3.1 AN EFFICIENT EXACT RIEMANN SOLVER.

Recall that the ideal-gas Euler equations in differential conservation form

are

P pu 0
pu + pu2 +p = 0 (1)
E u(E + p) 0

t X

with p, u, p denoting density, velocity and pressure. E is total energy given
by

E = pu2 + pe (2)

N

17



where e is the specific internal energy given by the ideal equation of state

e =elp, p) = R 3
(p, p) (y-1)p (3)
Equations (1) can be written as

U +FU =0 (4)
t x

with the obvious meaning for the vectors of conserved variables U and the

vector of fluxes F.

The Riemann problem for (4) is the initial value problem with data

UL , x<0
U (0, x) = U . x>0 (5)
R
where UL and UR are constant states. The solution of (4) - (5) in the x-t

plane is depicted in Fig. 2. The middle wave is a contact discontinuity; the
left and right waves (usually called acoustic waves) are either shock or

rarefaction waves.

Both the pressure p, and particle velocity u, are constant in the “star
region between the acoustic waves while p changes discontinuously from p L to
P,y across the contact discontinuity. The key step in solving the complete
Riemann problem is to solve for p,. This is accomplished by deriving a single

algebraic (non-linear) equation for p,.

Following Toro (1989c) we write

f(p,, UL, UR) = fL(p*, UL) + fR(p*, UR) +Au=0 (6)
with
Au=u -u n

The functions f LaLnd f gare derived from relations across the acoustic waves on
the left and right. They depend on (i) the unknown pressure p, (ii) the data
(UL or UR) and (iii) the type of the acoustic wave (either shock or

rarefaction). These functions are

)

2a Z;l

o | T TP =R
{rarefaction)
fS = 1/2 (8)
As
_ -5 i >
(p ps) Bs+p , if p P
\

with S = L or R and
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P,
Fs— (9)

_ 2 _ {¥-1)
Ag = (7+1)ps » By = (+1) Ps H
0,

The symbols a, aR denote the souhd speed on the left and right states
respectively. As f in (6) is monotone, a unique solution for physically
admissible data exists, and thus a Newton-Raphson iteration procedure for (6)

to find p, works well.

Once p, has been found u, follows as

U*=

1
(uL + uR) * 3 (fR - fL) (10)

DN

The density values p . and Pug either side of the contact discontinuity are

( P Hi”, if H =1 (rarefaction)
Po =7 (+DH, + ¥-1 (11)
L P, ('I-l)HL T | if HL > 1 (shock)
and
( Pe H;/"T, if HR = 1 (rarefaction)
For 7 (7+DH + 7-1 ] (12)
\ Py (ar—l)HR s gl I if HR > 1 (shock)

Now we know the complete solution for the star state (Fig. 2). When using the

Riemann problem solution numerically we also need to find the wave speeds. We

select
(u - a ifH =1 )
L L L
1 = . 172
! u—a[1+ W*“[H-l]] ifH >1
| L L 27 L L
7t2=u“l S (13)
(u +a ifH =1
R R R

172
7\:3—< {(y+1)
a [1+ V_[H —1]] if H >1
R R 2y R R

For the case of locally sonic flow the exact solution along the t-axis is

[
+
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3\

_ 2 1
U D [aL * 5(7 l)ul.]
1
a=a + E('y-l)(ux_—u) »
. 2 (14)
b= PL[;] 1)
L
Y
p
p=p [—]
L P
Similarly, for a right ’sonic’ rarefaction we have
\
2 1
—— 1 —— —
a=a + 5(7 1)(u uR)
2 > (15)
_ a ) (7-1)
P = PR[?]
R
v
p
P=P [“‘]
RL P
J

3.2 A ROBUST APPROXIMATE RIEMANN SOLVER (RARS)

By studying in detail the behaviour of the function f(p) given by (6) we
derive an approximate Riemann solver that requires no iteration. Given data
P, Y, p and p, u

monotone and concave down as we shall demonstrate.

s Py the function f(p) behaves as shown in Fig. 6. It is

The first derivatives of f S(S = L, R) with respect to p are

]
_ (y+1)
2
= (g) T e
’ TPy Py ’ S

fs= 4

A 1/2 (p-p.) (16)

s | - s N
[B+p] [ 2(p+B)]’p Pg
\ S S .

As f° = f; + fl’2 and by inspection f; > 0 for S = L, R the function f(p) is
monotone as claimed. A consequence of this is that the Newton-Raphson method

to find iteratively the solution p = p, of f (p) = O will always converge.

The second derivatives of the functions f S (S =1L, R) are

20



{
(7+1)a - M
- p 2y <
2 2 N » P = Ps
2y P s
f‘s”= ) 1/2 w0
_1[ As ] 4Bs+3p+pS .
4 BS+ p (Bs+ p)z S
\
Since ' = fl:’+ f]’z’ and f;’ < 0 for S = L, R the function f(p) is concave

down as claimed.

From equation (16) it can be seen that f; > o as p » 0 and f"s >0 as p » w
This behaviour of f s and thus of f(p) has implications when searching for
approximate values to the zero p, of f(p) = 0.

The velocity difference Au = u - u and the pressure values P, p, are the

L
most important parameters. With reference to Fig. 6 we define

p =min{p , p}
P, =max {p , p}
and note that if
f =f(p ) =0 and
m m
fM = f(pM) z O then

the solution p, satisfies P_ =p, =P,

For given P s P, it is the velocity difference Au which determines the value

of p,. Three intervals Il, Iz’ I3 can be identified; these are given by

I1 = (0 ,pm)
I2 = [pm, pM] (19)
I3 = (pM » @)

For sufficiently large Au (as (Au)3 in Fig. 6) p, lies in I1 and thus p, < P
p, < P, and so the two acoustic waves are rarefaction waves. For Au as (Au)2
in Fig. 6 p . ‘lies between P and P, and hence one acoustic wave is a
rarefaction wave and the other is a shock wave. For sufficiently small values
of Au p, lies in 13, that is p, > P, P, > Pe i.e. both acoustic waves are

shock waves. The interval where p , lies can easily be identified by noting
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the signs of fm and fM.

If fm, fM > .0 then p, € I1 (two rarefactions). If fm and fM have opposite
signs then p_ lies in I2 (one shock, one rarefaction); if fm, fM. < 0 then p,

€ 13 {two shocks). Evaluating fm and fM is economical as

f(pL) fR(pL) + Au

(20)

f(pR) fL(pR) + Au

A final observation on the behaviour of f(p). In I1 both f‘ and f’’(p) vary
rapidly. As p increases the shape of f(p) tends to resemble that of a
straight line; recall that f/ and ' > 0 as p » o.

From a precise knowledge of the properties of f(p), there are several routes
to finding an approximate solution for p . After having tried a few

possibilities we propose the following method.

(i) Compute fm and fM according to (20). This is like a single f(p) -
function evaluation.
(ii) Identify the interval where the solution lies by using signs of f m
and f .
M
(iii) If p, € I then the solution is exact and is given by
2y
i ) a +a + (uL - uR)/('z—l)/z 7-1
Py = Ppp 7-1 -1

2y 2y
a'L/pL * aR/pR

(iv) If p, € I2 or p, € I3 perform another function evaluation; we take
f'I'R = f(pm)
(v) Fit a straight line through points (pm, fm) and (pTR , f’rR) if pe I2

or through (pM, f M) and (pTR , T TR) if p,e I3 to find the approximate

value to p,.

The procedure requires, effectively, two function evaluations. Note that there
are three points available and a quadratic fit is tempting. The extra
arithmetic involved is unattractive. Moreover, the selective linear fit
procedure just described, apart from its simplicity, has an interesting
property: If the states UL and UR are connected by a single shock, a single
rarefaction or a single contact discontinuity, then the approximate solution
as given by our algorithm is the exact solution. Having found p, all other

quantities follow as in section 3.1.
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3.3. A LINEARISED RIEMANN SOLVER AND RIEMANN-SOLVER ADAPTATION.

By writing the Euler equations is primitive variables and performing a local
linearization about a state with density pand sound speed a one finds directly

the solution for the state star (Fig. 2) as

Us = %(uL+ ug) - %(pR- P )/B,

Px = %(pL+ pR) - %(uR— uL)B1

P = P ¥ (uL— u,,E)B2 (21)
Pap= Pt (Uy - u)B,

B =pa, B =p/a

2

The averaged values ;_J and a can be selected in a variety of ways. Here we give

- _ 172

a= E(aL+ aR) i P = (prR) (22)
Note that an isolated contact discontinuity is recognized exactly. For
numerical purposes this is a welcome property of the linearised Riemann
solver; capturing contacts is more difficult than capturing shocks. We
denote the linearised approximate Riemann solver by LARS. More details are

found in the paper by Toro (199ic)

We wish to use the linearised Riemann solver (21) only in regions of slowly

varying data. To this end we define
P = mm{pL,pR}; P~ max{pL,pR}; Q= PP (23)

and restrict the use of LARS to cases in which

P = Px =P, (24)

that is, cases in which the acoustic waves are both rarefaction waves or both

shock waves are treated using the exact Riemann solver, or any other robust



Riemann solver such as the RARS or the improved HLLC solver to be discussed
later. It can be shown that such restriction in pressure results in a

restriction on the velocity difference Au given as

pm(Q—l)
-B=Au=<B with B = _B_ (25)
1

with B as given in (21).

Some empiricism for switching between LARS and the exact solver is still
needed when selecting the value of Q in (25). Applications suggest that Q=2 is
more than adequate to reduce the use of the exact solver (expensive) to less
than 17 .

Application of this linearisation to the steady, supersonic Euler equations
for two and three dimensions has successfully been carried out and is to
appear in a paper by Toro and Chou (1991). For this case the CPU time saving

factor is three.

3.4. THE HARTEN-LAX-VAN LEER RIEMANN SOLVER (HLL)

A very simple type of approximations to the solution of the Riemann
problem was proposed by Harten, Lax and van Leer (1983). Their basic
assumption is that the only waves present are the left and right acoustic
waves. If estimates Al and hs for the lower and upper limits of the speeds of
these acoustic waves are available then one can easily solve for the conserved

variables and fluxes in the "star" region between the acoustic waves.

Consider Fig. 7. Evaluation of the integral form of the conservation

laws (4) in the rectangle ABCD gives

. AU, =AU - (F-F)

1
14172 A - A (26)
3 1

where U:+1/2 is the vector of conserved variables between the acoustic waves.
These values can be wused directly to either compute fluxes between the
acoustic waves, if version (12) (section 2) of WAF is to be used, or they can
be used to compute a weighted average state, if version (14) (section 2) of
WAF is to be used. For the former version of WAF, one can also compute a

"star” flux directly as
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. AF -AF +aX(U-U)
=3L 1 R 12 R L (27)

Fi+1/2 A - A
3 1

Expressions (26) and (27) are only valid for the case of Fig.7, i.e. 7\1 <0
and A_ > 0.
3

This approximate Riemann solver has one intermediate "star" state only.
That is to say, the density (temperature or internal energy) is assumed
constant across the contact discontinuity. As a consequence, contact

discontinuities are badly smeared.

The major problem with this Riemann solver is to find reliable and
sufficiently simple estimates 7\1 and AS for the lower and upper bounds for the
wave speeds. Davis (1988) proposed a number of procedures for these
wave-speed estimates. There is scope for the imagination in choosing the wave
estimates. An important consideration in doing so is the entropy condition
(see Harten (1983) and Harten et. al. (1983) for details).

A possible choice for Al and 7\3 in (26} - (27) is the wave speeds given
by the Roe approximation,provided the entropy fix has been incorporated into

the Roe scheme. Davis made the interesting observation that the choice

A= AX/AL , A = A (28)
3 1 3

¥
gives a flux F1+1/2 associated with the Lax-Friedrich’s scheme. Other obvious
*
choices reproduce "star" fluxes F1+1/2 associated with familiar schemes (e.g.

Rusanov’s method).

Here we present another way of choosing estimates 7\1 and 7\3 for the wave
speeds. Consider the isentropic equations of Gas Dynamics. This is a 2 x 2
system of hyperbolic equations with eigenvalues (wave speeds) 7\1 = u-a and ?\3
= u+a. Assume that the two waves in the Riemann problem for the isentropic
equations are rarefaction waves. Then we can find approximate solutions for

* *
the speed u and the sound speed a between the acoustic waves. These are



*

[
it

%(uL + uR) + (aL - aR)/('ar-l)

* (29)
= —2-(aL + aR) + (ar-l)(uL—uR)/4

[Y]
|

Then choose

>
Il

* *
) min {uL—aL, u -a }
(30)

* %
max {u +a , u +a
3 R R

Application of WAF with the HLL Riemann solver using the wave speeds (29)-(30)

>
t

gives very satisfactory results. It is worth remarking that for rarefaction
waves the estimates are always correct, but for shocks they may fail to bound

the shock speed. A possible improvement is as follows.

Using estimates (29)-(30) and the integral form of the Euler equations
(1) on the rectangle ABCD of Fig. 7 one obtains eqn.(26) for the conserved
variables (p, pu, E)'r between the acoustic waves. Denoting the right-hand

side of (26) by R one has the vector equation

(***E*)T—(R R )T (31)
p :P u ’ - I,RZ’ 3) 1
Hence

*

P =R,

SRR (32)

2 1
* 1.2
p - (7—1)(R3—ER2/R1)

* * *
A new sound speed a = (yp /p )2 can now be computed from (32). Then
* *
we set Al and As as in (30) but with revised values for u and a given by
(32).

The resulting scheme (30) for choosing the wave speeds together with the
modification (32) gives a very simple version of the HLL Riemann solver.

Extensive numerical experiments carried out by the author (unpublished) also

show that the resulting numerical methods are very robust.

3.5. AN IMPROVED VERSION OF THE HLL RIEMANN SOLVER (HLLC).
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The HLL Riemann solver, particularly with the proposed modification
performs very well indeed for 2 x 2 hyperbolic systems (e.g. shallow water
equations or isentropic gas dynamics). For larger systems however, such as
the Euler equations, contact discontinuities or shear waves are ruined. One
can remedy this anomaly of the HLL solver by restoring the wave associated

with the contact discontinuity as advanced in the paper by Toro (1991b).

Assume a wave configuration as in Fig. 8. Suppose we use the estimates

(30) derived from equations (32). Now we have an estimate for the wave speed
*
of the contact discontinuity, 7\2 = u. The integral form of the

Euler equations (see eq. 4, section 2), when evaluated on ABEF of Fig. 8 give
F*_F o2 -u) (33)
LT ML L
Integration on BCDE gives
FF =F «A(U - U) (34)
R rRTMTrRT TR
The vector equation (33) can be re-written as
* *
AU -F =S8 (35)
1L L
while equation (34) can be re-arranged as

* *
AU -F (36)
R R

Hn
o

with the obvious notation for the known vectors S and Q on the right hand

sides of (35) and (36). Since Az = u* is known equations (35) give
. S/A-A)p=AS -S ;E =(S_ +Ap/QA-1) (37)
P =S/ AL P=AS =S, s TS, T AP 1 2

From (37) the vector U:= (p:, p:u*, E:) of conserved variables is known and so

the intercell flux F:in (33) is now determined.
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In an entirely analogous way U; in equations (34) can be found. This follows

from the solution

* * *
Py = Ql/(hs- 7\2); p= AZQI - Q2 ; ER = (Q3 + Azp*)/(ha—)\z) (38)

Then the flux F; in (34) is determined and so the WAF method can now be
applied. Numerical results show that this improved version HLLC of the
Harten-Lax-van Leer Riemann solver produces results of the same quality as

those obtained from using the exact Riemann solver.

It should be remarked that results (33) to (38) are also valid for wave
configurations other than that showed in Fig. 8. Also, for the solution for

the pressure p* we in practice take a mean value from solutions (37) and
(38).

4. NUMERICAL RESULTS.

Here we present some numerical results for fout test problems. Test problems 1

and 2 are one-dimensional while tests 3 and 4 are two-dimensional.
TEST 1 : SOD’S SHOCK-TUBE PROBLEM.

This problem simulates the flow in a shock tube of wunit lenght with a

diaphragm at x = 1/2 separating a left (L) and right (R) states given by

P, = 1.0 Py = 0.125

u = 0.0 u = 0.0

L R

p, = 1.0 P, = 0.1 ¥y =14

Results are presented in Figs. 9 to 13. The numerical solution in all cases
was obtained using M = 100 cells and a CFL coefficient of 0.8. Results are
displayed at time t = 0.25 units; the numerical solution is shown in symbols
while the exact solution is shown by a full line. All the WAF numerical

results shown in this section were obtained using the TVD function SUPERA.

Fig. 9 shows the numerical solution obtained by using the WAF method with the
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exact Riemann solver and the amplifier SUPERA. The quantities shown are the
density, pressure, particle velocity and specific internal energy. The smooth
part of the flow is very accurately resolved, including the head and tail of
the left-running rarefaction. The right-travelling shock wave is resolved with
two interior points. This is comparable to the resolution of other RP methods
such as Roe’s second order method. The contact discontinuity is resolved with
three interior points, which is satisfactory. Contacts, due to their linear

character, are more difficult to resolve sharply than shock waves.

Fig. 10 shows the results obtained when using the Godunov’s method, which is
only first-order accurate. The smooth parts of the solution are, as expected
from a first-order method, not accurately represented. The shock wave is quite
sharply resolved with about five interior points but the contact discontinuity
is ruined, it has eighteen interior points. Compare Fig 9 to Fig. 10. Such
comparison is justified for two reasons. First, it illustrates the accuracy of
the WAF method and second, the WAF method utilises exactly the same Riemann

problem as the Godunov’s method and yet it gives much better results.

Fig. 11 shows the results obtained by the WAF method together with the
linearised Riemann solver (LARS). Note that the quality of the solution is
comparable to that obtained by using the exact Riemann solver (see Fig. 9),
althought for this test problem the initial pressure ratio is 10. In the
adaptation procedure we use LARS for local Riemann problems with pressure

ratios less than 2, which is a very conservative criterion.

Fig. 12 shows the results obtained when using the WAF method in conjunction
with the Harten-Lax-van Leer, or HLL, approximate Riemann solver The
two-rarefaction approximation applied to the isentropic equations is used to
obtain the wave speed estimates required by the HLL solver. The resolution of
the rarefaction and shock is good but that of the contact discontinuity is

very poor, just as in first order methods.

Fig. 13 show the corresponding result for HLLC solver, our improved version of
the Harten-Lax-van Leer, or HLL, Riemann solver. Note the improvement in the
resolution of the contact discontinuity. HLILC gives results of comparable
accuracy to the exact Riemann solver and yet it is significantly

simpler.Current work is concerned with the extension of HLLC to gases with
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general equation of state. Preliminary results for co-volume gases are very
satisfactory. It is for gases with general equation of state when the
efficiency of Riemann solvers (without compromising robustness) is put to the

test.
TEST 2: A BLAST-WAVE PROBLEM.

This problem was proposed by Woodward and Colella (1984). The initial data
consists of three constant states in a tube of unit length separated by two
diaphragms place at 0.1 and 0.9. The density is everywhere unity and the
velocity is zero. The pressure has the values 1000.0, 0.01 and 100.0 in the
left, middle and right regions respectively; y=1.4. Results are shown at time

t = 0.028, shortly after the collision of the two leading shocks emanating
from the initial discontinuities; we use 3000 cells. Fig. 14 shows the result
obtained by the WAF method using the exact Riemann solver, while Fig. 15 shows
WAF using the exact and the linearised (LARS) Riemann solvers adaptively.
Results are virtually identical but the adaptive method gives a CPU time
saving factor of 2. Fig. 16 shows the corresponding result when HLLC is used.
Note fhe resolution of the contact discontinuity is as good as that
of the exact Riemann solver. We are confident that this improved version of
the Harten-Lax-van Leer Riemann solver can now be used for practical

applications. Current work involves the application of HLLC to real gases.
TEST 3: A CYLINDRICAL EXPLOSION

In this two-dimensional test problem we solve the time-dependent
two-dimensional Euler equations on the domain [0,2] x [0,2] in the x-y plane.
The initial conditions for p and p are those of of TEST 1 and u = v = 0.0; the
region of high pressure and high density is the circle of radius 0.35 centred
at (1,1). Cells covered partially by both sets of data are re-initialised in
area-weighted fashion. The solution of the problem consists of three waves,
namely an outward travelling shock followed by a contact discontinuity and
rarefaction wave travelling toward the centre. Both the shock and the contact
will attenuate at time evolves and the mechanism that allows this is the
presence of rarefaction waves following both the contact and the shock and so
the post-shock and post-contact states are not horizontal as in the

one-dimensional case. Fig. 17 shows the pressure distribution at time 0.3
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units and Fig. 18 shows the density distribution at the same time. The
expected symmetry of the circular waves is very well represented in the
numerical solution. Also both the shock and the contact are sharply resolved.
Along radial distance the problem is one-dimensional with geometric source
terms. Fig. 19 shows a comparison between the numerical solution of the one
dimensional problem obtained by using the Random Choice Method (RCM) and the
WAF two-dimensional solution along one radial line. The quantities shown are
density and radial velocity. For the WAF solution we have used 50 cells only

while for RCM we have used 500. Good agreement is observed.

TEST 4: A MACH REFLECTION PROBLEM

This two-dimensional test problem consists of Mach 5.5 flow over a 30 degree
wedge. Fig. 20 shows contours of density for the numerical solution obtained
by the WAF method with Riemann solver adaptation (exact Riemann solver and
LARS). Fig. 21 shows the corresponding solution using the exact Riemann solver

throughout.
5. CONCLUSIONS.

The WAF numerical method as applied to the time-dependent Euler equations
along with a range of Riemann solvers have been presented. Also, a
Riemann-solver adaptation procedure has been proposed and tested. Numerical
results for one and two-dimensional test problems show that the resulting

algorithms are very satisfactory.
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LEGEND TO FIGURES

Fig. 1. Control volume of dimensions Axi by At is computational cell i. New
value U;Hl is given in terms of old value U'i1 and intercell fluxes.

Fig. 2. Solution of the Riemann problem with data UL and UR in the x-t plane.
The three waves present define four piece-wise constant states. Solution is
found in terms of the star region between acoustic waves.

Fig. 3. Evaluation of the intercell numerical flux for the WAF method. The
simplified wave structure in the solution of the Riemann problem gives four
regions k of non-dimensional lenght Wk'
Fig. 4. Ilustration of the WAF intercell flux for the linear advection
equation.

Fig . 5. TVD regions in the r-A plane for WAF method as applied to the linear
advection equation.

Fig. 6 Illustration of the behaviour of the function f(p) for the exact
Riemann solver.

Fig. 7. Simplified wave structure for the HLL approximate Riemann solver.

Fig. 8. Wave configuration for the modified HLLC Riemann solver with restored
contact wave.

Fig. 9. Comparison between the numerical (symbol) and exact (line) solutions
for Test 1. The numerical results correspond to using WAF with the exact
Riemann solver.

Fig. 10. Comparison between the numerical (symbol} and exact (line) solutions

for Test 1. The numerical results correspond to using Godunov’s method with
the exact Riemann solver.

Fig. 11. Comparison between the numerical (symbol) and exact (line) solutions

for Test 1. The numerical results correspond to using the WAF method with the
linearised Riemann solver LARS.

Fig. 12. Comparison between the numerical (symbol) and exact (line) solutions
for Test 1. WAF with the HLL and the isentropic-wave speed estimates is used.
Fig. 13. Comparison between the numerical (symbol) and exact (line) solutions
for Test 1. WAF with the HLLC Riemann solver is used.

Fig. 14. WAF numerical solution to test 2 at time 0.028. Exact Riemann solver
is used.

Fig. 15. Numerical solution to test 2 obtained by WAF with Riemann solver
adaptation.

Fig. 16. Numerical solution to test 2 obtained by the WAF method with our
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improved version HLLC of the HLL approximate Riemann solver.

Fig. 17. Computed pressure distribution for Test 3 using the WAF
method with the exact Riemann solver.

Fig. 18. Computed density distribution for Test 3.

Fig. 19. Comparison of numerical results for Test 3 between the

two-dimensional WAF solution (symbol) and the one-dimensional Random Choice
solution (full line). WAF uses 50 cells and RCM 500.

Fig. 20. Density contours for test 4; WAF with Riemann solver adaptation is
used.

Fig. 21. Density contours for test 4; WAF with the exact Riemann solver is

used.
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Fig. Y Illustration of the WAF intercell flux for the model equation
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Fig. Behaviour of the exact function for pressure.
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-Fig.':\— Simplified wave structure for the HLL approximate
Riemann solver.

Fig. S& Wave configuration for the modified HLL Riemann solver.
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Exact Riemann Solver




