
Energy Conversion and Management: X 21 (2024) 100527

Available online 9 January 2024
2590-1745/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Hybrid energy system integration and management for solar energy: 
A review 

Tolulope Falope a, Liyun Lao a,*, Dawid Hanak b, Da Huo a 

a Energy and Sustainability, School of Water, Energy and Environment, Cranfield University, MK43 0AL, UK 
b Net Zero Industry Innovation Centre, Teesside University, TS1 3BX, UK   

A R T I C L E  I N F O   

Keywords: 
Solar Energy Integration 
Integrated Energy Management System 
Solar Energy Forecasting 
Demand Side Management 
Supply Side Management 
Time-of-Use 
Direct Load Control 

A B S T R A C T   

The conventional grid is increasingly integrating renewable energy sources like solar energy to lower carbon 
emissions and other greenhouse gases. While energy management systems support grid integration by balancing 
power supply with demand, they are usually either predictive or real-time and therefore unable to utilise the full 
array of supply and demand responses, limiting grid integration of renewable energy sources. This limitation is 
overcome by an integrated energy management system. This review examines various concepts related to the 
integrated energy management system such as the power system configurations it operates in, and the types of 
supply and demand side responses. These concepts and approaches are particularly relevant for power systems 
that rely heavily on solar energy and have constraints on energy supply and costs. Building on from there, a 
comprehensive overview of current research and progress regarding the development of integrated energy 
management system frameworks, that have both predictive and real-time energy management capabilities, is 
provided. The potential benefits of an energy management system that integrates solar power forecasting, 
demand-side management, and supply-side management are explored. Furthermore, design considerations are 
proposed for creating solar energy forecasting models. The findings from this review have the potential to inform 
ongoing studies on the design and implementation of integrated energy management system, and their effect on 
power systems.   

Introduction 

Currently, about 770 million people globally do not have access to 
electricity [1]. It is estimated that by 2035, global demand in energy will 
increase by a third [2]. The upward trend in global energy demand is 
currently being met mostly by fossil fuels like coal, oil and natural gas, 
which have as their by-products global warming and emission of 
greenhouse gases (GHG) [3,4]. In British Petroleum’s Statistical Review 
of World Energy [5], fossil fuel accounted for 82 % of primary energy 

use in 2022, with coal and natural gas growing post-pandemic by 6 % 
and 5.3 % respectively. To curb the GHG emissions and meet the 
emission reduction targets set out in the Paris Agreement, the govern-
ments globally have increasingly turned to renewable energy sources 
(RES) to help satisfy demand. According to BP [5], RES contributed 
about 10.2 % to power generation, reaching double figures for the first 
time. 

RES, like solar and wind, have been widely adapted and are 
increasingly being used to meet load demand. They have greater 
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penetration due to their availability and potential [6]. As a result, the 
global installed capacity for photovoltaic (PV) increased to 488 GW in 
2018, while the wind turbine capacity reached 564 GW [7]. Solar and 
wind are classified as variable renewable energy (VRE) and are non- 
dispatchable due to their intermittent nature [2]. However, economies 
of scale and improved research and development of VRE technology has 
led to a decrease in price of VRE components. The combination of price 
reduction and desire to limit the environmental impacts of fossil fuels 
has seen a greater penetration of VRE in the grid [8]. 

Renewable energy technologies increasingly have both off-grid and 
on-grid applications, but the intermittent nature of certain RES poses a 
challenge to grid operators as energy supply does not always match the 
consumption. As RES penetration levels increase with the advancement 
of decentralised distributed generation (DG), adequate steps must be 
taken to make sure that system constraints like fluctuating supply, 
capital costs of DG and grid extensions, and rising load demand, does not 
compromise the stability of the grid. Grid integration is the process of 
creating practical, affordable ways to integrate VRE into the grid while 
preserving or enhancing system stability and reliability. [9]. 

Solar energy is gaining popularity because of its versatility in various 
industrial applications including power generation for residential and 
commercial use, solar drying of fruits for industrial food processing, 
powering automotives and aeroplanes and so on. Furthermore, gov-
ernments and organizations are promoting the use of solar energy 
through various incentives and policies because of its relative safe-use, 
scalability, and favourable environmental impact compared to other 
sources. While the current installed capacity of wind energy might be 
higher than that of solar energy, the latter is projected to have an annual 
growth rate of 47.6 % compared to 18.9 % for the former [7]. In addi-
tion, it is projected that around 45 % of the world’s energy consumption 
could be met by solar energy by the mid-21st century [10]. In their 
research, Yao et al. [7] concluded that both demand side and supply side 
integration costs are lower for solar energy than for wind. PV systems 
using battery banks are the most popular because they are easier to 
install and cost less in terms of capital investment than other renewable 
energy technologies [11]. According to the International Energy Agen-
cy’s World Energy Outlook 2020 report, solar power was able to achieve 
the cheapest electricity rate in history. It was cheaper than coal and gas 
in most countries with price bids as low as 0.0104 US$/kWh [12]. 
Combined with increased efficiency of solar cells, and improved econ-
omies of scale leading to mass production of high-quality wafers [13], it 
is easy to see why solar remains a popular choice for power generation. 
Currently the energy intensity of silicon wafers production is about 6 kg 
CO2e/kg of silicon metal [14], considerably less than other sources. 

An energy management system (EMS) can be used to balance the 
supply and demand of a power system, which is a key requirement in 
integrating intermittent RES like solar energy. However, the emergence 
of big data, cloud computing, Internet of Things (IoT), advanced 
metering infrastructure (AMI) and other advances in communication has 
transformed the conventional grid into a smart grid [15,16]. The tech-
nology requirements of the smart grid have necessitated the evolution of 
the conventional EMS into an integrated energy management system 
(IEMS) [15]. While EMS can be predictive or in real-time, by definition, 
an IEMS leverages advancement in technology and communication, 
integrating predictive and real-time controls to initiate both supply and 
demand responses in balancing the load and power supply in the grid. 
While EMS may refer to a single power source, an IEMS has the ability to 
integrate multiple energy systems and initiate various control strategies. 

A comparative assessment of various IEMS architectures, based on 
the interconnectedness of their individual components is crucial in un-
derstanding how they impact the power system, provide grid stability, 
and ways they can be improved. As can be seen in Table 1, the published 
reviews listed does not give an analysis of IEMS frameworks. For 
instance, Jafari et al. [17] focuses on the limitations and techno- 
economic requirements of energy storage systems (ESS). Farag et al. 
[18] highlights issues with solar integration but focuses more on dust 

particles. Formolli et al. [19] analyses existing integrated solar energy 
sites with a focus on recommendations that will improve future urban 
solar energy projects. Peng et al. [20] focuses on PV generation, ESS and 
solar thermal for heating. Rubio-Aliaga et al. [21] proposes a multifac-
eted approach considering economic energy and environment to solve 
groundwater pumping issues by using RES. In both studies by Ozoegwu 
et al. [22,23], the focus is more from a policy standpoint. 

To address the research gap, which is the absence of a review on 
IEMS, this paper will review current IEMS frameworks/architectures, 

Table 1 
Recently Published Reviews Related to Solar Energy Management System and 
Integration.  

Source Publication 
Date 

Scope 

Khan et al. [24] 2022  • Summary of various optimization 
modeling techniques of a hybrid 
renewable energy system (HRES) 

Review of sizing, control and energy 
management strategies for HRES 

Panda et al. [25] 2022  • Review of DSM in integrating DER and 
Energy Storage Systems (ESS) 

Rayid et al. [26] 2022  • Prospects and challenges of renewable 
based mini-grid implementation in 
Bangladesh 

Apeh et al. [27] 2022  • Review of the contributions of PV to 
national development 

Khan et al. [28] 2022  • Review of optimization techniques for 
HRES couples with Hydrogen 
technologies 

Alami et al. [29] 2022  • Review of challenges and solutions to PV 
technology proliferation 

Lamnatou et al.  
[30] 

2022  • Review of smart grids /smart 
technologies related to PV systems, 
storage, buildings, and the environment 

Khosrojerdi et al.  
[31] 

2022  • Integrating artificial intelligence in smart 
grid 

Banu et al. [32] 2021  • A review on the advancements in 
methane cracking for hydrogen 
production 

Klass et al. [33] 2021  • A review on four ammonia production 
methods 

Ozoegwu et al.  
[23] 

2021  • An overview of Nigeria’s energy policy 
objectives and strategies 

Stevovic et al.  
[34] 

2021  • Using nature-inspired optimization for 
solar energy integration 

Dashtpeyma et al. 
[35] 

2021  • Development of a resilient solar-based 
EMS 

Peng et al. [20] 2020  • State of the art of solar energy utilization 
in buildings 

Shafiul Alam et al. 
[36] 

2020  • Review of challenges and solutions to RES 
integration 

Østergaard et al.  
[37] 

2020  • Review of technologies and systems that 
use RES 

Syafaruddin et al.  
[38] 

2020  • Modeling and Simulation procedures, 
control strategy for hybrid power 
generation 

Nižetić et al. [39] 2019  • Review of smart technology applications 
focused on efficiency improvement, 
sustainable and smart resource 
management 

Azuatalam et al.  
[40] 

2019  • Comparison of energy management 
strategies for small-scale PV-battery 
systems 

Rubio-Aliaga et al. 
[21] 

2019  • Multidimensional characterization to 
evaluate PV integration 

Guo et al. [41] 2019  • Review green energy integration for 
wastewater treatment plants 

Lauka et al. [42] 2018  • Development of a methodology to define 
solar energy potential for urban planning 

Ozoegwu et al.  
[22] 

2017  • A review of the past, current, and future 
status of solar integration in Nigeria. 

Khoshkbar-Sadigh 
et al. [43] 

2015  • Impact of large-scale PV penetration into 
the grid 

Inman et al. [44] 2013  • A review of forecasting methodologies 
and their applications  
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identify gaps in current knowledge and propose areas for future research 
by:  

• identifying and providing a comprehensive overview of the IEMS 
building blocks including energy forecasting, multi-energy genera-
tion, energy storage, demand side management and supply side 
management;  

• comprehensively reviewing each building block of the IEMS based on 
their adaptation and grid deployment as described in current liter-
ature; and  

• providing a side-by-side comparison of various IEMS architectures. 

Following the introduction, Section 2 describes the methods and 
gives the bases for the various literature reviews that span section 3 to 8. 
Section 3 presents the power system that is most favourable for the IEMS 
to operate in. Section 4 provides an overview of the state-of-the art in 
solar energy forecasting and provides a comparison of various fore-
casting models. Next, Section 5 provides a literature review of demand 
side management and highlights the different types of demand re-
sponses. Section 6 gives an overview of supply-side management and its 
application in current literature. Section 7 explains how an EMS works, 
siting examples of its application in literature. Section 8 brings together 
the various concepts from Section 3 to Section 7 and shows how they 
combine into an IEMS. A detailed comparison of some existing IEMS 
frameworks is also presented. Finally, Section 9 is a discussion on the 
authors perspective of various IEMS frameworks including future 
research. This concluding section also highlights the key findings and 
contribution to the IEMS literature. 

Methods 

In reviewing the existing literature on IEMS, it was determined that 
there are five major parts of an IEMS framework that supports solar 
energy integration: the power system the IEMS operates in, solar energy 
forecasting (SEF), demand side management (DSM), and supply side 
management (SSM). David et al. [45] largely substantiates this by con-
ducting a bibliometric study using the Scopus database from 2000 and 
2019 on PV solar energy management. From the analysis, ten potential 
study areas were established on future research trends including fore-
casting techniques and DSM, both of which are mentioned as future 
trends, load status studies, and efficient battery use which has applica-
tions in both SSM and DSM, and so on. 

Solar energy forecasting 

The capacity to reliably estimate generation while keeping some 
flexibility in demand control will be necessary for solar energy inte-
gration into the grid [46]. Effective grid integration and planning 
depend on improved generation predictions [47]. Energy forecasting is 
fundamental and crucial to practically every area of the economy, 
including residential, commercial, and industrial [48]. There are 
research methods that focus on predicting load consumption patterns or 
peak demand as a way of renewable energy integration [49–52]. How-
ever, for an energy system that uses solar energy as its primary source of 
power, the uncertainty in the system lies more in the variable nature of 
solar energy. In addition, many loads are invariably affected by weather 
parameters like solar radiation [53,54] which makes load consumption 
the dependent variable. Therefore, it is more effective for the stability of 
a solar-driven energy system and the dispatch of solar energy to the grid, 
to accurately predict solar energy supply than load consumption. 

To support the theory above, Cai et al. [51] concludes that the pre-
diction of energy consumption has to do with improving grid quality and 
allocation of power supply. Basmadijan et al. [46] on the other hand 
states that maintaining an equilibrium between power demand and 
supply solely rests with the supply side. For efficient MG sites that have 
PV generation units, a precise characterization of the solar energy 

available is crucial [55]. The argument is that supply is more easily 
controllable than demand because of the stochastic or unpredictable 
way consumers use energy [56]. For conventional grid sources, EMS is 
based on demand forecasting and supply planning. For RES, EMS is 
based on supply forecasting and demand planning. Therefore, the 
answer to the question of renewable energy integration is more suited to 
the prediction of renewable energy supply also known as solar energy 
forecasting (SEF). 

By being able to accurately forecast solar resources, one can then 
predict what generation will be like and reduce uncertainty [3,47]. 
Accurate energy supply forecast informs what control measures can be 
taken to maintain energy supply–demand balance in the system. For 
instance, in periods of low energy supply, alternative or standby gen-
erators can be deployed to augment power generation. Operational 
control of both supply and demand in a power system is crucial to 
renewable energy integration and aids in the balance of power [3]. 

Energy management system 

With the emergence of solar energy as an important source of energy 
supply, more thought must be given to increasing its usage in an efficient 
and sustainable way. One such solution is the use of an EMS to match 
demand and supply. An EMS is a tool that combines complex software 
and hardware to monitor, control and optimize energy use to reduce cost 
[52]. The EMS has a control system program that initiates a response 
depending on the energy supply forecasted. This response could either 
be a supply response (SR), demand response (DR) or a combination of 
both. Control systems are an important counter to the fluctuating and 
intermittent nature of RES like solar and wind energy [57]. An electric 
power control system uses control loop mechanisms to manage, regulate 
and direct the electrical components within a power system, and thus 
the power system itself [57]. Control systems use a feedback controller 
to modulate control. Parameters such as system frequency or voltage 
could be used as the process variables where a pre-determined control 
signal is generated once there is a difference between the value of the 
process variable and a reference value. 

Supply side management 

EMS using control systems is critical in implementing SR, DR or a 
combination of both, to ensure sufficient energy supply to satisfy de-
mand [58]. SR is a subset of SSM. SSM refers to the efficient generation, 
transmission, and distribution of electricity to meet customer demand 
[59]. SSM is crucial in creating an energy reservoir to supplement 
inconsistent energy supply resulting from intermittency of some RES. 
There are several SSM techniques including integrating battery storage 
[60], optimizing and synchronizing alternative or back-up power [61], 
dispatching algorithm for multiple energy supply sources [62], ramping 
up and down of generation through automatic control and so on. 

Demand side management 

Conversely, DR is a subset of DSM. DSM is the process of using energy 
efficiently by managing customers’ energy consumption [63], in addi-
tion to reducing energy costs and emissions [64]. In the resource- 
constrained areas of the grid, usually found in off-grid rural commu-
nities, storage batteries are often over-sized to increase the reliability of 
the power system. DSM can act as an energy buffer while reducing the 
capital and operating costs of the power system. Examples of DSM are 
energy storage using, energy efficiency in buildings [65], initiating DR 
and so on. DR focuses on short term adjustments made to load usage 
[60] and is broadly categorized into two: price-based DR and incentive- 
based DR. For efficient energy utilization, there is a need to integrate RE 
and other distribution energy resources with DSM [66]. Conversely, 
successful implementation of DSM can be achieved through energy 
forecasting [67]. In addition, efficient power scheduling should be done 
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using RE forecasting and managing electricity tariffs through DSM [68]. 
A reliable EMS is vital to the success of DSM [69]. It is clear to see that 
SEF, SSM and DSM are strongly linked in an EMS. 

In general, the review found that scientific journals mostly addressed 
optimising the system in terms of storage, energy dispatch/supply, 
consumption, and equipment sizing. Largely undiscussed was a 
comparative overview of the IEMS framework. To analyse IEMS 
frameworks, we conducted a comprehensive literature review for each 
sub-section of the framework, including the EMS. The aim was to 
identify and emphasize key concepts and design considerations for each 
parameter and their interconnectedness within the IEMS. Fig. 1 illus-
trates the approach used in the study. 

Renewable smart hybrid mini-grids: The future of renewable 
energy integration 

A smart MG is a collection of controllable and physically proximate 
distributed generator(s) and load resources, where there are multiple 
sources of AC power and at least one of these is based on a renewable 
energy technology such as wind or solar energy [4]. With the advent of 
smart grids, these resources can be better controlled to deliver efficient 
and reliable power despite their intermittent nature [46]. Due to their 
modular and distributed nature, smart grids are a viable and sustainable 
way to provide power in developing countries [70].The renewable smart 
hybrid MG is ideal for dispatching an EMS because it requires smart 
communication of multiple load and supply sources at the same time. 
There are different classifications and iterations of the smart grid or MG 
namely the renewable energy home system (REHS), renewable hybrid 
mini-grid (RHMG) and the renewable smart hybrid mini-grid) (RSHMG). 
Fig. 2 shows the three different configurations. An examination of their 
different characteristics and their importance to the deployment of an 
EMS is further explained. 

Distributed generation: Mini-grid & renewable energy home systems 

The conventional method of providing new electricity connections 
mainly from traditional sources like fossil fuels is not sustainable, as the 
environmental costs and rising fuel prices make grid extension expen-
sive and less attractive [4,71]. For the problem of universal electricity 
access, the idea of a central utility gradually extending the grid is being 
overshadowed by a more robust solution using decentralized DG. While 
the former causes transmission losses [72], the latter provides the use of 
locally available energy sources. This eliminates transmission costs and 
reduces power losses [4] as well as increases the flexibility and reli-
ability of the overall system. 

DG, particularly using RES, has proven to be a viable answer in terms 
of cost and flexibility [3]. DG shows a greater capacity of renewable 
integration without compromising the grid [73]. DG renewable config-
urations differ with respect to capacity. At one end of the spectrum are 

MGs and integrated solar farms, while at the other end are smaller 
renewable energy home systems (REHS) like rooftop solar arrays. The 
increase in solar energy penetration has also largely increased due to the 
fact that RES now have small-scale and large-scale applications [74] 
with users ranging from small residential customers to large utility op-
erators. This is not independent of the fact that RE is relatively afford-
able and can be accessed by a wide spectrum of customers [2]. Fig. 3 
gives an overview of the DG classifications. 

The Nigerian Electricity Regulatory Commission (NERC) defines 
MGs as systems with integrated generation and distribution networks 
that have installed capacities below 1 MW [75]. This can be with or 
without storage [76]. NERC also goes further to classify MGs as being 
either isolated (no connections to any network) or interconnected to the 
main grid [75]. A study by the International Renewable Agency (IRENA) 
gives a more general definition of MGs as simply an integrated structure 
of energy sources and loads that may or may not include functions of 
generation, storage control, management, measurement, conversion and 
consumption [77]. MGs are increasingly popular because of technology 
flexibility and an efficiency in integrating large scale DGs [78]. 

REHS are gaining popularity due to lower installation and opera-
tional costs [11]. Like the name implies, these are systems that use one 
or more RES as its primary or back-up source. They can either be stand- 
alone or grid-connected. An example of a REHS is the solar home system 
(SHS). The SHS is comprised of solar panel(s), a charge controller, bat-
tery, an inverter and a load. At the very basic level, the inverter is not 
included, and the load is DC in nature. REHS can range from several 
watts to several thousand watts. They usually represent the low end of 
the DG spectrum. 

REHS and MGs are quite similar in the sense that they both operate a 
decentralized grid. In fact, MGs may be viewed as a bigger version of the 
REHS in terms of energy production capacity. Ekpe and Umoh [70] infer 
that a solar home system (SHS), which is an example of a REHS, can be 
easily scaled up to a MG. There are, however, some other differences. 
REHS tend to provide a lower tier of service than MGs [77]. Though 
central utilities on an average provide a higher tier of power supply to 
multiple customers than both, they have to consider power losses due to 
distance and its equivalent costs. MGs on the other hand can provide the 
quality of service a central utility provides while being closer to the 
customer. In fact, MGs are a replica of the much larger central power 
systems albeit on a smaller scale [79]. REHS are tailored to a particular 
customer’s load profile [76] while MGs can reasonably be designed and 
optimized to match the aggregate load profiles of the customers it sup-
plies [80]. 

Renewable mini-grids and hybrids 

A MG based on some-form of renewable energy is referred to as a 
renewable mini-grid (RMG) [77]. RMGs are viable alternatives in sup-
plying areas with no connection to the grid (off-grid), areas with inef-
ficient or erratic energy supply, or areas where grid extension is not cost 
effective [3,77]. These MGs can serve as a backup to the main grid or at 
other times help supply power during peak demands [63], thereby 
reducing the burden on centralised utility networks. 

RMGs can also be paired with generation from non-renewable 
sources like diesel generators to form a renewable hybrid mini-grid 
(RHMG) [63,70,77]. RHMG are a cost-effective way of improving 
power system reliability through renewable energy integration [81,82]. 
Typical configurations of the RHMG have the renewable component as 
the primary source while diesel and/or batteries serve as backup [83]. 
RHMGs are able to combine the advantages of each generation source. 
For instance, a solar-diesel MG takes advantage of the stable power 
supplied by a diesel generator versus the intermittent nature of solar 
energy, while solar as a renewable energy source isn’t affected by 
varying fuel prices. As compared to single-source power systems, RHMG 
supply greater load for longer and are more efficient and cost-effective 
[84]. Falk et al. [85] also attributes faster and more flexible energy Fig. 1. Review approach for IEMS Framework.  
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supply as advantages of RHMGs especially when incorporated with some 
form of storage. RMGs are viable in providing reliable, affordable and 
environmentally friendly supply of energy [63,77,80]. 

Grid-tied versus off-grid 

IRENA groups MGs based on their connection to the grid and the type 
of service provided. Connections are categorized as autonomous (iso-
lated) or interconnected (grid-tied) while the type of service is either 
lower tier or higher tier [77]. However, Szewczuk [86] makes the case 
for an interconnected system over an isolated system by highlighting the 
lower cost per connection due to the fact that power from the grid can 
sometimes substitute storage and help with system balancing. In addi-
tion, since grid-tied MGs are part of the main grid, they can be config-
ured to help with the utility’s short-term problem of on-grid congestion 
and peaking loads [63], and its long-term problem of grid extension. 
Furthermore, Robert et al. [79] sites the semi-autonomous design of the 

interconnected MG as the reason it contributes to the overall reliability 
and resilience of the system. Isolated or off-grid MGs can only help with 
the latter problem and require complex energy balancing mechanisms if 
the primary source is RE. There is, therefore, a stronger case to look at an 
interconnected system that addresses both on-grid congestion and grid 
extension. Typical configurations of the RHMG are operating:  

• as the primary power provider with the main grid as a back-up;  
• as a back-up to the main grid; and/or  
• a system to shave up peak demands and supply critical loads [77]. 

The EMS should be robust enough to be deployed either for on-grid 
or off-grid power systems. The EMS’s function for an on-grid application 
will be to reduce the strain on the grid by optimising the operations of 
any energy storages, co-ordinate power dispatch and reducing peak load 
demands. In an off-grid application, the EMS’s main function will be to 
maintain the integrity of the grid by matching supply to demand, since 

Fig. 2. Power System Configurations for EMS Deployment.  

Fig. 3. Classification of Distributed Generation Systems.  
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there is no back-up as the main grid is absent. EMS can also be applied to 
frequency and voltage control of the grid. 

Renewable smart hybrid mini-grid 

Deployment of interconnected MGs has been limited and the tech-
nology is still emerging [77]. The ability for various equipment and 
components in the power system to interact and communicate with each 
other, interpret and respond to external and internal inputs in order to 
preserve the stability of the system makes the grid “smart”. The objective 
of the smart grid is to upgrade the existing power system to one that is 
safe, adaptable, resilient, expandable, and sustainable [87,88]. Adding 
intelligence or smarts to a system yields better results for all stake-
holders involved, for example optimally switching power sources and 
load shedding [3]. To increase grid penetration, RMGs or RHMGs 
“require technology advancements in design and planning phases” [77]. 
According to IRENA [77], these technological advancements include 
intelligent controls that can interpret high level algorithms, integrate 
accurate RES predictions with adequate battery control. Moreno-Garcia 
et al and Judge e al. [89,90] identify these technologies as AMI, smart 
meters (SM), sophisticated communication and information architec-
tures or advance control and automation techniques. The incorporation 
of these technologies transforms the RHMG into a renewable smart 
hybrid mini-grid (RSHMG) [63]. Palahalli et al. [91] describes smart 
grids as the interaction between power and communication devices to 
control power flow within the grid network. These communication de-
vices must be reliable [70] so that the flow of information between 
monitoring and control devices results in the accurate response. Smart 
grids must be able to integrate all components of the system, from 
supplier to the end-user, and possess real time monitoring and control 
[89]. The emphasis on smart grid is because the central technology used 
in implementing DR programs or cost-reflective pricing (CRP) is the SM 
[92]. SM is part of the AMI that integrates measurement, communica-
tion, control and monitoring between the supply and demand side of the 
system [90,93]. 

Smart grids have also given rise to smart homes. Smart homes with 
residential power generators are also capable of monitoring and con-
trolling customer appliances and loads [65]. 

Solar energy forecasting 

The push for integrated renewable energy generation is seen as a key 
step in reducing the dependency on depleting fossil fuels used in power 
generation. However, the intermittent nature of RES, like wind and solar 
energy, means that a higher penetration of these sources in the tradi-
tional grid would lead to reliability and quality issues [13,79,89,94]. 
Therefore, a reliable way to forecast energy resource availability is 
crucial in making sure energy demand always matches supply. Accurate 
resource forecasting reduces the need for storage and other reserves [79] 
and helps the energy sector to minimize power fluctuations while 
maintaining the overall reliability of the system [66]. The results of a 
study by Kromer et al. [95] show that by incorporating forecasting and 
day-ahead shaping of customer’s load, need for storage was reduced by 
10 %-20 % and levelized cost of energy (LCoE) by about 10 %. 

SEF is the process of predicting future solar irradiance or solar power 
generated from historical and/or present meteorological observations 
[96]. There are many SEF methods and techniques usually derived from 
considerations like data input, forecasting architecture used to map the 
input data, the forecasting methodology, the forecasting time frame/ 
scale and the predicted outcome [97]. In considering the data type, this 
could be historical, real-time, or forecast data. The data source describes 
the origin of the data for example if data comes from an on-site weather 
station as opposed to a local weather station. Table 2 shows a review of 
some studies based on data source and types. 

Table 2 shows the possibility of different permutations of data types 
and sources that have not been explored. There is clearly room for 

further research and contribution to this area as highlighted by David 
et al. [45] in Section 1. While some studies may choose to use one data 
(univariate) type, Table 2 reveals that majority rely on two data sets: the 
historical PV generation and a meteorological data type. Even fewer 
studies make use of more than two data sources. A more in-depth 
analysis of current literature, and an expansion of the concepts 

Table 2 
Review of Research Studies on Data Source and Types.  

Research 
Study 

Historical 
Observed 
Weather Data 
from Weather 
Station 

Forecast 
Weather 
Data 

Historical 
Observed 
Weather 
Data On- 
Site 

Historical 
Observed 
Energy 
Meter Data 

Sarp et al. 
2021 [98]   

✓ ✓ 

Aprillia et al. 
2020 [99]   

✓ ✓ 

Cannizzaro 
et al. 2021  
[100]   

✓ ✓ 

Gu et al. 2021  
[101]   

✓ ✓ 

Nguyen et al. 
2021 [102]   

✓ ✓ 

Pan et al. 2021 
[103]   

✓ ✓ 

Ngoc-Lan 
Huynh et al. 
2021 [104] 

✓   ✓ 

Pedregal et al. 
2021 [105] 

✓   ✓ 

Ahmad et al. 
2021 [106] 

✓   ✓ 

Korkmaz 2021 
[107] 

✓   ✓ 

Li et al. 2019  
[108] 

✓   ✓ 

Najibi et al. 
2021 [109] 

✓   ✓ 

Rodríguez 
et al. 2018  
[110] 

✓   ✓ 

Thukral 2020  
[111] 

✓   ✓ 

Wang et al. 
2018 [112] 

✓   ✓ 

Yakoubi et al. 
2021 [113] 

✓   ✓ 

Zang et al. 
2018 [114] 

✓   ✓ 

Chen et al. 
2020 [115] 

✓   ✓ 

Anaadumba 
et al. 2021  
[116]    

✓ 

Kushwaha 
et al. 2019  
[117]    

✓ 

Iyengar et al. 
2014 [118]  

✓  ✓ 

Andrade et al. 
2017 [119]  

✓  ✓ 

Leva et al. 
2017 [120]  

✓  ✓ 

Persson et al. 
2017 [121]  

✓  ✓ 

Abedinia et al. 
2017 [122] 

✓ ✓  ✓ 

Carrera et al. 
2020 [123] 

✓ ✓  ✓ 

Kim et al. 2019 
[124] 

✓ ✓  ✓ 

Kyliashkina 
et al. 2019  
[125] 

✓ ✓  ✓  
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highlighted in Table 2, can be seen in Table 3. 
In Table 3, the second column describes the type of power system 

used in the forecast. As can be inferred from Section 2, each power 
system is unique and has characteristics that will influence how the solar 
energy is forecasted. In the data source column, data used in the studies 
were historical and forecast weather data as well as power or energy 
meter readings from the PV plant. Some studies use more weather data 
parameters than others in selecting the predictors to train the fore-
casting model. These predictors have a direct impact on the predicted 
outcome. This is important because the more relevant data used in 
training, the more accurate the model is [110]. In summary, the more 
weather parameters considered, the higher the possibility of getting 
better predictors. 

The proximity of the weather data to the power system is another 
factor to consider when assessing a forecasting approach. Although 
weather data from a local weather station may be accurate, it is possible 
that they don’t fully reflect the site’s local characteristics. By having a 
weather station on-site, this weather information can be further refined 
[2]. Local weather conditions that affect the weather but are not rep-
resented in data from local or regional weather stations can be captured 
by the on-site weather station. Therefore, the presence of an on-site 
weather station is important and is included in column 5 of the table. 

According to the temporal scale, solar forecasting is divided into 
ultra-short-term (1 min to 1 ahead), short-term (1 h to 1 week ahead), 
medium-term (weeks, months, and quarters) and long-term forecasting 
(1 year to several years ahead) [134]. 

The forecasting architecture describes how the forecasting method-
ology maps the input data to the predicted outcome. Solar forecasting 
methods are divided into physical, statistical, and hybrid models [135]. 
Physical methods are divided into Satellite-Imaging models, Sky Images 
and Numerical Weather Predictions (NWP) [136]. NWP uses meteoro-
logical weather data like pressure, temperature, humidity and so on, to 
predict either the solar radiation or PV generated. NWP output data are 
the most widely used for 24-hour or day-ahead forecasts [137,138]. 
Statistical methods like Artificial Neural Networks (ANN) and Support 
Vector Machines (SVM), are data-driven and rely on historical data to 
make predictions. Both the physical and statistical models can be com-
bined to form hybrid models that provide a higher forecasting accuracy. 

Demand side management 

Power system management can be categorized into demand side 
management (DSM) and supply side management (SSM) [139]. Increase 
in energy demand and prices necessitates energy optimization at both 
the supply and demand side [65]. SSM and DSM are both critical in the 
planning phase for the integration of intermittent RE [140] and are 
useful in reducing peak loads and increasing network capacity [139]. 
Energy planning must consider the effects of both DSM and SSM in 
designing energy systems that are reliable, financially viable and envi-
ronmentally responsible [59]. The ultimate goal of integrating both DSM 
and SSM is to meet customers demand needs in a reliable and cost- 
effective way. 

DSM and SSM can be uniquely viewed with regards to ramping up or 
down the demand or supply respectively. In terms of DSM, the goal is to 
reduce consumer demand to a manageable level at which load demands 
can be effectively supplied by the system. On the other hand, DSM can 
be used to increase demand by activating shiftable demand load and 
storage during times of surplus energy production. 

As described by Szewczuk [86], smart grids make use of smart 
technologies that focus on concepts like “dynamic demand management, 
automated battery control, low-cost solar forecasting, intelligent refrigera-
tion, optimal grid planning and automated fault detection and diagnosis”. 
Kakran et al. [63] include components like DG, demand side responses 
and other smart devices for example smart meters. The purpose is for 
increased grid reliability, significant savings, and improved power 
quality [71]. 

DSM is the process of using energy efficiently by managing cus-
tomers’ energy consumption [63], thereby reducing the load demand 
and maximizing the capacity of the power system. It refers to monitoring 
and control processes that reduces the energy demand at the customer’s 
side of the meter [141]. Despite the advantages of the RSHMG, the 
intermittent nature of renewable energy sources like solar energy can 
lead to periods of reduced electricity generation. Also, non-existent or 
constrained storage, along with fluctuating peak demand, can often 
reduce the reliability and efficiency of the system [142]. While energy 
storage can help mitigate some of these problems, its relatively high cost 
hampers its deployment [67,143]. At these times, DSM can be a useful 
tool to reduce demand peaks [93] and more evenly spread demand so 
that it better matches with supply [142,144]. DSM is also listed as a key 
resource that can help maintain stability in the grid when supply and 
demand do not match up [13]. With no control over the supply, the aim 
is to modify the load to fit the supply pattern [64]. In summary, DSM 
integrates load shifting and energy efficiency to balance supply with 
demand [145]. Harper lists price incentives and distributed intelligent 
load controllers as examples of DSM techniques and DSM technologies, 
respectively. DSM implementation can potentially reduce the total in-
vestment costs of MGs [67]. For example, remote or off-grid battery 
system storage can be reduced as DSM can account for times of high 
peak. In an analysis of a SHS by Mehra et al. [146], by grouping the load 
into critical and non-critical (shiftable) loads, the capital cost of the 
system was reduced by 26 %. In terms of cost to the investor/operator, 
DSM can move demand to periods of excess generation, thereby elimi-
nating or limiting the need for energy storage [143]. For consumers, 
DSM means cheaper electricity through effective and optimal load 
scheduling based on current electricity prices. The implicit benefits of 
reducing peak demand include mitigating against electrical system 
emergencies, deferring the cost of building additional transmission and 
distribution networks, and reducing blackouts [59]. 

DSM is also critical to stand-alone systems since backup power 
cannot be called from the grid [126]. This is even more pronounced if a 
RES is used as the primary source. The DSM architecture [141] is shown 
in Fig. 4. 

Demand response 

DR is a process whereby the energy demand of a customer is reduced 
by directly or indirectly shutting off or reducing the consumption of 
some of the customer’s appliances [141]. In effect, customer loads are 
shifted from peak hours to off-peak hours [90,147] or from periods of 
high generation to lower generation [13]. Parrish et al. [148] provided a 
broader definition of DR to include the flexibility to increase as well as 
decrease energy demand to respond to surplus energy or reduced de-
mand peaks, respectively. When the energy supply is low, non-essential 
loads can be turned off and later re-scheduled to periods of higher 
generation. During peak load periods, a utility can shave off load by 
incentivizing customers to turn off equipment and shift loads to off-peak 
periods. The incentive must be structured so that it provides partici-
pating customers with payments exceeding their operational value for 
short durations a few times a year. Customers can either pay higher 
tariffs during peak periods or move non-essential load to off periods and 
still get a discount. 

The flexibility of DR is well suited to meet the fluctuating supply 
levels of variable RES [8] and is an emerging tool at very high pene-
trations of VRE [9]. It is also important to note that DR focuses on short- 
term adjustments made to load usage [60] as a way of balancing the 
energy in the system rather than a more permanent long-term fix as 
suggested by many SR methods. DR is often referred to as a bottom-up 
approach, where the flexibility of the Customer’s demand cancels out 
the variability of RES, making the system more reliable and stable [149]. 
DR can be categorized into two [141] as shown in Fig. 5. 

Typically loads in the DR program are categorized into interruptible, 
schedulable, and non-schedulable loads. Interruptible loads are loads 
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Table 3 
A summary of Studies on Solar Energy Forecasting.  

Research Power System Data Source No. of 
Weather 
Data 
Parameters 
O - 
Observed 
F - Forecast 

On site 
Weather 
Station 

Forecasting Methodology Forecasting Architecture Prediction 
time 

Predicted 
Outcome 

[123] 93 MW hybrid 
PV-wind 

* Forecast 
weather 
* Historical 
weather 
* PV data* 
Sun elevation 

f − 7O − 16 No * Deep feedforward network 
(DFN)* Recurrent neural 
network (RNN)* Hybrid 
network  
(HN) 

* Forecast → DFN 
* Observed → RNN* DFN 
+ RNN → HN = solar 
energy 

24-hour- 
ahead 

Solar power 
generation 

[126] 74 kW DC 
Microgrid 

* Historical 
weather 
* Real time 
weather in 
30 min 
intervals 
* Time 
* PV Data* 
Wind Data 

O − 5Real 
time − 3 

Yes Support Vector Machine 
(SVM) 

* Historical + real time → 
SVM = solar irradiation 
* Solar irradiation → solar 
cell equation = solar 
energy 
* Historical → SVM = wind 
speed 
* Wind speed → wind 
energy generator equation 
= wind energy 

24-hour- 
ahead 

* Solar power 
generation* 
Wind power 
generation 

[65] * 2.3 kW Wind 
Turbine 
* 3.3 kW Solar 
System* 
22kWh battery 
storage 

* Observed 
weather 
* PV Data* 
Wind Data 

O − 4 Yes * Wavelet Transform (WT) −
3-level Wavelet 
decomposition* Artificial 
Neural Network- multilayer 
feed forward back 
propagation (FFBP) network 

* Wind speed → wind 
curve = wind power 
generation via wind curve 
* Solar radiation → Isc, 
Voc formula = solar power 
generation 

5-min- 
ahead 

* Solar power 
generation* 
Wind power 
generation 

[62] Hybrid 
Microgrid 
* 25 kW Solar 
System 
* 15 kW Wind 
Turbine 
* 300 kW 
Diesel 
* 30 kW Fuel 
Cell 
* 30 kW 
Battery 
* 30 kW Grid* 
30 kW Water 
Micro Turbine 

* Forecast 
weather 
* PV Data* 
Wind Data 

f − 2 No * Probability Density 
Functions (PDF) - Solar* 
Rayleigh distribution - Wind 

* Forecast → PDF = solar 
irradiation 
* Solar irradiation → solar 
power output formula =
solar generation 
* Forecast → Rayleigh =
wind speed 
* Wind speed → wind 
generation formula = wind 
power 

24-hour- 
ahead 

* Wind Speed* 
Solar irradiation 

[127] * Solar PV 
system* Micro- 
hydro turbine 
power system 

* Current - 
Imp* Voltage 
-Vmp 

N/a No Artificial Neural network: 
Feed-forward with Levenberg 
- Marquardt back propagation 

Imp + Vmp → feed- 
forward = solar generation 

24-hour- 
ahead 

Solar power 
generation 

[128] 640 W PV 
system 

* Forecast 
weather 
* Historical 
weather* PV 
Data 

N/a No Random Forest: Non-linear 
multiparameter regressor 

Forecast + historical → 
Random Forest = solar 
generation 

24-hour- 
ahead 

Solar power 
generation 

[66] N/a * Historical 
weather* PV 
data 

O − 5 No Particle Swarm Optimization 
(PSO) based Support Vector 
Machine (SVM) regression 
model 

Historical → PSO with 
SVM = solar irradiation 

24-hour- 
ahead 

Solar irradiation 

[11] 14.52 kW PV * Load 
demand data 

N/a No Residual Dilated Causal 
Convolutional Network (Res- 
DCCN), Naïve, Support Vector 
Machine (SVM), Artificial 
Neural Network (ANN) 

PV data → Res-DCCN-A =
Solar generation forecast 
Load data → Res-DCCN-B 
= Load demand forecast 
Losses from Res-DCCN-A 
+ Losses from Res-DCCN- 
B = Dual modal loss → 
Adam Optimizer 

1-hour- 
ahead 

Solar power 
generation 

[129] N/a * Wind data* 
Load demand 
data 

N/a No Probability Density Function 
(PDF) based on kernel method 
using Monte Carlo Simulation 

Historical → PDF using 
Kernel function and 
density estimator → Monte 
Carlo simulations = Solar 
irradiation + wind speed 

N/a * Wind Speed* 
Solar irradiation 

[13] 5 kW PV * Historical 
weather* PV 
data 

O − 4 No Wavelet decomposition- 
Generalized Neural Network 
(GNN) based online 
forecasting model 

N/a 15-min- 
ahead 

Solar irradiation 

(continued on next page) 
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that can be turned off for short periods without too much discomfort to 
the consumer [65] for example, water heaters. Examples of schedulable 
loads are those that can be controlled by a thermostat, such as air con-
ditioners and space heaters, as well as those that don’t necessarily need 
to run at a certain time, including dishwashers, clothes washers, and 
dryers. [8]. Minhas et al. [126] classified these loads as “controllable or 
flexible load demands” examples of which are refrigerators and charging 
electric vehicles. Non-schedulable or non-controllable loads are some-
times referred to as base loads [126]. These loads are of utmost priority 
to the customer, for example, light sources and power sockets. Some 
other literature may use different nomenclature like shiftable and 

uncontrollable loads for schedulable and non-schedulable, respectively 
[150]. It is important to note that while some loads like water heaters 
may fall under both interruptible and schedulable loads, other loads like 
washing machines, electric cookers and dishwashers should not be 
interrupted during operations. Therefore, schedulable tends to refer to 
these types of loads. 

An alternative to the direct participation of users, sometimes referred 
to as customer control, is the process of demand response automation 
using existing control systems [79]. The latter is also known as direct 
load control, which may use pre-agreed load profiles or dynamic real- 
time profiling according to hour-ahead forecasts to shut down and re- 
start certain customer load appliances. 

DR programs are also linked to customer perception and satisfaction. 
The ability of customers to reduce costs by scheduling their load based 
on preference is a key motivation for customer participation in DR 
programs. DR also create “virtual” power that can be called upon to 
reduce the load. By optimizing DR, system operators can build smaller 
MGs and reduce capital and operating costs. 

Price-based demand response program 

Refers to changes in power usage by customers in response to 
changes in electricity prices in the form of tariffs. These changes would 
occur if the corresponding tariff associated with different periods is 
significant enough. In other words, customers are more likely to change 
their consumption habits if they are required to pay for more during 
peak hours as opposed to off-peak hours [59]. Price-Based DR programs 
can be categorized into Time-of-Use (TOU) pricing, Critical Peak Pricing 
and Real-Time Pricing [141]. 

Table 3 (continued ) 

Research Power System Data Source No. of 
Weather 
Data 
Parameters 
O - 
Observed 
F - Forecast 

On site 
Weather 
Station 

Forecasting Methodology Forecasting Architecture Prediction 
time 

Predicted 
Outcome 

[130] N/a * Historical 
weather* PV 
data 

O − 4 No K-nearest neighbour (KNN) *Historical data → Similar 
analysis using KNN 
*Weighed average of 
similar days = solar 
generation forecast 

24-hour- 
ahead 

Solar power 
generation 

[131] 434 kW PV * Historical 
weather* PV 
data 

O − 1 N/a Modified Support Vector 
Machine (SVM) with Gauss 
Newton Method nonlinear 
least squares 

Historical solar insolation 
→ Modified SVM = solar 
generation 

24-hour- 
ahead 

Solar power 
generation 

[132] *1.4 kW PV* 
Grid 
Connected 

* Historical 
weather* PV 
power 

O − 2 Yes * Principal Component 
Analysis (PCA)* Full 
Recurrent Neural Network 
(FRNN) 

*Historical data → PCA 
*Historical data → FRNN 

N/a Solar power 
generation, 
current and 
voltage 

[133] N/a Historical 
weather 

O − 11 No * Random Forest (RF) 
* Artificial Neural Network 
(ANN)* XGBoost 

*Historical data → PCA +
feature *cleaned data → 
RF,ANN,XGBoost 

N/a Solar irradiation  

Fig. 4. Demand Side Management (DSM) Architecture.  

Fig. 5. Demand Response Architecture.  
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Time-of-use pricing 
TOU pricing is based on the time interval for which the electricity is 

used [93]. Typically, a day is divided into three intervals: peak interval, 
mid-peak interval and off-peak intervals [93] with some literature 
referring to the mid-peak as the “shoulder” interval [68,151]. The 
charges for operating loads during peak periods are usually significantly 
higher than at other time intervals, in many cases double or quadrupled 
[145]. In this way, the consumer is encouraged to either reduce peak 
period loads or shift them completely. Using less energy during peak 
periods and more during off-peak simulates the effect of peak shaving 
and valley filling, leading to a more balanced energy system [150]. For 
example, flexible loads, such as preheating electric hot water heaters or 
charging electric cars, are shifted to times of high solar energy produc-
tion where the cost is likely to be cheaper than the traditional grid 
electricity. Other time frames can be time of day (day versus night), day 
of the week (weekday versus weekends) or even time in the season 
(summer vs winter) [152]. 

TOU can be further broken down into static or dynamic. A static TOU 
tariff offers a minimum of two different rates for fixed periods in the day. 
For example, an operator can charge higher rates for weekday evenings 
and a lower rate for mornings. The dynamic TOU tariff offers different 
rates for different hours of the day, usually with input from real-time 
load/supply forecasting. It is also important to note that both TOU 
rates can either be automated or involve direct customer participation. 

TOU is considered one of the main pricing strategies used in the 
power market, along with RTP and multistep electricity pricing [49]. It 
has wide applications in the electricity markets because it has many 
advantages [13]. 

Critical peak pricing 
Critical peak pricing (CPP) are tariffs based on the peak hours of the 

day. Peaks are sometimes determined by the real-time energy market, or 
if a contingency or an event such as equipment breakdown, or high 
temperatures, occurs [153,154]. The aim is to reduce the short-term 
peak in consumption. Peak hours logically will have a significantly 
higher energy cost than off-peak periods to incentivize customers to 
operate their loads during the latter [155]. 

Real-time pricing 
Real-time pricing (RTP) tariffs are charged over very small intervals 

to reflect the true nature of fluctuating energy prices. In other words, 
this tariffs frequently correspond to wholesale market prices [156]. RTP, 
also called dynamic pricing, mirrors a utility’s production cost in real 
time [157]. To capture such granular data requires relatively expensive 
data monitoring and collection technology, high rate of data collection 
and efficient data processing techniques. This makes implementation of 
RTP expensive than other tariffs. 

Incentive-based demand response program 

Incentive-based DR programmes are usually established by the util-
ity or operator where the customer is given added financial incentive to 
reduce their load during peak periods [93] or during periods when the 
utility/operator determines that not reducing demand will lead to a 
system collapse. 

Direct load control 
Direct Load Control (DLC) is the process whereby the demand 

response operator remotely shuts down or reduces a customer’s load or 
appliance [93,158,159]. The choice of customer loads are loads that can 
bare such short-term interruptions [159] with little inconvenience to the 
customer. The decision to shut down certain loads is usually taken by the 
system operator to preserve the stability of the grid (sometimes called 
load shedding) or by the customer to reduce operational costs. A number 
of studies have evaluated DLC. Parrish et al. [160] used DLC to shed 
unnecessary loads by using undervoltage and underfrequency relays to 

monitor customer loads. This method was shown to have up to 97 % 
power supply reliability. 

Some DLC programs use load controllers or load relays [159] that 
may be centralized [151] to achieve instant load control. Customers are 
offered discounted rates or incentivized payments to participate in such 
programs. Acute circumstances that threaten the integrity of the grid 
tend to be the reasons for activating DLC [161]. This means that the 
customers may not be pre-notified, nor consent sought due to the ur-
gency of the situation. 

Demand bidding 
Demand bidding or demand side bidding is a concept that enables 

consumers to participate directly or indirectly in electricity trading, with 
favourable tariffs or cash incentives often tied to some demand man-
agement. In other words, operators can offer customers cash incentive to 
achieve a daily load reduction target [162]. Since most customers are 
not experts in the nuances of the electricity markets, they may choose to 
trade indirectly through electricity retailers or municipalities who act as 
intermediaries between the market and the customers [163]. These in-
termediaries submit bids on behalf of the customers and, through their 
expertise can negotiate cheaper rates based on their knowledge of 
electricity prices [164]. 

Interruptible/curtailable program 
In a summary, interruptible or curtailable programs are those that 

use financial incentives to encourage load-shedding responses [165]. 
They take advantage of a customer’s interruptible loads by switching 
them off or keeping them on pause, during peak or emergency events to 
maintain the required reserve capacity and preserve the stability of the 
system [165]. This is achieved when the system operator looking to 
obtain reserves, signs an agreement with the customer to interrupt their 
load based on some agreed pre-conditions. In return, the customer is 
offered a payment based on the reserve capacity realized or the energy 
delivered from that capacity. Just like in the case of DLC, the customer 
receives no prior notice because the emergencies or events are often 
without warning [162]. 

A comparison of the various DR programs is listed in Table 4. 

Supply side management 

SSM refers to the efficient generation, transmission, and distribution 
of electricity to meet customer demand [59]. Efficiency in this context 
describes supplying reliable and quality power at an optimized price 
with reduced impact to the environment. SSM must also satisfy demand 
without unnecessary infrastructure investments [139]. SSM also refers 
to optimizing supply from various sources to respond to base and peak 
demands [58]. 

To match demand with supply, alternative generation must be 
factored into system planning when the primary source is insufficient. 
System operators often have primary protocol which involves a response 
by synchronous generator(s) to a shortage in supply by providing 
additional power to match consumption. This response is almost always 
instantaneous. Alternative energy can be supplied from rechargeable 
batteries, power generators, and other RES sources. Bear in mind that 
battery storage can be either a SSM or DSM response depending on the 
state of charge (SoC) of the battery. In other words, If the load 
requirement is not being met, batteries can act as back-up and supply the 
load. On the other hand, if excess power is being generated, batteries can 
behave like a load and absorb power to recharge. 

By increasing the energy supply, SSM ensures system reliability by 
providing power to customers whenever demand increases for example 
initiating battery storages, ramping up generator production etc. 
Conversely, supply is reduced to prevent wastage of excess supply 
generated, and to reduce emissions and operations costs [166]. 
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Back-up power and supply side management: Batteries and generator 
dispatch 

The availability of back-up power is critical to SSM especially when 
RES are used as the primary generators. To ensure power stability in 
both off-grid and on-grid PV-connected systems, the hybrid PV system 
and the battery system are deployed [167]. 

The hybrid power system utilises electrical energy input into a MG 
from conventional sources like coal, gas, petrol or diesel. Other energy 
inputs may include RES and nuclear [70]. Typically, in areas where grid 
extension is not economically feasible, stand-alone RES and diesel 
generators have been deployed to meet load demand [82]. Communities 
served may be rural or insular, and DGs are commonplace in the local 
energy system [168]. 

There are many studies [70,82,169–171] that include generators as 
part of the MG configurations. In a case study of an RSHMG, Ekpe and 
Umoh [70] propose including a generator array as a back-up to the PV 
array and the grid as a measure to improve the grid’s reliability due to 
the erratic nature of power supply from the central grid. This shows that 
a generator is a viable energy source in maintaining grid reliability. Tsai 
et al. [170] perform a techno-economic analysis of stand-alone diesel 
system, stand-alone PV/storage system, PV/diesel hybrid system 
(RHMG), PV/diesel/storage hybrid system for the Pratas island in 
Taiwan. The results of the analysis revealed that the PV/diesel hybrid 
system configuration had the lowest cost of energy (CoE) at 0.3569 
$/kWh. Murugaperumal et al. [171] validated the design and techno- 
economic feasibility of an RHMG that uses a diesel generator. The 
research concludes that the combination of these sources increases 
system reliability. Pujari and Rudramoorthy [82] proposed using a 
diesel generator to supply customers under peak load conditions when 
RES is limited. In an analysis of six different hybrid combinations of PV, 
battery, wind turbine, and a diesel generator supplying a load demand of 
332.97 kWh/d, the RHMG system of PV, diesel generator, battery had 

the lowest net present cost (NPC) and CoE. Although crucial for system 
stability and dependability, diesel generators are sometimes viewed and 
modelled as “a black box” that raises operating costs and has a negative 
impact on the environment due to their excessive fuel consumption 
[172]. 

Battery Energy Storage Systems (BESS) can store energy from a va-
riety of sources and discharge it as needed. Rather than wasting elec-
tricity, BESS enables excess generation to be stored when demand is low 
and used later at a more critical time. The flexibility created from this 
approach leads to a reduction in cost for the user. In addition, BESS can 
be charged during off-peak periods to take advantage of reduced utility 
pricing while supplying its energy as an alternative during peak periods. 
Both scenarios are widely used by electric vehicles in a vehicle-to-grid 
model. For example, Zeynali et al. [173] uses a two-stage stochastic 
programming in a smart home application to lower an average house-
hold’s cost of purchasing electricity. In this case, a home energy man-
agement system coordinates a BESS and the vehicle-to-home capabilities 
of an electric vehicle. In another example, Song et al. [174] use a multi- 
objective approach to reduce running costs and improve user comforts 
by adjusting home energy management scheduling, photovoltaic inte-
gration, and battery energy storage integration. By using RTP tariffs in 
the scheduling, cost reductions of about 40 % were realised. 

BESS is also used in combination with other sources to reduce the 
overall CO2 and electricity costs of the system. For instance, Kusakaka 
et al. [175] uses a BESS to reduce the fuel consumption of a diesel- 
powered RTG crane, thereby reducing the operations costs by up to 
40 %. BESS tend to have higher up-front costs than other hybrid alter-
natives and lose the ability to hold a charge as time goes on. This cost 
and reliability flaw makes BESS the weakest link in the PV system 
[176–178]. In mature energy price markets with high BESS penetration, 
the benefits of owning a BESS come from the price difference between 
times of energy scarcity (or high demand) and times of abundant inex-
pensive energy [179]. Therefore, the higher the adoption rate, the 
smaller the price difference which will make buying a BESS less 
appealing. To mitigate against cost and reliability issues, an EMS is often 
used to optimally charge and discharge the battery. The EMS will pre-
vent excessive charging, discharging and heat, to prolong the BESS life 
while charging when electricity rates are low and discharging when they 
are high. 

Flexible power supply generation 
Flexibility in power supply is the ability of the system to ramp up or 

down power generation in response to load demand. It can be done 
manually or automatically, as part of a strategy or a response to an 
isolated event. Dispatchable generators, load-following generators, and 
peaking power plants are all synonymous with flexibility and can shed 
power generation as part of SSM. Gas turbines, modern coal plants, 
controllable fuel-based generators, BESS, pumped hydro storage are 
examples of dispatchable generation units that can be switched on or off 
depending on load requirements, occurrence of an event, or an economic 
dispatch strategy [180,181]. 

While solar and wind are widely viewed as non-dispatchable energy 
sources because they are not meant to be switched off, they can be 
curtailed when their penetration levels create an instability in grid. In 
general, curtailment refers to using less wind or solar energy than is 
possibly available at a given time [182]. Other causes of curtailment are 
grid congestion and energy supply overproduction [183]. The key 
concept is that any power source that can be controlled by increasing or 
decreasing its output in response to demand at a given time fulfils the 
criteria for SSM. 

Energy management system 

Home Energy Management System (HEMS), Integrated Energy 
Management System (IEMS), Smart Energy Management System (SEMS) 
or Centralized Energy Management System (CEMS) are synonymous 

Table 4 
Comparison of demand response programs.  

Incentive-based demand response program 
Components Direct Indirect 

Direct Load 
Control 

Interruptible 
Service 

Demand Bidding 

Incentives * Discounted 
electricity rates 
* Incentivized 
payments 

Payment based on 
reserve capacity 
realized 

Revenue from 
predefined prices 
and quantity 

Initiating party * System 
operator 
* Customers 

System operator Customers 

Advanced 
warning 

* No prior 
notice* Pre- 
notified  
(if initiated by 
customer) 

No prior notice Pre-notified 

Non- 
compliance 
penalty fees 

Yes Yes No 

Price-based demand response program 
Components Time-of Use 

Pricing 
Real-Time Pricing Critical Peak pricing 

Tariff category * Peak 
* Off-peak 

Standard * Peak 
* Off-peak 

Planning 
strategy 

Set in advance Real-time Set in advance 

Tariff time- 
scale 

Several hours or 
days 

15 min to hourly No. of peak days in a 
year 

Tariff Type * Static (fixed)* 
Dynamic  
(varies) 

Dynamic * Static 
* Dynamic 

Seasonality Optional No Yes 
Drivers Customers’ load 

pattern 
Wholesale market 
price 

* Real-time energy 
market 
* Contingency or 
event  
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with EMS and are classified as systems that optimize SSM and DSM 
techniques to facilitate the production and use of reliable and cost- 
effective energy. Historically, EMS referred to management of energy 
and improvement of energy efficiency. EMS are a set of computer tools 
that monitor, regulate, and improve the generation, transmission, and 
distribution of power [69]. The EMS accepts conditions and constraints 
from either the supply and demand side (or suppliers and consumers) 
and optimally schedules the consumers load within those constraints 
[166]. According to Ma et al. [72], the EMS handles monitoring, 
communication and bi-directional interaction between the source and 
the load. Historical grids were mainly supplied by single sources with 
radial distribution configurations. The grid has since evolved with ad-
vancements in technology and communication. For smart grid applica-
tions, Zhao et al. [49] emphasizes that EMS uses tools like SM, sensors, 
and other detection devices to achieve five main objectives: minimizing 
costs, load curve optimization, reduction of CO2 emissions, maximizing 
renewable energy outputs, and improved user comfort. These objectives 
are classified under the three broad frameworks of economy (cost sav-
ings), environment, and human comfort. 

EMS is broadly classified into two categories: predictive energy 
management system (PEMS) and real-time energy management system 
(REMS) [147]. PEMS involves using historical data to generate a load 
forecast, an energy supply forecast, or a combination of both, to make 
sure supply optimally matches with demand. However, because fore-
casting is not a 100 % science, real time scheduling of the load needs to 
be integrated to adjust the prediction errors. As the name suggests, 
REMS uses real-time algorithms to adjust the control of the load or 
supply based on the SSM or DSM parameters. 

Energy management system control 

The EMS can be sometimes called the control system [65]. EMS 
control is mainly classified into three categories: centralized controllers, 
decentralized schemes and distributed control strategies, with the 
centralized controllers more widely proposed for systems that require 
integrating forecasting with SR and DR [72]. The EMS with a centralized 
controller works by having a direct connection with each distributed 
energy resource in the system. The forecasting input into the EMS 
controller can be in the form of supply forecast, load forecast or a 
combination of both. It is also able to monitor and process information, 
store data and initiate the required SR and/or DR responses based on 
pre-determined objectives or constraints. 

Deka et al. [58] uses a single-phase digital PIC microcontroller to 
regulate the power flow to individual customers. The software was 
developed in C- language and compiled by MikroC compiler. The 
controller is programmed with a pre-determined load limit that if 
exceeded by the customer, results in power being cut-off to that 
customer. When this is adjusted below the pre-set value, power is 
restored back to the user. The research points out that the controller was 
selected because of its “performance, power efficiency and design flex-
ibility” [58]. 

Shakeri et al. [147] explores a HEMS that uses smart plugs and a local 
controller. The local controller is the brain of the system. It uses elec-
tricity price, customer’s preference and the batteries’ SoC to determine if 
load should be supplied by the utility, battery or postponed to a later 
timeslot with lower or off-peak electricity prices. Smart plugs are the 
interface between the local controller and load and can measure and 
monitor power consumption of connected electrical appliances. They 
communicate this information to the local controller and receive feed-
back on what appropriate control action to implement. 

While the above method is effective for power supply that is con-
stant, customers enrolled in a system using this technology will 
encounter blackouts if they exceed the power threshold. The intermit-
tent nature of solar energy suggests supply will always fluctuate and 
therefore a more robust approach is required. What this research pro-
poses is for the control system to adjust the supply by calling on standby 

or alternative generation to meet the required demand. The key differ-
ence is that the microcontroller makes decides based on both the real- 
time supply and demand, and not just the demand. 

The EMS highlighted in [128] optimizes the system based on energy 
storage in batteries, customer’s load consumption and cost-reflected 
energy purchases. It has as its input the estimated PV energy forecast, 
the demand forecast and the maximum contracted power. The aim is to 
optimally decide next day energy usage by minimizing energy cost and 
efficiently using the batteries. The EMS algorithm prioritizes consump-
tion of the PV, supply of demand above contracted power, and then 
charging the battery based on excess PV or electricity purchased at low 
cost. 

Smart meters 

Smart meters (SM) are an important element in converting an EMS 
into a smart EMS, playing an integral part in the communication plat-
form of a smart grid [69]. SM are measurement devices that continu-
ously track and log power consumption in real-time at pre-determined 
intervals [184]. For the consumer, SM are the most important tools in 
designing a good DSM program [185]. On a very basic level, this is 
achieved by providing the customer with their consumption information 
to influence how they manage it. For the service producer or supplier, 
the ability to remotely access or control SM reduces operational costs, 
determines revenue, and improves security in energy supply. In addi-
tion, the accuracy of supply and demand forecasts depends on the SM 
[186]. 

SM performs other tasks including managing electricity and sched-
uling appliance usage [187], reducing energy theft, increasing energy 
efficiency [188], automated data collection [189], and fraud detection 
[190] to name a few. Smart meters enable a two-way communication 
between customers and producers and offer flexibility in demand side 
control. This bi-directional communication is the most important feature 
of SM [191]. 

Integrated energy management system 

EMS and IEMS are sometimes used interchangeably [192,193]. 
Jabbour et al. [194] also switch between the two acronyms but qualify 
the term “integrated” as an approach that addresses a multi-objective 
optimisation problem for energy saving, user comfort and maximising 
energy from renewable energy sources. However, it is important to 
properly differentiate them based on function and scope. EMS’s defini-
tion historically came from the management of a single energy supply 
source, Wang et al. [195] defines an IEMS as a platform that integrates 
energy dispatch and control for multiple energy sources. The aim of the 
IEMS is to achieve reliable and economical operation of integrated en-
ergy systems (IES) while meeting the system constraints and realizing 
optimal scheduling. The authors site the constraints of dealing with 
multi-energy systems as the reason IEMS, with the development of En-
ergy Internet and the use of big data, is a necessity. According to Zhang 
et al. [196], the enhancement of building performance by existing EMS 
strategies was done in two silos: building simulation and control man-
agement. This led to longer operating times and inaccuracies. The pro-
posed IEMS corrects this by integrating the physics of the building, 
renewable energy systems, energy storage, energy distribution systems, 
heating and cooling technologies, allowing the flexibility of control 
strategies based on the users’ objectives. This suggests that the IEMS can 
manage multiple energy sources and control strategies. Yi et al. [197] 
firstly define IES as a system that is made up of numerous subsystems 
involved in the generation, distribution, and storage of various energy 
sources. IES integrates multiple energy and power sources using advance 
energy conversion technologies to efficiently improve energy use, in-
crease system flexibility and reduce carbon emissions [198,199]. Just 
like EMS, IES is sometimes used interchangeably with IEMS. Reviewing 
the literature, IES is often defined as an optimization problem with set 
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function objectives. For example, Guo and Xiang [200] propose an 
interactive Integrated Energy System Planning (IESP) platform that ag-
gregates various energy sources (electricity, gas, heat) and takes as its 
input investment decisions, load profiles, meteorological data, and 
techno-economic parameters converting int a mixed integer linear pro-
gramming problem. The objective is the optimal component size of each 
energy source, optimised total annual cost and carbon emissions. Huang 
et al. [201] propose the park integrated energy system (PIES), which is a 
stochastic optimal scheduling method that aims to achieve low-carbon 
but economically optimal results while considering generation-side 
and customer-side uncertainties and their impacts on the system. 
These uncertainties are comprised of factors such as the variable nature 
of RES and fluctuations in multi-energy load demands influenced by 
weather and seasonality, geographic location and so on. Like Huang 
et al. [201], Feng et al. [202] consider the optimization of the IES 
considering RES and energy demand uncertainties using the information 
gap decision theory method. He et al.[203] solve the annual cost of 
planning for an IES as the objective of its optimization problem by 
considering electric vehicles swapping stations and carbon capture 
power systems while using natural gas, heating networks, PV and wind 
energy on the supply side. The focus of these models is on energy con-
version within constraints and not on the IEMS components highlighted 
in Section 2. 

Another category of IES to consider are energy system modelling 
software. Software like PLEXOS use multi-objective decision optimiza-
tion particularly to solve unit commitment (UC) and energy dispatch 
(ED) problems. For example, Papadopoulos [204] highlights a case 
study of a multi-objective problem maximising the profits of an opera-
tor’s generation portfolio, minimizing total system costs, and mini-
mizing total generated emissions. These objectives are characterised by 
Pareto optimality, where the solutions to the objective problem are 
Pareto solutions in which the improvement of an objective does not 
diminish another. Here again the objectives and constraints relate to the 
energy conversion and use. In a review of 75 energy and modelling 
software, Ringkjøb et al. [205] classifies them based on technological 
and economic parameters, general logic, and spatiotemporal resolution. 
General logic is further broken down into purpose (power system 
analysis, operation decision such as ED and UC, investment modelling), 
approach (top-down or bottom-up) and methodology (simulation or 
optimisation). Most software are black boxes and not openly sourced, 
with no description of their architecture or methodologies. While some 
software are classified under supply/demand modelling approaches, this 
is related to energy markets and not management of supply and demand 
within the IEMS. Finally, the authors mention that only a few models 
like EMPS and E2M2 account for uncertainty of VRE sources. The au-
thors highlight “demand side” as an area of future model development 
suggesting the focus has been more on the supply side. A literature 
survey suggested that two of the most applied software in 100 % RE 
systems are LUT Energy System Transition model and EnergyPLAN 
[206]. These models develop optimised solutions while performing 
interconnected multi-node, full-hourly, multi-sector energy modelling 
analysis [207]. LUT Energy System Transition model integrates power, 
heat, transport, and other industry processes into an IES, using linear 
optimisation to match total annual energy generation to demand on an 
hourly basis. While synthesised power load data is one of the model’s 
key inputs, DSM is not considered a key input. EnergyPLAN is a de-
terministic model that focuses on designing national or regional energy 
planning strategies. Just like LUT model, EnergyPLAN is ideal for 
intermittent RES because it produces hourly simulations but does not 
take DSM inputs, taking actual demand instead. Other more recent en-
ergy modelling tools like H2RES use linear optimisation to minimise the 
discounted yearly operation and system costs while providing long-term 
capacity investment and dispatching optimisation [208]. 

Yi et al. [197] describe IEMS as a subcategory of IES, where the 
“management” term deals with controlling energy distribution under 
different price conditions. Ren et al. [209] idea of an IEMS is the 

combination of smart power consumption and IoT into a single frame-
work. Through IoT, various utility data collection nodes including utility 
type, consumption cost, predicted consumption pattens and so on are 
transmitted to their respective databases in the designated centralized 
data server through a wireless network. This is more efficient than the 
old EMS method of transmitting smart meter data to centralized storage 
through GPRS communication. From the above definitions of IEMS, we 
can broadly infer two things. That IEMS is an integration of multiple 
energy systems and multiple control strategies leveraging on technology 
like IoT. Multiple energy systems may refer to varied energy sources like 
hydro, biomass, solar storage, spinning or stand-by reserve plants and so 
on while multiple control strategies could involve supply and demand 
optimisation algorithms, forecasting, and dispatch models. EMS may 
relate to just one energy system and can be either a PEMS or REMS, 
while IEMS can implement PEMS through RES forecasting and make 
adjustments in real-time (REMS). Finally, the concept of integrated de-
mand response (IDR) put forward by Huang et al. [210] is introduced 
due to changes in technology and the energy market. The authors sub-
scribe that the traditional DR and it’s single strategy of power system 
scheduling and control is not sufficient for future grid networks which 
have developed into multi-energy systems with varied forms of energy 
consumption, storage, and technologies like combined cooling, heat and 
power (CCHP). In essence, just like DR has given way to IDR in the 
context of multi-energy systems and control, IEMS must succeed the 
EMS in today’s complex power networks. On the strength of this, we 
define IEMS as a system that manages multi-source or multi-energy 
systems by leveraging on advancement in technology and communica-
tion to integrate both PEMS and REMS controls, and initiate supply and 
demand responses with the aim of balancing the load and power supply 
in the grid. 

Several studies [58–60,166,211,212] have been identified that 
combine SSM and DSM, or SR and DR, into an EMS to balance supply 
and demand in a system. In their approach, Deka et al. [58] consider 
both SSM and DSM strategies supported by an IEMS for data centres. The 
study chooses to explore the various scenarios of demand side flexibility 
rather than the actual response. It also explores the operational con-
siderations of consolidation, shifting, migration and frequency scaling in 
participating in DR programs. 

In Karunanithi et al [59], three DSM scenarios were analysed: energy 
conservation, peak load shifting and a simultaneous combination of 
both. On the other hand, the three SSM strategies considered are 
reduction of T&D losses, increasing the efficiency of all thermal power 
plants and the simultaneous combination of both. 

Monyei and Adewumi [166] use carbon capture and sequestration 
technology as SSM techniques to reduce operations and emissions cost. 
On the DR side, RTP and TOU are used to reduce the consumer’s elec-
tricity bill. 

Luo et al. [211] looks at the integration of SSM and DSM in multi- 
energy systems in buildings. The research focuses on its SSM by using 
a tri-generation of using the prime mover set of solid oxide fuel cell-gas 
turbine with cool storage, heat storage and electricity storage managed 
by an optimization algorithm. Utility electricity was used as the back-up. 
For DSM, electric cars and other dispatchable appliances were scheduled 
using predictive modelling with inputs from weather data and other 
building information. This predictive modelling is part of the demand 
optimization algorithm. In essence, both supply and demand algorithms 
would simultaneously predict supply and demand patterns in a day 
respectively and make sure they coincide. 

Ghiasi et al. [212] uses adaptive fuzzy control to regulate supply 
from the combination of PV, fuel cells, plug-in electric vehicle, the grid, 
and battery energy storage as the supply sources. DSM strategies use 
game theory to schedule controllable loads during off-peak periods. 
Another research that includes the integration of an electric vehicle (EV) 
was conducted by Aoun et al. [60]. The researchers consider the use of 
an intelligent EMS, EV integration with smart charging and discharging 
and load scheduling of appliances as part of the demand response. On 
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the supply side, the integration of a PV system with and without storage 
was analysed. The sources of energy to the were PV, diesel generator, 
utility grid and power from the EV batteries. 

On another note, there are EMSs that combine energy supply fore-
casting with either DSM [62,126] or SSM. Very few have investigated all 
three and their integration into an EMS. In research for the mining in-
dustry, Ortiz et al. [213] focuses on using PV and BESS as the primary 
source of SSM using a mining case study while having the grid as a back- 
up. DSM technique included managing the hardness of rocks fed to the 
semiautogenous grinding mill by sending hard rocks (which are harder 
to grind) into the mill when energy costs are low and sending soft rocks 
when costs are high. In addition, solar radiation forecast analysis is done 
over 13 years of data by combining a trend analysis and a forecast model 
to determine probabilities for different day types, and hence the mar-
ginal probabilities. 

Su et al. [129] includes both RE and load forecasting along with an 
integrated supply–demand side management response. The study uses 
the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), to solve the 
multi-objective optimization that includes minimizing energy con-
sumption, maintaining a gas network buffer, improving profits by 
scheduling loads with best electricity prices, and reducing operational 
power consumption. The supply side was simulated through an energy 
network simulation module that included energy sources from PV, wind, 
the utility grid, and a natural gas network. SSM included an energy 
conversion model of gas-fired power generation for times of low supply, 
and a power to gas system for times of excess power production. The 
DSM framework is developed based on dynamic pricing. 

In research by Pascual et al. [61], an energy management strategy 
incorporates both battery and thermal storage along with DSM and 
forecasting techniques. The research analyses a combined thermo- 
electrical microgrid with wind, PV, solar concentrators and Utility as 
the primary sources and hot water storage and battery storages as the 
backup. The SSM relied on the EMS to call up power from battery bank 
and utility when RE production is low. The DMS’s unique strategy is to 
absorb excess power to the electric heater during peak production, 
thereby converting the excess power to thermal storage. 

Pawar et al. [66] uses an Intelligent Smart Energy Management 
System (ISEMS) made up of three stages: PV data collection and gen-
eration, forecasting model integrated with smart energy management 
gateway and smart sockets to turn on and off appliances, and an 
internet-of things (IoT) environment for users to view energy details and 
manage appliance priorities. The ISEMS manages the system by check-
ing if current demand exceeds a pre-defined maximum demand. If this 
condition is met, the ISEMS decisive algorithm will turn-off appliances 
to reduce the demand based on a priority order determined by the user. 
The ISEMS will also notify the user through the IoT environment when 
loads are being used during peak periods so that the user can change/ 
update priority requests. 

In a study by Shivam et al. [11], a PEMS is deployed using a three- 
level hierarchical control method which are monitoring and predic-
tion, multi-objective optimization and control of PV-battery hybrid 
system. A PEMS controller is connected directly to the PV and battery 
bank, and connected to the grid via a smart meter, drawing from all 
three sources to satisfy the load based on its algorithm. The PEMS 
monitors and collects PV, load and SOC data, separating them into day 
or night by logic control. The output is then fed into the machine 
learning forecasting framework resulting in PV and load forecasts. 
Multi-objective optimization is used on the predicted values to find the 
SOC limit for the battery bank based on maximum battery SOC limit, 
cost of electricity and maximum allowable CO2 emissions. The load 
demand is then satisfied using PV energy, battery bank or the grid. If 
excess energy is generated that surpasses the battery bank’s scheduled 
maximum SOC limit, then it is sold to the utility grid. Table 5 shows a 
summary of IEMS related studies. 

In addition to the power system in which the IEMS is deployed, 
Table 5 also classifies power supply into primary and back-up to 

highlight what type of system configuration is being used. In column 5, 
the IEMS control system describes the algorithm by which the IEMS 
selects both a SSM and DSM response. 

The forecasting methodology applies to the algorithm used to arrive 
at the forecasted outcome. PV power forecasted is broadly divided into 
three broad categories: direct, indirect and hybrid models [218]. The 
direct method does not require any internal data from the PV system and 
determines the PV power directly by relying more on historical data. The 
indirect model forecasts solar radiation first, and then uses analytical 
power equations to determine the PV generated based on the power 
plant’s technical parameters. The hybrid model is simply a combination 
of the direct and indirect models. Finally, the last two columns give the 
SSM and DSM responses used in the IEMS. Due to the different types and 
approaches of SEF, SSM and DSM, it is obvious to see that there are many 
possible combinations. The studies choice of which method to use de-
pends on constraints and objectives unique to each location or case 
study. 

IEMS perspective and future research 

The outcome of Table 4 shows that there is potential for different 
combinations of SSM and DSM, with SEF within an IEMS. Other po-
tential research areas can arise by simply varying any of the parameters 
in Table 5. As stated before, although the choice of SEF, SSM and DSM 
are determined by constraints and objectives, there is potential to 
investigate the different combinations and how they affect the power 
system. For example, does DLC work better by itself than a combination 
of DLC and TOU? This can lead to other research questions like what are 
the savings and costs of each type of SSM or DSM, and how does this 
affect the customer or system operator? A possible research methodol-
ogy would be to analyse consumption and costs of each SSM or DSM 
response added to the system against a baseline with no SSM or DSM 
responses. 

IEMS is not limited to PV, and research can be extended to other 
predictable RES like wind and tidal energy. Other research areas could 
include integrating artificial intelligence (AI) within an IEMS to support 
the decision making of a system operator. The ability of AI to sort 
through different objectives and constraints, while determining the best 
possible control strategy will be crucial in IEMS adoption across all 
levels of the grid. From a policy standpoint, it would be important to 
know the barriers that exist in sharing, accessing, and controlling user 
load preferences in determining what DSM strategy to implement. With 
the IEMS’s need to access all or most of the system’s databases, much 
thought needs to be given to system security and the protection of both 
the user and system operator. Finally, in the event of an IEMS fault or 
collapse, what back-up measures can be set-up to keep the fault from 
extending to the grid. 

To buttress the point of the significance of different DR combina-
tions, Papadimitriou et al. [219] examines DR programs used in several 
energy hubs studies, and compares them based on factors like cost, 
dependability, and adaptability. The authors found out that different DR 
programs were used to achieve different objectives like minimizing costs 
and/or power interruptions. DR programs have advantages in different 
settings and iterations must be carried out to determine which DR option 
gives the best outcome for a particular objective. For instance, while 
incentive-based DR programs like DLC showed great prospects in 
reducing power peaks in the energy hubs, they tend to increase the 
annual cost for the consumer. In terms of performance, TOU pricing is 
the most popular time-differentiated electrical tariff to reduce load de-
mand and achieve efficient levels of electricity [220–223], it does not 
always produce the best results. For instance, in a study by Nourollahi 
et al. [224]., RTP reduces the operation cost of a conventional AC 
microgrid and a hybrid AC-DC microgrid by 8.1 %and 53.89 % respec-
tively compared to TOU (7.1 % and 42 %). In another review of optimal 
charging and scheduling of EVs [225], RTP showed the most promise 
over TOU, CPP, and peak time rebates. In a study by Cui et al. [226]., 
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Table 5 
A summary of Studies on Integrated Energy Management Systems.  

Research Power System Primary Backup EMS - Control 
System 

Prediction 
Time 

Solar Energy 
Forecasting 
Methodology 

Forecast 
Outcome 

PV Power 
prediction 

SSM DSM 

[126] 74 kW DC 
Microgrid 

Wind-PV Utility EMS with adaptive 
nonlinear control 
theory 

24-hour- 
ahead 

Support Vector Machine 
(SVM) 

* Wind 
Speed* 
Solar 
irradiation 

* Solar cell power 
equation* Wind 
generator power 
equation  

Direct Load Control 
(DLC)with Sliding 
Mode Control (SMC) 

[56] * 3.75 kW PV 
* 6.4kWh Battery 

PV Battery HEMS 24-hour- 
ahead 

N/a Solar power 
generated 

N/a Rule-based control 
strategy to manage energy 
sharing 

Optimisation based 
strategy: 
DLC & RTP, DLC & 
TOU 

[62] Hybrid Microgrid 
* 25 kW PV 
* 15 kW Wind 
Turbine 
* 300 kW Diesel 
* 30 kW Fuel Cell 
* 30 kW Battery 
* 30 kW Grid* 30 
kW Water Micro 
Turbine 

Water, Wind, PV, 
Fuel cell, Battery, 
Diesel generator 

* Utility* 
Battery 

N/a 24-hour- 
ahead 

* Probability Density 
Functions (PDF) - Solar* 
Rayleigh distribution - 
Wind 

* Wind 
Speed* 
Solar 
irradiation 

* Rayleigh model 
for wind power* 
Solar power 
output formula 

Power Dispatch algorithm 
with control 

Incentive-based DR 

[65] Hybrid Microgrid 
* 2.3 kW Wind 
Turbine 
* 3.3 kW PV* 
22kWh Battery 

Wind-PV * Utility* 
Battery 

HEMS algorithm 5-min-ahead * Wavelet Transform 
(WT)* Artificial Neural 
Network 

* Wind 
Speed* 
Solar 
irradiation 

* Power curve of 
wind turbine (kw 
vs m/s2)* Solar 
formula to 
determine Isc and 
Voc. P = Isc x Voc 

Control algorithm: if load 
> net power (including 
storage), accept from grid 
and vice versa 

TOU 

[128] 640 W PV PV * Utility* 
Battery 

EMS using 3 
inputs. 

24-hour- 
ahead 

Random Forest: Non- 
linear multiparameter 
regressor 

Solar power 
generated 

N/a Control algorithm:load 
consumption, if demand 
> max contracted power, 
supply from storage  

[214] 6.6 kV 
distribution 
network 

Grid PV HEMS 24-hour- 
ahead 

Just-in-time modelling 
scheme 

Solar power 
generated 

N/a Controller and voltage 
regulator 

TOU, DLC 

[66] N/a PV Utility Intelligent Smart 
Energy 
Management 
System (ISEMS) 
with 3 stages 

N/a Particle Swarm 
Optimization (PSO) 
based Support Vector 
Machine (SVM) 
regression model 

Solar 
irradiation 

N/a  TOU for schedulable or 
chargeable loads 

[11] 14.52 kW PV PV * Utility* 
Battery 

PEMS 1-hour-ahead *Residual Dilated Causal 
Convolutional Network 
(Res-DCCN),*Naïve, 
*Support Vector Machine 
(SVM), *Artificial Neural 
Network  
(ANN) 

Solar power 
generated 

N/a Control algorithm: if 
demand > PV, use battery 
bank. If demand > PV +
battery bank, buy from 
Grid. 

Dynamic pricing 

[129] * Wind farm 
* PV 
* Natural gas 
network*Utility 

* Wind farm 
* PV 
* Natural gas 
network*Utility 

Gas to power N/a N/a Probability Density 
Function (PDF) based on 
kernel method using 
Monte Carlo Simulation 

* Wind 
Speed* 
Solar 
irradiation 

* Wind power 
production 
formula 
* Real power 
production of PV 
and the combined 
efficiency of PV 
formulas 

The Non-dominated 
Sorting Genetic 
Algorithm-II (NSGA-II) 
with power to gas 

Dynamic pricing 

(continued on next page) 

T. Falope et al.                                                                                                                                                                                                                                  



EnergyConversionandManagement:X
21(2024)100527

16

Table 5 (continued ) 

Research Power System Primary Backup EMS - Control 
System 

Prediction 
Time 

Solar Energy 
Forecasting 
Methodology 

Forecast 
Outcome 

PV Power 
prediction 

SSM DSM 

[61] Electro-thermal 
Microgrid 
* 6 kW Wind farm 
* 6 kW PV 
* Utility 
* 2 kW solar 
thermal collectors 
* 27 kWh Battery* 
800L Hot water 
tank 

* Wind farm 
* PV 
* Utility* solar 
thermal collectors 

* Utility 
* Battery * 
Thermal 

EMS using a 
Central Moving 
Approach (CMA) 

24-hour- 
ahead 

Weather forecasting with 
NWP model 

* Wind 
Speed* 
Solar 
irradiation 

* Estimated output 
power PV 
equation* 
Estimated output 
power Wind 
equation 

Use power from batteries 
or grid to supplement RE 
production 

Control strategy to 
increase power to 
electric heater during 
peak production, 
thereby converting 
excess power to 
thermal storage 

[13] 5 kW Micro Grid 5 kW PV Pumped 
hydro 
storage 
(PHS) 

EMS algorithm 15-min-ahead Wavelet decomposition- 
Generalized Neural 
Network (GNN) based 
online forecasting model 

Solar 
irradiation 

PV power output 
estimation formula 

Control algorithm: if 
demand > PV, use PHS. If 
demand > PV + PHS, buy 
from Grid. 

TOU 

[147] * 800 W PV 
* Utility* 4.8 kWh 
Battery Storage 

Utility * 800 W PV* 
4.8 kWh 
Battery 

HEMS algorithm Intra day N/a N/a N/a Control algorithm: check 
electricity price. If cheap, 
operate on utility, if not 
check battery SOC. If load 
< SOC, use battery. If not 
operate on utility or 
postpone 

TOU 

[215] Microgrid 
* 2.3 kW Wind 
Turbine 
* 3.3 kW PV 
* Utility* 22kWh 
battery storage 

* 3.3 kW PV * Micro gas 
turbine 
(MGT)* 
Electric 
Vehicle 
(Mobile 
Storage) 
* Battery 

HEMS using mixed 
integer linear 
programming 
(MILP) 

24-hour- 
ahead 

Enhanced Differential 
Evolution based Artificial 
Neural Network (EDE- 
ANN) 

N/a N/a N/a N/a 

[216] * 5 Kw PV* 5 kW 
Battery 

PV * Utility* 
Battery 

HEMS algorithm 24-hour- 
ahead (PEMS) 
5-min-ahead 
(REMS) 

Robust Self-Attention 
Multi-Horizon (RSAM) 

Solar 
irradiation 

N/a Schedular algorithm RTP, TOU, CPP 

[217] *40 W PV* 48 V 
5Ah Li-ion 
Battery 

PV Battery Simple Electric 
Utility Platform 
(SEUP) 

1-hour-ahead Long Short-Term Memory 
(LSTM) 

Solar power 
generated 

N/a Use power from batteries 
to supplement RE 
production 

DLC 

[143] * 1.5 MW PV* 0.5 
MW/1MWh 
Battery 

PV Battery SunDial Multi-hour 
ahead 

N/a Solar power 
generated  

Use power from batteries 
to supplement RE 
production 

DR 

[67] * 1 kW PV 
* 1 kW Wind 
Turbine* Battery 

Wind-PV Battery N/a Ultra-short, 
short, 
medium, and 
long 

Random Forest * Wind 
Speed* 
Solar 
irradiation 

*PV power module 
equation 
*Wind power 
module equation 

Use power from batteries 
to supplement RE 
production 

DR  
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due to the high billing instability and risk of price fluctuations, DLC in 
cooperative gaming was favoured over RTP in participating in a balance 
power market. 

Looking at another angle, the absence or presence of PV as either a 
primary or secondary source affects the way the IEMS operates. In a 
study by Rastegar et al. [227], PV/utility with TOU improves a base case 
without DR by 65 %, while Utility and TOU without PV improves the 
base case by 61 %. 

Different SRs and DRs can be classified either as predictive or real- 
time responses. For instance, the static TOU is used for longer time 
frames and is set in advance (predictive) while RTP is determined close 
to real-time load consumption [228]. By initiating predictive and real- 
time responses, the IEMS can be both a PEMS and REMS. A valid 
question emerges as to which of the EMS schemes is better and is it 
advantageous to have both. To answer that question is to look at both 
independently. The ability to forecast energy supply or load demand 
accurately is a crucial part of PEMS, leading to better customer prepa-
ration and participation, informed decision-making as well as efficient 
power system operations and reduced costs [229]. For instance, a 
forecast of low energy supply gives the PEMS or customer plenty of time 
to put effective contingency plans in place. But forecasting methods are 
not 100 % accurate due to the stochastic nature of load and PV gener-
ation [230]. The result of this is that PV and wind energy forecast errors 
increase absolute levels of real-time energy imbalance and day-ahead or 
intra-day spot prices [231]. To mitigate against this, a real-time control 
component of the EMS must be included to adjust the responses of the 
load and supply. Therefore, the integration of PEMS and REMS, also 
referred in some literature as an IEMS, is crucial in maintaining the 
supply–demand energy balance in the system while minimizing errors. 
In a study by Hafiz et al. [230], Long Short-term Memory (LSTM) - based 
deep learning neural network is used to forecast load and PV generation 
profiles. The deviations from the forecasted profiles are corrected by 
integrating an offline multistage stochastic optimization model with 
dual dynamic programming and a real-time based controller. 

In another study, Jiang et al. [232] refers to the IEMS as a “double- 
layered coordinated control approach” and calls PEMS the “schedule 
layer” while the REMS is the “dispatch layer”. The schedule layer takes 
as its input forecasted energy, load data, and market prices and sched-
ules the load sequence. It also creates a power reserve for each time-step 
to compensate for any forecasting errors. The dispatch layer follows the 
load sequence set by the schedule layer by optimising power flow and 
voltage limits, while activating the reserved power to correct the fore-
casting errors. In another study by Nge et al. [233], the authors use the 
REMS to compensate for PV forecasting errors by using method of 
Lagrange multipliers to form an optimal dispatch function to adjust 
battery power based on market prices. In yet another study, Elkazaz 
et al. [234] uses a hierarchical two-layer EMS. The first layer is a model 
predictive control layer which optimizes energy usage by efficiently 
scheduling home appliances. The second is a real-time controller layer 
which minimizes energy wastage due to forecast errors by optimally 
dispatching the BESS. The second layer achieves this by prioritizing self- 
consumption from the BESS when the load is greater than supply. 
Conversely, if the supply is greater than the load, the BESS is charged 
first before excess supply is exported to the grid. In the same study, the 
findings demonstrate that, for the same battery capacity, the two-layer 
EMS produced PV self-consumption of up to 91.1 % annually, as 
opposed to a single layer system, which only produced 78.8 %. When 
compared to a single-layer EMS, the two-layer system reduced house-
hold payments by up to 27.8 % annually. This suggests the two-layer is 
better than one. With that established, future research lies in investi-
gating the effects in terms of consumption and costs of different SR and 
DR combinations used in the predictive and real-time layers of the IEMS. 

Finally, the methods highlighted in this paper can be compared to 
other solar integration methods used in applications like UC, ED 
modelling, and solar energy optimization models. For example, Fang 
et al. [235] propose a multi-objective UC model that considers the 

operational risks of load shedding and wind curtailment, to integrate 
solar energy and optimally allocate power for peak-shaving in a hybrid 
wind and concentrating solar power plant. Robin and Kory [236] 
explore the resilience of a microgrid by proposing a stochastic mixed 
integer model for day-ahead UC that optimises transmission switching, 
emergency PV generation and power sharing between interconnected 
grids. Dispatch of multi-energy power systems, like the one proposed by 
Wang et al. [237], define system objectives like cost and energy ab-
sorption as part of an optimization problem to maximise VREs. A similar 
optimisation problem can be seen in vehicle-to-grid charging and peer- 
to-peer energy networks. Grid balancing as described by Aktar et al. 
[238] is difficult because of the stochastic nature of VRES and load 
demands. Grid imbalance can be reduced by using electric vehicles as 
mobile storage units. The authors propose a mixed integer linear opti-
mization algorithm that determines the optimum number and specifi-
cation of electric vehicles needed to maximise operational and economic 
benefits. The aim of all these methods is to sustainably increase the use 
of solar energy in the grid. 

Conclusion 

Today’s complex power network of multi-energy systems, multi- 
objectives, diverse load requirements and advancement in technology 
and communication means that the traditional energy management 
system (EMS) is not sufficient and must give way to an integrated 
approach. This paper puts forward the concept of an integrated energy 
management system (IEMS) as a system that manages multiple energy 
sources by leveraging on advancement in technology and communica-
tion to integrate both predictive and real-time controls, and initiate 
supply and demand responses to balance the load and power supply in 
the grid. There is a strong interconnection between solar energy fore-
casting (SEF), demand side management (DSM) and supply side man-
agement (SSM) when deployed in an IEMS according to Table 4. From 
just the simultaneous combination of SSM and DSM, the study by Kar-
unanithi et al. [59] shows up to 18 % increase in system reliability. A 
decentralized solar energy based mini-grid can be a vehicle for solar 
integration by using an IEMS to match the load to supply. IEMS that 
manages today’s smart grid must be able to interact with both the supply 
and demand sides of the power system. This paper started with a review 
of the state of the art of IEMS and following conclusions can be drawn:  

• Uncertainty in the power system can be reduced if integrated 
renewable energy sources (RES) can be predicted. For mini-grids that 
use solar energy as the primary supply source, it is beneficial to 
predict the supply than load consumption since the former dictates 
how the latter is used. In addition, load consumption is harder to 
predict due to the unpredictable nature of energy use by consumers.  

• Advances in grid technology and communication, a diverse energy 
mix, and increased interconnections, mean the new EMSs must be 
able to interact with both the supply and demand sides of the grid. 
The grid has become smarter so EMSs must also become smarter.  

• For efficient energy scheduling and utilization, SEF and an EMS 
should be integrated with demand side management (DSM).  

• Renewable smart hybrid mini-grids (RSHMG) possess the requisite 
technology and infrastructure for solar energy integration. They also 
provide viable alternatives for grid-extension.  

• The IEMS structure or framework has several possible permutations 
because of the different types of SEF approaches, SSM and DSM re-
sponses. The choice of which method to use is often dictated by 
constraints and objectives unique to the case study or location.  

• Battery energy management system (BESS) is considered an essential 
part of future hybrid energy systems. However, there are potential 
issues related to capital and operating expenses, safety risks, and 
environmental impact, largely due to its capacity size. The use of an 
IEMS can help minimize these issues by reducing the required ca-
pacity, optimizing the charging and discharging processes to 

T. Falope et al.                                                                                                                                                                                                                                  



Energy Conversion and Management: X 21 (2024) 100527

18

maximize efficiency, and preventing overcharging, over-discharging, 
and overheating of the BESS.  

• IEMS can both prevent an energy mismatch between supply and 
consumption, and in real-time adjust the consumption to the supply 
in the case of an unforeseen imbalance in the system. 
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dynamic energy management system using real time pricing and local renewable 

energy generation forecasts. Energy 2017;134:206–20. https://doi.org/10.1016/ 
J.ENERGY.2017.06.011. 

[66] Pawar P, TarunKumar M, Vittal KP. An IoT based Intelligent Smart Energy 
Management System with accurate forecasting and load strategy for renewable 
generation. Measurement 2020;152:107187. https://doi.org/10.1016/J. 
MEASUREMENT.2019.107187. 

[67] Kiptoo MK, Adewuyi OB, Lotfy ME, Ibrahimi AM, Senjyu T. Harnessing demand- 
side management benefit towards achieving a 100% renewable energy microgrid. 
Energy Rep 2020;6:680–5. https://doi.org/10.1016/J.EGYR.2019.11.137. 

[68] Khezri R, Mahmoudi A, Haque MH, Khalilpour K. Energy Management and 
Optimal Planning of a Residential Microgrid with Time-of-Use Electricity Tariffs 
2021:841–6. doi: 10.1109/ECCE47101.2021.9595208. 

[69] Saleem MU, Usman MR, Usman MA, Politis C. Design, Deployment and 
Performance Evaluation of an IoT Based Smart Energy Management System for 
Demand Side Management in Smart Grid. IEEE Access 2022;10:15261–78. 
https://doi.org/10.1109/ACCESS.2022.3147484. 

[70] Ekpe UM, Umoh VB. From solar home systems to smart hybrid mini-grid systems - 
A nigerian case study. 2021 IEEE Power and Energy Society Innovative Smart 
Grid Technologies Conference, ISGT 2021 2021. doi: 10.1109/ 
ISGT49243.2021.9372249. 

[71] Sigarchian SG, Paleta R, Malmquist A, Pina A. Feasibility study of using a biogas 
engine as backup in a decentralized hybrid (PV/wind/battery) power generation 
system – Case study Kenya. Energy 2015;90:1830–41. https://doi.org/10.1016/J. 
ENERGY.2015.07.008. 

[72] Ma J, Ma X. A review of forecasting algorithms and energy management 
strategies for microgrids. Systems Science & Control Engineering: an Open Access 
Journal 2018;6:237–48. https://doi.org/10.1080/21642583.2018.1480979. 

[73] Perera ATD, Wickramasinghe PU, Scartezzini JL, Nik VM. Integrating renewable 
energy technologies into distributed energy systems maintaining system 
flexibility. Proceedings of the 2018 5th International Symposium on 
Environment-Friendly Energies and Applications, EFEA 2018 2019. doi: 10.1109/ 
EFEA.2018.8617046. 

[74] Koolen D, Bunn D, Ketter W. Renewable energy technologies and electricity 
forward market risks. Energy J 2021;42:21–45. https://doi.org/10.5547/ 
01956574.42.4.DKOO. 

[75] NERC. Apply for Mini Grid License 2021. https://nerc.gov.ng/index.php/home/ 
operators/mini-grid (accessed August 3, 2021). 

[76] Mosbah F., Iqbal T. Design and Analysis of A community Mini-grid Power System 
for Libya. ResearchGate 2020. https://www.researchgate.net/publication/ 
347463456_Design_and_Analysis_of_A_community_Mini-grid_Power_System_for_ 
Libya (accessed August 3, 2021). 

[77] IRENA. Innovation Outlook: Renewable Mini-grids. International Renewable 
Energy Agency 2016:1–184. 

[78] Zhang J, Huang L, Shu J, Wang H, Ding J. Energy management of PV-diesel- 
battery hybrid power system for island stand-alone micro-grid. Energy Procedia 
2017;105:2201–6. https://doi.org/10.1016/j.egypro.2017.03.622. 

[79] Robert FC, Sisodia GS, Gopalan S. A critical review on the utilization of storage 
and demand response for the implementation of renewable energy microgrids. 
Sustain Cities Soc 2018;40:735–45. https://doi.org/10.1016/J.SCS.2018.04.008. 

[80] Ravanbach B, Kuhnel M, Hanke B, von Maydell K, van Dyk EE, Vumbugwa M, 
et al. Development of a Smart Monitoring and Evaluation Framework for Hybrid 
Renewable Mini-grids. 2020 15th International Conference on Ecological 
Vehicles and Renewable Energies, EVER 2020 2020. doi: 10.1109/ 
EVER48776.2020.9243124. 

[81] Perera ATD, Nik VM, Mauree D, Scartezzini JL. Electrical hubs: An effective way 
to integrate non-dispatchable renewable energy sources with minimum impact to 
the grid. Appl Energy 2017;190:232–48. https://doi.org/10.1016/J. 
APENERGY.2016.12.127. 

[82] Pujari HK, Rudramoorthy M. Optimal design and techno-economic analysis of a 
hybrid grid-independent renewable energy system for a rural community. 
International Transactions on Electrical Energy Systems 2021;31:e13007. 

[83] Come Zebra EI, van der Windt HJ, Nhumaio G, Faaij APC. A review of hybrid 
renewable energy systems in mini-grids for off-grid electrification in developing 
countries. Renew Sustain Energy Rev 2021;144:111036. https://doi.org/ 
10.1016/J.RSER.2021.111036. 

[84] Oladigbolu JO, Ramli MAM, Al-Turki YA. Feasibility study and comparative 
analysis of hybrid renewable power system for off-grid rural electrification in a 
typical remote village located in Nigeria. IEEE Access 2020;8:171643–63. 
https://doi.org/10.1109/ACCESS.2020.3024676. 

[85] Falk J, Angelmahr M, Schade W, Schenk-Mathes H. Socio-economic impacts and 
challenges associated with the electrification of a remote area in rural Tanzania 
through a mini-grid system. Energ Ecol Environ 2021. https://doi.org/10.1007/ 
s40974-021-00216-3. 

[86] Szewczuk S. Hybrid mini-grids: Smart sustainable energy for low income 
communities. Proceedings of the Conference on the Industrial and Commercial 
Use of Energy, ICUE 2017. doi: 10.23919/ICUE.2017.8068012. 

[87] Archana, Shankar R, Singh S. Development of smart grid for the power sector in 
India. Cleaner Energy Systems 2022;2:100011. doi: 10.1016/J. 
CLES.2022.100011. 

[88] Raza MA, Aman MM, Abro AG, Tunio MA, Khatri KL, Shahid M. Challenges and 
potentials of implementing a smart grid for Pakistan’s electric network. Energ 
Strat Rev 2022;43:100941. https://doi.org/10.1016/J.ESR.2022.100941. 

[89] Moreno-Garcia IM, Real-Calvo R, Pallares-Lopez V, Gonzalez-Redondo MJ, 
Santiago I. Towards the Extensive Use of Renewable Energy Resources: Needs, 
Conditions and Enabling Technologies. In: Moreno-Munoz A, editor. Large Scale 

T. Falope et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/J.RSER.2019.06.007
https://doi.org/10.1016/J.RSER.2019.06.007
https://doi.org/10.3390/IJERPH16071282
https://doi.org/10.1016/J.EGYPRO.2018.09.137
https://doi.org/10.1016/J.EGYPRO.2018.09.137
https://doi.org/10.1016/J.PECS.2013.06.002
https://doi.org/10.1016/J.PECS.2013.06.002
https://doi.org/10.1016/J.SCS.2020.102052
https://doi.org/10.1016/J.ENERGY.2021.120538
https://doi.org/10.1016/J.ENERGY.2016.08.067
https://doi.org/10.1016/J.ENERGY.2016.08.067
https://doi.org/10.1109/ACCESS.2019.2901257
https://doi.org/10.1109/ACCESS.2019.2901257
https://doi.org/10.1016/J.ENBUILD.2021.110980
https://doi.org/10.1016/J.RENENE.2020.11.089
https://doi.org/10.1016/J.EGYR.2021.07.084
https://doi.org/10.1016/J.RSER.2017.01.017
https://doi.org/10.1016/J.RSER.2017.01.017
https://doi.org/10.1016/J.APENERGY.2021.117062
https://doi.org/10.1016/J.ENERGY.2017.03.051
https://doi.org/10.1016/J.RSER.2017.07.045
https://doi.org/10.1016/J.RSER.2017.07.045
https://doi.org/10.1016/J.ENERGY.2020.119440
https://doi.org/10.1016/J.ENERGY.2020.119440
https://doi.org/10.1016/J.ENERGY.2017.06.011
https://doi.org/10.1016/J.ENERGY.2017.06.011
https://doi.org/10.1016/J.MEASUREMENT.2019.107187
https://doi.org/10.1016/J.MEASUREMENT.2019.107187
https://doi.org/10.1016/J.EGYR.2019.11.137
https://doi.org/10.1109/ACCESS.2022.3147484
https://doi.org/10.1016/J.ENERGY.2015.07.008
https://doi.org/10.1016/J.ENERGY.2015.07.008
https://doi.org/10.1080/21642583.2018.1480979
https://doi.org/10.5547/01956574.42.4.DKOO
https://doi.org/10.5547/01956574.42.4.DKOO
https://doi.org/10.1016/j.egypro.2017.03.622
https://doi.org/10.1016/J.SCS.2018.04.008
https://doi.org/10.1016/J.APENERGY.2016.12.127
https://doi.org/10.1016/J.APENERGY.2016.12.127
http://refhub.elsevier.com/S2590-1745(24)00005-9/h0410
http://refhub.elsevier.com/S2590-1745(24)00005-9/h0410
http://refhub.elsevier.com/S2590-1745(24)00005-9/h0410
https://doi.org/10.1016/J.RSER.2021.111036
https://doi.org/10.1016/J.RSER.2021.111036
https://doi.org/10.1109/ACCESS.2020.3024676
https://doi.org/10.1007/s40974-021-00216-3
https://doi.org/10.1007/s40974-021-00216-3
https://doi.org/10.1016/J.ESR.2022.100941
http://refhub.elsevier.com/S2590-1745(24)00005-9/h0445
http://refhub.elsevier.com/S2590-1745(24)00005-9/h0445
http://refhub.elsevier.com/S2590-1745(24)00005-9/h0445


Energy Conversion and Management: X 21 (2024) 100527

20

Grid Integration of Renewable Energy Sources. Institution of Engineering and 
Technology; 2017. p. 171–210. 

[90] Judge MA, Manzoor A, Maple C, Rodrigues JJPC, Islam Sul. Price-based demand 
response for household load management with interval uncertainty. Energy Rep 
2021. https://doi.org/10.1016/J.EGYR.2021.02.064. 

[91] Palahalli H, Ragaini E, Gruosso G. Smart Grid Simulation including 
Communication Network: A Hardware in the Loop Approach. IEEE Access 2019; 
7:90171–9. https://doi.org/10.1109/ACCESS.2019.2927821. 

[92] Hall NL, Jeanneret TD, Rai A. Cost-reflective electricity pricing: Consumer 
preferences and perceptions. Energy Policy 2016;95:62–72. https://doi.org/ 
10.1016/J.ENPOL.2016.04.042. 

[93] Jordehi AR. Optimisation of demand response in electric power systems, a 
review. Renew Sustain Energy Rev 2019;103:308–19. https://doi.org/10.1016/J. 
RSER.2018.12.054. 
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[238] Aktar AK, Taşcıkaraoğlu A, Gürleyük SS, Catalão JPS. A framework for 
dispatching of an electric vehicle fleet using vehicle-to-grid technology. 
Sustainable Energy Grids Networks 2023;33:100991. https://doi.org/10.1016/J. 
SEGAN.2022.100991. 

T. Falope et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/J.IJEPES.2021.107754
https://doi.org/10.1016/J.IJEPES.2021.107754
https://doi.org/10.1016/J.EPSR.2014.08.020
https://doi.org/10.1016/J.EPSR.2014.08.020
https://doi.org/10.1016/J.EGYR.2023.08.040
https://doi.org/10.1016/J.SEGAN.2022.100991
https://doi.org/10.1016/J.SEGAN.2022.100991

	Hybrid energy system integration and management for solar energy: A review
	Introduction
	Methods
	Solar energy forecasting
	Energy management system
	Supply side management
	Demand side management

	Renewable smart hybrid mini-grids: The future of renewable energy integration
	Distributed generation: Mini-grid & renewable energy home systems
	Renewable mini-grids and hybrids
	Grid-tied versus off-grid
	Renewable smart hybrid mini-grid
	Solar energy forecasting
	Demand side management
	Demand response
	Price-based demand response program
	Time-of-use pricing
	Critical peak pricing
	Real-time pricing

	Incentive-based demand response program
	Direct load control
	Demand bidding
	Interruptible/curtailable program

	Supply side management
	Back-up power and supply side management: Batteries and generator dispatch
	Flexible power supply generation


	Energy management system
	Energy management system control
	Smart meters

	Integrated energy management system
	IEMS perspective and future research

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


