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Wings & Wisdom: 

‘‘He gives power to the weak and strength to the weary; those who trust in God will 
renew their strength; they will soar on wings like eagles.’’ 
 
- 40.31, Book of Isaiah 

“Men know how to mine silver and refine gold, to dig iron from the earth and melt 
copper from stone. Men know how to put light into darkness so that a mine shaft can be 
sunk into the earth, and the earth searched and its deep secrets explored. Into the 
black rock, shadowed by death, men descend on ropes, swinging back and forth. 

 “Men know how to obtain food from the surface of the earth, while underneath there is 
fire. 

“They know how to find sapphires and gold dust— treasures that no bird of prey can 
see, no eagle’s eye observe— for they are deep within the mines. No wild animal has 
ever walked upon those treasures; no lion has set his paw there. Men know how to tear 
apart flinty rocks and how to overturn the roots of mountains. They drill tunnels in the 
rocks and lay bare precious stones. They dam up streams of water and pan the gold.  

“But though men can do all these things, they don’t know where to find wisdom and 
understanding. They not only don’t know how to get it, but, in fact, it is not to be found 
among the living. 

“‘It’s not here,’ the oceans say; and the seas reply, ‘nor is it here.’  

“It cannot be bought for gold or silver, nor for all the gold of Ophir or precious onyx 
stones or sapphires. Wisdom is far more valuable than gold and glass. It cannot be 
bought for jewels mounted in fine gold. Coral or crystal is worthless in trying to get it; its 
price is far above rubies. Topaz from Ethiopia cannot purchase it, nor even the purest 
gold. 

“Then where can we get it? Where can it be found? For it is hid from the eyes of all 
mankind; even the sharp-eyed birds in the sky cannot discover it. 

“But destruction and death speak of knowing something about it! And God surely 
knows where it is to be found, for he looks throughout the whole earth, under all the 
heavens. He makes the winds blow and sets the boundaries of the oceans. He makes 
the laws of the rain and a path for the lightning. He knows where wisdom is and 
declares it to all who will listen. He established it and examined it thoroughly. And this 
is what he says to all mankind: “Look, to fear the Lord is true wisdom; to forsake evil is 
real understanding.” 

- Chapter 28, Book of Job, ~6 BC 
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Abstract 
 

Interactivity always involves two entities; one of them by default is a human user. The 

specialised subject of human factors is introduced in the context of computational 

aerodynamics and optimisation, specifically a high-lift aerofoil. The trial and error 

nature of a design process hinges on designer’s knowledge, skill and intuition. A basic, 

important assumption of a man-machine system is that in solving a problem, there are 

some steps in which the computer has an advantageous edge while in other steps a 

human has dominance. Computational technologies are now an indispensable part of 

aerospace technology; algorithms involving significant user interaction, either during 

the process of generating solutions or as a component of post-optimisation evaluation 

where human decision making is involved are increasingly becoming popular, multi-

objective particle swarm is one such optimiser. 

 

Several design optimisation problems in engineering are by nature multi-objective; the 

interest of a designer lies in simultaneous optimisation against two or more objectives 

which are usually in conflict. Interactive optimisation allows the designer to understand 

trade-offs between various objectives, and is generally used as a tool for decision 

making. The solution to a multi-objective problem, one where betterment in one 

objective occurs over the deterioration of at least one other objective is called a Pareto 

set. There are multiple solutions to a problem and multiple betterment ideas to an 

already existing design. The final responsibility of identifying an optimal solution or idea 

rests on the design engineers and decision making is done based on quantitative 

metrics, displayed as numbers or graphs. However, visualisation, ergonomics and 

human factors influence and impact this decision making process.  

 

A visual, graphical depiction of the Pareto front is oftentimes used as a design aid tool 

for purposes of decision making with chances of errors and fallacies fundamentally 

existing in engineering design. An effective visualisation tool benefits complex 

engineering analyses by providing the decision-maker with a good imagery of the most 

important information. Two high-lift aerofoil data-sets have been used as test-case 

examples; a multi-element solver, an optimiser based on swarm intelligence technique, 

and visual techniques which include parallel co-ordinates, heat map, scatter plot, self-

organising map and radial coordinate visualisation comprise the module. Factors that 

affect optima and various evaluation criteria have been studied in light of the human 

user. 

 

This research enquires into interactive optimisation by adapting three interactive 

approaches: information trade-off, reference point and classification, and investigates 

selected visualisation techniques which act as chief aids in the context of high-lift 

design trade studies. Human-in-the-loop engineering, man-machine interaction & 

interface along with influencing factors, reliability, validation and verification in the 

presence of design uncertainty are considered. The research structure, choice of 



x 

optimiser and visual aids adapted in this work are influenced by and streamlined to fit 

with the parallel on-going development work on Airbus’ Python based tool. 

 

Results, analysis, together with literature survey are presented in this report. The words 

human, user, engineer, aerodynamicist, designer, analyst and decision-maker/ DM are 

synonymous, and are used interchangeably in this research. 

 

In a virtual engineering setting, for an efficient interactive optimisation task, a suitable 

visualisation tool is a crucial prerequisite. Various optimisation design tools & methods 

are most useful when combined with a human engineer's insight is the underlying 

premise of this work; questions such as why, what, how might help aid aeronautical 

technical innovation. 

 

 

NOTE: 

This document contains copyright and proprietary information. No parts can be copied 

or reproduced without the written permission of the author, Cranfield University or 

Airbus. 

 

This report is written in British English. Wherever a possibility of variation exists in style 

and terminology, the British version has been used and the system of measurement 

applied is metric. 

 

KEYWORDS:  

Interactive Optimisation; Multi-Objective; High-lift Design; Human-in-the-loop; Human 

Factors; Decision-Maker; Digital Human; Particle Swarm; Modelling & Simulation; 

Transonic Wing Design; Visual Analytics; Interactive Visualisation; Virtual Product 

Engineering 

 

 

This work was carried out as part of Enhanced Fidelity Transonic (EFT) Wing Research 

Project, funded by Innovate UK, EPSRC council and ATI. In cooperation with 
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1 

Introduction 
 

 

1.1 RESEARCH OVERVIEW 
 

 

Wings of an aeroplane are vital components of a fixed wing aircraft. Analysis and design of 

aeroplane wings is one of the important applications of the science of aerodynamics. A 

wing is the primary source of lift and also a dominant contributor to drag and hence any 

endeavour to increase aerodynamic performance is of significant interest. A good wing 

design provides lift in an efficient way as far as possible and high-lift devices are usually 

used. A wing’s high-lift aerodynamics is actively influenced by the requirements and 

repercussions of other domains, often encompassing multiple subject areas and design 

philosophies A final aerofoil or wing solution is therefore a best achievable compromise, 

balancing multiple competing criteria by identifying a most preferred alternative leading to 

an iterative design process. 

 

Optimisation is a necessary aerofoil design activity and modern design methods draw on 

extensive computing facilities and innovative computational design strategies. A computer 

is usually used to work out thousands of repetitive calculations involved, the outcome is an 

extensive list of numbers, not equations, which in turn drive an animated simulation or 

visual representation. 

 

 
 

Figure 1.1: Aerodynamic Design Optimisation: Conventional Vs Interactive Loop 
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Interactive optimisation and visualisation aim at turning efficient optimisation methods into 

effective decision tools. This involves improving procedure efficiency, refining the model or 

input values that have been chosen for a particular optimisation problem, analysing, 

interrogating and navigating through datasets for betterment of results. An interactive 

optimisation technique is handicapped without an assisting interactive visual technique. 

 

In interactive optimisation, the user of the optimisation system is actively involved in the 

optimisation process and can change or influence the results or performance (Figure 1.1). 

The human user is the decision-maker, playing the most valuable role in exploiting 

optimisation system by interaction. 

 

 

 

Figure 1.2: Research summarised in a picture showing interactive optimisation and 

the role of decision-maker in the design analysis cycle. The picture was part of 

various poster presentations. Sections of this comprehensive figure have been 

explained separately in ensuing chapters. 

 

Algorithms where a user significantly interacts, either during the process of solution 

generation or as part of post-optimisation analysis where human decision making is 

involved are increasingly becoming popular. A vital fundamental assumption of such a 

man-machine system is that there are certain phases of problem solving in which the 

computer asserts an advantage and other phases where a human has leverage (Fisher, 

1986). It is not a dispute anymore to acknowledge that man–machine interaction can be 
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beneficial for solving complicated optimisation tasks. However, (Barthelemy et al., 2002) 

note that it is startling that a relatively little consideration has been given to the study of 

interactivity in the optimisation domain. 

 

1.2 MOTIVATION 
 

 

There is a constant demand for more innovation and use of more advanced technologies 

in all fields of engineering and aircraft design is no exception. Computer technologies are 

helping manufacturers to speed up time-to-market while minimising costs, utilising 

resources at an optimum level, at the same time also ensuring environmental efficiency, 

creating advanced, complex engineering products and systems to be competitive in terms 

of design, quality, performance and life-cycle value. Various software are now absolute 

vital parts of aircraft components and systems from design conception through to flight 

operations.  

 

Aerodynamics is a major contributor for generating and creating sustainable aviation 

products and services, meeting the needs of global citizens and society. Computational 

aerodynamics is an important part of the product design and development; efficient use 

and working with computational aerodynamics is in a way an art, it is most times not 

possible to get to grips with this art without running a well validated code. 

 

In the midst of this technology innovation is the innovator, the engineer, the decision-

maker who plays a vital role either directly or indirectly. Design decisions taken by 

individuals, teams, organisations are key in driving the above mentioned factors, also 

influencing next-generation air and space vehicles. Thinking digital is no more an option 

but an industrial necessity. Much attention has been given to the human operator, user in 

an aircraft operational setting but there is a lack of consideration in a design environment 

where several technologies, products are engineered with a significant rise in utilisation of 

software. 

 

1.3 PROBLEM 
 

Optimisation remains a demanding task in computational aerodynamics. Ability to simulate 

the physics of flight has tremendously increased and is poised to continue in future, Figure 

1.3 is a projection of future capabilities aspiring to reach real time simulation alongside the 

estimated growth in computational capacities, achieving better solutions and solving large, 

complex calculations. High-lift systems are a necessary design in modern fixed wing 

aeroplanes and these generally take into account certain factors such as run-way length, 

velocity at take-off, lift-over-drag ratio, and other such influencing factors while all the time 

trying to maintain the weight of the system as low as possible. 
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The major goal of the work carried out by the larger team involved in this project has been 

to test various optimisation strategies for aeroplane design utilising high-lift configurations 

with the intent to demonstrate the capability against various solvers, test-cases and visual 

techniques and also be knowing to extend any knowledge thus gained to three 

dimensional high-lift design.  

 

 
 

Figure 1.3: Progress in Flight Physics Simulation Capability (Source: Airbus) 

 

Various optimisation strategies for numerical problems are very well explored and several 

hundred algorithms exist, which makes it difficult to test all of them so as to decide on the 

most appropriate strategy for a high-lift design analysis. Multi-objective particle swarm 

optimisation technique is used in this work against various visual techniques, it assists the 

user in finding a near optimal compromise among the proposed set of solutions; designer-

in-the-loop engineering perspective seeks to examine human-computer interface and 

interaction.  

 

Key questions are: 

 How can the interactive optimisation strategy be explored to gain maximum process 

advantage? 

 What does the emerging field of multi-objective visualisation offer high-lift design trade 

studies? 

 Decisions, preferences, choices of the designer, amongst others are vital during an 

interactive optimisation trade study cycle. What is their significance? 

 

Information visualisation analysis before, during and after optimisation makes use of 

computer assisted visual processing to gain an understanding. This has become a subject 

of serious improvement and research in the recent past, specifically for multi-objective 

problem tasks. Practical application of several information visual aid tools involves 

selecting, representing and transforming complex data in a manner that aids human 

interaction for exploration and comprehension. A study of such tools to help in conveying, 
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understanding and create new knowledge between individuals and groups is a continuing 

and evolving effort; selected visualisation techniques are considered in this work. 

 

In general, interactive optimisation involves human decision-maker and the computer, 

which is a machine. There is a lack of available knowledge in aeronautics on human 

interaction with computers on various virtual engineering tasks. Although high-lift design, 

multi-objective and interactive optimisation subjects are not entirely new areas of research, 

their combination and application to high-lift design trade study option and aeronautical 

applications remains relatively novice.   

 

 

Figure 1.4: Typical Effects of High-Lift on Wing (Sadraey, 2012) 

 

 

Figure 1.5: Effect of Leading Edge Wing Slat for High-Lift (Source: Zenithair) 

 

 

It is now a norm to design aeroplanes for transonic air speeds which generates wave drag 

leading to instability. A transonic wing is designed to delay the onset of flow separation and 

shock waves by using a flattened upper aerofoil surface, thus allowing the supersonic flow 

to terminate in a weak shock. Figures 1.4, 1.5 show typical effect of using high-lift systems 

on wings; deflection of flaps provides more lift but also increases drag. High-lift devices are 

a design trade-off, a compromise between different flight requirements and presents as a 

suitable interactive optimisation problem task. 
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Some of the generic problems facing high-lift designers are summarised as follows: 

 

 Limited & hard to manage shape optimisation 

 Selecting and maintain proper mesh quality, turbulence models and optimisers 

 Lack of tools for monitoring the optimisation 

 Inadequate visualisation techniques 

 Underusing computational tools below their maximum capabilities 

 Need for design exploration skills 

 Insufficient quality of currently available visual aids 

 Manage large scale calculations 

 Improper decision support systems to aid the designer 

 Lack of knowledge on the impact of designers in design analysis and decision making 

 

1.4 AIM & OBJECTIVE 
 

This work is part of a wider research project called Enhanced Fidelity Transonic (EFT) 

Wing and the comprehensive objective of this parent project significantly aims to 

strengthen the performance assessment fidelity of transonic wings, reducing risk and 

ambiguity in the aeroplane design process, thus enabling aeroplanes and their design to 

be driven to higher performance standards.  

 

Top-level challenges of EFT project deal with the following: 

 Determining and improving wing’s maximum lift 

 Determining transonic drag rise characteristics 

 Knowledge of wing shape in all performance conditions 

 Accuracy improvement in wing’s aero-elasticity assessment 

 Knowledge and use of better tools and techniques for design optimisation 

This research project aims at studying human factors in aerodynamics by implementing 

interactive optimisation with visualisation as a chief aid in the context of high-lift design and 

resulting analysis. It supports the work on advancing various tools and methods. Human-

in-the-loop engineering, man-machine interaction & interface along with influencing factors, 

reliability, validation and verification in the presence of design uncertainty are considered. 

This work assumes a generic approach to present civil aeroplane and its wing design 

although many elements of this research could equally be applied and valid for other 

aircraft designs and optimisations. 

 

An abstract of secondary level aims and objectives pertaining to this research work are as 

follows: 

 Improve on the existing methods and tools used in aerodynamic design analysis and 

optimisation 

 Minimise tool errors and improve working efficiency, ease-of-use and robustness 

 Study of designer interfaces, tools and machine analysis 

 Interactive analysis of tasks 
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 Improve design feedback module of which visualisation plays a major role 

 Recognise and discern various visualisation techniques and their working in order to 

better steer the overall design process 

 Understand the role of decision-maker in the process 

 Drive continuous optimisation  

 

1.5 METHODOLOGY 
 

 

Computer science has been using particle swarm optimisation and implementing it for 

several industrial purposes but it has only recently been introduced for aerofoil 

parameterisation analysis. Aeronautical industry has been traditionally using several off-

the-shelf simulation and analysis tools which are now being upgraded to take advantage of 

advanced computation including graphical user interfaces to cater to ambitions of 

individual manufacturers. 

Improving, building on the existing software tool, exploring man-machine dynamics, 

specifically in a high-lift aerofoil design analysis setting is the research’s framework. A 

specific trade study context is considered for interactive optimisation but the approach 

philosophy is presented in the generic context of aeronautical innovation.  

Multi-element aerofoil tests cases, Garteur and SC2-0610 have been used. They are three 

element aerofoils comprising of slat, main element and a flap. MSES solver was run 

together with Python based I-MOPSO as optimiser. This research builds on previous work 

which covered tests and analysis using a combination of I-MOPSO and parallel coordinate 

visual technique. New visual techniques to aid decision-maker are supplemented to the 

existing tool which was not previously available; heat map, self-organising map, radial 

coordinate visualisation and a combined view are added as an extension in this research 

work. Test runs focussed on the optimisation of two objectives: lift coefficient and drag 

coefficient along with the influence of various slat, flap parameters. 

The decision-maker plays a vital role by controlling, expressing preferences, deciding, 

using visual aids as support, learning and exploring. Interactivity enables control of some 

of the aspects of visual representation of information be available to the human designer; 

changes thus made by designer are incorporated into the visual tool in a timely manner. 

The designer interaction with optimisation task in this work chiefly reflects a single 

decision-maker, and could be extended to emulate a group of decision-makers agreeing 

together on a set of preferences.  

Several decision making rules, support systems and approaches are available to design 

engineers in the industry as of today, however there still lacks a simple approach. Asking 

why outlook in a flight physics environment could aid innovation and is investigated in 

various forms. A literature survey reveals the existence of several interactive techniques; 

three interactive optimisation approaches, namely information trade-off, reference point 

and classification are adapted here to understand human decision-maker and the relevant 

environment. 
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1.6 THESIS STRUCTURE 
 

 

The thesis report is made up of six chapters. Chapter 1 serves as an introduction to the 

research work and chapter 2 introduces briefly elements of generic aerodynamics, high-lift 

design and aspects of simulation, making it easier even for a reader from non-core 

aeronautics background to understand. Chapter 3 covers interactive optimisation, its 

methods, interaction and interface along with the role of decision-maker and decision 

making. Chapter 4 delves into visualisation which is a key part of the interactive 

optimisation module. Design and decision spaces, various plots, their qualities and 

influencing factors are discussed. Chapter 5 looks into the three interactive trade study 

approaches with test runs and their analysis; it explains the module which includes solver 

and optimiser with various visual outputs. An assessment of this research work is 

summarised in chapter 6 along with pros, cons and further scope; this chapter also 

presents an assessment of the digital human in a man-machine setting and contemplates 

future of flight. 

The study attitude adapted tries to reflect the current stage of aeronautical industry with an 

attempt to contribute to knowledge towards the industry’s present-day technological and 

digital transformation. Effort has been put such as to read the individual chapters both as 

separate sections in themselves and also as part of the larger entity. 
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2 

High-Lift Design 

& Simulation 
 

 

2.1 INTRODUCTION 
 
 

Before the availability of computers to execute several lengthy calculations in relatively 

short time periods, two primal methods of investigation were used by aeronautical 

engineers to visualise flow fields around a flight vehicle combined with engineering 

experience and intuition: 

 Wind tunnel testing 

 Flight testing 

 

To many engineers in the industry, prediction of high-lift flows is generally a challenge of 

practical interest. Multiple element configurations like slats on leading edge and flaps on 

trailing edges can be particularly challenging for computational codes and turbulence 

models. Numerical optimisation is now playing a strategic role in future aeroplane design 

and computational tools are extensively used to predict and provide calculated estimates 

of aerodynamic performances of a wing, usually in cruise flight conditions (Figure 2.1). 

 

On most aeroplane configurations, high-lift systems have a considerable impact on size, 

costs and safety. The complex combination of flow physics, structures and systems has 

caused a lengthy and demanding experimental development process (Van Dam, 2002). 

However, because of advancement in computer hardware and software in recent times, 

engineering design has evolved significantly, and with that, the design of multi-element 

high-lift systems has only gained more importance.  

 

Aerofoil design faces a burgeoning challenge to enhance reliability of aerodynamic 

predictions. Combinations of small, continuous refinements drive the high performance 

constancy. In seeking out step changes, the success and realisation of a design also 

depends on mitigating complicated aerodynamic risks. A wing’s maximum lift (Clmax) is a 
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basic characteristic in determining an aeroplane’s performance in terms of speed and 

efficiency. A betterment of the Clmax uncertainty estimation to ±5 calls for a revision in 

structural understanding and modelling approaches. The transonic drag rise characteristics 

of present-day wings also demands extremely correct predictions and are also vital to 

rightly capturing basic, underlying design trade-offs.  

 

 

 

Figure 2.1: Computational Analysis (Source: Airbus) 

 

 

 

Wing configurations are moving towards more efficient and flexible structures. An accurate 

knowledge of aerodynamics under all conditions is a necessity for the success of 

enhanced designs. There is also an increase in the utilisation of theoretical methods for 

predicting aerodynamic loads throughout an aeroplane’s design envelope, thus enabling 

greater levels of optimisation. 

 

 

2.2 AERODYNAMIC SIMULATION 
 
 

There has been an enormous increase in simulation power over the past two decades in 

both software and hardware. Computed aerodynamic simulations either reveal flow fields 

around an element or its various characteristic calculations. Figure 2.2 is one such 

computer generated image showing the flow field analysis around a three element aerofoil 

section explaining the interaction between pressure and velocity fields. Along with the 

typical boundary layer regions near the walls, recirculation, mixing of boundary layers, 
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wakes and secondary flows through slots are shown. Wind tunnel and simulation results 

are directly analogous; they represent data sets for specified flow configurations at 

different Mach numbers, Reynolds numbers etc. A computer programme has the 

advantage of size and mobility say via internet & numerous data storage devices unlike a 

wind tunnel, which is usually heavy and inconvenient. A source programme in a given 

computer’s memory can be remotely accessed by people spread across the globe via 

various workable terminals. A software code is a readily transportable means, a ‘mobile 

wind tunnel’ (Anderson Jr. 1995) which facilitates carrying out numerical experiments. 

Advantages of Simulation: 

 Investigate what cannot be measured 

 Reduce the need for testing 

 Design Optimisation: narrow the design space 

 Proactive instead of reactionary design 

 Simplified geometry 

 High-Speed CFD based scaling 

 High fidelity aerodynamics simulation 

 Reduce standard wind-tunnel testing 

 Flexible & better aircraft and individual component/section representation 

 Enable new solutions to aerodynamic problems 

 Allows exploring areas of flight regime without risk of human or material loss 

 Conditions can be analysed for which physical simulation is either very expensive 

or not possible  

The aim of current aerodynamic simulation technology is to arrive at full scale simulation 

with multiple parallel analysing capabilities. However, trust and reliance on a simulation is 

influenced by the system’s reliability and its user’s awareness. Simulation codes are 

constructed based on various numerical algorithms that handle fluid flow problems. 

(Versteeg & Malalasekera 2007) state that all codes consist of three main parts:  

 Pre-processing: formulation of problem and mesh construction 

 Solving: Solution of discrete governing equations 

 Post-processing: Analysis and visualisation of results 

 
 

Figure 2.2: Flow field around a three-element aerofoil (Parthasarathy et al., 2015) 
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2.3 HIGH-LIFT SYSTEMS 
 

An aerofoil’s shape, wing area and velocity determine the amount of lift generated by a 

wing. A high-lift device is an added device mechanism which bolsters an increase in lift 

above that attainable from an aeroplane’s classical main components. The device 

mechanism could be either fixed or movable which is deployed on requirement. Typical 

high-lift devices belong to either one of the two classes: 

 Flaps  

 Slats                                                     

 

   

 

 

Figure 2.3:  Top: Basic parts of a monoplane fixed wing design | Bottom: Difference 

between classical and supercritical aerofoil designs (Source: NASA) 

 

 

During take-off and landing, an aeroplane’s velocity is comparably low. In order to maintain 

lift high, aeroplane designers attempt to increase the wing’s area and facilitate alteration of 

aerofoil shape by using movable device mechanisms on the wings' leading and trailing 
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edges. Slat is the device on the leading edge, while that on the trailing edge is called a 

flap. Flaps and slats move along actuation mechanisms built inside the wings. The wing 

area is increased when the flaps are moved toward the tail (aft) and the slats moved 

forward. When the slat’s leading edge and flap’s trailing edge are pivoted downwards, the 

aerofoil’s effective camber is increased, in turn increasing the lift. Also, the aft projected 

large area of the flap gives rise to an increase in the aircraft’s drag, thus causing the 

aircraft to slow down for landing. A leading edge component like a slat increases the stall 

angle of attack and a trailing edge component such as a flap creates an upward shift in the 

lift curve. 

There are different types of flaps in use and a specific choice is made depending on the 

speed, size and complexity of the aeroplane on which they will be utilised; the age and 

time period during which a particular aircraft was designed will also be considered. Plain 

flaps, slotted flaps and fowler flaps are commonly used; Krueger flaps are arranged on the 

wing leading edges of several jet aeroplanes. 

In order to increase Clmax , slats used on the wing’s leading-edge to increase the camber of 

an aerofoil. Unlike a trailing edge flap, a negative pitching moment is not produced by the 

leading-edge slat. However, it may create a slight positive nose-up pitching moment, 

depending on its efficiency. 

A slat is a slot that can be opened and closed. At high angles of attack, the slat moves 

forward and or downward, increasing the camber and area. The slot through the wing 

exerts high-pressure air from the underside of the wing over the top surface, delaying stall 

when the wing is at a high Angle of Attack (AOA). Drag does not increase much as the slot 

is not exposed to the airstream.  

 

The choice of a wing’s composition, such as size, lift capability is a bargain between 

contrasting requirements. A larger wing tends to provide more lift, reduces takeoff and 

landing distance, but will also increase drag during cruise flight, leading to a reduction in 

performance when in flight. High-lift devices aid in annulling some of these differences, 

allowing the use of efficient wings in flight, whilst adding lift on takeoff and drag on landing. 

A Supercritical aerofoil refers to an aerofoil design that has been designed in principal to 

delay the beginning of wave drag in transonic speed range. It is flatter on the upper side, 

curved on the bottom; upper trailing edge is accented with a downward curve to recover lift 

lost by the flat upper surface. 

 

2.4 MODELLING A TRANSONIC WING AND ITS 

DESIGN PROBLEM 
 

 

The high-lift wing is designed for achieving various performance requirements usually 

based on the cruise wing geometry. Viscous effects play a dominant role. The maximum 

lift of a well-designed high-lift profile is often times limited by the onset of flow separating 

on main wing or leading edge devices. Controlling the expansion of supersonic flow speed 
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and its subsequent recompression is the key to transonic aerofoil design and it remains a 

difficult task. 

 

Key factors of transonic aerofoils are: 

 

 A large leading edge radius helps in expanding flow at the upper surface of leading 

edge, thus generating more lift. 

 To maintain supersonic flow along a constant pressure area, or to slightly slow down 

the shock onset, the upper surface tends to be flatter than most typical aerofoil designs. 

By delaying the flow going into shock, a comparatively weak shock to the amount of lift 

generated is used to induce the flow decelerating to subsonic speed.  

 Using an aft camber is another means of achieving lift without strong shocks at 

transonic speed. A large zero lift pitching moment is a potential drawback in using aft 

camber. 

 Upper and lower surfaces at the trailing edge are almost parallel in order to avoid flow 

separation, a set thickness resulting at the trailing edge. The base drag is small at 

transonic speeds in comparison to profile drag reduction.  

 

The above mentioned are necessary elements of a supercritical design, aerofoils designed 

for transonic speed range. Aerodynamic designers of today choose the best aspects of 

these elements to suit their specific applications (Mason, 2006). 

 

 
 

Figure 2.4: Sequence of CFD based High-Lift Design Process (Reckzeh, 2004) 
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Design methods are two-dimensional or three-dimensional. This work employs two-

dimensional techniques. Experience shows that optimising a two-dimensional shape at 

intentionally chosen span-wise sections of a finite wing is adequate for three-dimensional 

shape design of high-lift devices, nevertheless the chosen optimisation must take into 

account the three-dimensional flow (Flaig & Hilbig 1991). Figure 2.4 explains the general 

sequence of various CFD steps in a high-lift design process and Figure 2.13 shows the 

high-lift design process through pre-development, development and pre-flight phases. 

A blended subsonic and supersonic local flow in the same flow field, generally with free-

stream Mach numbers from M = 0.6 or 0.7 to 1.2 gives rise to transonic flow . Generally the 

supersonic region of the flow gets terminated by shock waves, permitting the flow to 

weaken down to subsonic speeds, thus creating a complex case for both computations 

and wind tunnel testing. Also, there is limited analytic theory available for guidance in 

designing for transonic flow conditions. Importantly, the outer inviscid portion of the flow is 

not only governed by nonlinear flow equations, but the nonlinear flow features usually 

require that the viscous effects be included immediately in flow-field analysis for accurate 

design and testing. 

 

 

 

 

Figure 2.5: Reynolds number is an important dimensionless quantity steering the 

design’s transition point from laminar to turbulent flow (source: unknown) 

 

Reynolds number (Figure 2.5) is an important dimensionless quantity which helps to 

predict flow patterns, transitions from laminar to turbulent flows. For a constant Reynolds 

number with increasing Mach number, the drag remains steady until an intense increase of 

pressure drag occurs at Mach number close to 0.8. The critical Mach number directly 

depends on the thickness and lift of an aerofoil. Thickness, angle of attack, twist and 

camber increase the velocity on the upper surface of an aerofoil. 

 

The important dimensionless parameters which determine the character of a given 

aerodynamic flow condition are the Reynolds number and Mach number; their values in 

any given flow condition will decide on the type of flow. Reynolds number is a measure of 

pressure forces relative to viscous shear forces, it helps in determining fluid behaviour 

patterns. Therefore, if Reynolds number increases, a flow’s viscous effects become 

increasingly less. 
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2.5 HIGH-LIFT TRADE STUDY 
 

Trade studies aid selection of the best or most balanced solution (Figure 2.6). It is a multi-

disciplinary trade off activity, the viable solutions are judged by their fulfilment of a series of 

measures which describe the desirable attributes of a solution, including cost functions. 

Trade studies are vital since in practice, most information needed is uncertain, evolving, 

conflicting, opinionated, qualitative and quantitative at the same time. 

The method by which one chooses various design variables leading to the ‘best’ design 

are many fold. All of these require that several analyses be carried out, often thousands of 

times. This necessitates that the model be simplified to the point that it is fast enough, but 

not to the point that it becomes ineffective and futile. The process is often simple when the 

design may be described by only a few parameters. A designer usually examines several 

test cases, and can typically see easily where the optimum occurs. With the increase in the 

number of design variables, the need for optimisation also increases. Obtaining results 

analytically and numerical optimisation are the two optimisation approaches commonly 

used. 

 

When an analytical representation of the objective function can be made, it is sometimes 

possible to construct derivatives regarding design variables and produce a set of 

accompanying equations to be solved for the optimum.  As the analysis of most aeroplane 

design problems involves iterating, complex computations limit the use of simple analytical 

approaches leading to the implementation of numerical optimisation techniques. Despite 

its obvious utility, (Holt, 1982) points that numerical optimisation seems to have been 

talked about a lot more that it has actually been used by aeronautical industry. 

 

General objectives of a high-lift trade study are: 

 Supporting decision needs of the overall high-lift system engineering  

 Evaluate alternatives, such as requirements, functions and configurations 

 A balanced integration of considerations like cost, performance, production, testability, 

compatibility, supportability etc. 

 Develop and refine system concept 

 Determining if any additional analysis, synthesis, or trade-off studies are required to 

make a design selection 

In general, according to (Tabors & Steinberg, 2000), the following are to be noted in a 

trade study: 

 Are the suggested solutions as good as possible 

 What is the trade-off in order to obtain the most desirable objective 

 How are bad, worse, good and better defined with regard to the design optimisation 

problem at hand 

 Question/ challenge the assumptions; the forecast could be usually wrong 

 Communication is key; any visualisation aids should make the analysis study more 

understandable, not more complicated 

 Important variables have to be analysed, not the variables that are easy to analyse 
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Figure 2.6: Flow chart explaining the requirement and benefit of a trade study in a 

design and analysis process cycle; Trade studies primarily offer decision support to 

designers. Mesh customisation, parametric geometry, CFD solutions are inputs to 

POD model. (AIRBUS, 2014) 

  

Figure 2.7: Morphology of optimisation in Aeronautics (Holt, 1982) 
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2.6 DESIGN OBJECTIVES & CONSTRAINTS 
 

In aerofoil design, optimisation problem with continuous variables includes both 

constrained and multi-modal problems. The design process has, historically, ranged from 

trial, error, and natural selection, to sophisticated computer-aided design programmes and 

spans over various design phases (Figure 2.13). 

The goal of design optimisation processes, regardless of the form taken, is to optimise 

design, in what is, in a sense, the best aerofoil or high-lift system design. This requires 

addressing of three basic questions: 

 What is meant by best? 

 How can a designer estimate the characteristics so that two designs or parameters 

can be compared in a quantitative way? 

 How can one choose the design variables which yield an optimum? 

 

 

Figure 2.8: Three elements of a problem statement (Sadraey, 2012) 

 

The first of these questions is perhaps the most important one. If a designer is not aware 

of what one is trying to achieve, or is set on the wrong goal, no matter how good the 

optimisation and analysis method might be, or how efficient the optimiser, the optimisation 

endeavour falls short of the original intent.  

The best overall design is often times a compromise in some sense. Optimising an 

objective function with respect to some variables in the presence of constraints on those 

specific variables is constrained optimisation. The objective function is either maximising 

lift, minimising drag, minimising weight, or maximising direct operating costs (TKU, 1995).  

The variables of a programme have much in common with numerical parameters. 

Parameter values are supplied by the modeller or computed from other values. When 

increasing the number of variables, number of evaluations increase as well. While goal 

functions with few variables are likely attainable, optimisations with about twenty or more 

variables are usually more difficult to achieve. 

Classical optimisation techniques require several restart points and multiple runs 

anticipating that a different solution may be identified on every run, however, there is no 
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surety. Swarm intelligence techniques provide a collection of possible solutions, which are 

computed iteratively. On termination of algorithm, it offers multiple good solutions instead 

of only the best solution. Finding and maintaining the set of these multiple solutions is 

where the challenge lies.  

 

 

Figure 2.9: Various variables’, objectives and solver settings tab in WISDOM© tool 

for a two-element aerofoil design analysis (source: Airbus) 

 

When structural or cost constraints exist, awareness of multiple solutions to an 

optimisation task is notably beneficial. The best results may not always be realisable; 

therefore, if multiple solutions are known, another solution can be promptly implemented 

and still achieve the best possible system performance (Wong, et al., 2011). Weighing out 

various solutions also helps in analysing hidden properties or various relationships 

underlying an optimisation problem, also making them important sources for domain 

knowledge.  

 

2.7 VISUALISING HIGH-LIFT TRADE STUDY 
 

 

The aerodynamics of High-Lift System (HLS) are difficult to simulate with standard 

numerical codes and strongly depends on other values such as a flight’s Reynolds 
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number. High-lift system design is a function of several, often conflicting objectives with no 

one unique optimal solution but instead a set of potential solutions, called Pareto solutions, 

defined by the fact that one objective cannot be improved in one dimension without being 

worsened in another (Legriel, Le-Guernic, Cotton, & Maler, 2010). The Pareto front is the 

set of all Pareto solutions representing the problem trade-offs, the possibility to sample this 

set in a representative manner is a very beneficial assistance in decision making. 

 

 

           
Figure 2.10: Pareto front between two attributes/ functions showing the dominated 

alternatives spread (left) and preferred selection region (right) (Carrese, 2012) 

 

An appropriate visualisation tool must be able to display the location, range, shape, and 

distribution of calculated non-dominated solutions. Most existing, commonly used 

visualisation tools in many-objective optimisation fail in one or more features to show the 

shape of the Pareto front and allow the designer to further pursue design exploration.  

A solution is treated as a Pareto optimal if no other possible solution is available, one 

which could better all objective functions at the same time (Figure 2.10). The set or group 

of all solutions satisfying this criteria is referred as the Pareto optimal set. It is made up of 

all non-dominating solutions; its portrayal on the domain space is called Pareto front.   

Pareto fronts could be concave, convex, linear, mixed or disconnected; decision-makers 

can make use of a good visualisation tool to visually navigate large, multi-objective solution 

sets, observe the progress, visualise the relative location of a solution, evaluate trade-offs 

among objectives and select preferred solutions.  

A suitable visualisation tool is an essential requirement for an effective interactive 

optimisation. Various visualisation techniques could be based on the grouping of resultant 

sets, such as visualising a single solution, a finite solution set, or an infinite set of 

solutions. Selection of a visualisation technique depends on the decision-maker’s 

preferences. 
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2.7.1 Data & Information 
 

Data is crude and unrefined, having no significance in and of itself. It can exist in any form 

useful or not. Data that has been given meaning by way of relational connection is called 

information. The meaning attributed may or may not be beneficial. The proper, applicable 

accumulation of information is called knowledge, such that its aim is to be practical and 

handy. Knowledge is deterministic, asserting a certainty in process. In aircraft design, most 

applications exercise some type of stored knowledge. 

 

 

     
 

Figure 2.11: (left) Five categories of human mind: data, information, knowledge, 

wisdom by (Bellinger et al., 2004) (right) DIKW model for understanding (Murphy, 

2016) 

 

  
 

Figure 2.12: DIKW pyramid adaptation by (Viel, 2016) 
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Understanding is analytical and cognitive, a process by which a designer synthesises new 

knowledge from formerly held knowledge. Wisdom builds upon all the previous levels of 

consciousness and specifically upon an individual’s characteristics such as morals, ethics 

etc. and goes beyond understanding itself. Wisdom is apparently a unique human state 

and not possessed by computers, a process by which one discerns, judges, chooses 

between right and wrong, good or bad (Bellinger, Castro, & et al., 2004). 

 

Data stored electronically in files serves as input for an information system. Various 

programmes make up an information system to process or transform data, producing 

information as an output. The meaning of data is revealed by information when converted 

into visual images in the form of plots, graphs, figures and charts. 

 

 

2.8 COMPLEXITY OF OPTIMISATION PROBLEMS 
 

Optimisation has advanced by evolving towards the study and utilisation of algorithms to 

solve mathematical problems on computers. An optimisation task is the problem of finding 

a best solution from among all available possible solution options. The complexity or 

hardness of an optimisation problem could be described in terms of how worst the 

computing time grows as the problem size grows, in order to generate a result output on a 

given machine. Problem size is a complicated notion, but it can be roughly summarised as 

the number of constraints and variables in an optimisation problem, together with the cost 

of evaluating the objectives and constraints for a given choice of variables. 

Not all optimisation problems are created equal. Some problems, such as finding a 

solution to a set of linear equalities or inequalities are easy and they can be solved in a 

feasible amount of time and memory on a computer. Others are inescapably hard and 

involve finding a path among a combinatorial number of choices. 

Almost all practical engineering problems are non-linear with the impact of linear algebra 

algorithms on engineering being immense, and continues to be. Engineering modelling 

reveals a persistent reciprocity between what a designer would like to do (model systems 

as accurately as possible) and what a designer can do (analyse or design simple models) 

(Calafiore et al., 2014). Thus, while complex, non-linear models may be generally an 

attractive work challenge, when concerned with practical design analysis problems, 

engineers often rely on tested, simpler linear models to perform computations and find 

approximate solutions. 

Optimisation models by nature try to fit the solution to the available data. There exists a 

possibility of the solution exhibiting an extreme sensitivity to changes in the problem data 

and this makes any effort at optimisation a risky suggestion. In aerofoil design, 

optimisation problem with continuous variables includes both constrained and multi-modal 

problems. 
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Figure 2.13: High-Lift Design Process (Van Dam, 2002) 

 

 

2.9 THE HIGH-LIFT DESIGNER 
 

Designers are an essential part of high-lift design along various development phases and 

are becoming increasingly digitally dependent; several designs are visualised and 

assessed on computers with the help of virtual tools, thus allowing concepts to be 

optimised at early stages of the process. The pre-development process is very repetitive 

and aids in designing, evaluating a broad range of configurations and to select a system 

that best fulfils the requirements. It is computationally intensive. The development phase 
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refines the high-lift configuration which is the result of pre-development phase where an 

effective high-lift system is modified in terms of performance and costs that fits well within 

the final wing design strategy.  

Aerodynamics is a multi-disciplinary field, dealing with two basic topics : 

1. What various aerodynamic loads such as lift, drag, side force, moments are generated 

by a specific choice of body shape?  

2. What type of aerodynamic shape will create an advantageous pressure distribution? 

 

A lifting surface is a specific sort of structure of interest to an aerodynamicist.  It is desired 

of a practicing engineer to be skilled in the design and analysis of such conceptions. Along 

with the use of a wide range of computational and physical tools, design engineers often 

employ numerical optimisation techniques to assist in the evaluation and comparison of 

new aerofoil configurations.  

 

The most striking aspect of various processes in the industry is the fact that a high-lift 

designer is generally not offered much creative design space to devise and put forth an 

effective system (Van Dam, 2002). This limited design space, along with several design 

changes that continually spread along the various stages, and within a competing business 

market squeezes the time available for comprehensive design cycles, thus making a 

system design very challenging, leaving little room for creativity and exploration. Most 

times, the goal of the designer is to devise a high-lift system which minimises penalties 

while meeting the target performance requirements. 

Apart from aerodynamics, high-lift system design involves application of specialised 

knowledge from diverse domain areas such as systems, structures, manufacturing and 

production, reliability and finance (AGARD-CP-515, 1993). The design and optimisation of 

such a system, while maintaining safety standards and minimising the direct operating 

costs of an aeroplane, remains a very complicated but essential task for the designer. 

 

 

 

 

 
------------------------------- 
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3  

 Interactive 

Optimisation 
 

 

3.1 INTRODUCTION 
 

‘Optimisation’ is applicable to any branch or functional area. In this research work, the use 

of term is directed towards high-lift aerodynamics of an aerofoil. Several industrial problem 

tasks containing targets, plans and decisions involve numerous objectives that are in 

conflict with one another; these ought to be simultaneously considered and they are 

broadly called Multiple Criteria Decision Making (MCDM) problems. Multi-element aerofoil 

design task is one such multiple criteria problem involving optimisation of conflicting 

objectives where the problem formulation is non-linear. 

In search of a final, most preferred solution, multi-objective optimisation problems typically 

involve a human Decision-Maker (DM). This most preferred solution is called a Pareto 

optimal solution of which the DM is confident that it is the best possible option. In arriving 

at the best solution, a DM’s participation is necessary; she/he is likely expected to have an 

understanding and insight into the problem under consideration. The decision-maker 

should be capable of specifying related preference instructions of various objectives under 

consideration and steer different, alternative solutions. 

A solution pattern is generated when making use of interactive methods through iterative 

solution algorithms; a repetition of the different steps involved occurs and preference 

information is progressively specified by DM during the solution process. This information 

is used to construct an approximate model reflecting the local preferences of DM. New 

solutions are generated based on this model which likely fit the DM’s preferences better. In 

this way, the solution process is directed by DM and sometimes only a part of the Pareto 

optimal solutions could be generated and assessed; selections and preferences of the DM 

can be corrected and defined during the solution process. 
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3.1.1 Non-Interactive Approach 
 

There are three classes of non-interactive methods based on whether DM takes no part in 

the process leading to a solution or whether DM indicates a choice option either before or 

after the solution process.  

 No-Preference  

 A Posteriori (Search and then Decision Making) 

 A Priori (Decision Making and then Search) 

 

In solution processes where there is no DM involved are called no-preference methods. 

Without the availability of any additional preference information, the task is to find a 

solution of neutral compromise. Certain reasonable inferences are made to generate a 

compromise solution instead of asking the DM for their preference input. In all other 

categories, the involvement of DM in the solution process is presumed. 

In a posteriori (Latin, literally ‘from later’) method, one solution is chosen by the decision-

maker from among the set of possible solutions generated by the solver. To support 

decision-maker in choosing, DM is enabled to delve into the entire solution according to 

specified preferences, DM is thus better able to understand the various adjustments 

between the criteria. 

In a priori (Latin, literally ‘from earlier’) method, the decision-maker is presumed to assess 

first-hand the importance of each objective and their influence in the overall design. The 

result is the transformation of a multi-objective combinatorial optimisation problem (MCOP) 

into a single-objective problem, which can be solved by traditional optimisation methods 

(Basseur et al. 2006). This sort of approach is simple and direct but the difficulty is that the 

DM is not necessarily aware of the several limitations or possibilities of the problem in 

advance and may either be too expectant or cynical (Branke et al. 2008). 

 

 

3.1.2 Interactive Approach 
 

 

In interactive approaches, a iterative solution pattern is generated and repeated, usually 

many times. After the specified iteration interval, DM is presented with some information 

and is required to indicate preference information, usually in a way that the chosen 

technique in use can utilise, such as by answering certain displayed questions or 

refreshing the search pattern, a mutual effort between the code and user (Figure 3.1). 

This interactive way of transferring DM’s preference methods is very important. The DM is 

able to specify and adjust choices between iteration intervals and at the same time also 

learn of the individual problem interdependencies, about one’s own inclination and thought 

processing as well. 
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Different methods from different interactive approaches contain their inherent advantages 

and deficiencies, and so, availability of various approaches is required. During 

optimisation, the interest of an engineer lies in deciding optimal settings for various factors 

and the degree to which a given factor can impact the outcome in a process. Design and 

decision-making processes make up an interactive problem task (Figure 3.2); however, 

user interaction takes precedence during optimisation in expressing preferences, setting 

values, validating and deciding. A graphical user interface is the link between decision-

maker and the optimisation system (Figure 3.3); user’s information preferences generates 

a preferred model, while at the same time making room for an opportunity to learn of user’s 

choices. 

 

 

Figure 3.1: Interactive Approach: Progressive mutual effort between the solver and 

the decision-maker (Basseur et al. 2006) 

 

 

 
 

Figure 3.2: Design and decision-making processes in relation to an interactive 

optimisation system (Meignan et al., 2015) 
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Figure 3.3: Components of an Interactive Optimisation System (Meignan et al., 2015) 

 

3.2 OPTIMISATION MODEL 
 

 

The difference between real-time optimisation problems cases and their computation 

models plays a vital role in interactive optimisation. A problem challenge or decision -

maker’s dilemma refers to the real setting of an optimisation problem for which a 

decision must be taken. The depiction of this context in the optimisation system is 

called an optimisation model. Similarly, a criterion points to the methods used to 

examine various alternatives of an actual problem; while the objective specifies a 

mathematical function for examining solutions of an optimisation model.  

Generally, in order to represent a particular problem instance, both the objective function 

and the set of constraints are depicted with parameters that ought to be set. The problem 

data, generally known when a certain problem must be solved, allows the defining of such 

parameters. Generally, the real problem for which a decision must be made is only partially 

captured by the optimisation model. The differences between an optimisation model and 

real problem may arise from instances such as simplifying the problem case so as to make 

the problem computationally manageable or in situations where the modelling process 

poses built-in limits requiring approximations and generalisations to be made (Meignan et 

al., 2015).  

 

In an optimisation problem P, a set X representing the solution space and an objective 

function f : X → R. The objective is to identify a best solution in the set X with respect to the 

objective function f .  Specifically, for minimisation problems, a solution x* ∈ X with f (x*) ≤ f 

(x) for all x ∈ X is to be found; for maximisation problems, a solution x* ∈   X with c(x*) ≥ c 

(x) for all x is to be found. 
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Any solution x of P is stated by a set of values allocated to the variables influencing 

decisions. The likely values are restricted by a set of constraints, generally presented in 

the form of algebra of inequalities or mathematical logical expressions. In essence, a 

mathematical model of an optimisation problem, or simply optimisation model is made up 

of a set of decision variables, constraints and an objective function. 

 

                                                                                  

3.2.1 Key Components 
 

 

In any optimisation system, the optimisation model and its related procedures are the basic 

parts that generate potential solutions to given problem cases. In interactive optimisation, 

both the model and its procedures are part of the interaction loops along with the user. The 

optimisation holds within it the description of decision variables, objectives, and constraints 

pertaining to the problem to be solved. When an optimisation problem is presented, the 

problem related data determines values of parameters of the optimisation model. 

 

 
Figure 3.4: Classification of Interactive Optimisation methods according to the 

purpose of the interaction and the role of the user in the optimisation process 

(Meignan et al., 2015) 

 

 

Interactive methods are classified into two depending on whether the preference model 

modifies the optimisation problem, or whether the preference model primarily impacts the 

optimisation procedures (Figure 3.4). A method is called a problem-oriented interaction 

when feedback loops try to alter the optimisation problem. When feedback loops try to alter 

the optimisation procedure, it is called a search-oriented interaction such as adjusting 

parameter settings of an optimisation procedure.  
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Although sometimes not implemented systematically, a preference-learning procedure 

tries to generalise user feedback so as to create a model of the user’s preferences. 

Interactive algorithms vary in this regard; there is a learning process that explicitly 

generalises the user’s feedback, or the user feedback is made part of the preference 

model like assigning a value given directly by the user to be directly assigned to a 

parameter of the optimisation model.  

 

 

3.2.2 Choice of Interactive Technique 
 

Several types of interactive techniques have been proposed and promoted till date; 

however, none of them can be considered as being better or superior to others. Certain 

methods are better suited to particular DMs and problems than the others. The availability 

and willingness of the DM to actively be part of the solution process by steering it is an 

essential characteristic of interactive methods. 

Various styles of interaction and arrangement of technical elements differentiate various 

interactive methods from one another. An interaction style refers to the form in which 

information is presented to the DM and the fashion in which preference information is 

specified by DM. Arrangement of technical elements involves the kind of end solution 

generated, it can be weak, proper or Pareto optimal or none at all. The type of optimisation 

problem managed, any numerical assumptions made, the method’s mathematical 

convergence if any and the type of a scalarising functions used also influence the solution. 

DM’s perception and satisfaction is often times very significant, that the DM identifies a 

specific technique worthwhile, acceptable and execute it correctly. While using a specific 

computational tool, adopting dynamic icons, animations and various sounds usually aids 

communication of a state of operation, thus setting up an impression of interaction and 

response. Interface features like fonts, color palettes, and graphical layouts also affect the 

perceived effectiveness of an interface; (Sharp, et.al., 2007) points to studies have shown 

that paying attention to visual and aesthetic features will impact the perception of a user in 

terms of acceptance and usability. 

 

3.3 INTERACTIVE METHODS 
 

A human cannot match a computer’s repetitive tasks and consistency. On the other hand, 

a computer needs algorithmic analogy of a ‘human brain’ to guide solution steps. Although 

software engineering plays a major role in an engineering design loop; interactive design 

optimisation is adjusted more for satisfying the wants and wishes of most users for a 

chosen method or tool used in a project. The flow of the communication is primarily 

concentrated on the computer side of the interaction.  Various Interactive methods differ 

from one another based on: 
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Style of interaction:  

The manner in which information is presented to the DM, the form and type of preference 

information specified. 

Technical elements:  

The type of final solution obtained; the kind of problems handled whether based on a 

mathematical assumption or set on the problem, a method’s mathematical convergence 

and the type of a scalarising function used. 

Three types of interactive approaches or methods are broadly identified based on the 

different types of preference information. Various other interactive methods also exist but 

will not be covered in detail here. 

 Information Trade-off Approach 

 Reference Point Approach   

 Classification-Based Approach 

 

The above methods are well suited for a high-lift design trade study and are applied in their 

fundamental form. Choice of an interactive approach depends on the nature of 

optimisation problem task. Some techniques are highly specific in their search pattern and 

could be suitable for other types of analysis and trade studies.  

 

3.3.1 Information Trade-Off 
 

A trade-off is an exchange, a loss in one aspect of the problem, in order to gain additional 

benefit in another aspect. In multi-objective optimisation, a trade-off represents giving up in 

one of the objectives, which allows the improvement of another objective. Among the 

various trade-off based interactive techniques found in literature, two most commonly used 

are: Objective & Subjective trade-off. Both concepts are used within interactive 

optimisation in order to move from a Pareto optimal solution to another. 

In good decision-support a system, distinction is made between the subjective part of the 

knowledge, concerning to user preferences referred as preferential model of the decision 

situation. The relating objective part, representing certain selected understanding 

regarding relevant features of decision situation which are not completely objectively 

selected, but devised with an objective goal is referred as the decision situation’s 

substantive model. Objective trade-offs belong to substantive model, and subjective trade-

offs are part of the preferential model (Branke et al. 2008). 

Considering two feasible solutions x1 and x2, and the corresponding objective vectors f (x1) 

and f (x2), the ratio of change between fi and fj is denoted by Tij(x1, x2), where Tij(x1, x2) = 
fi(x1) − fi(x2) / fj(x1) − fj(x2). Tij(x1, x2) is considered a partial trade-off involving fi and fj 
between x1 and x2 if fl(x1) = fl(x2) for all l = 1, . . . , k, l ≠ i, j. If there exists an index l ∈ {1, . . . , 
k} \ {i, j} such that fl(x1) ≠ fl(x2), then Tij(x1, x2) is the total trade-off including fi and fj 

between x1 and x2. 
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3.3.1.1 Objective Trade-Off 
 

An objective trade-off scales changes in one objective with respect to changes in another 

one, taking into consideration the structure of the problem when alternating from one 

feasible solution to another. 

In the method by (Zionts & Wallenius 1976), several objective trade-offs at each iteration 

are presented to the DM who is in return expected to respond with a like, dislike or an 

indifference with respect to each trade-off. In interactive surrogate worth trade-off (ISWT) 

method (Chankong & Haimes 2008), an elaborate input is needed from the DM for many 

objective trade-offs at every iteration; DM then ranks every one according to −10 to 10 

scale, according to its perceived benefit (or −2 to 2 scale, as put forth by (Tarvainen 1984). 

Among the objective trade-offs, the following various concepts exist. 

 Total trade-off 

 Partial Trade-off 

 Indifference trade-off 

 Indifference rated trade-off or Marginal rate of substitution  

 

3.3.1.2 Subjective Trade-Off  
 

When a trade-off calculates how much the DM considers desirable to sacrifice the total 

value of a certain objective function so that there is an improvement in another objective to 

a certain level, it called a subjective trade-off.  

Three important methods are part of subjective trade-off. The GDF method by (Geoffrion et 

al. 1972) makes use of Frank–Wolfe algorithm to carry out a line search utilising the 

information of subjective trade-off specified by DM to steer the direction of search. In 

SPOT method (Sakawa 1982) also,  DM’s subjective trade-offs are used to determine the 

search direction, however a proxy function is instead applied to run an optimum step 

length. Thirdly, the GRIST method (Yang & Li 2002) utilises normal vector to steer 

subjective trade-offs onto a tangent plane to generate Pareto front. 

 

3.3.2 Reference Point Approach 
 

Using a Decision Support System (DSS) in a reference point method usually involves the 

following: 

 Aspiration and range levels (reference points) are specified by the decision-maker 

for all objective functions. To assist the user in starting the process, DSS usually 

computes a neutral solution first, responding to reference levels of average 

objective function ranges. 
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 The DSS generates response by maximising the achievement function, an easy, 

nonlinear aggregate of objective functions and feasible approximation of DM’s 

value functions. The information is present in range estimates of objective functions 

and in aspiration, reservation level settings. 

 The DM has the freedom to alter reference points as she/he wills, using this 

opportunity to gain knowledge about the problem situation and to study interesting 

sections of Pareto optimal set. 

 Different techniques could be utilised to support DM in this study exploration as 

long as they do not limit DM’s freedom. 

Human preferences have essentially a nonlinear character, including a preference for 

balanced solutions. Any linear approximation of preferences e.g., by a weighted sum 

distorts them, favouring unbalanced solutions. An aggregation of linear weighted sum is 

easy but could be very simplistic in depicting typical human preferences which are usually 

nonlinear. Employing a simple approach may generate unfavourable and unforeseen extra 

effects. 

Another assumption of reference point approaches is that a decision is made by DM by 

making a comprehensive evaluation of the decision situation. In order to support DM in 

such evaluations, it is expected of a DSS to compute and inform the DM of relevant range 

values of objective functions. 

A reference (aspiration, range) level or fixed points are not considered as fixed preference 

wishes but as a tool for adaptive and holistic learning about the decision situation. 

(Wierzbicki 1999) points that even if the convergence of a reference point’s solution most 

preferred by the DM could be proved, this feature is not emphasised. Other characteristics 

of the approaches are considered more important. Even if DM’s reference points could be 

concluded in some objective steps, independent of DM’s preferences, the diversity of such 

objective determinations is vital to note as it makes comparing results optimal solutions 

possible. 

DM can pick a Pareto optimal solution by altering reference points and maximising the 

achievement function as they have full controllability feature providing freedom to the DM. 

The basic aim is to enhance the power of intuition of DM (Wierzbicki 1997) by enabling 

holistic learning about the decision situation as modelled by the substantive model. The 

same applies when using reference point approaches for supporting negotiations and 

group decision making. 

To help decision-maker in an overall evaluation, a DSS computes and informs the DM 
regarding ranges relevant to objective function values. The ranges could be characterised 
in different ways; the two basic ones are: 
 

 The full range of objective functions includes defining lower bound zlo
j and upper 

bound zupj , with respect to feasible decisions x ∈ S (j = 1, . . . , k) 
 

 Optimal ranges of objectives are considered over Pareto optimal solutions. The 

lower bound is an ideal objective vector z*j and is generally set as zlo
j. The upper 

bound is a nadir objective vector znadj (a construction from the worst Pareto-optimal 
objective values in a multi-objective optimisation problem) 
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Generally, znadj ≤ zupj , it is simpler to decide on a nadir objective vector in case of two-
objective problems. Independent of objective ranges that are utilised, it is usually beneficial 

to accept that all objective functions or quality indicators with their values fj(x) for decision 
vectors x ∈ S are lowered down to a comparitive scale by transformation:  zrel

j = frel
j (x) = 

(fj(x) − zloj ) / (zupj− zloj ) × 100%. 

 

3.3.3 Classification-Based Approach 
 

Alternating between one Pareto optimal solution to another suggests a trade-off approach. 

To put it differently, it is a decision to move to another Pareto optimal solution to improve 

the value of an objective function by worsening the value of some other objective function. 

This approach is partly borrowed into classification-based methods. In classification-based 

approaches, DM’s preferences are indicated by classifying objective functions who then 

decides on which objective functions to improve and which to be allowed to diminish from 

their current values. Pareto optimal solution is presented to the DM and asked of any 

changes in the objective function values which might generate a more favoured solution. It 

was shown by (Larichev 1992) that such classification approaches allow  expressing of 

DM’s preference information in a cognitively valid way. 

Several classification-based interactive multi-objective optimisation methods exist. They 

differ from one other based on the number of class availability, the preference information 

asked from DM and how this information is used to produce new optimal solutions. 

When the DM classifies objective functions (say O) for a current solution, DM categorises 

them into a certain class. The number of classes available varies in different sub-methods. 

Below are some generic classifications: 

 O < whose values to be improved (decreased) from current level 
 O ≤ whose values should improve until a certain desired aspiration level  
 O = whose values are acceptable for present solution 
 O ≥ whose values could be impaired (increased) until a certain upper bound  
 O* whose values are momentarily permitted to freely change 

The various classification related preference levels and upper bounds are obtained from 

DM if needed; DM is usually expected to classify all objective functions. 

 

3.3.3.1 Step Method 
 

Step method (SteM) is one of the earliest introduced interactive methods for multi-objective 

optimisation, originally developed multi-objective linear programming problems. SteM uses 

the concept of moving from one weak Pareto optimal solution to another. A solution 

optimum could be assured and the idea of classification seems easy for DM. However, it 

could be complicated to estimate the amount a certain function should be relaxed so as to 

generate preferred improvements in another. 
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SteM is an iterative procedure for exploration where the best compromise is achieved after 

a certain number of cycles. Each cycle consists of a computation phase, a decision-

making phase which includes communication of DM’s analysis. During the decision making 

phase, DM studies the results of computed calculations and will be able to give new 

information about the objectives after evaluation (Benayoun at al., 1971). 

 

3.3.3.2 Satisfying Trade-off Method 
 

The satisfying trade-off method (STOM) (Nakayama & Sawaragi 1984) is built on concepts 

similar to reference point approaches. As its name suggests, the approach focusses on 

arriving at a satisfying solution. 

DM is supposed to categorise objective functions into three classes: those that could be 

improved, those that could be relaxed and those values that are satisfactory; the DM 

should specify preferred target levels for these functions. 

The DM is only required to state desirable function levels; the upper bound for functions is 

calculated from trade-off rate information so that the DM is not loaded with the 

responsibility to specify more information. Functions are assumed to be twice continuously 

differentiable. The solution process goes on until the DM decides not to improve or worsen 

any objective function value. The DM however has the choice to alter the calculated values 

if they are not satisfying.  

STOM approach can also be implemented even if the assumptions allowing automated 

trade-off are not valid. In such instances, the aspiration levels and upper bounds have to 

be defined by DM. 

 

3.4 DESIGNER-IN-THE-LOOP ENGINEERING  
 

Human-in-the-loop Systems (HITLS) include a biological system: the human being that 

cannot be engineered. It centres on interactions between people and devices (computers). 

Several computational aerodynamic software tools used by engineers for design and 

analysis are very good at repetitive tasks. However, when any out of the ordinary 

situations occur and requires actions to be taken, the devised system, for the most part 

cannot react accordingly. The essential aspect in interaction systems is the Human-

Computer Interface (HCI). 

To know the human-machine system, it’s vital to understand the manner in which human 

beings:  

 Perceive information from system devices 

 Interpret information and make decisions about their next actions 

 Interact with the device, its related components, and/or its controls 
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It’s also essential to comprehend the ways in which computer devices: 

 React to user inputs  

 Provide feedback to the user regarding the effects of their inputs/ actions 

 

 

   

Figure 3.5: (left)  Human-in-the-loop approach for optimisation (Meignan et 

al., 2015)  (right) The field of HCI (adapted picture; source: unknown) 

 

 

Human designers are one of the significant origin points of errors in any complicated 

system; most of a system’s failures and errors could be tracked to a human connection. 

Many design & analysis errors are associated to badly developed human-computer 

interface; HCI encompasses various spheres of influences relating to both humans and 

computers (Figure 3.5, right). However, the human in the loop is often expected to be 

failure-proof in a chiefly automated system environment. Even the most professionally 

trained and skilled designers are subject to disinterest and weariness. Negative factors 

such as fatigue and stress, linked with human cognition, can impact a designer’s 

performance severely, potentially risking the capacity to carry out tasks.  

The user involved in an optimisation process is able to influence the end result or 

performance of optimisation (Figure 3.5, left); user’s expertise of application domain is 

valuable in such a system. The computer must provide suitable response to the designer 

to support her/him in making well informed decisions depending on the most recent 

information. Aeronautical engineers must ensure that the aeronautical methods & tools are 

easy and intuitive for human users, but not so uncomplicated that it pacifies the designer 

into a state of complacency and lowers their alertness to the demand of being creative and 

innovative in their approach towards optimised engineering. 
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Following are some of the important HCI requirements that computational design and 

analysis tools & methods should take into consideration (Thakur, 2015):  

 Human Computer Interaction must be robust and allow recoverability 

 A good interface design should encourage the designer to carry out tasks correctly and 

discourage them from making errors 

 Interface must be relatively uncluttered and easy to use without eliminating innovation, 

exploration of design development & optimisation. 

 However good the underlying system functionality might be, end-user designers will 

always judge the system by its interface 

 Elements like display colours, menu layout, label text, ease of navigation etc. are some 

key points which must be thought through well 

 

 

 

Figure 3.6: Human-Machine Interface Flowchart (Source: Redmill & Rajan 1997) 

 

 

3.4.1 Humans in HCI 
 

Design is a process of defining and exploring a vast space of possibilities that requires the 

building up of knowledge and familiarity with the constraints and trade-offs involved. The 

amount of data required to successfully pursue unconventional aircraft designs can rapidly 

become overwhelming. Humans are superior to machines at managing new occurrences, 
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but bad at performing repetition tasks for a long time. All computational tool designers are 

humans, and usually, they are also the end-users. 

The analyst or decision-maker, when faced with such a data overload problem, is limited in 

her/his ability to conduct any kind of trade-offs, test hypotheses, explore the design space, 

and detect unexpected trends, detail or relations, as the data sets cannot be visualised. 

Consequently, she/he cannot fully comprehend the problem to be solved, or understand 

the behaviour of the system under consideration. While unprocessed data does not hold 

any intrinsic value, it can result in missed opportunities for critical actions, which may, in 

turn, result in poor designs and significant loss of time and money.  

To alleviate this problem, it is necessary to move away from static representations and 

visualisations and develop ways that support interaction between information, and the 

human cognitive and perceptual systems, while simultaneously allowing users to integrate 

their background, expertise, and cognitive capabilities into the analytical process. The 

need to address these aspects has given rise to a multidisciplinary perspective named 

Visual Analytics (Mavris et al. 2010). 

A human’s capability and limits have been categorised in various styles, and one of them 

is the SHEL model (Figure 3.7), specifically designed for aviation and has remained 

popular in human factor studies. This conceptual model describes the following 

components: 

 Software 

 Hardware  

 Environment 

 Live-ware 

The model centres on the human-being, or live-ware.  

 

              

Figure 3.7: A conceptual model of human factors, SHEL 

(Source: Aviation Online Magazine) 
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If the designer must be routinely involved in a design and analysis, she/he is prone to 

making errors and adapts to a usual mode of operation. Also, if the designer has a 

constant mental model of the system in its normal mode of operation, she/he will tend to 

avoid data pointing to an error unless it is displayed very prominently to catch attention. 

The HCI must provide sufficient novelty to maintain user alertness and keep her/ him 

interested in the task, but not so extremely complex that the designer will find it hard to use 

the computational methods and tools. 

 

 

Figure 3.8: Generic human-error probability data in various operating conditions 

(Kirwan, 1994) 

 

Figure 3.9: The Continuum between Conscious and Automatic Behaviour 

  (Reason, 1990) 

 

Human error could be quantified for the likelihood of errors involved to determine the 

overall effect of human error on a system’s functionality and reliability (Figure 3.8). 

However, this approach works when what constitutes an error is clearly identified and 
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defined so that errors or associated risks could be reduced to an acceptable level. Human 

behaviour and error could be understood by examining the use of rules learned as a result 

of interaction or by already acquired experience (Figure 3.9); the level of conscious 

behaviour is intermediate between knowledge and skill based modes. 

The present technology offers tremendous capacity for data transfer. The availability of 

bandwidth increased processing levels and data, enabling easy inter-operations between 

various systems. One of its chief consequences is that general users and professionals 

alike are being immersed in an overwhelming data and information while frequently, most 

times lacking real knowledge and adequate understanding (Gersh, et.al., 2005). 

 

3.4.2 Computers in HCI 
 

Making computers widely available to be utilised by people has always been closely 

related to the subject of interface. The interaction of humans with computational 

technology has evolved through the years and continues progress and mature with new 

and emerging technologies, systems rolling out almost every day. 

Human-Computer Interaction/Interface (HCI) is by default linked to the evolution of 

computational technology, the machine. No matter how advanced a machine might be, it is 

often of little value unless it can be used properly by humans. A machine’s functionality 

and usability are the basic criteria to be contemplated in the design of any HCI. 

What a designed system can accomplish defines why a system is actually designed; the 

various functions of a system help achieve its purpose. A system’s functionality is 

characterised by the set of actions or outputs that it provides to its users. However, its 

value is only appreciated when it can be efficiently utilised. A system’s usability with 

specific functional features can be defined as the range or degree of the system’s efficient 

and adequate use to accomplish certain goals, sometimes for certain users. A system can 

be called effective when its functionality and usability are well balanced (Karray et al. 

2008). 

Interaction with hardware using input and output (I/O) devices happens through software 

interfaces such as Graphical User Interface (GUI) generating displays (Figure 3.10). 

Software and hardware must coordinate with one another, so that the processing of user 

inputs is fast enough and computed outputs do not disrupt the workflow. Understanding 

both computers and humans is necessary to understand their interaction. At a fundamental 

level, when designers interact with computers, they are either transferring information to 

the computer, or receiving information from it. Usually, the information received is as a 

response to the information conveyed to the computer. Therefore, interaction is transfer of 

information, a two way process. 

Computers are best used as logic machines; their precision, reliability, and long endurance 

give them an edge over human beings. Much of present day industrial work has been 

rationalised and broken down into precise, specific tasks and actions. Human beings tend 

to spend several hours carrying out repetitive or pre-determined steps, yet they will not be 

able to achieve precision levels of a computer which is good at following rules. However, 



 

63 

human workers exhibit valuable traits such as intuition, judgement, deducing meanings 

and flexibility, reaching conclusions based on evidences and reasoning. These qualities 

have been difficult to be injected into computer machines (Dreyfus, Dreyfus, & Athanasiou, 

2000). 

 

 

Figure 3.10: Human-Hardware-Software Interaction (Source: ScotXW, 2014) 

 

 

Interactive computing involves input/output communication with the user during 

computation and interactive programming is a procedure of writing parts of a programme 

while it is already active. Interactive techniques are useful in aerofoil design, especially 

when no clear specification of the problem to be solved can be given in advance. Using 

software’s interaction model, a designer can create interactivities in a short period of time, 

suited to the problem at hand. 

 

3.4.2.1 Programming 
 
 

Programming an interface is a challenging and time-consuming affair. As a result, the 

success of any computed solutions becomes precious to the programmer and gives rise to 

a risk of these results being defended and minimise any further changes or improvements. 

The coding process starts with an original formulation of a certain computing problem 

through to an executable program involving analysis, developing, understanding, 

generating algorithms, verification of requirements, checking correctness and 

implementation. 

 

Providing the right computing tool kit helps a designer’s problem solving ability. The 

advantage of good programming toolkits is that smaller, easily-understood components 

can be created in certain ways in order to create larger tool modules. When these larger 

tools are accepted and understood, they can be merged with other tools. The process can 
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be continued which provides an opportunity for those with good computing skills to 

enhance productivity (Dix et al., 2004). 

 

The purpose of programming for aeronautical applications is to work on a series of 

instructions that will automate performing problem specific tasks. The various process 

steps often demand a programmer to have knowledge of various subjects. An important 

part of solving the problem is to clearly specify the goal. 

 

3.5 HUMAN FACTORS ENGINEERING 
 

The motivation for human factors engineering is that the current and future aviation 

systems are expected to continue to depend on humans in the process loops for effective, 

efficient, and safe design and operations. There are several evidences showing that a 

failure to sufficiently include humans in the design and operation lead to inefficient systems 

and may be dangerous. This concern grows with the continuing growth in technology. 

Nevertheless, (Abbott 2001) points out that several technological advances have 

recognised past mistakes and have provided improvements in designs, operations and 

safety levels, and will continue into the future. 

A new technology, a method or tool is often developed and introduced to undertake 

problems already known or to grant certain operational benefits. While such new 

introductions may solve some problems, they also usually give rise to other problems; it 

may bring out issues that may not have been anticipated and which may not be ignored in 

the larger work or industrial context. Such issues are to be dealt with specifically with 

respect to the human operator. 

 

3.5.1 Interfaces 
 

The humans have a variety of channels to gather information about the world around them. 

Colours, lights, sounds, movements, patterns are different types of inputs perceived by 

humans. This incoming information requires some attention to effectively set up and 

design communications between computer systems and the human operator. 

Another vital design aspect is in understanding how a human user processes the 

information received. Inadequately designed human-machine interfaces or systems which 

fail to consider a human’s capabilities and limitations in terms of information processing 

can strongly influence system effectiveness. (Abbott 2001) states that several human 

errors can be traced to short- and long-term memory limitations, cognitive processing and 

decision-making processes. 

Humans, similar to that of equipment, are designed to function effectively under certain 

environmental conditions and limitations. Variations in factors such as temperature, 

pressure, noise, humidity, time of day, light, darkness etc. could be reflected in their 

performance. A boring or stressful working environment will also impact their work. 
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3.5.2 Usability 
 

A system’s usability is very connected to its acceptability by the end users; therefore, it is 

an important factor for a design’s success, (Nielsen 1994) defines usability according to 

the following multiple components: 

Learnability of the system; it should be easy to learn 

Memorability of the system; be easy to remember 

Efficiency of the system; be efficient to use 

Errors of the system; it should be designed in such a way that the users make less errors 

while using, and can easily recover from those that are made 

Satisfaction of the system; should be user friendly so users are emotionally satisfied 

when using it. 

 

3.5.3 Workload 
 

Workload is a multi-aspect element expressed by the duties, amount of work, or a person’s 

number of tasks to manage or achieve; tasks bounded by a certain time interval or to be 

carried out in a specific assignment context.  

Workload could be physical or psychological. Over-loading (high workload, potentially 

leading to skipping actions or incorrect, incomplete execution) and under-loading (low 

workload, potentially causing lack of attention and complacency) should be addressed 

when scrutinising the impacts of work on human-machine performance (Abbott 2001). 

 

3.5.4 Situation Awareness 
 

Situational awareness is defined by (Palmer et al. 1995) as a state of alertness and insight 

on the part of a worker having relevant information about the task at hand and the external 

environment. It is an understanding of various effects with respect to a specific assignment 

immediately and in the near future, emphasising on the values of work. 

Situation awareness is as an issue and considered as an important characteristic to 

workload. As part of the work process, a worker’s information necessities must be 

identified, and properly made known to ensure adequate situation awareness. 

Sometimes, although the required information needed by a user is available, it may not be 

in a form that could be easily used, and so will be of little value. (Reason 1997) points that 

another area that gaining recognition quickly is the subject of various organisational 

processes, policies and practices at all levels of an establishment; It has become obvious 
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that these aspects have a significant influence and if left dormant will lead to potential 

susceptibility in design and operations. 

 

 

Figure 3.11: Situational Awareness Feedback Loop (Endsley 2000) 

 

 

3.6 DECISION-MAKER (DM) 
 

 “Codes do not produce results, people produce 

results using codes”- Dave Whitfield, a long time 

CFD code developer and user. 

The availability of Decision-Maker (DM) and the 

willingness to be part of the solution process, 

directing it in accordance to her/ his preferences 

is the most vital, fundamental belief to the 

successful use and application of interactive 

methods. 

The perception of the DM to find the chosen 

method acceptable and advantageous to use is 

always important. The manner in which preference information of DM is specified, the 

overall understanding of a method’s way of working must be interesting and easy. 

In general, two phases are identified in a solution process: a learning phase and a decision 

phase. The DM first learns regarding the problem and various possible solutions and then 

decides on the most preferred solution which is found during analysis in the first phase. 

These two phases are presented iteratively in an optimisation problem. 

It is a constructive process to solve a multi-objective optimisation problem interactively 

because through learning, the DM is builds on a confident belief of the types of solutions 

available, of what is possible. This gained knowledge is then faced with her/his 

preferences which may also evolve over time. Therefore, apart from a mathematical 

solution convergence, a psychological convergence usually occurs when making use of 

interactive methods. 
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3.6.1 DM and Trade-Off Information 
 

When solving a multi-objective optimisation problem using interaction techniques, it is vital 

and advantageous for the DM to be aware of objective trade-offs when shifting between 

Pareto optimal solutions. This awareness allows the DM in deciding if the search should be 

continued for other optimal preferred solutions looking for specific aspects or not. 

The preference information needed from DM varies in the level of difficulty depending on 

the type of trade-off information method used for a particular problem. However, 

coherence in DM’s feedback is important in all the methods for an absolute convergence of 

the method. Even though most methods allow revisiting solutions and go back in the 

process, irregular feedbacks generally not preferred.  

 

3.6.2 DM and Reference Point Approach 
 

Reference point approaches enhance DM’s intuition power by allowing an overall, 

comprehensive learning of the situation and decisions as presented by the problem model. 

The DM has the opportunity to learn about the situation and is free to modify the reference 

points to delve into interesting sections of the Pareto optimal set; various approaches can 

be adapted in such explorations. 

The goal functions generally possess full controllability feature. DM can select any Pareto 

optimal solution by altering reference points and maximising the goal or achievement 

variable, thus paving way for a complete dominance by DM (Branke et al. 2008). 

 

3.6.3 DM and Classification Based Methods 
 

Classification approach relies on DM’s intuition to steer the solution process in finding the 

solution most desirable because no imitation ideas are used. The DM tends to deal with 

objective function which deem meaningful, important and understandable for her/him.  

An expectation about improved solutions can be expressed by the DM by directly 

comparing how well the desired expectation fares when the next solution is generated. 

Additionally, DM’s desire for the extent of solution improvement or permitted levels of 

deterioration may be required as input information. 

With respect to stopping criteria, classification-based methods and reference point 

approach methods share similar philosophy that a DM’s sense of satisfaction is the most 

vital stopping factor which means that the process of searching will continue as long as the 

DM wants it to. Converging mathematically is not very important (unlike in trade-off based 

approach) but instead a psychological convergence is given priority. This supports the 

reality scenario where a DM naturally desires to be in control and does not usually prefer a 

chosen method to advise them regarding the generation of their most preferred solution. 
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3.7 DECISION MAKING 
 

The designer when working with interactive techniques should be aware of various modes 

of unclear, inadequate communication, misunderstandings and glitches that could take 

place in order to proactively manage them by minimising any disruptions. The various 

steps during the design process involving decision-making activities are most times 

complicated (Figure 3.12), and the decisions taken will have critical impact on the design 

solution and the process. 

 

 

Figure 3.12: Planning and Course of Action (Norman, 2002) 

 

 

An empirical study of engineers working in an industrial practice was carried out by 

(Ahmed, 2001) . It was observed that: 

 All of the design strategies which were in place to aid various decision-making were 

observed during various instances. It was noted that the engineering designers when 

involved in decision-making activities did not make use of the available decision 

methods to structure their choices or conclusions. 

 

 (Pahl & Beitz, 1996) stated that when evaluating between alternatives, all alternatives 

should be developed to similar levels and presented for decision making. Two 

designers were observed in this regard. It was noted that the designers did not present 

their design alternatives unless their first evaluation had been deemed successful; if not 

they generated another design solution alternative. Therefore, the evaluation was done 

between alternatives, it was carried out in a sequential manner, a ‘synthesis and 

evaluation’ style. 
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 When decisions were to be taken, the designers did not seem to present a set of 

relevant related criteria in the decision instance; rather they seem to focus on the 

known issues of the activity, specifying these issues appeared as an automatic sub-

activity in making decisions. However, mention of activity issues was done many times 

even without activity task. This suggests that considering activity issues was an 

approach that helped the designer to specify decision criterion. 

 

The study stated indicates that rather than making use of an available decision method, 

an engineering designer is likely to follow a work strategy which relies on her/his 

understanding of the ongoing design process situation. An extraordinary gap exists 

between the study and model proposals of decision-making in design methodology 

literature and the practical findings from experimental studies of engineers in practical 

industrial settings. (Hansen & Anderasen, 2004) suggests that there is a challenging need 

to combine results from theory and practice in order to boost the designer’s acceptance 

and use of research results.  

 

3.7.1 Identifying Novel Views & Objects 
 

A general human tendency is to remain with something that one is convicted about. The 

original source of conviction is emotion (Jastrow, 1917) and emotions influence decisions. 

Personality, culture, gender, power, social conventions, roles, fear are some major 

influencing factors of human emotion. A designer may perhaps recognise that a better 

solution exists, however it is convenient to believe in conventional, widely accepted 

solutions since the designer ‘knows’ they work. Settling for known solutions hinders the 

very objective of optimisation. Generally, an individual’s aptitude and creativity impact idea 

generation  

It is a fact that some people are capable of producing excellent, inspired designs while 

some others try very hard to present any ideas at all. A lot of things in the world are not 

completely new but adaptations of things that already were. In general, innovations are 

birthed through crossing over of various ideas from different applications, the evolution of a 

product already existing by betterment notions generated through its use and observation, 

or direct duplication of other, identical products (Sharp et al., 2007). A study report by 

(IEGD, 2006) argues that diversity generates innovation in the form of new products, 

processes and systems and generally has a positive impact on business. 

Aircrafts and the study of aeronautics mimic the natural world; moveable wing surfaces, 

winglets, silent-flight concept, light-weight flight structures, ‘groovy skin’ concept, formation 

flying, to name a few, though might come across as new technology are in fact inspired by 

observation of nature. Deliberately looking out for new ideas and inspiration is an important 

and beneficial step in any design process. 
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3.8 DISCUSSION 
 

This chapter discusses various types of interactive methods and the importance of human 

decision-maker in the engineering loop along with the consideration of several elements of 

human factors. 

A large collection of various types of interactive methods are available in literature, the task 

of choosing the most suitable technique for specific decision situations remains difficult. A 

‘decision situation’ could be perceived as a DM, with a given set of choices (due to the 

several possible solution permutations and combinations) facing wholly or part of a 

decision problem.  

To facilitate the availability of various techniques in a single decision system, some 

literature suggests proposals to develop open architectures or combined systems (Luque 

et al. 2007). Some relationships among various types of information that interactive 

techniques usually ask of DM like weights, trade-offs, reference points etc., are studied by 

(Luque et al. 2007). Combining the advantages of various techniques in order to reduce 

their flaws is one way of developing new, improved methods. Another algorithm 

proposition is to generate an approximation of the Pareto optimal set by combining 

reference points (Klamroth & Miettinen 2008); only those parts of the Pareto optimal set in 

which the DM is interested are approximated and sections are controlled by using a 

reference point for evaluation. 
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4  

 Visualisation of 

Solutions 
 

4.1 INTRODUCTION 
 

An aeronautical designer needs visual support and computational tools help in making the 

right things visible; various calculations over bodies such as aerofoil sections are 

presented to the user in an attempt to optimise the design solution. Such a project starts 

with several unknowns. Higher the complexity of a design system, higher the chance of a 

vaguely defined design parameters and requirements.  A design process typically involves 

many incremental learning experiences and interactive visualisation attempts to allow a 

decision-maker to visualise computational results graphically, with greater utility to solve 

practical engineering problems. An efficient visualisation system is a relation between input 

data, the application in the background and the images generated (Figure 4.1). 

By 1960s, the digital computers had advanced to the point of making it possible to attempt 

calculations of aerodynamic characteristics of aeroplane components by solving 

appropriate mathematical models. The use of visualisation to represent underlying 

information is not a new occurrence and the field of computer graphics has undergone 

some of the most important advancements in information visualisation paving way for other 

computer tools in exploring large amounts of data. 

 

 

Figure 4.1: Visualisation in Software Applications 
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A computational problem task often involves two actions: (a) Solving problem using 

mathematical calculations and (b) choosing a preferred solution from several available 

alternatives. The first action includes design and analysis of various aeroplane 

components such as an aerofoil while the second is primarily a decision-making process 

(McCormick, et.al., 1987). The principles of visualisation have been developed and 

advanced within various fields of study and professional sectors such as photography, 

gaming, animation, typography, medicine and engineering simulations. (Blackwell, 2010) 

notes that an artistic mind-set, together with skills and understanding are required to build 

on the current available visual tools to improve them. Those working on such tools should 

be able, when required, to develop novel and improved visual representations. 

 

Visualisation is an interdisciplinary branch of computing. It transforms data into multi-

variant datasets and geometries, enabling engineers to observe computed simulations. It 

provides an arrangement to see the large or unseen data, enriching the analysis process 

and fosters thorough, sometimes unexpected insights. The field of visualisation is rapidly 

evolving and revolutionising the way engineers do work (McCormick et al., 1987) and its 

goals are: 

 Analysis and Insight 

 Extract the content’s information 

 Make things/ relations visible that are not obvious 

 Analyse data by means of various visuals 

 Communication 

 Allow non-experts to understand 

 Show specific information in ways that all involved people can follow 

 Aid the skilled users in correct choices 

 Steering 

 Interactively control and drive application 

 Use visual representations to grasp task situations and avoid delays 

 

4.2 VISUAL PHASES 
 

 

Visual representations are a means to assist thinking. They support externalising 

knowledge about a complicated task or domain, and trigger reasoning through interaction. 

Visualisation is not a separate entity but linked to its user; in order to try to understand it, it 

is also important to understand how its user thinks. Such a grasp is vital and it is 

complicated to process because there are several types of users and not a single set 

individual (Ziemkiewicz, et.al., 2012). In a specific work context, understanding 

visualisation requires making sense of how users vary and why. Visualisation plays an 

important role in computational simulation and following are the major phases with multiple 

steps occurring  within each phase (Edwards, 1989): 

 

 Modelling 

 Simulation 

 Analysis 
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Developing computational model is the first step for a specific problem of interest such as 

an aerofoil. Modelling phase, the pre-processing phase, is the transformation of a physical 

problem into a mathematical problem and this may carry over certain modelling errors 

(Figure 4.2). Generally, this phase does not use computation and visualisation is not an 

important part. However it is one of the important phase in the simulation process as the 

designer decides on which physics sections, boundary conditions to be included and which 

to be ignored, chooses a mathematical model of the physical model such as time-

dependent Navier-Stokes equations, and any extra modelling assumptions to collect 

system information such as turbulence, transition. 

 

 

 

Figure 4.2: Stages of a Computational Simulation (Edwards, 1989) 

 

 

The simulation phase tries to compute a near accurate and efficient solution to the 

mathematical problem. The choice of computational techniques plays a vital role in the 

simulation process and visualisation techniques are useful for interaction, controlling and 

monitoring of iterations. There are associated errors with various types of approximations 

introduced into the mathematical model (Figure 4.2), these have to be identified and 

controlled. Such critical observation and examination depends on the user’s knowledge, 

awareness of errors and interest taking corrective actions. 

 

Visualisation is advantageous in this phase to error detection and controlling. Specifically, 

the application of interaction graphics will offer the designer an efficient way to observe 

and steer simulations. This allows unstable or divergent solutions to be recognised and 

cancelled, saving time and resources. At other times, the user could adjust various 

computational parameters to interactively direct the simulation to a stable solution. A data 

set is the result of simulation phase checked in the analysis phase. 
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Gathering of information happens in the analysis phase; solution data set from the 

simulation phase is interpreted and evaluated. The results are examined to check for any 

errors due to assumptions made in the modelling phase. It also provides an opportunity to 

examine physics of the data set enabling any improvements required in either the physical 

or mathematical model. Any negligence in correcting errors could lead to analysis of 

results which may be perceived as being correct and good, while the results themselves 

could be a culmination of several unchecked intermediate errors (Figure 4.2). When 

significant changes are made, the overall simulation process is repeated along with any 

appropriate model modifications. This phase of computational simulation gained 

importance due to the tremendous advancement in large scale computing. 

 

Much time is spent in the development of computer programmes to simulate physical 

model and processes; and a larger proportion of time is used in understanding and 

interpreting simulation results. Visual analysis is vital in computational simulation, it can be 

used to examine data sets for any numerical errors and the computational simulation could 

be repeated with different parameters if necessary. It also aids in viewing transformations, 

positions and number of data sources. 

 

 

4.3 INTERACTIVE SPACES 
 

 

“The purpose of computing is insight, not numbers” – R.W Hamming, 1961 

 

 

Figure 4.3: Multi-disciplinary Vs Multi-objective spaces (Alfaris, 2010) 

 

Interactive spaces allow exploring designs, utilising human insight and understanding 

along with numerical methods. Figure 4.3 explains the terms multi-disciplinary and multi-

objective; this research examines single discipline and multiple objectives. When data set 

sizes increase, so does the need for scientific visualisation. Evaluating performance of a 

single parameter and its optimisation could take several long hours of computer 

processing. In such situations, there is a limit to the number of parameter configurations 

that could be evaluated, and it seems beneficial to adapt approaches that achieve good 

results on a small number of evaluations. 
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In multi-objective aerodynamic problems, there is no unique optimum because the 

objectives are usually in conflict; apart from the relationships between objectives, the 

relationship between variables and objectives is also of interest to the analyst. Figure 4.4 

and 4.6 explain the mapping of particle vectors between spaces and Figure 4.5 explains 

interactive features offered by the visual module. 

 

 

  

 

Figure 4.4: Mapping between decision space and objective space (Narzisi, 2008) 

Decision vectors are called Pareto-optimal if they are globally non-dominated. The 

set of all non-dominated decision vectors is the Pareto-optimal set. 

 

 

Figure 4.5: Screen-shot of the test module illustrating interactive spaces. A range in 

objective space is selected correlating to parameter ranges with feasible solutions 

(highlighted). The scatterplot in the lower right corner shows O1 Vs O2; decision-maker 

can further select any of the available solutions, either in scatter plot or parallel 
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coordinates plot. The corresponding point is then highlighted in both plots and also 

displayed in the upper right hand corner (Hettenhausen, et al., 2013). The feasible 

space is commonly denoted as the decision space or parameter space, and the 

image of the decision space, subject to 𝐟(𝐱), is referred as the objective space. 

 

 

 

Figure 4.6: Parallel Coordinates and the representation of a point from n-dimensional 

space to n-1 line segments in 2D space (Kriwaczek & Rustem, 2000) 

 

 

4.3.1 Search/ Decision Space 
 

 

The search for a ‘feasible’ design is the search for a design which considers all design 

constraints and this is a difficult task. The complexity is linked to the clustering of decision 

or search space, geometric complexity of the layout, solver, search algorithm and their 

relations, leading to the use of heuristic techniques for solving multi-variate, multi-objective 

problems.  

 

Multi-objective optimisation involves a solution specified by the decision-maker and a 

series of acceptable, but not necessarily feasible solutions iteratively in response to 

generated solutions. These solutions are points in the decision space. The decision-maker  
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begins to discern any acceptable solutions and accordingly adjusts specifications of what 

one finds feasible. 

 

To successfully use this approach, the decision-maker (DM) must: 

 

 perceive clearly how close the wishes are with respect to what can be achieved 

 specify correctly on what compromises the DM is willing to undertake 

 

The above require support from an interface that: 

 

 can display several points in n-dimensional space, showing clearly where and by how 

much the various points differ from one other 

 allows the user to adjust positions of generated points to express wishes and steer the 

system in searching for next solutions 

 

I-MOPSO module framework was set up to accommodate such a possible kind of domain 

space by implementing the following: 

 Scale and Translate 
 New range 

 

Scaling and translating or interpreting is simple and predictable. The module set-up 

continues to generate particles according to the specified interval. A scaling and translating 

factor are utilised after particle creation to present those particles in the correct interval,. 

The decision-maker chooses on the search space interval and defines the value via input 

file; scale and translate factors are computed and sent to the model-runner where 

coordinate transformation happens prior to the particles move to the model.  

Scale and translate factors are calculated as follows: 

 

Limits for each parameter domain are given by maxpar and minpar. The factors are 

calculated for each parameter j; the normalised parameters (parold) are transformed to new 

parameters (parnew) according to: 

Par(j)new = Par(j)old * scaling(j) + Translation(j) 

 

This approach of generating new range allows for a better adaptability; the parameter’s 

upper and lower bounds are changed within code runs. Diversity is promoted through 

updating of positions for creating new solutions or by mutation, turbulence operator. 

Study of I-MOPSO module with different parameter ranges is an area to be further 

investigated. The two factors were however intended to add flexibility to the framework. 
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The decision-maker is provided with a chance to choose various swarm distributions and 

intervals for initialisation; values of c1, c2, w, the turbulence intensity and archive size can 

be modified via input file. 

Based on the notion of user intent, (Soo Yi, et.al., 2007) set up the following seven 

categories of interaction: 

 

 Select: mark something as interesting 

 Explore: search something else 

 Reconfigure: show a different arrangement 

 Encode: show a different representation 

 Abstract/Elaborate: show either more or less details 

 Filter: show something conditionally 

 Connect: show relation between items 

 

Selection offers a designer with the capability to mark interesting single or multiple data 

items by keeping track. By making items of interest visually distinct, keeping track 

becomes easy. Exploration is to analyse a different subset of data. Both computational and 

human cognitive limitations affect data and information processing. Reconfiguration 

changes spatial arrangement of representations and aids different point of views of the 

data set, especially to reveal hidden aspects of data and their relationships. Encoding 

alters visual representation of the data fundamentally impacting its visual appearance by 

modifying colours, sizes and shapes of data elements. 

Abstract feature techniques support a designer with the ability to adjust levels of data 

representation abstraction, aiding in the alterations, overviews or detailed views of 

individual data sets, often with several intermediate levels. Filtering enables the change of 

data sets shown according to certain specific settings, so that only parts satisfying those 

criteria are displayed. Connect technique refers to highlighting links, relationships between 

various data items represented, also to present data that is relevant to a specific selection. 

 

4.3.2 Objective/ Design Space 
 

 

The aspects of a design space have been defined by (Schulz, et.al., 2013) as ‘5 W’s’: 

Why, What, Where, Who, and When and sometimes How.  

 

These aspects are very often used to describe a problem or task situation from all 

appropriate angles. They can be useful in communication and documenting technical data. 

They support visualisation, in analysing tasks and for understanding user intentions. These 

aspects are defined as follows: 

 

 Why is a task being taken up? What is the task’s goal? 

 How is a task being executed? What are the methods? 

 What is expected of the task? What are the resultant characteristics? 

 Where does the task fit into overall work? What is the task’s direction? 
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 When is a task carried out? What is the order and timing? 

 Who is doing the task? Who is the user or decision-maker? 

 

The last two aspects (when, who) are not separate considerations but form part of a larger, 

overall task context. They depend on the context‘s previous and succeeding tasks in a 

given sequence, and also involves capabilities, responsibilities to carry out assignments in 

a cooperative setting. 

 

A generic multi-objective optimisation problem is presented in the form:  

Minimise { f1(x),f2(x),...,fk(x) } subject to x∈ S 

Objective Space is a vector space including all objective functions. Objective vectors are 

images of decision vectors and consist of objective function values.  

Z = f(x) = (f1(x), f2(x),..... ,fk(x))T   ; S ⊂ Rn   ; fi : 𝑅n → 𝑅 ; k(>= 2) 

 

The projection of the feasible region in the objective space is referred as feasible objective 

region, Z = f(S). 

 

In multi-objective optimisation, objective vectors are considered optimal if none of their 

components can be made better without worsening at least one of the other components. 

A decision vector x’∈ S is called Pareto optimal if there does not exist another x ∈ S such 

that fi(x) <= fi(x’ ) for all i = 1,... ,k and fj(x) < fj(x’) for at least one index j.  

 

The set of Pareto optimal objective vectors can be denoted by P(Z) and the set of Pareto 

optimal decision vectors can be denoted by P(S). An objective vector is Pareto optimal if 

the related decision vector is Pareto optimal. The set of Pareto optimal solutions is a 

subset of weak Pareto optimal solutions set. A decision vector x’ ∈ S is a weak Pareto 

optimal another x ∈ S does not exist such that fi(x) < fi(x’ ) for all i = 1,... ,k (Branke, et.al., 

2008). 

If the objective functions are bounded over the feasible objective region, the range of 

Pareto optimal solutions in this region provides valuable information regarding the problem 

under consideration. Lower bounds of a Pareto optimal set are available in an ideal 

objective vector, obtained by minimising each of the objective functions individually subject 

to a feasible region. The upper bounds of a Pareto optimal are generally difficult to acquire 

and there is no effective way to get an exact objective vector for non-linear problems. 

Estimation could be obtained but may be unreliable, hence raising the need for 

involvement of a decision-maker and analyst. 

 

 

4.3.3 Search Space Vs Objective Space 
 

 

In Pareto optimisation, two spaces are considered - the decision space or search space ‘S’ 

and the objective space ‘Y’. The vector valued objective function f : S → Y provides the 
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mapping from the decision space to the objective space. The set of feasible solutions X 

can be considered as a subset of the decision space, i.e. X ⊆ S. Given a set X of feasible 

solutions, Y is defined as the image of X under f. 

 

The sets S and Y are usually not arbitrary sets. To define an optimisation task, it is 

necessary that an order structure is defined on Y. The space S is usually set up with a 

neighbourhood structure. This neighbourhood structure is not required for defining global 

optima, but it is exploited by an optimisation algorithm such as particle swarm optimiser 

that gradually approaches optima. During the formulation of local optimality conditions, the 

choice of system’s neighbourhood could significantly influence the difficulty of an 

optimisation problem. The defining of neighbourhood gives rise to many characteristics of 

functions, such as local optimality and limitations; neighbourhood structures needs to be 

especially mentioned in discrete spaces because the continuous optimisation locality 

usually then refers to Euclidean metric. 

 

 

 
 

Figure 4.7: Mapping from Search Space to Objective Space (Agarwal et al., 2004) 

 

 

Euclidean metric or distance is the straight-line distance between two points, satisfying 

certain specified relationships (distance, angles, translation, rotation) in an Euclidean 

space. With this distance, Euclidean space becomes a metric space. 

 

In defining a landscape, it is useful to distinguish the general concept of a function from the 

idea of a function with a neighbourhood determined on the search space and a partial 

order determined on the objective space. In general, all local minima are also global 

minima. 

 

In order to define a landscape in finite spaces, two important structures are needed: a 

graph in search space where edges connect nearest neighbours and a design in the 

objective space. For several optimisation related definitions, there is no need to specify a 

height function, it is sufficient to specify an order on the search space (Emmerich & Deutz, 

2006). 
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4.4 MULTI-OBJECTIVE DATA VISUALISATION 
 

 

Validating solutions for multi-objective problems continues to be a challenging matter till 

date. The most practical way to validate solution to a multi-objective problem is to make 

use of visualisations to check the computed results; such visualisation is a progressing 

area of research for multi-objective problem applications (Agarwal et al., 2004). 

 

A quick and meaningful examination of the problem space or data set could be achieved 

by integrating the capability to interact in real-time with generated displays. The intention of 

multi-dimensional multi-variate visualisation (MDMV) is to interpret large amounts of data 

into meaningful, intuitive visual representations . To achieve this goal, several methods 

and applications have been developed, but they are also restricted by hardware and 

software limitations. Almost all visualisation techniques try to transform a multiple 

dimensions or variates of a  problem or dataset to be mapped to a 2D or 3D visual space. 

 

Cognitive elements such as spatial and verbal abilities, and working memory 

competencies vary between individuals, and affect logic and interpretation in various ways. 

Particularly, spatial and perception capabilities have an impact on how well users are able 

to perform several different tasks in a visualisation system (Ziemkiewicz et al., 2012). 

 

(Keim, 1997) divided visual data exploration techniques for multi-objective data into six 

categories: geometric, icon-based, pixel-oriented, hierarchical, graph-based and hybrid 

techniques. Based on this, (Wing-Yi Chan, 2006) classified them into four broad classes 

depending on the overall approaches adapted to generate resulting visualisations (de 

Oliveria & Levkowitz, 2003): 

 

 Geometric Projections 

 Pixel-Oriented Techniques 

 Hierarchical Displays 

 Iconography 

 

A plot is a graphical technique for representing a data set, a visual representation of 

relationships between two or more variables, playing a vital role in analysing data. Plotting 

methods are both quantitative as well as graphical, providing insight into elements of a 

data set for testing assumptions, selecting models, validating, estimation, identifying 

relationships, determining related factors, providing a comprehensive view of the 

underlying structure of the data to the inquisitive designer, including any unusual 

observations.  

Three aspects or objects define a plot: data, layout and figure. Data in more than two 

dimensions are difficult to represent. In programming, data is actually a list objects, 

containing all the traces that a designer wishes to plot. A trace is a collection of data and 

the specifications of which one wants that data plotted. Multi-objective optimisation is not 

linear. For a two-variable plot, unit changes in the x-variable will not always bring about the 

same change in the y-variable, resulting in a curve instead of a straight line. 
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Geometric projection techniques were already used even before the emergence of 

information visualisation. Cartesian space is familiar and understanding representations  is 

not difficult. However, when the dimensionality of data increases, it requires some effort to 

understand. 

  

Individual data items are encoded into pixels in pixel-oriented techniques; several data 

points mapped to corresponding pixels appear at the same position in each respective 

window. With appropriate rearrangements, designers can notice the various attribute 

relationships along with trends and patterns of the hidden data. 

 

 

 
 

Figure 4.8: An extract of I-MOPSO module showing the various visualisation techniques 

 

 

Hierarchical displays are derived from the concept of hierarchical trees and are effective in 

visualising hierarchical data; it is also their limitation. The generated plots of pixel-oriented 

techniques and hierarchical displays are not as easy as those of geometric projections; 

knowledge and skill on the designer’s part is required to understand these hierarchical 

visuals. 

 

Iconography makes use of a multi-dimensional icon, or glyph, as the unit of visualisation. 

Data attributes map to a glyph that has several graphical properties. When the glyphs or 

data items are densely packed together, they produce certain texture patterns. This aids in 

studying the overall features and data relationships. Colour has been extensively used to 

add extra dimensions; these could also be replaced by textures to generate graphical 

attributes for data visualisation. 

 

 

4.5 PLOTTING 
 

Data analysis is usually done quantitatively or graphically. Quantitative techniques are 

classical; these procedures yield numbers or tables. Graphical techniques or plotting is a 

large collection of statistical tools and engineering heavily relies on these tools as they are 

the quickest path to gain insight into a data set in terms of assumptions, choices, 
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estimations, relationships and outlier detection. Some of those graphical approaches are 

addressed here. 

A wide ranging industrial shape design and optimisation module, abbreviated as 

WISDOM© is an Airbus flight physics tool currently under development. Choice of plotting 

techniques adapted in this research is influenced by the parallel, ongoing work on this tool. 

Some aspects, features of the development tool are mentioned in this report and trade 

studies were carried out using I-MOPSO module. 

 

4.5.1 Scatter Plot 
 

Scatterplot, in general, is used for bi-variation discrete data in which two attributes are 

projected, along the x and y axes of the Cartesian coordinates. Scatterplot matrix is an 

extension for multi-dimensional data where a collection of scatterplots is organised in a 

matrix simultaneously to generate correlated information among the attributes.  

 

Figure 4.9: Example of two-dimensional scatter plot matrix generated over a low-

speed, three element, deployed aerofoil section using HiLi solver in WISDOM© tool. 

The top view is an expanded view showing individual graphs clearly; the lower is a 

compact view displaying all possible parameter/ objective combinations on one page 

which is unclear and not helpful to the human decision-maker. 
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Scatterplot is an easy visualisation method projecting all vectors to a low-dimensional 

space by disregarding all the dimensions of the vector that are beyond those that can be 

visualised. When done for all possible combinations of lower-dimensional spaces, a scatter 

plot matrix is obtained.The scatter plot matrix is a very fast, simple, and robust 

visualisation technique that displays information on approximation sets, also the different 

distribution of vectors. Patterns in the relationships can easily be observed by the designer 

between pairs of attributes from the matrix; higher dimensions may aid in revealing 

important patterns which may otherwise be difficult recognise. When the number of points 

or data items becomes too large, visualising becomes confusing and is a limitation (Figure 

4.9). 

The technique of brushing could be used to deal with the above problem. Brushing tries to 

interpret by highlighting a specific n-dimensional subspace in the visualisation; the 

corresponding points of interest are highlighted or coloured in each scatterplot of the 

matrix.  

 

 

4.5.2 Parallel Co-ordinates Plot 
 

 

Parallel coordinates are able to reveal relationships between multiple variables, specifically 

useful when a designer  wants  to identify which choices correlate highly to a particular 

outcome. Parallel coordinates plot represents multi-dimensional data using lines. Each 

dimension or attribute is represented by a vertical line. The maximum and minimum values 

of the dimension are generally scaled to the upper and lower bounds on these vertical 

lines. An n-dimensional point is represented by n-1 lines connected to each vertical line at 

the appropriate dimensional value. 

 

Lines are chiefly used to encode time-series data. Changes through times from one value 

to another are indicated by the up and down slopes. The lines in parallel coordinate 

displays do not indicate a change. A single line in a parallel coordinates graph connects a 

series of values, each linked to a different variable which calculates multiple aspects of an 

attribute, such as lift and drag coefficients. The problem of obstruction occurs in a parallel 

coordinates’ display. This could be reduced by dividing the overall data into separate 

series of parallel coordinates graphs, separating each range of influencing parameters into 

an individual graph. 

 

Each axis in parallel coordinates plot can have at most two neighboring axes, one on the 

left, and one on the right (Figure 4.11). For a d-dimensional data set, at most d-1 

relationships can be shown at a time. In time-series visualisation, there exists a natural 

predecessor and successor and in such special case, a preferred arrangement exists. 

However when the axes do not have a unique order, finding a good axis arrangement 

requires the use of heuristics and experimentation. In order to explore more complex 

relationships, axes must be reordered. In a 3D space, axes can be re-arranged, however, 

the visualisation becomes difficult to interpret and interact with in comparison to that of a 

linear order. 
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Figure 4.10: Parallel coordinates (left) and scatter plots (right) showing common 

features in data. The two-dimensional points in Cartesian coordinates map to lines in 

parallel coordinates (Johansson, 2008). 

 

Figure 4.11: A parallel coordinates representation of a data set with five variables. 

Such a representation supports a number of analysis tasks. The example shows the 

identification of negative relationship between variables D and  E and the similar 

shape over all variables seen for the two selected items highlighted in brown 

(Johansson, 2008) 
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Figure 4.12: I-MOPSO and Graphical User Interface. Shown here is the parameter 

selection of a particular range on P2 vertical coordinate (below) and its corresponding 

dependent results impacting other parameters and objectives are highlighted. 

Selecting a particle of the interval is shown by green lines in parallel-coordinates’ plot 

and by red dot in the relative scatter plot. 

 

 

4.5.3 Heat Map 
 

A heat map uses colours to represent values and is a two-dimensional representation of 

data. In general, it refers to any computed visual that utilises colour to depict quantitative 

data. A simple heat map provides an immediate visual summary of information while more 

detailed heat maps allow the designers to comprehend complex data sets. 
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There are several ways to display heat maps, however all approaches make use of colour 

as a means of information exchange to show links between data values which might 

otherwise be difficult to understand and examine if represented numerically in a 

spreadsheet. When colour is used, it is necessary to understand their correlated values 

and representation such as high, low or intermediate. Various grid structures can be 

adapted into a heat map display; Figure 4.13 shows a hexagonal grid. I-MOPSO module 

uses a rectangular grid. 

Multi-variate heat map matrices are often used by designers to analyse data, they tend to 

use heat maps combined with a additional display such as a dendogram; a dendogram is a 

tree structure, organising entities hierarchically, based on similar multi-variate profiles. 

Heat maps don’t have the problem of obstruction where objects hide behind or are 

restricted by other objects, where in comparison, parallel coordinates seem cluttered with 

several lines displayed in the close proximity. Each computation in a heat map is limited to 

its own cell within the matrix and eliminates obstruction (Few, 2006). 

 

Multi-variate displays exhibit a series of colours are sometimes not easy to perceive and 

remember by a human user when compared to a lines’ pattern formed in parallel 

coordinates display. Grid shape and size affects a user’s view and perception of results. 

 

 

 
 

Figure 4.13: Hexagonal grid heat map generated in basic Python visual window 

showing the difference in visuals depending on the grid size. Colours are much 

clearer to identify in a smaller grid size compared to a larger grid size where the view 

is hazy and boundaries are not clearly defined. 
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4.5.4 Self-Organising Map 
 

Self-organising maps (SOM) make use of neural network algorithms which project multi-

variable data onto a two-dimensional array of nodes without supervision. Each node is 

correlated to a randomly initialised n-dimensional weight vector, where n is the dimension 

of the data to be visualised. The algorithm automatically sorts out various values and 

adapts itself so that identical data are displayed closer. Each value component can be 

visualised by adapting grid colours depending on component selection values. Thus, many 

dimensions could be visualised at the same time by displaying several mapping 

components side by side. 

  

 

 

Figure 4.14: Example of self-organising map using rectangle blocks generated over a 

low-speed, three element, deployed aerofoil section in WISDOM© tool. The 

calculated values were also shown inside each block, along with its associated colour 

which was an available feature in this particular tool. 

 

By adjusting algorithms, SOMs can be visualised in various ways. Depending on the 

chosen colour palette, SOM will map those colours onto a hexagonal or rectangular grid 

area. One of the popular approaches is U-matrix (unified distance matrix) where the 

distance between adjacent neurons is displayed with different colours. Clusters of similar 

or lower value nodes are represented by light-colour parts and dark areas indicate cluster 

boundaries or higher values. A linear SOM arranges all nodes in a single cluster and is 

easy to interpret in comparison to a spherical SOM where the exact number of clusters is 

difficult to establish. 
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Figure 4.15: An extract of I-MOPSO module showing optimisation results in a heat-map 

(above) and self-organising map (below). The test run was carried out on Garteur aerofoil 

section. 

 

 

4.5.5 Radial Co-ordinate Visualisation (RadViz)  
 

 

The Radviz technique (Hoffman, 1999) represents each n- dimensional data item as a 

point in a two-dimensional space. The points are positioned inside a circle whose 

perimeter is divided into n equal arcs. The points are equally spaced along the circle’s 
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perimeter, referred to as anchor-points or dimensional anchors; each data dimension is 

linked with one anchor-point. For n-dimensional data, each data point will be associated 

with n anchor-points through n different springs. These data points are then shown at the 

position that generates a spring force sum of zero. 

 

 
 

Figure 4.16: The Interactive RadViz projection of I-MOPSO data set 

 

Each data dimension’s values are normalised to the range [0, 1].  In the original, 

undisturbed range, those variables with higher values than others will influence the display 

on the spring. The data points will position exactly in the centre of the circle if all n 

coordinates have the same value irrespective of whether they are low or high. A unit vector 



 

91 

point lies exactly at the fixed point on the circle’s edge, where that dimension’s spring is 

fixed. 

 

4.5.6 Other Multi-Criteria Plotting Methods 
 

 

There exist numerous multi-Objective, multi-dimensional, multi-variable visualisation 

methods. As this work concentrates on visualising approximation sets, the techniques are 

rounded for this purpose. Visual techniques are both general and specific. The general 

methods can also find their use also outside the realm of multi-objective optimisation. 

 

 

 
 

Table 4.17: Table showing various visualisation techniques 

  

General multi-objective optimisation visual methods were used in this work, methods 

highlighted in orange in Table 4.17 indicate the methods adapted. A combined view has 

also been set up in I-MOPSO module. Various other techniques are also mentioned and 

the list is not exhaustive; some techniques are generic while some are more suitable for 

specific problem tasks. 

 

4.5.7 Combined Visualisation 
 

Various visual techniques differ from one another by the number of dimensions a particular 

approach is capable of projecting. The ability to detect trends in Pareto front is another 

differing characteristic, i.e., how various variables, objectives, and constraints interact in 
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various regions. In visualising information, a problem’s dimensionality refers to the number 

of variables or attributes that are present in the data to be visualised. Traditional tools like 

tables and scatterplots can be effectively used for visualising one-dimensional data or 

univariate data, consisting of one or two attributes. 

 

By plotting various visualisation techniques simultaneously, the user has an advantage of 

making use of essential features offered by different representations. Cross-plotting 

enables better understanding of trade-offs among the computed representations. A 

selected design attributes can be checked against the compromises made, in comparison 

to the best design according to design objectives. Trade-off plots help in visualising 

continuity or discontinuity allowing the designer to experiment between lower and upper 

bounds.  

If a designer is interested in the continuity of the Pareto Optimal front, a chosen visual 

technique should be able to recognise and display the gaps in the Pareto front in order to 

choose a single design set or a few possible designs. To have an overall view of an 

optimisation problem, there is an advantage in combining all available methods and taking 

advantage of each method’s capabilities as some visual approaches are more attractive to 

the user than others, also more easy to use. 

 

 

Figure 4.18: An extract of I-MOPSO module with the ‘combined view’ tab showing various 

plots on a single page; named as ‘hybrid view’ in the module 

 

Radial visualisations consist of computed visual features along a circle, ellipse, or spiral. 

Several radial techniques could be considered as visual projections from a cartesian 
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coordinate system onto a polar coordinate system. There is no specific known advantage 

of RadViz plots over other techniques. Unless there is a clear reason to favour a RadViz 

plot in terms of evaluating certain features, other techniques are better at showing 

convergence, patterns and perform better with respect to perception accuracy. 

Scatter plots, parallel coordinates and heat maps are simple, easy to understand and 

compute; they do not require complex mappings of vectors and are therefore fast. Except 

for scatter plots, the others can easily be scaled in several dimensions. Parallel 

coordinates and heat maps allow visualisation of the decision space along with the 

objective space.  

Self-organising maps perform sophisticated dimension reduction mapping to the 2D space. 

They are also scalable to many dimensions, relatively easy to understand and implement. 

However, they are computationally more expensive than other methods and every SOM 

generated might be different. They are not very robust as the mapping used for 

visualisation depends on the objective vector values in approximation sets.  

 

4.6 FACTORS AFFECTING OPTIMA 
 

 

Visualisation usually begins with ‘raw data’ generated as a result of initial from the data 

population process, and these data are often not suitable for direct visualisation in their 

generated form (Post & Van Walsum, 1993). One of the general factors affecting the 

intensive development of aerofoil design and analysis is the availability of high-

performance computing and parallel algorithms. Choice of geometric shape, choice of flow 

control, meshing technique and settings, choice of optimiser determine characteristics of 

the problem under consideration.  

It is not easy to develop various interaction technique categories that are clear and 

inclusive. However, (Bondarev & Galaktionov, 2014) point that digital revolution has had a 

tremendous impact on experimental dynamics causing a revolution in experiments due to 

transfer of digital technologies for image registration and visualisation of experimental 

results. This allowed for a direct comparison of experimental and computational results in 

aerodynamics. 

 

 

4.6.1 Optimiser search pattern 
 

 

The topology of the swarm defines the subset of particles where each particle exchanges 

information with neighbouring particles, also defined as swarm communication structure. 

Multi-objective Particle Swarm Optimiser (MOPSO) used in this work searches the 

objective space by dividing it into hyper-cubes which have even sizes. Each hypercube 
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has a score which is inversely proportional to the number of non-dominated particles inside 

its boundaries. Roulette wheel selection is used to choose a non-empty cube; the global 

guide is then randomly selected from the chosen cube, which try to promote cubes with 

lesser non-dominated points and an even coverage of the Pareto front. 

 

Swarm technique represents a type of randomised local search heuristics which maintains 

a population of solutions that evolve through a series of generations. At every step, the 

algorithm generates a new population of maximum size N (where N is a pre-specified 

constant) from the current state by using a set of randomly applied operators which allow 

erasing old solutions and create new ones.  

 

 

Figure 4.19: Different MOPSO topologies influence how particles share information 

with one-another 

 

 

Many different solutions can be tested and modified at the same time; therefore such 

procedures offer an inherent parallelism. A suitably defined function defines and evaluates 

the quality or fitness of each solution in the current population. In several cases, the fitness 

of a solution corresponds to its measure. 

 

Current swarm solutions are probabilistically selected to exist in the new swarm with 

respect to their relative fitness. New individuals are randomly generated as long as the 

swarm has size less than N (Cossio et al., 2003). 

 

 

 

Figure 4.20: The ideal roulette probability updates (Smythe, 2012) 
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Tests were carried by (Smythe, 2012)  to analyse the roulette’s average probability update 

behaviour of the PSO. A check was done before and after probability updates, looking for 

set requirement violations. Five possible configurations were identified of the relative 

locations with respect to each other in a random space: 

 

 The global best, local best, and current locations are the same 

 The global best and current locations are the same, but the local best location is 

different 

 The local best and current locations are the same, but the global best location is 

different 

 The local best and global best locations are the same, but the current location is 

different 

 The local best, global best, and current locations are all different 

 

 

4.6.2 User friendliness of tool 
 

Simple installation, easy updating, intuitive, efficient, pleasant with easy-to-navigate 

graphical-user interfaces, easy removing, less or no need of third-party software, easy 

troubleshooting, adhering to required standards and effective error handling are desirable 

characteristics of a software tool. User friendliness of a tool is user empowerment. 

Designer tool interaction control is a matter of choice and degree. It is possible to develop 

variable interfaces which can manage a variety of users and design situations. 

Engineers are generally eager to invest time and effort to learn work and master tasks that 

are necessary for routine activities. Users don’t seem to have much interest in learning to 

carry out infrequent tasks efficiently or effectively for long, because of the likelihood that 

the knowledge will be obsolete, replaced or forgotten. Usability, sustainability and 

maintainability are important characteristics of a user-friendly tool. 

 

Better than employing automated techniques for solving a problem, designers could 

instead benefit from better visualisation tools which can aid in better design decisions. 

Over time, as designers build on a collection of information in the form of evaluations for 

certain data points, a visualisation system that will support in better managing the available 

information is advantageous (Shaffer, Knill, & Watson, 1998).  

 

 

4.6.3 Decision-Maker knowledge and skills 
 

 

Engineers are both agents of decisions and decision-makers all through their professional 

lives. Environments where engineers are active and situations requiring decision making 

quite often involve multiple criteria, imprecise and incomplete data, multiple actors and 

pressure groups. 
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An engineer is likely to be a better at professional activities if she/ he possess good 

knowledge, skills, combined with good decision making abilities and several engineering 

sciences, specialisations aim at improving these qualities and productivity. Psychological 

characteristics such as the ability to quickly comprehend a problem case through a broad 

perspective and to generate good solutions with limited resources impact an engineer’s 

overall performance. Nevertheless, knowledge of the tools and their way-of-working can 

contribute significantly at improving an individual’s or group’s decision making abilities 

(Autran & Gomes, 2011). 

 

A seven step decision making model has been complied by (Faraclas & Koehler, 2005) 

based on the heurist models found in literature: 1) Problem formulation 2) Defining 

Objectives 3) Solving the problem 4) Assess actions 5) Analysis and decision making 6) 

Analysis validation 7) Result communication. While literature proposes several models, 

none of these have obtained unanimous approval in practice; and most are replaced with 

the arrival of new approaches. 

 

It is traditionally assumed that engineering only includes mathematics and sciences as a 

required qualification for the discipline. However, engineering now spans a wide variety of 

topics and  knowledge of other areas of study is now a necessity to a successful engineer 

background and attributes. Together with mathematics and science skills, technical 

computer, social sciences, business and leadership skills also play an important role. It is 

equally vital to recognise early on how other disciplines have an integral part and influence 

the overall decision making process. 

 

 

4.6.4 Personality Traits of Decision-Maker 
 

Individual personality differences reflect one’s outlook and behaviour patterns, and have a 

significant effect on performance; however, various study inferences are not 

straightforward. Personality effects are strongest when tasks are complex, under 

cognitively demanding situations, providing a window on how users differ in using a 

visualisation to support higher-level reasoning. 

Five-factor model is a common personality psychology model with five dimensions: 

extraversion, neuroticism, openness to experience, conscientiousness and agreeableness. 

An individual can be categorised under these personality traits, and according to (Roberts 

& Del Vecchio, 2000), these traits remain consistent throughout an individual’s adulthood. 

 

Personality factors significantly correlate a designer’s preference for visual interfaces and 

complex task performances. For example, an introversion trait is consistently positively 

correlated with both programming abilities and efficiency with computer-assisted 

instruction tasks. Individuals with more openness and spatial abilities may have an easier 

time switching between different design imageries, such as those found in a multi-view 

system (Ziemkiewicz et al., 2012). 
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An understanding of complex relationships among personality, visualisation and 

performance aids in the design of visual interaction interfaces, supporting user thinking. 

 

4.7 COMMON VISUALISATION ERRORS & 

PROBLEMS 
 

 

To be literate in graphics is the ability to understand graphically presented information 

which includes a general knowledge on how to read, extract information and make 

inferences from the various formats. Education and continuous skill development are 

required to interpret graphical information; both perceptual and cognitive processes play 

an important role. A major obstacle to graphical literacy is the widespread availability of 

high end software which most often fails to communicate clear and accurate information in 

a manner that is easily perceived by its user. 

 

 

4.7.1 Particle Clustering 
 

When doing multi-objective analysis of the big picture, a designer usually starts observing 

for meanings to be deduced from the clutter. A display with large data such as parallel 

coordinates is not advantageous in exploring the details, but it is very useful in examining 

dominant patterns and exceptions. Separating clusters of similar data into separate graphs 

is often useful to easily focus on specific sections independent of others and to compare 

multi-variate profiles. 

 

Searching for entities with a specific multi-objective, multi-variable profile is another useful 

task when exploring multi-objective data, either one that is displayed by a certain entity, 

such a specific aerofoil design, or one that a designer perceives to be interesting. 

Effectiveness of visual techniques with large data output is reduced by visual cluttering, 

thus preventing effective revealing of underlying patterns in large datasets.  

 

The primary cause of  visual clutter arises from too many polylines (such as in parallel 

coordinate plots); (Zhou, Yuan, Qu, Cui, & Chen, 2008) points that most of the existing 

efforts to reduce clutter are data centric. Data are clustered before being plotted and the 

computed patterns are limited by the choice of algorithm used. Also, multi-dimensional 

data clustering itself is a difficult problem. The underlying algorithms, whether data or 

visual based, effect the geometric clustering while being plotted and define whether 

designers are able to control the levels of visual cluster with respect to preferences and 

further explore clustering results by enhancing colour or opacity. Interactions in 

visualisation significantly improve completion times of problem comprehension and altering 

model configurations. 
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Figure 4.21: Error estimation: distance C-C’ is the geometric error for the deformed 

cell and field error is given by the shown formula (Brodlie, Osorio, & Lopes, 2012) 

 

 

Figure 4.22: A Pipeline model of Visualisation Process  (Post & Van Walsum, 1993) 

 

 

4.7.2 Searching, Filtering & Extracting 
 

 

When searching through data, the first step usually is filtering or reconstructing through 

interpolation or approximation, generating a model of the problem section’s underlying 

data. A visualisation algorithm produces geometry which is interpreted as an image. 

Uncertainty appears at all stages; visualisation of uncertainty focusses on the data stage, 

while the uncertainty of visualisation starts at the filtering phase and passes through to the 

rendering phase. 

 

The method for reaching a target is determined by the way in which a visualisation task or 

action is carried out. Navigation includes all methods that alter the range or granularity of 

represented data such as by data browsing or searching; for granularity, this is realised by 

data elaboration or summary. It does not reorganise the data itself (Schulz et al., 2013). 
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Organisation and re-organisation include all methods that actually adjust the data to be 

displayed either by diminishing or enhancing it. Extraction methods like filtering or 

sampling and abstraction such as aggregation or generalisation are usual ways of data 

reduction. 

 

The commonly used enrichment means are to gather added data from external sources to 

derive further metadata, data describing other data. A relation includes all ways that 

position certain data into context such as by looking for similarities via comparison, for 

differences by examining variations or discrepancies, or by seeking relations (Brodlie et al., 

2012). 

 

 

 

4.7.3 Colour Contouring 
 

 

The numerical analysis of computational results convey a designer’s interested 

engineering parameters, but the graphical representation of those results explains why. 

 

Colour is used in computational simulations in two key ways: (a) for geometry visualisation 

allowing engineers to be confident of the generated construction model being a good 

depiction of the problem situation and (b) colour is used in post-processing the data from 

simulations to illustrate the complex relationships for analysis and investigation (Kinnear, 

Atherton, Collins, Dokhan, & Karayiannis, 2006). 

 

 

 

 
 

Figure 4.23: The rainbow and grayscale colour maps 

 

 

Plots such as heat maps make use of many different colour schemes with perceptual 

advantages and disadvantages. A rainbow colour map which is commonly applied in data 

visualisations is based on the order of colours in the spectrum of visible light, expecting 

blue to mean low and red to mean high. However, this could confuse the user as there is 

no natural perceptual order of the spectral colours. Apart from causing visual confusion, 

this drawback of natural order could delay tasks because the user might refer to the colour 

key often to help interpret visualisations.  

 

The human visual system has low spatial resolution in responding to colour variation when 

compared to variation in brightness (mathworks, 2017). Hue, saturation and brightness are 

the three basic characteristics of a colour. The green and cyan parts of the rainbow colour 
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palate are not distinct to perceive, which creates the illusion of displaying data in the 

corresponding ranges appear to be uniform.  

 

A same light stimulus could generate different colour appearances depending on internal 

and external aspects; colour is not a simple function of external stimulants. The health of 

the user’s eyes and their gender affects colour vision raising a deficiency. A user with 

colour blindness will be unable to distinguish reddish and greenish hues since their eyes 

cannot construct red-green opponent mechanism. Confusion of greens, reds and yellows 

is usually hereditary and is a common type of colour blindness although other types also 

exist. 

 

It is difficult for a person with normal colour vision to comprehend the visual world of 

someone with colour deficiency. Men are more colour vision deficient compared to women 

and genetics is a common cause. According to studies by British colour blindness 

awareness group, colour blindness affects approximately 1 in 12 men and 1 in 200 women 

around the world. 

 

 

4.7.4 Brushing & Rendering 
 

 

Multiple views are not of much use if the user is unable to interact with them. Brushing is 

an added technique with which a designer can select points to be examined. Brushing is 

generally carried out directly on the visible areas by using interfaces such as a mouse for 

interaction which could open a rectangular region of interest. It can also be carried out 

independent of displays such as by entering values, using sliders to select areas of 

interest, or by certain complicated means like selecting a cluster where the points inside 

are brushed allowing brushing possibilities in dimensions that may not otherwise be 

displayed clearly (Kosara, Hauser, & Gresh, 2003). 

 

Composite brushes can be formed by combining brushes allowing the user to select 

complicated shapes and define the points of interest precisely. Without linked views, 

brushing by itself is of limited advantage. Linked views allow information exchange 

regarding points that are brushed, so the user can visualise easily the same points of data 

brushed in various views. It usually works from any view to all other views. 

 

Rendering is a way of generating images from 2D or 3D models by means of computer 

programmes, transforming the software data into a picture; the results of such models are 

also referred as rendering. It involves a large number of complex calculations, keeping the 

computer occupied for a long durations, gathering data from sub-systems and interpreting 

data appropriate to features such as mapping textures, shading and lighting. Rendering 

involves user’s choices which impacts quality and speed of data or images rendered. 

Progressive rendering is the name given to techniques used to render content for display 

as quickly as possible. Reducing computing time continues to be a challenge in order to 

solve visualistaion problems at the rates of interactivity. Progressive rendering is a method 
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where a close enough visual image is generated by discretely choosing a sample set. New 

samples may be selected to generate new images if the desired quality image is not 

reached; the process can be repeated till a desired quality is attained. The user has a 

burden of deciding the casting of new image samples; generally, the choices made depend 

on empirical criteria based on statistics. 

 

4.7.5 Clutter & Reordering 
 

 

A good visualisation reveals clearly the structures inside data, helping the designer to 

recognise patterns and detect trends. Clutter obsctructs the structure in visual displays 

which is characterised by congested and disordered visual objects. Clutter is not a 

desirable characteristic since it prevents a user’s understanding of the displayed matter. 

However, it is inevitable for users to confront clutter when the dimensions or number of 

data items increase, irrespective of the visual method used.  

 

The arrangement of data and dimensions has a considerable effect on visual 

representations, in revealing a data’s various aspects and impacts a display’s perceived 

clutter and structure. It is possible for entirely different conclusions to be drawn depending 

on the available displays.  

 

Apart from dimensional effects on clutter, there could be other aspects of displays that 

impact a display’s clutter or structure for various visual techniques; knowledge of them can 

aid users in interpreting visuals. 

 

 

 

4.7.6 Discontinuities 
 

 

Discontinuity is a one of the basic message in the simulation process, any  functional value 

discrepancies provides details on solution convergence.  When high accuracies are 

required by computational simulations for analysis, it is sometimes inevitable to deal with 

some geometrically deformed cells. 

 

Common visualisation usually do not offer sufficient features to handle discontinuities, 

especially when discontinuities are combined with unstructured topology. Standard 

visualisation tools and approaches are optimised for studies when variables exhibit linear 

behaviour. In order to optimise interactive performance, linear approximation of functions 

for rendering purposes is one of the primary difficulties to be addressed (Brodlie et al., 

2012). A clear, proper representation of discontinuities is an important problem yet to be 

resolved for displaying discontinuous fields. 
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4.7.7 Uncertain Information 
 

 

When plots are used as visualisation tools, exploring potential relations takes precedence 

over presentation of facts. Uncertainty is a critically vital issue in data visualisation 

because most people tend to perceive both data and computers as being less fallible than 

the humans who make decisions for them. Most visualisation methods have been 

developed on the assumption that the represented data is free of uncertainty and that the 

data being displayed is exact. Yet, this is rarely the case. In most generic visual 

representations of uncertainty, much priority is given to data of most uncertainty.  

 

 
 

Figure 4.24: Haber and McNabb model: visualisation of uncertainty and uncertainty 

of visualisation (Brodlie et al., 2012) 

 

Spatial aggregation leads to certain visual variations; in addition, aggregating attribute 

values also adds to this variability, and in turn increases uncertainty. All data are 

categorised and individual measurements are retained in the database; accuracy of these 

measurements are impacted by their mathematical precisions to a large extent 

(MacEahren, 1992). Components of computer graphics, hardware and software inevitably 

introduce error. This has been the norm since early graphical plotters to present day 

graphics processing units; they allow approximating curves and surfaces by straight lines 

and triangles (Brodlie et al., 2012). 

 

The uncertainty level of mapping to locations depends on the quality of values, variance of 

the mean values which usually represent units, and a unit’s spatial variability. When 

approximations are made over the test case body, their relative representation as lines and 

points remains weak. 

 

Lines and colour blocks can alsobe visualised as a series of shorter segments. This might 

usually generate good results in 2D, but difficult in 3D without further depth cues. Also, 

only a limited number of representations can be displayed without any user confusion 

(Post & Van Walsum, 1993). 
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4.7.8 Image Discontinuity 
 

 

Identifying uncertainties in visuals often depends on the user’s visual capabilities. Ability to 

recognise an image’s discontinuities and to interpret them as sections with specific data 

features is up to the decision-maker. Visualisation techniques that communicate 

discontinuities rely on blurring, texture, translation, scaling, rotation, warping, and distortion 

of images that represent computed data. 

 

Making use of animation features could highlight regions of interest, distortion, blur or 

enhance differences in visualisation parameters. A few basic animations have been 

applied to the module used in this work such as highlighting, colours and linked user 

interactions. 

 

 

4.7.9 Visual Selection 
 

 

The goal of a visualisation task  according to  (Schulz et al., 2013)  is the motive with which 

the task is carried out and the three high-level goals are: exploration, confirmation and 

presentation. 

 

Exploration analysis is an undirected search and draws assumptions from an unknown 

dataset. Confirmation analysis aims to examine identified or assumed hypotheses 

regarding a dataset. Used analogously, sometimes an undirected search is also a directed 

search. Presentation is a description and exhibition of confirmed analysis results. The 

goals point to the motive of a task’s actions and not the action itself, such as searching, 

extraction, filtering or sampling data and they are independent. A similar motive can drive 

diverse actions and a same action can be carried out for diverse motives. 

 

 

 
 

Figure 4.25: Relationship between tasks, input data and visualisation for design and 

evaluation (Schulz et al., 2013) 
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Various tasks are affected by input data relations and the visual representations used. 

Different aspects of visualisation can be selected or parameters modified when the user 

has knowledge of the task. This could be a generic steering of the overall visualisation 

design or specific approaches for individual aspects, such as selected mappings, colour 

scales or searching for certain data-task combinations. A machine recommendation of 

visualisation techniques to the user is still an area of further research. 

 

As most design dimensions and variables are customisable, visual selection options offer 

fundamental opportunities for working with tasks. The design space as a whole is usually 

fixed but individual preferences could be added or further subdivided at various levels as 

desired to attain a good level of granularity for specific applications or tasks at hand. The 

design space could capture entire tasks, whether abstract, specific, or even unusual. 

 

 

 

4.7.10 Reading Graphs & Data Interpretation 
 

 

Graphs and charts are used to illustrate information and it is vital to be able to interpret 

them correctly. The primary purpose of scales is to permit one to read values from the 

graph at any chosen point.  

 

Before conducting an investigation into a problem case, it is important for the user to be 

aware of how to organise collected information or generated data. By organising data, one 

can conveniently interpret what has been observed. A data table organises data into rows 

and columns, while graphs are generated from data tables. Ideally, they should be self-

explanatory and a designer should be able to understand them without detailed references 

to other information to aid support but this is not the case most times.  

 

It is desirable to keep numerical values shown in a table or graph to be as simple as 

possible, while also have adequate useful details and information to support. It is vital for 

summaries generated by tables or graphs to display clearly what was calculated to avoid 

uncertainty in interpretations and units. It is also helpful for the user to have information 

regarding where the data was gathered so that the extent of the coverage is clear, explicit 

time periods and if any data was borrowed from elsewhere (SSC, 2000). 

 

Graphical representations allow visual images of a decision-maker’s observations, 

simplifying interpretations and aid in reaching conclusions. Drawing conclusions is a final 

step of a design investigation, its accuracy depends on well organised and clear 

interpretation of data involving tables and graphs (CSEF, 2016). 
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4.7.11 Graphs Vs Tables 
 

 

In choosing between a favourable choice between tables and graphs for data visualisation, 

the answer usually depends on the audience or the person and how that data is meant to 

be used. Individuals interact very differently with these two types of visuals.  

 

Tables, with their rows and columns of data, interact primarily with one’s verbal system. 

Tables are read, scanned across rows, columns to compare various values. In terms of 

communicating structured numeric information, tables are better than graphs while graphs 

are good at displaying trends, show relationships and assist in making comparisons. 

Tables are not effective for multi-disciplinary visualisation, while graphs, on the other hand, 

show how different variables relate to each other. Graphs are a high bandwidth information 

flow from what one’s eyes see to the comprehension in one’s brain, which can be very 

useful when done well.  

 

 

4.8 VISUAL INTELLIGENCE 
 

 

There are still several issues regarding visualisation techniques such as distributed 

processing, managing data, standardising of data formats, user interface and interaction 

that call for more study and exploration. Several combinations of style and mode of 

interaction are possible, depending on the problem case, simulation process or extent of 

visualisation control (Hearn & Baker, 1991).  

 

The interaction style offered by general purpose visualisation codes  enables the user to 

create data flow networks, allowing alteration of visualisation process, they do not impact 

objects representing the data. (Post & Van Walsum, 1993) state that the concept of direct 

manipulation of data requires more design clarification, including interactive probing and 

interrogation. 

 

A human mind is a creative genius, and although it may come across as effortless, it far 

outstrips the most valiant efforts of supercomputers. The mind only has to see. In a fraction 

of a second, a human’s visual intelligence can construct the objects, patterns, images, 

colours, or any of countless other scenes of such subtlety and complexity, far surpassing 

any advanced computational technology in recollection, repertoire and speed (Hoffman, 

1998); intuition also works in a similar way. When dealing with unsure and ambiguous 

areas, a human has an advantage over algorithms; they are able to draw parallels quickly 

to understand and develop insight on new situations. 

 

Any design framework requires a cumulative discussion at various levels where the 

designers are able to discuss the framework together in terms of: 
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 Benefits 

 Drawbacks 

 Applications 

 

The design space of visual representations is not yet exhausted; however it can be noticed 

that it is increasingly becoming difficult to develop entirely new visual techniques and 

representations which will significantly extend and alter the already existing ways of such 

representations in a field. It is also obvious that there is, in general, no visual technique 

that is clearly superior for a given problem case or dataset; all visual approaches have 

their advantages and disadvantages (Javed & Elmqvist, 2012). In order to balance these 

strengths and weaknesses, efforts have been made in combining different visualisations. 

This also gives rise to novel visual representations which can be generated by combination 

of the existing ones. 

 

 

4.9 DISCUSSION 
 

 

This chapter primarily dealt with visualisation in the context of multi-objective optimisation. 

It recognises the importance of visual support system to the aeronautical engineer and the 

several advancements made till date and those that are projected in future. 

 

Various phases and spaces of interactive visualisation have been presented. Scaling and 

translation of particles in I-MOPSO module has been introduced; a further explanation of 

the module is covered in the next chapter. Selected visual techniques that were primarily 

used in this research are introduced and their characteristics explained. In searching for an 

optimum solution, various factors that affect this search have been discussed which are 

both machine and human related.  

 

Common errors and problems faced, both cognitive and perceptual have been presented. 

Usefulness and drawbacks of various tools in view of decision-maker and visualisation of 

data, tasks have been presented. A practical analysis of these techniques is presented in 

the following chapter as part of trade studies.  

 

 

 

 
------------------------------- 
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5 

  Optimisation 

Trade Study 
 

5.1 INTRODUCTION 
 

While optimisation is a helpful technology, it is only one of the available methods in the 

toolbox of design exploration.  Design optimisation algorithms have two sections: codify 

problem formulate and solution convergence, assuming that a problem is formulated 

before optimization search and aims at a convergence. A design exploration strategy 

establishes that a problem formulation evolves during the search process and converges 

(Figure 5.1), ultimately leading to an informed optimal solution. Optimisation thus is both 

divergent and convergent. 

 

 

 
Figure 5.1: Four Phases of Engineering Design Process Showing Divergent & 

Convergent Methods  (Johnson, et al., 2015) 

 

Optimisation depends on a good optimisation problem set up or formulation, it generally 

involves the following, and are usually multidisciplinary in nature: 

 an objective function 

 constraints, variables 

 the expression of user preferences 
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The formulation of an optimisation problem predefines the optimum solution, allowing the 

optimistaion algorithm’s mathematical logic to generate optimum solution through an 

iterative search. On the other hand, design exploration, assumes that the optimum design 

is initially unknown and not characterised. The process of design exploration eventually 

discovers design conditions through various forms of experiments and defines an optimal 

design. After this step, a decision on final solution can be found through a convergent 

design optimisation algorithm (Jenkins, 2014). 

A problem formulation and good design according to (Will & Perng, 2011) are as follows: 

 Identify key design parameters 

 Identify the variation of design performance with respect to design parameter variations 

 Make the right decisions based on the right information with the appropriate tools 

 

 

5.2 SWARM INTELLIGENCE  
 

 

Swarm intelligence is a commonly shared behaviour emerging from social insects working 

under very few rules. Self-organisation is the main theme with limited restrictions from 

interactions among agents (Figure 5.2). A swarm should be capable of responding to 

altering factors and able to easily compute related to its surrounding environment. 

Resources are generally not concentrated in specific regions but distributed and swarms 

should be able to adapt to fluctuations. 

 
 

Figure 5.2: Basic Particle Swarm Optimisation Cycle 

 

Algorithms based on swarm intelligence techniques find optimal values follow the pattern 

of animal groups who have no leader. Particle swarm optimisation consists of a swarm of 

particles, where a particle represents a potential solution, a better condition. Particles 
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move through a multi-dimensional search space to find the best position in that space, 

maximum or minimum values (Figure 5.3). 

 

Particle Swarm Optimisation (PSO) is a population based heuristic based on the social 

behaviour of birds within a flock. In a PSO, algorithm of each potential solution to the 

problem is called particle and the population of solutions is called swarm. The way in which 

PSO updates the particle xi at the generation t is through the formula: 

 

xi(t) = xi(t - 1) + vi(t)   

where velocity factor vi(t) is given by: 

vi(t) = w .vi(t - 1) + C1 . r1 . (xpbesti - xi) + C2 . r2 . (xgbesti - xi)   

 

In this formula, xpbesti is the best solution stored by xi; xgbesti is the best particle, also 

known as the leader that the entire swarm has scanned, w is the inertia weight of the 

particle and controls the trade-off between global and local experience, r1 and r2 are two 

uniformly distributed random numbers in the range [0, 1], and C1 and C2 are specific 

parameters which control the effect of the personal and global best particles (Durillo et al., 

n.d.).  

 

Particles move through the solution space, and are evaluated with respect to certain 

fitness criterion after each time-step. Particles are accelerated over time towards those 

particles within their communication grouping which have better fitness values. The 

advantage of such an approach over other global minimisation strategies is that the large 

number of members that make up the particle swarm make the technique impressively 

resilient to the problem of local minima. 

 

 

 
 

Figure 5.3: PSO is a minimisation optimiser. Swarm moves towards point A or B 

depending on the decision-maker’s selection of target search point 

 

Although there are several multi-objective evolutionary algorithms (MOEA’s) available in 

literature, popularly used are genetic algorithm based NSGA-II and particle swarm 

intelligence based multi-objective particle swarm optimisers (MOPSO’s). Particle Swarm 

Optimisation (PSO) is now a very well established optimisation technique used in a variety 
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of fields and contexts. It is similar in some respects to other evolutionary algorithms, 

except that the potential solutions/ particles move rather than evolve through the search 

spaces.  

PSO consists of several candidate solutions called particles each of which has a position 

and velocity, and experiences linear attraction towards two factors: 

 Best position attained so far by that particle (particle attraction or personal best) 

 Best particle attractors in a specific neighbourhood (neighbourhood attractor or global 

best) 

Multi-objective PSO (MOPSO) has become popular due to its easy implementation, 

population based approach, successful handling of continuous search spaces and 

concepts of individual position and velocity. 

 

5.3 INTERACTIVE MOPSO 

Interactive MOPSO (I-MOPSO) uses interactive algorithmic extensions allowing the 

decision-maker to interact and present preference information at different times during the 

optimisation process; specifying any unacceptable values or goal levels and restricting the 

solution space to be searched. It has been test run using the computational solvers, X-foil 

for single-element and MSES for multi-element aerofoils. 

Preferences are captured in the form of preferred ranges in the parameter space, 

depending on the decision-maker’s ability to find desirable solutions and guide the 

MOPSO algorithm accordingly. Figure 5.4 and 5.5 present the optimisation flow chart. The 

user interface is mainly by visuals, using parallel coordinates, scatter plot, heat-map, self-

organising map, radviz and a combined view: they display parameters and objectives of 

known non-dominated solutions. When using parallel coordinates, the decision-maker can 

select any two axes to visualise in a scatterplot. A visual inspection of presented candidate 

solutions could be examined by clicking on a solution in either plot, which also highlights 

the point in the other visualisation modes. Such inspection can also be carried out in other 

plot displays. Preferences act as guidance information; the underlying algorithm also 

makes use of virtual guide particles to search selected regions with few or no solutions. 

 

The user interface has evolved as part of Interactive MOPSO module and provides a tool 

for the decision-maker to use linked visualisations to study the known, non-dominated 

solutions and analyse preferences using various approaches in the parameter space. 

While visualising results, the set of computed solutions displayed in plots is limited to the 

present known non-dominated set by default. Most of these features can also be found in 

several post analysis tools, however their target functionality has not been directed 

towards aerodynamics analysis and also do not involve decision-maker in interactive 

optimisation loops. The interface tries to facilitate problem discovery and decision making 

in a easy and flexible manner. One of the benefits of such visual presentations is high 
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dimensional spaces represented in an easy and intuitive manner. As is the case with many 

software products, there is also much room for the tool’s development to add and enhance 

interface features. 

 

Parallel coordinates’ plot are capable of displaying the entire space in one graph, and so is 

the user’s primary interface to interact and exploit the data. Scatterplots, heat-maps, self-

organising maps and radviz plots are available as additional representations of the data. 

Scatterplots allow any number of dimensions to be plotted against each other per plot, this 

feature is also available in combined view for self-organising map and radviz. Hybrid or 

combination view is also made available for the user to view computed output on a single 

page. 

 
 

  

Figure 5.4: Schematic representation of the 

interactive optimisation strategy (Benabes, et 

al., 2010) 

Figure 5.5: Generalised interactive 

optimisation flowchart for I-MOPSO 
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5.3.1 I-MOPSO Algorithm 
 

A particle is a collection of all potentially possible solutions and a swarm is a populace of 

all solutions. Any one perfect solution or a unique global, personal maximum does not exist 

for multi-objective problems. At first, the algorithm initialises the swarm generating a set of 

non-dominated particles which are generally saved in an external file; a set of leaders is 

selected from the set of non-dominated particles. One or more leader particles are 

selected to guide the swarm in accordance with its respective topology. The algorithm 

adapts ‘turbulence’ which is a mutation operator to the particles. Later, every particle is 

assessed so as to refresh its related p-best and leader.  

 

The process is repeated till the given maximum number of iterations is executed; a quality 

measure of the set of leaders is also assessed repeatedly. The algorithm maximises the 

number of Pareto optimal set elements and their spread and minimises the assumed 

distance between generated Pareto front and the real particle (assuming the location is 

known). Selection of leader, storing non-dominated solutions and diversity of swarm 

influence a MOPSO algorithm and there are several ways available depending on the 

user’s preference and choice of implementation. 

 

I-MOPSO algorithm is run according to the following steps: 

1. Initialise swarm population and velocity 

2. Fitness evaluation and Pareto dominance for ranking particles (solutions) 

3. Store memory: Personal Best (Pbest)= Swarm Population (and their ranks) 

4. Store non-dominated solutions in external archive 

5. Particles select ‘global leaders’ from external archive 

6. Compute PSO equation 

7. Fitness evaluation and Pareto dominance for ranking particles (solutions) 

8. Apply mutation and perturbation 

9. Update Personal best 

10. Maintain external archive 

11. Go to step 5 if stopping criteria is not met 

12. Report solutions from external archive (pareto front) 

 

 

Particle Swarm Optimiser (Pseudo Code) 

1: Initialise Swarm ( ) 

2: Initialise Swarm Population/ Leaders Archive ( ) 

3: Determine Leaders Quality ( ) 

4: Set w, C1, C2, Max No. of Iterations (Gmax) 

5: Start 

6: While G < Gmax 

7:    For Each Particle do  

8:        Select Global Leaders from Archive ( ) 
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9:        Select Personal Best ( ) 

10:        Update Velocity and Position (Flight) ( ) 

11:        Mutation/Perturbation ( ) 

12:        Evaluation ( ) 

13:        Update Pbest ( ) 

14:    End For 

15: Update Leaders Archive ( ) 

16: Determine Leaders Quality ( ) 

17: Generation ++ 

18: End While 

19: Update External Archive ( ) 

 

 

 

5.3.2 Structure & Visual Interface 
 

 

I-MOPSO structure provides the user with knowledge of search space structure and 

available solutions, thus lessens the inconvenience of expressing preferences without any 

previous knowledge. Computational costs are further reduced by using guidance to the 

search and by avoiding search regions that are of little interest. The understanding of 

decision-maker regarding design space is enhanced as optimisation becomes an assisted 

design tool. 

 

The framework for I-MOPSO was originally developed by (Hettenhausen et al., 2013). A 

swarm of N particles is generated by the algorithm and stays consistent throughout the 

evaluation runs. The velocity equation governs swarm behaviour of the particles; it 

depends on the previous weighted velocity and two added factors, P-Best and PG-Best 

(Personal-Best and Personal-Global-Best). These factors present the knowledge of good 

solutions concerning the particles and the entire swarm, otherwise designated as the 

cognitive and social components. The particles are represented by non-dominated 

solution’s archive in the Algorithm. PBest is particle specific and contains only non-

dominated solutions found by the particle, containing either one or more points depending 

on the implementation. PG-Best holds non-dominated particles detected by the entire 

swarm. The position of the particle gets updated based on the velocity. 

The algorithm operates based on choices articulated in the parameter space instead of the 

commonly used objective space. The approach is hinged on a visual representation of 

decision and objective spaces to effectively make use of human decision-maker‘s 

reasoning and knowledge of domain. The user interface is vital in interaction. The 

decision-maker reviews the progress of the test runs at regular intervals through the user 

interface options, having choices to specify a set value, delete or adjust boundary 

constraints in the decision space. 
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Figure 5.6: Structure of interactive MOPSO and visualisation module 

 

 

The user interface comprises of the following visualisations: 

 

 Parallel coordinates plot 

 Scatter plot 

 Heat Map 

 Self-Organising Map 

 Radviz  

 Combined visual page 

 

The first form of visualisation used in this module was the parallel coordinates plot 

(Hettenhausen et al., 2013b). The aim of other plots was to serve as an aid in the user’s 

perception, exploration and decision making. Parallel coordinates offer a very good 

visualisation solution to see and comprehend high dimensional datasets. When used on 

multi-objective optimisation problems, the vertical axes represent each dimension of the 

parameter space and objective space with the ranges of each axis being independent of 

one another. 

 

Every generated solution is presented by a line which connects and crosses each axis at 

the respective, appropriate value. For every axis, the user is able to select a range, 

depicted by a grey bar. On moving this grey bar, solutions are either highlighted or greyed 

out depending on the movement and solution values. This is an attractive way of visually 

analysing correlations between parameter space and objective space along with various 

influencing factors. 
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For example, if a certain combination of lift and drag are of interest to the decision-maker, 

an appropriate range for those two objectives can be selected. This then highlights the 

related solutions and parameters whose objectives are within the selected ranges in 

objective space. Such a comparison between highlighted and not-highlighted areas often 

presents an insight to the decision-maker into parameters, showing those that strongly 

match with desirable solutions and those that have a lesser influence. Based on 

preferences of the decision-maker, the interactive plot also suggests the directions in 

which an algorithm could be steered to further improve the approximate Pareto front. Apart 

from range selection in objective space, parameter space ranges can also be selected. 

 

 

 
 

Figure 5.7: Typical user interface of I-MOPSO module with interactive optimisation 

framework. Optimisation problem minimises real function by choosing input values 

from within an allowed set, displaying o0 value as negative CL 

 

A Range is selected in the in objective space by the decision-maker considered 

advantageous. Values with lower or higher values depending on the objective functions 

are chosen; in some cases, the selection may be restricted by choosing a certain range for 

the first selected objective; highlighted and greyed-out solutions are compared. For 

example, the higher values of parameter six (P6) are connected to the solutions in the 

desired range of objective. After P6 range selection, and getting off O1 range, it can be 

visually noted that this selection provides insight information for next iterations. Such visual 

interpretations could be somewhat ambiguous and possibly one or more parameters need 

to be aligned to generate desired selections. If the decision-maker believes that exploring 

certain parameter or objective ranges in certain directions could lead to improvements, 

those ranges can be selected and the swarm will correspondingly respond (Hettenhausen 

et al., 2013). 

 

By individually selecting specific, choice result points or solutions, the decision-maker can 

improve their understanding of selections and also enhance exploration abilities. The 
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above visual view allows points to be selected either in the parallel coordinates plot or in 

the scatter plot. The corresponding points are then highlighted in both representations. 

When incorporating a scatter plot with parallel coordinates plot, heat map and self-

organising map, any two dimensions can be chosen for the scatter plot. Additionally, the 

aerofoil shape, a visualisation of the actual design relating to selected points is also shown 

as a representation. This representation may not necessarily offer assistance for all 

optimisation problems; it aids the decision-maker to study suitable sections in a more 

discernible way. This may also generate design results that may be impractical as final, 

workable solutions but gives an opportunity for the decision-maker to explore and evaluate 

simulations. 

 

 

5.4 COMPUTATIONAL SET-UP 
 

Fundamental software input settings of I-MOPSO module are similar to those used for 

preceding research (Hettenhausen, et al., 2013), (Tilocca, 2016). Although several new 

features were added to the module, most calculation code settings are unaltered in order 

to maintain configuration and facilitate ease of use, building on existing tool and integrating 

new processes with as little change as possible. A detailed description of the set-up is 

presented in the following sections. 

 

 

5.4.1 Input Programme 
 

AIRSET is an interactive programme that carries out geometry editing and manipulation; it 

reads blade.xxx file and allows geometry customising. It is able to manipulate the number 

of points defining a profile, modify contour, and other plotting functions. Separation-point 

definition is a valuable feature which allows manual selection of point where air separation 

is likely to occur. MSET identifies the setting and mesh is rearranged for separation 

bubbles. 

Blade.xxx file contains input information corresponding to aerofoil geometry and grid; it 

can be generated through AIRSET programme for manipulating aerofoil geometry, or by 

using MSET initialisation programme. The first line of the blade file includes geometry 

name, such as ‘Garteur’. The second line indicates domain definition, the inlet and outlet 

coordinates. Four values are considered: Xinlet, Xoutlet are horizontal coordinates and 

Ytop and Ybottom are vertical coordinates as is common to several computational 

simulation problems. As aerofoils are formulated based on polynomial expressions, it is 

easy to calculate aerofoil surface coordinates. In the lines that follow, the co-ordinate 

points of the multi-element aerofoil geometry are listed; the geometry sections or elements 

of the aerofoil are separated by [999; 999] co-ordinates.  

Gridpar.xxx file stores the parameters for mesh generation. Gird parameters can be 

stored in this file when a mesh is generated with MSES and similar configuration used for 
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other test runs. This is a useful feature either when running several evaluations on same 

geometry or with various geometry sections to maintain coherence.  

Mdat.xxx file is created by MSET representing the test case and holds data regarding 

each cell. While Gridpar file contains grid generation parameters, the Mdat file consists of 

the mesh itself. It serves as a file for MSES solver for input and output. MSES updates 

Mdat file after each iteration with the most recent dell data. This also serves as input 

information for post-processing stage, for MPlot programme.  

 

5.4.2 Input File 
 

The module allows the user to plug different aerofoil models via a text input (.txt) file. 

Before the start of the optimisation, data from the input file is gathered by the code into the 

framework’s various scripts. The input file used in this module has three parts: 

 General 
 Initialisation 
 MOPSO 

 

The user specifies input test geometry, number of parameters (6) and objectives (2), and 

the geometry section’s directory (with input file’s name). Transformation factors are 

calculated automatically; the choice parameter interval can be mentioned directly. The 

scaling factor for the objectives is beneficial to present a normalisation or for reversing the 

sign of one or more objectives. As the MOPSO code executes only minimisation solutions, 

this factor aids maximisation of objectives.  

Choice can be made between Gaussian and Uniform distribution through the initialisation 

section. Initialisation parameters such as mean, standard deviation, interval can be 

modified. Parameters of MOPSO algorithm can be modified via Input file, they are: 

 personal and global weights (C1,C2) 

 inertia weight (W) 
 Archive size 
 Standard deviation of turbulence mutation factor 

 

 

5.4.3 Script Runner 
 

The script runner acts as the link between geometry model and simulation framework; it 

permits information exchange with various models. 

Each set of parameters (particle) is imported by the function run_model which transforms 

parameters to take on assigned intervals from the normalised interval. The geometry is 

then evaluated generating the standard-output and standard-error files. The user can carry 

out any additional operations with data.  
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Figure 5.8: Shown here is the I-MOPSO input file containing the data relative to the 

aerofoil trade study 
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Under default settings, the code only verifies whether the standard-error file is blank. If no 

errors have been gathered during model execution, the standard output file presents the 

results. By default, the final results are expected in [flag o0, o1, o2, o3, …oN] format. The 

code searches standard-output, the line having the string ‘final results’, and reads a list of 

values containing a flag followed by the number of objectives, ‘N’. The flag has two values 

denoted by 0 or 1: 

 0: Invalid result 
 1: Valid result 

The results are invalid if the code reads the flag = 0; a default value of 100 is assigned to 

all the objectives so that the invalid solutions are kept away from valid points N of the 

objective space. This value could be modified depending on the decision-maker. If the flag 

reads 1, the code carries out further filtering to check composition of real numbers and  if 

the objective-list size corresponds to the specified number of objectives. 

For I-MOPSO’s particular two objectives’ problem used in this work, the code verifies for 

the objective ratio not to be infinite. After scaling the objectives, if any error is detected, 

that particular particle is treated as invalid. The decision-maker could overwrite errors; this 

does not affect the modularity but aids user convenience. 

 

5.4.4 MSES Solver 
 

MSES, developed by MIT faculty, is an assortment of various programmes for analysis and 

design of single and multiple element aerofoils; the package used here, version 2.9 is a 

composition of several programmes, each with its specific functionality. The input and 

output programmes rely primarily on the data files; a user interface is available. MSES is a 

low-fidelity estimator, employs an Euler solver for the outer flow and an integral boundary 

layer, similar to that of XFOIL, for the viscous layer.  

As an Euler method, it is able to predict the aerodynamic characteristics of aerofoils in the 

transonic region. MSES can predict transition using a full eN method, in which a Newton 

iteration method is used to find the critical Tollmien-Schlichting frequency, or by means of 

the approximate envelope eN method. The increased capabilities of MSES result in it not 

being as easy to use or as robust. In particular, the programme requires considerably more 

run time and convergence can be problematic. 

Two input files are taken into consideration, mses.xxx and mdat.xxx; the latter is constantly 

updated with latest available solution for every iteration. The maximum number of 

iterations are specified by user. The simulation comes to a stop if the maximum number of 

iterations is reached or when convergence is achieved. 

MSET is a built-in programme which initialises the grid, flow-field, and a variety of other 

variables. Blade.xxx is the input file. The user can manually specify inlet flow angle, which 

initialises the streamline, so that the expected mesh will be adjusted with the flow. The grid 

can be initialised depending on the specified spacing criteria and grid parameters.  
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MPLOT is the solution plotter displaying the results, convergence or non-convergence of 

the obtained solution. It reads Mdat.xxx file and offers various interactive plotting options to 

the user.  

 

Figure 5.9: Setting Solver Parameters Overview (Ansys) 

 

5.4.5 Visual Modules 
 

The various visual modules used in this work are specific to the individual programming 

languages and tools. In making use of I-MOPSO framework, the most plotting codes were 

achieved through Javascript’s D3 library and Matplotlib. D3 library allows the generation of 

dynamic, interactive visuals allowing users to control user needs and results. Matplotlib is 

a python library for making 2D plots of arrays; it provides an object oriented application 

programming interface for embedding plots using generic graphical user interface. 

The plotting library is used in many different contexts, for automatically generating post-

script files, or to deploy Matplotlib on a web application server or for interactive usage from 

Python shell. The library is designed with the philosophy of being able to create plots with 

just a few commands; also the base code can be redesigned without affecting the user 

code. Javascript framework generates visuals by binding data and object model. Wrapper 

function has been used to adapt various interfaces. 

Plotting scripts call upon a parameterisation programme code, which, when given a set of 

parameters of each particle, return the calculated results or aerofoil’s shape through a list 

of points. A python based web framework is a collection of packages or modules which 
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allows various web-based applications without much low-level management, Django is one 

such popular high level framework generating clear and pragmatic visualisations; the code, 

conforming to a set of conventions lets the user to ‘plug in’ to the framework. 

 

5.5 INTERACTIVE TRADE STUDY 
 

The module settings used in the trade study are: Inlet Mach number, M=0.22, Reynold 

number of Re=4.51e6, at an inlet flow angle of α =20.3°. The initial maximum iterations for 

MSES was set at 200; however, the convergence of particles could already be noticed 

between 30-40. Only fewer particles are converging during later intervals (between150-

200), the maximum iterations was reduced (100-150). Reducing the number of iterations 

gives rise to an increase in non-valid, non-converging and spread out particles; these will 

not help the decision-maker in a proper evaluation irrespective of whether the individual 

particles themselves might generate either a good or bad result. 

Nevertheless, an increase in the number of non-convergent, rejected particles benefits 

computational cost by reducing the number of evaluations. When the evaluation process 

begins to diverge instead of converging, the MSES code has been programmed to stop 

iterations avoiding the solver to waste a full iteration interval for non-valid particles. This 

bypassing of diverging computations leads to a reduction in computational time and costs 

by cutting down on the maximum number of iterations. 

After code initialisation, the initial positions of personal leaders are updated for each 

particle and the first swarm’s non-dominated particles are added to the archive. Leader 

selection takes place in a uniformly divided 10x10 hypercube grid space and a score, 

inversely proportional to the second power of the number of particles assigned to each 

hypercube gives way to a roulette-wheel selection and a leader is randomly picked up. For 

each iteration, the position of each particle is updated. The process repeats until the set 

maximum number of iterations are completed.  

 

The decision-maker guides the personal and global best particles by selecting the 

parameter range in the desired optimisation direction with the help of the optimiser code. 

For each selected dimension, a list of values or results that satisfy the constraints set by 

the decision-maker are generated. The interactive visual technique aids the decision-

maker in steering the optimisation to further explore any particular areas of interest for a 

closer investigation. 

 

User-computer interface, the computer software and its understanding, along with the 

overall optimisation process play an important role in interactive trade studies. In using 

interactive parallel coordinate’s plot, the user is able to select a range and particles that 

belong to the selected interval are shown, both in parallel co-ordinates and simultaneously 

in the scatter plot. In the example discussed, a 2D aerofoil is plotted with six parameters 

and two objectives. Each vertical line represents one dimension of the parameter space 

and the objective space; any combination of parameters and objectives can thus be 

visualised for an aerodynamic design exploration. 
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5.5.1 Optimisation 
 

Two test runs were carried out, one each for Garteur and SC2-0610 aerofoil sections. The 

configurations compute two objectives, lift and drag coefficients.  

Garteur is a two dimensional profile taken from 59% Airbus A310 aeroplane wing. It is a 

three element aerofoil made up of slat, main element and flap. Take-off configuration is 

considered as a starting point. NASA SC2-0610 is a slotted supercritical aerofoil whose 

profile is widely used to research aerodynamic characteristics of large civil aeroplanes for 

pressure distribution at speeds of Mach 0.85. 

The main element remains fixed and the geometry is modified by translating and rotating 

only two of the elements. Spatial coordinates are defined in the two-dimensional plane, X 

(horizontal translation), Y (vertical translation) and ϴ (theta – rotation angle [deg]), the 

vector parameters are expressed as: 

 

Slat is element 1 and flap is element 2. The experiments carried try to optimise two 

objectives [o0, o1]: the maximisation of lift coefficient and the minimisation of drag 

coefficient. MOPSO framework is designed for minimisation problems only, hence the 

usage of additive inverse of lift. 

The two objectives functions can be written as: 

 
 
 

5.6 TEST RUNS 
 

Initially, the swarm is populated using a Gaussian distribution with a mean of µ=0 and a 

standard deviation of S=0.2. The particles inside MOPSO are computed in the interval [-1, 

1]; the change takes place just before they are sent to the model. All through the 

simulations, the inertia weight, personal and global weights are designated set values of W 

= 0.4, C1 = 2 and C2 = 2. The invalid points are given a value of 100, so as to identify them 

easily apart from the region of interest. During the interactivity runs, DM aims to explore 

solutions with CD <0.0280, trying to maximise CL. 

An iteration of 100 with a swarm of 70 particles and another iteration of 75 with 50 swarm 

particles was carried out. 25 iterations respectively were used to initialise the domain; no 

interaction was required during this interval. During the interaction stage of the 

optimisation, DM was required to interact every 5- 10 iterations. 

A small interaction interval allows the DM to make active decision and guide the 

optimisation. The iterations could be stopped if the DM perceives to have achieved a 
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favourable optimisation result. Optimisation study was carried out based on three 

interactive approaches. 

 

5.6.1 Trade-Off Information 
 

Using this approach, the lift-to-drag ratio was adjusted to trade-off parameter values. It is 

beneficial to be aware of objective trade-offs when alternating between Pareto optimal 

solutions. The key issue was to obtain a partial trade off rate for a Pareto optimal solution. 

However to seek the values of objective functions separately was convenient for practical 

reasons. DM had a say on the preferences on the displayed trade-offs whether the current 

solution seems acceptable or not. Depending on this the information is actualised and a 

new solution found. 

 

 

Figure 5.10: Iteration results for Garteur aerofoil section showing an average CL 3.6 in 

parallel coordinates map 

 

In the highlights shown in Figure 5.10, CL at -3.6 seems to be the average obtained value. 

In order to be able to increase the lift to above -4.2, the drag value seems to increase 

above 0.036, while decreasing the values of P5 and P3, and increasing the values of P4 

and P2 (Figure 5.11).  

Parallel coordinate map provides the best interactivity capability among the various visual 

aids available. Scatter plot, heat-map, self-organising map and radviz plots offer a support 

to the DM in viewing overall results and in decision making. Individual plots viewed as 

separate entities may not offer much help and guidance to the user. The results generated 
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by the heat-map was not sufficient for the user to make any useful conclusions of the 

iterations but combing those with the results of self-organising map offered a more clear 

view of the generated results, thus allowing the user to view high CL values. Radial 

coordinate plot seemed to offer the least help to the decision-maker while viewing and 

analysing the results. It is also necessary to have prior knowledge of the plots and the way 

the results are processed and shown to draw conclusions. There is a chance that the user 

will abide by the views that are more comfortable and easy to use rather than exploring 

every visual aid available for design exploration.  

 

 

 

 

 Figure 5.11 (1): Results for Trade off information approach at CL 4.2 shown in 

various plots 
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Figure 5.11 (2): Results for Trade off information approach at CL 4.2 shown in various 

plots 

 

The desired mathematical convergence was obtained at 67th iteration, proving that the 

method could be converged in limited iterations. The preference information required from 

the DM is not hard if the problem at hand and the variable information is clear. DM’s 

consistent responses are vital for convergence and on bypassing a close-enough 

convergent iteration for another one, it could be that the DM has to wait a while for another 

good solution unless the tool features allow going back in the process. It is to be noted that 

a Pareto optimality of the final chosen solution is not guaranteed. 
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In another test run, an O0 value between -3.1 and -3.3 and O1 value between 0.021 and 

0.023 was DM’s desired setting and adjusting to trade off values of P1 and P2, trying to 

decrease the lift and drag values (Figure 5.12). An early result pattern could be perceived 

by DM as early as 30 iterations. The values of P1 seemed to decrease and those of P2 

seemed to increase in order to obtain the DM’s desired range. A quick view of the scatter 

plot between P1 and P2 offered some help to the DM in interacting with parallel 

coordinates plot. Half way through the iterations, a desired convergence of O0/O1 could 

already be observed. 

Results shown in radviz plot were found as uncertain to the DM to most extent mainly 

because it was difficult to explore the relationship between parameters. However, viewing 

it together with other plots shed some light on the visualisation. Identification of trade-offs 

by searching and filtering for values using heat map or self-organising map alone was 

inconvenient to the user; parallel-coordinate plot played an important role in the decision 

making.  

 

 

 

Figure 5.12: Results for Trade off information approach at CL   between -3.1 and -3.3 

shown in parallel coordinates plot and scatter plot with 30 iterations 
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5.6.2 Reference Point Approach 
 

In this approach, DM was looking for a preference O0 /O1 value which serves as the 

reference point. A prior knowledge in this approach regarding DM’s preferences on the 

decision taken to arrive at a set goal played a vital role. This approach serves individual 

cases well having limited options for decision-making. In this approach, learning is a 

concurrent activity of the DM when interacting with the decision support system (DSS), 

which in this test scenario are the various visual aids. DM’s preferences might change in 

the decision making process and has full right or even a necessity to be inconsistent 

during evaluations. 

 

 

Figure 5.13: Results for Reference Point approach 

 

In order to maintain a CL/ CD ration of 0.1, with CL at -3.8 and CD at 0.028, P0 should be 

maintained between -0.20 and -0.40 (Figure 5.13).  This approach assumes from the start 

that all objective functions are subject to trade-off analysis. By improving or diminishing the 

value of one objective function, another function could be either improved or worsened.  

This approach could promote decisions with unbalanced objectives as the natural human 

preference is for a balanced solution. DM makes decisions based on an overall evaluation 

of the decision situation. The various visualisation techniques help compute and 

communicate to the DM on suitable objective function value ranges, thus aiding the DM in 

an overall evaluation. 

It is also to be noted that a reference point approach assumes that the reference (choices, 

restriction) levels and points are not considered as fixed representation of DM’s 

preferences but are an adaptable tool which help in overall learning regarding the decision 

situation. Thus, even if the convergence of reference point approaches to a solution most 

preferred by the DM can be proved, this aspect is never stressed.  
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Determining the reference point by the DM decides the outcome of a Pareto optimal 

solution. Even if the reference points could be determined in an objective fashion, 

independent of DM’s preferences, there remains a diversity of such objective 

determinations, thus making possible comparing of various resulting optimal solutions. 

DM can select Pareto optimal solution by altering reference points and maximising the 

target function. This gives the DM full freedom which could be used to study the problem 

and decision situation, and to investigate various sections of the Pareto optimal set. 

For a CL set at -3.3 and CD value of 0.023 which was DM’s reference point, worsening of 

drag lead to improvement in lift, adjusting to trade off values of p1 and p2 (Figure 5.14). 

The values of P1 seemed to decrease and those of P2 seemed to increase in order to 

obtain the DM’s desired reference point. This approach limits exploration as the reference 

is already set and offers less room for innovation, limiting identifying any novel views or 

patterns. In terms of visualisation, no advantage was noted over trade-off information 

approach; the pros and cons noted showed similarity. 

 

 

 

Figure 5.14: Results and evaluation for Reference Point approach CL set at -3.3 and CD 

value of 0.023 
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5.6.3 Classification Method 
 

The classification based approach assumes the possibility of moving from one pareto 

optimal solution to another to improve one objective function value by permiting another 

objective value to get worse. DM indicates the preference by classifying objective 

functions. Such classification is a clear way of expressing the DM’s choices.  

The idea is to tell whether lift or drag functions should be improved or impaired from their 

present values.  DM is shown a generated Pareto optimal solution who then defines what 

modifications to the objective function values might generate more satisfactory solutions. 

Classification is a conscious reasoning method for DM to steer the solution progress so as 

to identify solutions that are most preferred because no additional ideas are utilised; rather, 

the DM handles objective function values that are deemed essential and logical. The DM is 

able to define any possibilities regarding solution improvements to directly visualise and 

compare how good the anticipation could be achieved on generating the next solution. 

 

 

Figure 5.15: Evaluation of Classification method for CL at 3.4, drag has to be maintained 

around 0.024 and P4 between 0.2 and 1.2 
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To generate a particular set value for CL at 3.4, drag has to be maintained around 0.024 

and P4 between 0.2 and 1.2 (Figure 5.15).  In general, it is not feasible to make better all 

objective function values of a Pareto optimal solution, but the DM was able to express 

preferences without paying attention to this and to visualise the various solutions that are 

feasible. When using classification approach, there is a possibility of the DM to be more in 

control when selecting between objectives to be made better and the level of mitigation for 

others. 

 

 

Figure 5.16: Results for classification method approach in Radviz plot 

 

 

 

Figure 5.17: Evaluation for classification method approach for increasing lift from -3.1 to -

3.4, which increased drag from 0.021 to 0.024 
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Another test looked at increasing Lift from -3.1 to -3.4, which increased drag from 0.021 to 

0.024 (Figure 5.17). It was possible to stop the evaluation as the DM seemed to have 

achieved the desired evaluation result quickly.  

As this approach chooses between objectives, O0 and O1, visualisation of solutions is 

uncomplicated as it eliminates the need for weighing out other variables, thus minimising 

clutter. Scatter plot and combined view offered good views to the DM. This approach also 

allows the DM to choose between two parameter variables if so desired. Parallel-

coordinate plot offered the best view of solution convergence among the available visual 

aids. 

Classification-based method shares the philosophy of reference point method in terms of 

stopping criteria; the DM’s sense of contentment is the ultimate stopping factor. The 

search process could be continued as long as the DM wants to because it is not important 

for a mathematical convergence to occur as in trade-off based methods but instead the 

psychological convergence plays a vital role. This is supported by the fact that the DM 

typically wants to experience being in control and would not naturally want the method to 

dictate when the most preferred solutions are found, overriding their own preference. 

 

5.7 DISCUSSION 
 

Three interactive approaches using I-MOPSO module are presented in this chapter. User 

interaction through the designer-in-the-loop features offerd by algorithm and user interface 

through the various visual techniques have been analysed. The practical aspects 

presented in this chapter build on the study presented in previous chapters covering high-

lift aerodynamics, interactive optimisation and visualisation. 

The interactive utilisation of user preferences and choices is necessary for the reciprocal 

response generated and analysed through visualisation tools which is necessary to make 

the analysis of results easier, and to help in decision support. The choice of methods 

chosen is in accordance with the nature of optimisation problem task, a high-lift aerofoil 

design context; however, in an industrial setting, each discipline is then responsible for the 

choice of its preferred methods. 

Several factors that affect design optima and evaluation criteria for visual techniques have 

been discussed in Chapter 4. A summary of these characteristics for visual tools used in 

the test runs is presented in Table 5.18; it rates various techniques against certain 

preferred visual tool features such as dimensionality, trend analysis, discontinuties, design 

selection, robustness and ease of use. The rating is done from 1 through 3, from weakest 

to strongest feature, along with its ability for dimensionality.  

Parallel coordinates seem to offer a very good interaction support to the user with radviz 

plots offering least support, primarily to with the nature of data representation and ease of 

user interpretation. All other plots used in the trade studies served as support tools to 

interpret data and complimented one another. However, it was difficult for the user to rely 

on just any one visual tool in order to express preferences and analyse problem task. 
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Table 5.18: A Comparison of various visualisation methods against certain desirable 

features 

 

Table 5.19: Evaluation of various interactive approaches 
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A combined view also provided the user with easy visualisation of preferences and results 

of choices by eliminating the need to move between various visual tabs; however, the size 

of the computer screen affected the clarity of the results displayed, a zoom or pan feature 

was then used for easy reading. The capacity of the hardware used to run calculations 

also impacetd the speed and clarity of visual dispalys.  

Several factors pertaining to human factors engineering are discussed in sections 3.4 and 

3.5. As the user was involved in coding the module’s framework, it allowed for learning 

about the system and its functions, also influencing user’s perception and interpretation of 

the projected results. There is always room for betterment of user interfaces and making 

the system user friendly. Encountering several programming errors, along with hardware 

system limitations lead to periods of disinterest; the effort, which started as a conscious, 

knowledge based attempt adjusted into a skill-based, automatic task (Figure 3.9). To avoid 

continuous errors and slipping into a usual mode of operation, it was necessary to opt for 

creative approaches in solving generated programming errors by also regulating 

psychological workload to minimise errors which might otherwise be a result of avoidable 

stressful situations.  

It was necessary for the user to be aware of the nature of problem task, operation of 

solver, optimiser and their respective settings. Such previous knowledge allowed the user 

to identify errors during interaction. Graphical literacy also played a role in interpreting the 

displayed information. Table 5.19 presents a summary of interactive approaches and their 

evaluation; all approaches exhibited the importance of decision-maker in design trade-offs 

and the role played in presenting choices, preferred information of objectives and 

parameters.  
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6 

Assessment & 

Scope 
 

6.1 INTRODUCTION 
 

Along with the presentation of empirical findings (section 6.2) and overall conclusions 

(section 6.10), this chapter also delves into a detailed assessment of digital human in a 

man-machine setting and contemplates future of flight.  

Several positive attributes and advantages have been presented throughout this exposition 

but this research also recognises that there are inherent limits to interactive optimisation 

(section 6.3); that analyses have boundaries in terms of uncertainties (section 6.3.2), 

visualisation hurdles (section 6.6.2), reliability and validation of software (section 6.3.3). 

However, in the midst of these constraints, wings of the future are designed now (section 

6.9), future technologies are conceived today. This calls for continuous optimisation 

(section 6.6) to keep up design innovation (section 6.6.1). Automatic design will not drive 

novelty but interactivity could (section 6.8) and design prediction is part of it (section 6.5) 

which includes visual and data analytics (section 6.5.1). A thinking engineer is an 

indispensable part of realising innovation (section 6.7) where critical thought processing 

abilities play an important role (section 6.7.1). Often confined by several decision support 

systems and tools to aid at work, an engineer could best start by asking why (section 

6.7.2). 

 

6.2 EMPIRICAL FINDINGS 
 

 

Interactions seem to show a positive impact on a designer’s acceptance and assurance of 

analysis results. Interactions, and thus interactive optimisation, seems to aid the designer 

in learning about an optimisation problem, also helping the designer to grasp and better 

discern the optimisation approaches. When a working system is understood better, there is 

a greater likelihood of a designer’s acceptance of it. Additionally, a fair amount of 
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interaction loops may prevent circumstances in which a designer over-estimates the 

efficiency of an optimisation system. Reviewing an interactive optimisation method, such 

as particle swarm technique, also addresses the inherent limits of an optimisation model 

and the difficulty to obtain adequate performances. In circumstances where it is very costly 

to assess an individual configuration computationally, the interactive approach is especially 

suitable so that the comprehensive number of parameter arrangements calculated could 

be minimised accordingly. 

  

Apart from the literature that justifies an interactive approach as a second argument, the 

fact that interactions help the designer or decision-maker learn of an optimisation problem 

and the related processes is a distinguishing trait common to several interactive 

optimisation methods. This work employs particle swarm optimiser for design optimisation; 

the primary benefit of this approach over other global minimisation techniques is that the 

problem of local minima is effectively resilient by the particles. 

 

This, however, does not advocate that any particular optimiser is better or best. Choice of 

optimisers, similar to that of meshing techniques, solvers and visual aids, are best 

analysed in light of their use and analysis of results, depending on design objectives and 

the problem at hand. The work, nonetheless, emphasises interactivity, involving human in 

the engineering design loop, to take advantage of the super human brain over super 

computers. In an effort to digitally mimic human brain, according to (Heisler, 2016) 

scientists ran more than 82,000 processors on one of the fastest available supercomputers 

to emulate just 1 second of brain activity of an average human. 

It is to be noted that the interactive nature is not limited to optimisers or visual aids alone 

but can be adapted to solvers, meshes or data handling, for just about every stage of 

aeronautical computational analysis. Selected visual techniques have been explored and 

their assessment presented; however, scope for improving visualisation, on both 

interactive and non-interactive fronts remains high.  

 
 

Figure 6.1: Principles of validated learning and innovation accounting (Ries & 

Hickman, 2012) 
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Several articles in literature research suggest and compare optimisation methods that are 

more effective than previous ones. For high-lift design too, proposals of advanced 

algorithms and enhanced results continue through the years; however, a gain in 

performance of optimisation methods is often acquired at the expense of simplicity and 

flexible adaptability of the methods used (Meignan et al., 2015). The overall assessment of 

numerical optimisation for aeronautical applications, including high-lift design can be 

summarised in the thoughts of (Holt, 1982) as follows: 

 

 It is surely not correct that all novel and complex technologies require several years to 

be accepted by the working aerospace community. 

 

 The literature bulges with theoretical knowledge on pros and cons of several 

aeronautical designs, yet design specifications do not make use of it; its methods are 

often unfamiliar and competitors in the industry do not seem to have embraced them. 

Figure 6.1 presents an order of lean principles to inculcate continuous innovation. 

 

 Codes that are dependable are not easy to come by, and they tend to be much 

complicated to use in practice than even the largest and best analytical programmes. 

 

 During development stages, optimisation has great ability as a stable way of choosing 

among alternative ideas. However, it may make things complicated later on in the 

development process. It is no good then in trying to optimise a bad idea. 

 

 If one builds on a design idea that nobody wants, what does it matter if it is 

accomplished on time, on budget, with high quality and with a very good design? 

Achieving failure is successfully executing a bad plan. Behind every supposed technical 

problem is usually a human problem. (Ries & Hickman, 2012) mentions about fixing the 

cause, not just the symptom.  

 

 Due to lack of experience when new technology is being tested for the first time, 

unexpected, startling and often very suitable discoveries can be generated when 

searching for extremes. Yet, there may also be counterproductive and even absurd 

results; certain undesirable consequences may result from omission or thoughtless 

execution of constraints.  

 

 Even when there are several convincing factors to support the use of new technology, 

uninterested, negative attitude of individuals and teams may prevail and hinder.  

 
A final optimisation decision is the result of a compromise among all alternatives including 

overall design requirement considerations. Subjects spanning mathematics, physical and 

engineering sciences are the norm of traditional engineering education; a lack of sufficient 

emphasis on design and creativity is a dilemma. (Sadraey, 2012) points that creative 

thinking and its attitudes are vital to a design success. The ability to be creative and win 

over strong hindrances is required in crafting novel, improvement designs. 

 

The above discussion can be summarised in the following table, pros and cons of 

interactive optimisation: 
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PROS CONS 

Interactions have positive impact on both 

design analysis and the designer 

Choice of optimisers and new algorithms 

continue to be proposed all the time 

Interactive design analysis helps in gaining 

clarity of an uncertain optimisation problem 

and user choices 

Choice of interactivity is a decision and an 

attitude which are highly dependent on the 

designer, either as an individual or as a 

team 

Several software (eg: Python) are able to 

offer good interactivity features 

I-MOPSO is not the better or best optimiser. 

In general, there is no guarantee of an 

optimal solution ever found 

It does not take long time to adapt any 

novel & complicated technologies 

Several programming languages remain to 

be explored and exploited 

The problem of local minima by I-MOPSO 

algorithm is effectively resilient 

More chances of designers relying on less-

efficient approaches 

Optimisation has the potential to help 

choose among alterative concepts 

New technologies evolve much faster than 

their implementation 

Tools can be developed simple enough for 

everyone to use and understand 

There is room for extending interactivity to 

all phases of a computational design and 

analysis, not limited to optimisation 

Parallel coordinate visualisation continues 

to be the most preferable MDO technique 

as of today 

Several visual techniques are a 

disadvantage if the user/ designer lacks 

knowledge of available tools or their use 

Interactive optimisation is suitable for 

computationally expensive configuration 

analyses 

Many MDO visualisation techniques are 

available and several under development 

 

Table 6.2: Table highlighting pros and cons of interactive optimisation  

 

6.3 LIMITS OF INTERACTIVE OPTIMISATION 
 

 

According to (Meignan et al., 2015), an optimisation model, including interactive 

optimisation methods are only a partial depiction of the real problem. An optimisation 

model contains inevitable errors due to the various limitations of modelling processes, 

which may be problematic for supporting a decision. Criterion such as in-flight activities, 

both machine and human generated risks, strenuous tasks, real-time boundary conditions, 

mesh functions, perceived duration of actual flight conditions are approximated out of 

necessity in an optimisation model and particularly difficult to model. This may result in 

impractical or unworkable computation solutions, or those that fail in capturing attributes 

related to the domain. 
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Most times, specifications of an optimisation problem are simplified in order to apply a 

computational optimisation approach, usually a single objective function combining several 

criteria, or by linear models that approximate relationships of variables. Apart from the 

inherent barriers to an optimisation problem, errors in optimisation model may also be 

related to difficulties in capturing an entire overview of the problem for a model design. 

Those designing the optimisation model may possess only a limited understanding of the 

actual circumstances of the optimisation problem, which is always an issue, especially with 

very large teams working across multi-system integration platforms. 

 

The determination of the adequate choice of an optimisation technique remains a tough 

task at the design stage; it is a crucial point for the effectiveness of optimisation. The 

choices in design decisions are often the result of a trade-off between the validity of the 

chosen model and the likelihood of models being made easy so that they can be solved 

readily. Maintaining traceability of the problems and their validity always exists. 

 

Technology Acceptance Model (TAM) is a user’s technology acceptance mainly affirmed 

by the anticipated use of a system and perceived usefulness. A common limit of 

optimisation methods, such as interactive optimisation is the concern of a designer’s 

agreement with the system and the assurance in the solutions generated by the chosen 

method. This assurance is especially critical for an optimisation system as it must solve 

complicated problems that will not be fully understood by the designer but the perceived 

usefulness, anticipated ease of use and faith in the system are necessary for an 

optimisation system to be received by its end users. 

 

Having no trust in an efficient system or having confidence in an inefficient one are both 

factors of risk for the designer: solutions that may result in good choices may be rejected, 

the effectiveness of optimisation system may be overestimated, or solutions that could be 

made better by other techniques accepted. Whatever the situation, there is room for a 

designer to misunderstand the value of an optimisation system and its results. According 

to the result of a study conducted by (F. . Davis & Kottemann, 1994), users showed a lack 

of conviction in an efficient approach but had greater belief in a far less effective approach. 

This demonstrates the influence of end user perception and confidence as it ultimately 

decides on whether a system is accepted or not. 

 

 

6.3.1 Analyses Limits 
 

An aeroplane and its wings are designed taking for granted that the fundamental laws of 

physics governing our nature stay the same, which is a fundamental limit.  

 

Every design of experiment consists of three basic parts while optimising: 
 

 objectives under test 

 variables or alternatives 

 constraints which are fixed 
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Among these, a designer is able to influence only the variables when an objective is tested 

and optimised under the notion of fixed constraints. Sometimes, a degree of violation of 

constraints also serves as a key influencing variable. For every variable used, a lower and 

upper bound must be specified prior to any optimisation. A change in the value of the 

variables will influence (either improve or worsen) the measurable performance of the 

optimisation.  

 

Trial and error methods are beset with certain fundamental difficulties, which must be 

clearly understood and appreciated to achieve maximum advantage even in the midst of 

performance limits. 

 

 

6.3.2 Uncertainties 
 

All decisions do not work out to be the correct ones, regardless of the amount of data 

collected. Occasionally, the effect of wrong decisions is small, other times having 

significant consequences. Whatever the result, decisions are made based on a perception 

of the system that is unlikely to be completely accurate, and this should be recognised in 

terms of design sensitivities and uncertainty (Figure 6.3). 

 

 
 

 

Figure 6.3: Sources of uncertainty; both sampling and modelling uncertainties affect 

each other and add to visualisation uncertainties (Bonneau et al., 2014) 

 

 

Making choices under uncertainty is at the heart of decision theory (Pascal, 1670) and the 

actions chosen are usually the ones that give rise to the highest total expected value. 

 

Evidence demonstrates that making decisions in an environment of uncertainty occurs in 

different parts of the brain in comparison to decision-making done under more certain 

conditions (Bonneau et al., 2014). The more complicated the task of making a decision 

under uncertainty, the more complex approaches are required and is likely to be influenced 
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by one’s experiences and events from the past. This theory is upheld by psychological 

evidence which demonstrates an increased engagement of brain areas vital to strategy 

formation and alteration, particularly the prefrontal and parietal cortex in uncertain 

situations (Paulus et al., 2001). 

 

 

6.3.3 Reliability and Validation 
 

Errors in computational modelling and solutions are inevitable. The reliable accuracy of 

any computational solution could be primarily measured in two ways:  

 

 reference to analytical solutions 

 largely accurate numerical solutions 

 

For several aviation related problems, numerical solutions seem to be the answer rather 

than analytical ones simply because of the sheer size and complexity of the problems dealt 

by the industry. However, numerical solutions can be a good approximation under specific 

conditions or not so good under others. 

 

The study of a solution’s correctness or error is fundamentally empirical, albeit within set 

design limits. Rigorous reliability by demonstrating the study results for all possible 

applications of a CFD algorithm or code is practically impossible for complicated ones. 

Such a goal could however be achievable for examining specific calculations by using 

other validation codes- a code for a code. 

 

 
 

Figure 6.4: (left) Phases of Modelling & Simulation and the role of Credibility and 

Validation (right) Validation process of comparing computational results & simulation 

with experimental data from various sources (Oberkampf & Trucano, 2002) 

 

Verifying a code’s reliability requires meticulous proof that the conceptual model and its 

solution is represented correctly by computational implementation. This also requires 
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evidence that the underlying partial-differential equations, along with its initial and 

boundary are correctly approximated by the  algorithms implemented in the code (Figure 

6.4). 

 

Additionally, it must be proved that convergence of algorithms to the accurate solutions of 

the particular equations under all conditions in which the code will be utilised. It is very 

doubtful that such evidences, proofs will ever wholly be available for CFD codes. The 

shortcomings and inability to offer a reliable code verification proof is similar to the code 

validation problems. In an operational sense, verification is the insuffiency or absence of 

proof that the code is faulty, a continual consistency with experimental data and the 

outputs from other computational techniques (Oberkampf & Trucano, 2002). 

 

Increasing confidence in detailed evidence supporting code verification is not easy. 

Evidence could be gathered from user communities on the efficiency of a CFD code to 

contribute to assessing verifications, although it is a multi-fold problem in itself for the 

aviation industry. Observation skills of a designer play an important role in identifying, 

eliminating any errors and also in gathering careful empirical assessment information to 

build a knowledge hub of iterative performances. 

 

 

6.4 EVOLUTION OF TECHNOLOGY 
 

 

Technology evolution can usually be broken down into stages. The introductory, proof-of-

concept stage exhibits the basic capabilities and performance of a technique or 

technology; even trivial functional systems seem impressive in this stage and encourage 

imagination, but also sometimes raises doubts and misunderstanding. 

 

In the second stage, or imitation, the technology starts mimicking existing technologies, 

with very few basic changes made to the operational interfaces; the technology begins to 

be steered less by novelty and usually starts attracting a larger interested audience in 

developing things more intensely by the way of science of understanding. This leads to the 

third stage, in which the technology achieves maturity; technology architects understand 

and exploit the intricacies of new knowledge and make way for unique experiences that 

offer capabilities that were not available until then (Tan & Nijholt, 2010). 

 

It is vital to carry on with inventions and breakthroughs within a certain domain itself, but 

also equally important to build connections, leverage engineers and researchers, and 

exploit advantages from ongoing work in other fields. The domain of human-computer 

interaction continues to drive toward increasing the knowledge and understanding between 

humans and machines, more considerably to craft technologies that assimilate smoothly 

into day-to-day tasks. 
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6.4.1 Uniqueness & Limitations of Human Brain 
 

Human brain is unique with remarkable cognitive capacity with the ability to recollect 

images, sounds, or objects from one’s memory with intense accuracy. The brain has 

plasticity, which means, that one is not stuck in situations where nothing can’t be done; 

subconsciously, a person is able to alter one’s brain to accomplish something that they 

could have not imagined to achieve. It is capable of complex colour perception and depth 

perception. 

On the other hand, in comparison to the large amounts of information that is generally 

available in the sensory input, a human’s ability to form perceptual categories is very 

limited. Similarly, the capacity to generate guided actions by visuals is limited to one or few 

objects at a time. Visual recognition takes time, typically hundreds of milliseconds, as it 

depends on a series of physical processes in the brain. A perceiver’s subjective bias for 

making certain kinds of categorisations and the given relative attention does influence a 

visual selection and analysis. 

If workplaces permit people to do work they value and let them find meaning, they will be 

crafting a human character that values work. There is a possibility that people would rather 

interrupt sleeping and eating than give up practicing their arts when preoccupied by what 

they do (Aurelius, 2003). All people are creative individuals, born with creative streaks, 

children being the best example. It is regrettable, if often, several creative people are 

trained to be un-creative, thus limiting design exploration and optimisation. Human being 

continues to remain the most unrivalled machine. 

 

6.5 PREDICTIVE ANALYSIS 
 

Predictive analysis in design makes use of statistical techniques to study historical and 

current facts to generate predictions about design unknowns and aids in novel 

approaches. They help in exploiting patterns based on transactional or historical data to 

identify various opportunities and risks. 

Relationships captured by design models among several other factors to support 

evaluation of negative potential or risks associated under a specific set of conditions, thus 

steering a designer in decision making. 

 

 

6.5.1 Visual & Data Analytics 
 

 

With the advent of computational applications in aeronautics, data is being generated at 

extraordinary rates. The scope of gathering and storing new data is growing very quickly, 
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while at the same time, the capacity to analyse these large volumes of data is moving at 

much lower rates. This gap is leading to novel problems in the study and analysis 

processes because decision-makers as individuals and teams rely on concealed 

information in the data; the diverse patterns and connected relationships among various 

elements are of much interest. Gathering a large amount of diverse types of data very 

quickly does not generate appreciated value, an analytics strategy is required to uncover 

insights that will aid optimisation. 

 

Technologies for visual representations and interaction offer a means for the designer to 

see and comprehend  large volumes of information in a single instance. Human mind is 

capable of understanding complex information when delivered through appropriate visual 

means. This ability is utilised by visual analytics to facilitate scientific and rational thought 

processing. Visual representations and interaction techniques provide the designer with an 

understanding of evolving situations so that the user takes action (J. J Thomas & Cook, 

2005) 

 

 

Figure 6.5: Visual analytics is shown as an integral approach combining 

visualisation, human factors and data analysis (James.J et al., 2005) 

 

 

6.6 CONTINUOUS OPTIMISATION 
 

 

No matter the many number of tests and empirical experiments one carries out, the 

capacity to monitor code efficieny is inadequate and limited. Designers might never be 

able to prove that a particular implementation of software has zero defects or is error free. 

Neither errors, nor the presence of limits can be completely eliminated; however, they can 

be minimised.  
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According to (AIAA-G-077-1998, 2002) the key phrase differentiating the definitions of 

uncertainty and error is ‘lack of knowledge’, primarily to do with lack of knowledge about 

the processes, possibilities and experimenting with probabilities that go into designing an 

aeroplane, a wing or an aerofoil. 

 

The aviation industry relies heavily on a team culture rather than an individualistic culture 

to steer ideas, innovation, and the business itself chiefly because of its sheer size and 

nature. Individuals within aviation industry with brilliant ideas cannot easily take their work 

forward unless plugged into and helped by a larger industry team. In the same way, the 

industry without its smart and talented work force cannot make an impact the way it 

intends to or be so profitable in the long run. The ability to inspire one another should not 

be left to be practised by a chosen few, but by the majority. 

 

The chief advantage of re-optimising existing projects is that the stock of already compiled 

programmes could be improved almost instantly with minimal effort, reducing 

computational resources, and also lowering costs. The disadvantage could be that new 

code releases would require optimiser maintenance to cater for possibly changed 

algorithms but this is trivial in comparison to the advantages gained in the long run. 

 

It is also to be noted that, in general, as is with computational technologies, new updated 

codes frequently coincide with hardware upgrades; the faster and efficient hardware would 

usually more than compensate for various updated software programmes reverting to their 

pre-optimised versions. 

 

 

 

6.6.1 Design Innovation 
 

Most engineers follow a very similar process throughout a design & analysis loop. When 

an interactive optimisation is adapted, although similar methodologies were used 

previously, the final results may differ from one design engineer to the next because 

multiple solutions exist to the design challenges.  

Some designs are already tried and tested, and hence are generally chosen for speed and 

simplicity of implementation. One of the keys to success in the aviation industry is 

innovation. The designers should always try to find newer and better solutions instead of 

reusing the old ones. 

Biomimicry or biologically inspired engineering, the field of scientific study dealing with the 

natural world, involving examining what can be extracted, learned and duplicated from 

nature is one of the best sources of inspiration, ideas and innovation. There is no waste in 

nature, any leftovers from a plant or animal becomes food for another sort of species. 

Cyles in nature are efficient and any impotency gets dissolved quickly. Human engineers 

and designers can oftentimes consult nature for ideas and solutions to contemporary 

aviation problems (Gunther, 2016). Much knowledge remains to be tapped from bird flight, 

and fishes to some extent in making use of movable wing surfaces for aeroplanes. 
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6.6.2 Beyond Visuals 
 

Data and graphical visualisation in aerofoil design have been traditionally viewed as tools 

for exploring data and forming hypothesis, a tool for examining and understanding. In 

current times, both the mainstream of computer graphics and the availability of data 

sources via internet seem to have a significant impact in aeronautics, giving rise to the 

various possibilities of  generating visual representations of data on basic computer 

systems. Professional and amateur designers alike have taken interest and expanded the 

imaginary horizons of artistic space, making use of scientific techniques to create 

computational tools and designs that actively aid analytical reasoning, supporting new 

approaches and innovative designs. 

 

According to (Phillips & McQuarrie, 2004), the resilience of various visual techniques to 

persuade advanced designs is the new typology of visual rhetoric. 

 

 

6.7 THINKING ENGINEER 
 

With the evident limitations of mathematics and scientific knowledge, engineers tend to 
use their judgement and experience to solve problems with a constant stimulation to 
eliminate risk or to limit it. Complexity is ever present and most successful creations make 
room for human fallibility (Engineering Council UK, 2010). 
 

An education is the primary means by which a profession puts its code into practice. What 

engineers do is important and there is a difference between engineers, scientists and 

management in their information and knowledge. 

Historical engineering standards lay down rules of conduct for engineers. In general, 

engineers develop these standards because all engineers doing things the same good way 

is better than each engineer choosing her/ his own way. The standards so defined are not, 

however, likely to freeze in the way pure conventions do. Most change from time to time as 

experience generates new options or shifts the weight of evidence favouring this or that old 

one. Engineering professionals are usually not always as well informed as they should be 

when compared to scientists or researchers. Although what a profession requires is crucial 

for determining whether a professional actually has professional autonomy, what the 

professional supposes her/his profession to require is crucial for determining whether the 

professional feels that they have such an autonomy (M. Davis, 1998).  

Interactive design denotes a definitive representation, sensory, creative delivery and 

implementation of computer-supported technological perceptions (cognition and sensorics) 

and actions (visualisation) in diverse media. Digital information will begin to take on 

physical form sooner or later and design engineers will eventually become the engineers of 

experience (Buurman, 2001). 
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6.7.1 Tenets of Critical Thinking 
 

Systems thinking, problem finding and creative solving, improving, visualising and 

adaptability are vital engineering habits of mind. Innovative, creative problem solving was 

considered an important trait in a research conducted by Royal Academy of Engineering 

(RAE, 2014). Although engineers could be using concepts that are not original and be 

ingenious, it could be that some may not see themselves as being creative.  

However, it is to be noted that there are various kinds of creative thinking, that which calls 

upon disciplined thinking and that which explores the propagation of new ideas.  

 

 

 

Figure 6.6: 5W2H method is a tool that helps in identifying a problem when trying to 

improve or optimise 

 

Optimism, communication, collaboration and attention to principled considerations are also 

vital characteristics which aid an engineer to think and take action when faced with 

demanding problems. An engineer’s work is most times about balancing series of tensions 

and the ability to move between two or more modes of reasoning and thought process. 

The aim of education must be to influence the mind so that it may acquire good judgments 

on matters at hand. With regards to any subject proposed to be investigated, one must 
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inquire not what others have thought, or what conjectures, but what could clearly be 

manifested and perceived by intuition or deduced with certainty.  

5W2H is a method which asks questions whose answers are considered basic to 

information gathering on a subject for optimisation or problem solving (Figure 6.6). The 

questions are expected to have a factual answer and not a simple yes or no.  

 

6.7.2 Starting With Why 
 

The underlying factor throughout an optimisation process so far has been the importance 

of decision making. Decisions are to be taken effectively, quickly and more importantly, it is 

an absolute necessity to know what decision is to be made and why.  

 

A critical link exists between the success of a design optimisation endeavour and the 

models or analysis used in solving any optimisation problem, its accuracy being only as 

accurate as the physical models used. Although a deemed successful optimisation may 

only require the model to predict the correct trends and not provide wholly accurate 

converged solutions throughout the design optimisation process, there is a decision step 

involved to check suggested optimal solutions with high level accuracy computational 

engineering methods at the end of the procedure. 

 

 

 
 

Figure 6.7: (top) golden circle showing why, how and what sections starting from 

inside out (below) parts of the brain connecting golden circle sections (Sinek, 2009) 
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Starting by asking ‘why’ (Sinek, 2009) explains that a purpose, cause or a belief that 

inspires an individual and ultimately an organisation or an industry, affects the product that 

it finally produces and sells. 

 

The Neocortex of the human brain correlates to the ‘what’ level, responsible for analytical 

thinking, rationality and languages. The two intermediate sections comprise limbic brain, in 

charge for all human feelings like faith, trust, behaviour and decision making, but has no 

ability for languages (Figure 6.7).  

 

When designers communicate from outside towards inwards, conveying ‘what’ is done 

first, it is relatively easy for others to discern a large amount of complicated information 

covering numbers, facts and figures but it does not drive behaviour. When communication 

is done inwards out, one communicates directly to the part of brain controlling decision 

making, and the brain’s language section allows rationalising those decisions (Figure 6.7). 

Decision-making and capacity to analyse decisions exist in different parts of the brain, 

leading to the ‘gut feeling’. Sometimes limbic brain drives behaviour that contradicts 

rational and analytical understanding of a situation. 

 

 

 

Figure 6.8:  Agile engineering: ‘Why’ (purpose and requirements) is specific and tied to 

end value generation (source: crisp, 2016) 

 

 

 

Starting from the inside out, an optimisation process could be trigged by starting with ‘why’, 

followed by ‘how’ and ‘what’. When everyday work is defined just by ‘what’ a designer is 

doing instead of ‘why’, it can lead to stagnation of ideas, creativity and decision making. 

Knowing ‘why’ behind a task is a vital way to cultivate a lasting success, with a greater mix 

of flexibility and innovation. 

 

With a clear destination, a human is capable of using one’s own creativity, sense of 

innovation and problem solving skills to overcome hurdles in between, on the way, to get 

to the destination (Figure 6.8). Destination in the front is more vital than the route taken, 
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which could be flexible and interactive optimisation offers this flexibility in design 

exploration. 

 

6.8 INTERACTIVE Vs AUTONOMIC DESIGN 
 

In using an interactive tool, the simulation is guided by the user in constructing a solution 

to the problem at hand by using a graphical user interface, while often  on the back-end a 

time-and-memory consuming programme is being executed (Knezevic, Frisch, Mundani, & 

Rank, 2011). Interactivity always involves two entities; one of them by default being a 

human user. The act of making simple, working versions of what one is trying to build or 

modify forces the designer to uncover key problems, thus making room for the designer 

involved to find solutions, or to contemplate potential ideas to those problems much less 

expensively (Bricklin, 2017). 

An autonomic computing tool will make decisions on its own, using high-level strategy 

codes, continually checking and optimising its status and automatically adapting itself to 

changing conditions. Such a tool would be most useful after a design freeze and during a 

production launch. The overarching goal of automated computing is to realise that a 

computer, software system or application can manage itself in accordance with high-level 

guidance from humans (Parashar & Hariri, 2005). 

 

A human designer or decision-maker thus plays a crucial role whether a design tool or 

process adapted is either interactive or autonomous, albeit with varying levels of 

involvement in the design process. While high-end computational solvers, optimisation 

algorithms and visual techniques are making a human designer’s tasks less complicated, 

they do not make labour redundant, nor do they make a designer’s skills obsolete. Instead, 

jobs which are taken over by computers are constantly making room for new tasks 

because of a human’s inbuilt genius, creativity and insatiable desire which is constantly 

pushing engineering boundaries (Autor, 2016). Curiosity is the key. Today’s technologies 

were yesterday’s fantasies, and the same stands true for tomorrows. 

 

6.9 WINGS OF THE FUTURE 
 

 

The design tradition of using rudders, elevators, flaps, ailerons and spoilers to help an 

aeroplane move in a particular direction will change as designers harness tougher, 

stretching materials and wing-warping motors. Aerodynamics could be altered to fly 

efficiently at most altitudes if control surfaces can be designed to adaptively change an 

aeroplane’s wing camber geometry (Marks, 2016).  

 

An increase in the demand for production and performance rates calls for profoundly new 

approaches to design and manufacture aeroplane wings. Next generation aeroplane wings 
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may have a different shape or take on a new way of assembly, made of composites or 

advanced metallic materials. However, the industry is certain that with aeroplane 

production rates set to rise significantly, there will be a demand for faster wings, easier and 

cheaper to make and assemble. 

 

The industry is also planning to study various wing sizes. Long, narrow wings tend to 

generate a high lift-to-drag ratio, improving fuel efficiency; however, several airport 

regulations limit the maximum length of the wings thus raising the need for experimenting 

with wing tips folded that could then be extended before flight and folded back when on 

ground. Such design research is underway and  helps in assessing any gains in 

aerodynamic performance outbalancing the extra weight and costs (Airbus, 2017).  

 

In the words of the Wing of the Future Programme at Airbus, “We need to have the 

courage to progress ideas. It’s not about what we know now; it’s about what we can 

achieve in the near future”. 

 

 

6.10 CONCLUSIONS 
 

 

Essential findings are discussed in section 6.2 along with observations that were drawn by 

experiments and theoretical study. Qualitative conclusions of interactive optimisation were 

drawn in Chapter 5 by way of three trade study approaches, sections 5.6 and 5.7. Limits of 

interactive optimisation and its countering means are analysed in sections 6.3 through 6.9. 

Scope for furthering this research is presented in section 6.12. 

 

Key questions mentioned in section 1.3 are answered by the following: 

 

 Interactive optimisation makes use of a chosen mathematical programming 

methodology which searches for a preferred pareto optimal solution in accordance 

with the decision-maker’s choices. A maximum process advantage can be 

achieved by allowing the computer to conduct logical operations and let the human 

decision-maker who is biological with an emotional intelligence characteristic to 

take advantage and steer the logical processes. 

 

 A high-lift design trade study generates a lot of numbers; these data are an 

important source of information and knowledge. With the rise in multi-objective and 

multi-disciplinary algorithms, suitable visualisation support is a necessity. 

Visualisation techniques equipped with interactive aids that interpret and help 

understand these data are vital for a designer. 

 

 In order to maintain a multi-disciplinary approach throughout a design phase by 

addressing various objectives, a decision-maker is tasked with vital choices that will 

influence a design decision and could impact an end product. A designer’s 

approach towards a design task, knowledge, skills, personality etc. will not only 

http://www.airbusgroup.com/int/en/story-overview/composites-silicon-carbide.html
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determine the outcome of the task but will reverberate through any disruptive 

advances in design and manufacture of new generation of aeronautical designs. 

 

This work tackles the challenges of EFT project by introducing an optimisation approach 

for determining and improving an aerofoil’s maximum lift in the context of multi-objective 

optimisation. It supports the knowledge and use of better tools and techniques for design 

optimisation by taking into account the human engineer of the present and future behind 

various virtual engineering tasks. Aims and objectives mentioned in section 1.4 have been 

thoroughly addressed in this research work and are summarised as follows: 

 

 Several non-interactive optimisation techniques were already being experimented 

in an high-lift design analysis context while corresponding visual techniques were 

either in their inception stage or not yet introduced. An interactive method, multi-

objective particle swarm optimisation technique has been introduced for high-lift 

design through preceding works which has been modified and improved through 

this research. 

 

 Due to the nature of algorithms adapted in the module, several errors had to be 

dealt with and eliminated. New visualisation tool features along with a possibility for 

the user to experiment various multi-element aerofoil sets has been added. Ease of 

use and robustness are improved. 

 

 Study of designer interface, tools and machine analysis has been discussed 

through graphical user interface and human-machine interaction. SHEL model 

explains human factors. 

 

 Three broad interactive approaches were used to study task analysis on two multi-

element aerofoil sections with six parameters and two objectives; conscious and 

automatic behaviors of decision-maker are explained along with the influences of 

optimser and visual techniques. 

 

 Optimisation module has been improved for designer feedback. Any interaction in 

parallel coordinate plot reflects in scatter plot. Axes selection for scatter plot also 

reflects for heat map and radviz plots in combined view page. 

 

 Several visualisation methods have been introduced, some of which find their use 

for generic applications while some are specific for viewing approximation sets. 

New visual techniques were added along with a tab displaying a combination view. 

Advantages and disadvantages of various techniques are mentioned along with 

commonly encountered errors and problems. A table comparing various methods 

against desirable visual features has also been presented. 

 

 Complexity of optimisation problems and the vital role of decision-maker in design 

and analysis context have been addressed according to the purpose of interaction 

and the role of the user in the process. Designer-in-the-loop engineering explains 

information perceived, its interpretation and interaction. 
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 Limits of optimisation, reliability, validation and uncertainties have been addressed 

along with what a decision-maker could do to tailor optimised configurations for 

technological benefits. A good utilisation of an aerodynamic tool is only as good as 

its user or decision-maker and driving continuous optimisation requires leveraging 

the advantages of both the human and the machine in an interactive setting.  

 

 

6.11 CONTRIBUTION TO KNOWLEDGE 
 

 

The subject of interactive optimisation, where the prime components are a machine and a 

human is relatively new and has customarily been of interest to those involved in logical 

mathematics and computational techniques. Aviation industry has long been using 

computational tools for aerodynamics and its related tasks. Only recently has the industry 

started to exploit its own abilities on advancing software tools for aeronautical design 

activities by borrowing and implementing ideas and processes that are being used in non-

aviation related applications, a trend triggered by the tremendous evolution in 

computational technology. The use of any such tools involves a human designer or 

decision-maker who interacts to bring forth new ideas and products aiding technological 

improvements and innovation.  

 

Much study on human factors has been carried out with respect to flight crew and aircraft 

maintenance engineers in the aviation sector, however there is a breach of knowledge and 

information on how design engineers who are the brains behind several aviation products 

behave and interact with respect to their work environment, specifically modelling & 

simulation which involves the use of software tools. 

 

This research work addresses that gap by way of an exemplar aerodynamics engineer in a 

high-lift design and analysis context. While several others have covered the use of various 

optimisation techniques for aerodynamics, this work tested the possibility of adapting 

particle swarm technique as one of the probable optimisers that could be used in a high-lift 

design tool module. The work demonstrates the advantages of an interactive approach 

over traditionally used non-interactive ways and analyses three approaches that a 

designer is likely to adapt in an optimisation context.  

 

The research sheds light and draws attention to a designer’s way of insight, preferences, 

analysis and decision-making, interactive communication and steering of a design process 

with its respective objectives and constraints. Several potential visualisation techniques 

are introduced in this work for a multi-objective optimisation framework, some of which are 

not yet being used in aerodynamics’ tools while others are being exploited but not yet fully 

developed for aeronautical applications. Visualisation, with its phases and characteristics 

are only now being explored by the aviation community; this work contributes towards that 

graphical literacy awareness by explaining various errors, problems, search and display 

patterns, reading and interpretation. 
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Themes such as relationship between data, information, knowledge, understanding and 

wisdom, uniqueness and limitations of human brain, critical thinking have been brought 

together to elucidate an aeronautical design engineer’s work setting, dilemmas and 

limitations. Several decision making tools and models are already employed in the aviation 

sector, most of which are constantly renewed by the arrival of new techniques and old 

ones dying out. A simple approach is introduced in this work to encourage designers in 

their thought process and decision making. 

 

 

6.12 SCOPE FOR FUTURE WORK 
 

Interactive optimisation is an emerging field, especially for aeronautical applications. There 

exists much scope for borrowing ideas from other fields and technologies that have 

already proven the advantages of interactive design exploration and optimisation. The test 

and application of several established optimisation techniques today are yet to be explored 

for aeronautical implementation. 

Optimisation algorithms can be adjusted easily to the problem at hand. Almost any aspect 

of an algorithm could be modified and customised. On the other hand, although much 

research has been done on which algorithm is best suits a given problem; several practical 

questions continue to remain. While standard values generally provide a reasonably good 

performance, different configurations may yield more useful results and insight but will also 

take up time and resources. 

There is scope for the current module to be migrated to Windows OS, however the current 

adapted version of MSES solver does not allow this possibility as it is coded for Linux 

environment. The visualisation framework could be migrated from Django to HTML. The 

complete tool module which is currently locally used could be extended to run on a local or 

restricted communications network (intranet) to control both front-end and back-end 

applications. The present module uses more than one language which generates several 

integration errors; using a single language and a customised single platform for all 

functionalities with better interactive features will be advantageous.  

Other MOO/MDO visualisation techniques can be tested along with other interactive 

optimisation methods such as Nimbus, Surrogate, GDF, Guess,Tchebycheff+. The module 

could also be improved to execute more than one solver type for multi-element aerofoils. 

Python, as of today, is one of the most widely used high-level, general-purpose, dynamic 

programming languages. It is able to run on a variety of systems, allowing the use of 

several third-party tools. One of its greatest strengths is its standard libraries, suited to 

many tasks. It offers several tools for an aeronautical designer to explore and this area of 

tool exploration could be traversed as interactive and innovate as possible as a designer’s 

knowledge, skill, creativity and interest allows. 

Apart from the few combinations that have already been tested, improvements on the 

existing I-MOPSO code and integrating it with various interface codes such as solvers, grid 
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generators, and parameterisation techniques for a wider range of aerofoil designs can be 

further studied with 2D aerofoil models and further explore possibilities with 3D. 

There is scope for studying practical aspects concerning the difficulty of a designer to 

submit preference information, in particular when numeric values have to be defined, and 

the potential prospect of reusing the same information for solving different problem cases. 

There is room for undertaking study experiments involving groups of design engineers or 

making use of several user data analytics already gathered by the industry. 

Also, a general limit of interactive multi-objective optimisation is relying on the process of 

exploring Pareto front. There is room for expanding on the tendency of limited number of 

trade-offs explored and the effect that the systematic presence of a loss in some objective 

values generated during iterations. Designers work with several unconscious biases, like 

considering the losses in an objective value more important than equivalent gains (e.g. lift 

vs weight in an aerofoil design). 

Others areas of further study include interactive decision making models for multi-objective 

optimisation, learning systems, advantages and disadvantages of offering ‘more choices 

for a designer’, critical thinking in engineering, brain and visual models, their interpretation, 

and design analysis with the help of established techniques such as six-sigma. 

Apart from combined visualisation, hybrid and metaphor based optimisation algorithms 

leave much room for consideration. 

Development and Integration of source code control with minimum effort to maximise 

usability and effective future developments secures innovative and competitive 

technological edge. 

As part of work flow implementation and management, intelligent and interactive process 

controlling and monitoring, heterogeneous system platforms, minimising integration effort 

of any additional computational tools, making effective use of cloud computing and 

internet, improving reliability robustness to at least 99% and availability of multi-user 

operation capability are areas that could be improved. 
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Appendix 
 

 

A. Conference Paper & Posters 

 

“Aircraft Design Optimisation with its Designer at Heart” 

2016 Applied Aerodynamics Conference: Evolution & Innovation Continues- The next 150 
years of concepts, design and operations. 
Royal Aeronautical Society, 150th anniversary year | 19-21 July 2016, Bristol, United 
Kingdom 
 
 
“Aircraft Design Optimisation and the Impact of its Designers in Driving Development and 

Innovation”  

Paper was shortlisted for ‘Go for Gold’ Challenge 2016 organised by RAeS for participants 

under 30 to mark 150th Anniversary. 

 

Poster: “Interactive Optimisation for High Lift Design” 

ERCOFTAC Osborne Reynolds Day 2016  
The University of Manchester, United Kingdom | July 2016 
Note: Poster Finalist 

 

Poster: “Aircraft Design Optimisation and the Impact of its Designers in Driving 

Development and Innovation” 

The Airbus Flight Physics Distributed Partnership R&T, DiPaRT 2016 
Centre for Modelling & Simulation (CFMS), Bristol & Bath Science Park | 21-23 November 
2016, Bristol, United Kingdom 
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B. Pictures 

Following are pictures that were generated or used as part of the research work in various 

intermediate presentations and reports but were not added to the primary content of the 

thesis. They are fairly self-explanatory and support various sections presented across this 

document. 

 

Figure B1: Different classification of metaheuristics; various high level strategies that guide 

a set of simpler search processes (Source: Image by Nojhan) 

 

Figure B2: Variants of Particle Swarm Optimisation (Source: Rini et al., 2011) 
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Figure B3: Overview of cognitive science and engineering Source: (Gersh et al. 2005) 

 

 

Figure B4: Interdisciplinary fields of visual analytics ( Source: Keim et al. 2008 and 
Keim et al. 2006 ) 
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Figure B5: A periodic table of visualisation methods (source: Visual Literacy) 

 

 

 

 

Figure B6:  Visual Illusions: three or four bars? (author unknown) | Striped figures (source: 

abc-people) 
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Figure B7: Various steps of a typical computational aerodynamics’ trade study (source: 

Airbus, 2014) 

 

 

Figure B8: The sense-making loop for visual analytics based on the simple model of 

visualization by Wijk42 (source: adapted from Keim et al., 2008) 
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Figure B9 (above): WISDOM tool various users’ 

architecture (source: Airbus) 

Figure B10 (right): Five general steps in 

developing Artificial Intelligence and Artificial 

Behaviour computer programs. Steps 2 to 5 

define a loop that is repeated until the computer 

functions at some predefined level of accuracy 

(Steinhauer, 1986) 

  

Figure B11: Automated data analysis: user-in-

the-loop and visual data exploration (source: 

Keim et al., 2008, adapted picture) 
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C. Test Runs Extra 

 

Figures C1: Garteur aerofoil section: 100 iterations, 60 particles, with an interval of 5, 

interaction starting at 20. The results were generated for maximum lift according to the 

optimiser’s configuration. 
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Figures C2: SC2-0610 aerofoil section: 50 iterations, 25 particles, with an interval of 5, 

interaction starting at 10. The results were generated for maximum lift according to the 

optimiser’s configuration. 
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