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ABSTRACT Current airspace has limited resources, and the widespread use of unmanned aerial vehicles
(UAVs) increases airspace density, which is already crowded with manned aircraft. This demands the
improvement of airspace safety and capacity while considering all parametric uncertainties that may hinder
aircraft and UAV mobility such as dynamic airspace structures and weather conditions. This paper proposes
a data analytics framework to characterize traffic flow patterns of unmanned traffic management (UTM)
airspace by analyzing simulated historical data. Mission patterns are characterized and identified by consid-
ering multiple UAV missions and scenarios with different priority levels to highlight UAVs’ trajectories and
deviations from the actual path due to these constraints. The pertinent data analysis supports risk analysis
and improves trajectory planning in different airspace regions considering all dynamic parameters such as
extreme weather, emergency services, and dynamic airspace structures. The data processing framework,
which is density-based spatial clustering of applications with noise (DBSCAN), identified significant
deviations in mission patterns with almost 82% confidence level. The UTM traffic flow characterization
is conducted by three key characterization parameters mainly Distance from Centroid (DFC), Distance to
Complete Mission (DTCM) and Time to Complete Mission (TTCM). This work also analyzed the airspace
congestion using the Kernel density estimation (KDE). This analysis identified some regions of interference
as potential congested areas representing safety concerns. The proposed framework is envisioned to assist
UTM authority by characterizing air traffic behavior, managing its flow, improving airspace design, and
providing the basis for developing predictive capabilities that support traffic flow management.

INDEX TERMS Machine learning, traffic flows patterns, trajectory data analytics, unmanned traffic
management.

I. INTRODUCTION
Research techniques addressing the problem solutions in
application domains involving multiple unmanned aerial
vehicle (UAV)missions have significantly increased in recent
decades. UAVs represent the future evolution of the avia-
tion industry, and their usage is significantly increasing in
many aspects of people’s lives. In recent times, the civilian
applications of UAVs have risen across diverse fields due to
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their versatile functionality, automation capabilities and low
cost. The application areas of UAVs for both consumer and
industry include business and marketing, surveying and mon-
itoring, emergency services and healthcare, delivery services,
gaming and sports telecasting, news reporting, the education
sector, military, security, and many other fields [1], [2].

Although UAVs have many advantages, they face limita-
tions if their routes are not managed and operated by a high-
level automation system. In the absence of such a system,
flight operations in airspace can imperil the security, safety,
and privacy of the public. To carry out UAV missions and
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other manned aircraft operations safely, a systematic integra-
tion of UAVs is required in the National Airspace System
(NAS) before using them for civilian purposes [3].

The mid-air collision over Grand Canyon in 1956 is con-
sidered as the real cause for the development of the air traf-
fic management (ATM) system that is used nowadays. The
development of an ATM-like system is becoming necessary
to ensure the safety of civilian UAV operations at lower
altitudes [4]. The ATM is fragmented at the technological,
operational and functional levels, and their integration is
needed to increase safety, improve efficiency and reduce envi-
ronmental impacts on the atmosphere [5]. The key parameters
for the integration of UAVs with manned aircrafts in a shared
airspace includes autonomous collision detection, sensing,
awareness and avoidance [6], [7].

Factoring in the above concerns, unmanned traffic man-
agement (UTM) is designed to carry out the management
of UAS operations economically, efficiently and safely, and
it is considered a subset of air traffic management. It is
also defined as a system of systems (SoS) developed using
users’ cooperation as well as their systems [8]. The ulti-
mate objective of UTM is to carry out efficient and safe
low-altitude aerial operations by providing different ser-
vices. These UTM services include spacing and sequencing,
dynamic geo-fencing, route planning and re-routing, dynamic
configuration and airspace designing, contingency manage-
ment, terrain avoidance, severe wind and weather avoidance,
separation management, and contingency and congestion
management [9]. Since a number of the above services rely
on trajectory data, the field of trajectory data mining and data
analytics is seeing a growing interest in the UTM context.

The aviation industry uses flight-tracking data heavily
and conducts research using advanced data analytics tools
and technologies with an aim to characterize the air traffic
behavior for monitoring airspace, managing air traffic flow,
carrying out performance assessment and improving airspace
design [10]. Oliver et al [11] detected and identified particular
events in a huge amount of historical aircraft-trajectory data,
and it falls under the scope of information extraction and
knowledge discovery. Olive and Basora [12] highlighted the
usage of data mining in the ATM context by suggesting that it
helps sort out the desired information from the huge amounts
of data generated daily by various stakeholders of the ATM
systems. This information sorted from the generated data is
beneficial for different stakeholders for specific purposes: an
air navigation service provider (ANSP)may enhance capacity
indicators; commercial stakeholders like airports and airlines
may improve short-term predictions and optimize their opera-
tions; academic stakeholders may design better safety models
andmake better risk estimations; and air traffic control (ATC)
training centers may carry out more realistic simulations.

Although, the ATM domain is extensively studied, limited
studies have been conducted in the UTM context. This is due
to an excessive on the implementation and control approaches
of UAVs [13]. Moreover, a considerable barrier to data anal-
ysis in UTM is the absence of a common and shared database

containing real-time UAV flight-operation data. One possible
development direction is to use simulation data [14].

Since UTM airspace constitutes less-densely populated
small urban areas, there is a strong demand to study and
characterize UTM traffic flow behavior that cover the whole
routes. Further, there is a need to evaluate UTM airspace
congestions to address the safety aspects that have not been
analyzed yet. Moreover, the impact of dynamic factors like
adverse weather conditions, emergency operations, the com-
bination of static and dynamic obstacles to discover feasible
rerouting options through air traffic flow patterns studies have
not been studied previously.

Thus, the current study proposes an unsupervised machine
learning–based clustering framework for the detection and
characterization of UAVs’ trajectories. We performed the
airspace congestion analysis using a Gaussian kernel density
estimator. The following are our contributions in this regard:

1) Realistic UTM multi-services mission scenarios are
designed, incorporating the effects of weather condi-
tions and static and dynamic obstacles along with ran-
dom UAV trajectories of flying hobbyists (recreational
users) trajectories.

2) A UTM flight-trajectory data analytic framework is
developed for the identification of UAV trajectory pat-
terns at the spatial and temporal scale that uses an unsu-
pervised machine learning (DBSCAN) algorithm.

3) Key Characterization Parameters (KCP) for modeling
UTM mission-data traffic flows are introduced. These
metrics are evaluated for worst-case weather scenarios
and dynamic airspace constraints, in order to present
deviations in UAV missions.

4) A Gaussian kernel density estimator–based airspace
congestion analysis is performed to identify hot zones
and regions of interference.

The rest of the paper is organized as follows: Section II
presents related work and some background on the tech-
niques used in this study. Section III discusses the proposed
methodology of this work. Section IV presents the simulation
scenarios and result. Section V discusses the airspace traffic
pattern and density. Lastly, Section VI provides a conclusion
of this paper and some guidelines for future work.

II. LITERATURE REVIEW AND RELATED WORK
A. OVERVIEW OF TRAJECTORY DATA MINING
TECHNIQUES
Data mining helps extract beneficial information from enor-
mous datasets and is commonly known as knowledge
discovery [15]. Likewise, the primary objective of trajectory
data mining is to discover relevant knowledge from trajectory
datasets on traffic abnormality, travel behavior and move-
ment patterns. Furthermore, trajectory data mining has two
main goals: description and prediction. Description focuses
on finding human-interpretable structures while illustrating
the data, whereas in prediction, some variables are used in
the data to ascertain the future values, unknowns and other
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required variables [16]. Trajectory data mining has been
regarded as a vibrant research area across various domains.
Zheng [17] used data mining techniques to classify trajectory
data into four categories: mobility of natural phenomena,
mobility of transportation vehicles, mobility of animals, and
mobility of people.

Several other studies have been conducted in the recent
past that are based on air traffic datasets extracting valuable
behavioral information of moving objects like animals, vehi-
cles, and people [18]. Recently, many airlines established
different divisions for analyzing flight safety and related
issues based on historical data analysis. Additionally, many
airlines are exploring new methods based on data science for
improving their airline safety by analyzing traffic events from
historical data [19]. Due to the availability of huge amounts
of trajectory data from gadgets and other applications that use
GPS, a number of surveys related to trajectory data mining
have been conducted [20]. Parent et al. [21] provides an anal-
ysis of mobility data management, listing by discussing the
main techniques for mining, enriching, building and extract-
ing knowledge from trajectory data. The survey byKong et al.
[22] presents trajectory applications and data from travel
patterns, travel behavior, trajectory data service description
in terms of transport management, and other aspects. On the
other hand, the survey by Bian et al. [23] proposes a set of
trajectory clustering techniques, classifying them into three
categories: supervised, semi-supervised and unsupervised.

Clustering is an unsupervised learning process. It is
considered a first-tier trajectory mining method to determine
heterogeneity and homogeneity based on data properties,
and thus similarities within a trajectory dataset are revealed
by dividing the trajectories into various clusters [24]. In a
nutshell, the features of trajectories’ movement must be same
within a cluster, whereas features vary between clusters. Gen-
erally, each trajectory is represented by a feature vector, and
later on, the similarity between trajectories is measured by
finding the distance between their feature vectors [17].

To design a trajectory-specific clustering model, many
efforts incorporating the features of trajectories have been
made, and most of them are probabilistic and statistical mod-
els. Smyth and Gaffney [25] proposed a clustering approach
based on mixture models that combines trajectories that are
produced by a common representative trajectory with the
addition of Gaussian noise. Similarly, Alon et al. [26] used
a Hidden Markov Model (HMM) to model clusters because
it fits the trajectories best, and trajectories are designed as
sequences of transitions between different points. Cluster-
ing algorithms based on the similarity functions determine
similar direction, similar source, similar route, and similar
start and destination. In this regard, Maimon and Rokach
[27] offered a detailed discussion on how to apply similarity
functions and distance that further help in determining cluster
membership.

Two well-known algorithms have been mentioned in this
work. The first one is OPTICS (ordering points to identify
the clustering structure) [28], and the second is DBSCAN

(density-based spatial clustering of applications with noise)
[29]. T-OPTICS [30], an extension of OPTICS, was designed
by describing a spatiotemporal distance for clustering and
comparing trajectories. On the other hand, ST-DBSCAN [31]
was developed as an extension of DBSCAN to improve the
identification of noise and clustering using two additional
parameters. Depending on the similarity function and the goal
of analysis, trajectory clustering can be applied on sections of
trajectories or on whole trajectories. The route of trajectories
is not important, so they can be clustered if their similarity
function is validated on the basis of their similar origin and
similar destination [32], [33].

Classification is the second trajectory data mining method.
As it is a partially supervised or supervised learning process,
it is different from clustering [34]. The classes of classifica-
tion must be predefined. Moreover, a training set of objects
are required to be pre-labelled based on their class. Two steps
are needed for a typical trajectory classification algorithm.
In the first step, a set of distinctive features are extracted
for training an already existing standard classification model
such as decision trees, support vector machine, nearest neigh-
bors and logistic regression. In addition, the properties of
the trajectory that suit best to describe different classes of
trajectories are determined. In the second step, a signifi-
cant standard classification model is selected, which is then
applied to the already extracted distinctive features.

Many comparative studies have been done on various
standard classification models [35]. These classical algo-
rithms are directly applied for trajectory classification in
most cases. Bolbol et al. [36] used Support Vector Machine
(SVM) for transportation mode classification. The authors
used statistical methods and assessed the distinctive power
of some features of common transportation means such as,
train, bicycle, subway, walking, and private car. They also
determined the acceleration and speed of these means of
transportation. In most cases, some pre-processing such as
clustering, segmentation and statistical analysis were car-
ried out to classify trajectories that produce those features
required for classification.

Zheng et al. [37] proposed a change point–based segmenta-
tion method to divide each trajectory into distinct segments of
non-identical transportation modes. The work identified a set
of features that are not affected by altering traffic conditions.
Patel et al. [38] emphasized on improving prediction accuracy
by adding time duration information that helped differentiate
dynamic objects moving at different velocities. Lee et al. [39]
extracted sub-trajectory and regional trajectory features using
SVM-based classification algorithm.

There are also other works related to discovery of move-
ment patterns hidden in the trajectories. Mazimpaka and
Timpf [40] discovered the spatial and temporal aspects of
these mobility patterns. Nasreen et al [41] also associated
the nomenclature for these movement patterns that include
periodic patterns, associations, sequential rules, subgraphs
and frequent items. Wachowicz et al [42] classified the
movement patterns into three different kinds: swarm, convoy
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and flock. According to this work, a group of objects is
referred to as a flock if they move together for at least t
successive timestamps and their locations can be observed
in a disk of radius. A flock and convoy are quite similar to
each other, with a convoy being dissimilar only for the disk
shape. As long as the positions of the moving objects are
clustered, any disk shape can be formed by a convoy pattern
on each time slice. These patterns are clustered usually by
density-based clustering with minimum object number and
maximum neighborhood distance [43]. The requirements for
a convoy are further relaxed by a swarm, and in this case,
no object positions are required to be clustered in each time
slice [44].

In every case involving swarms, convoys and flocks [16],
collective pattern mining is done by density-based clustering,
which is considered the most common method. The next
section discusses the literature survey conducted in the field
of data analytics for air traffic flow identifications.

B. FLIGHT DATA ANALYSIS AND TRAFFIC PATTERN
IDENTIFICATION
The availability of historical traffic data has led to atten-
tion from research community to identify the trajectories
and properties of air traffic [45]. For getting insights about
the behavior of dynamic targets like animals, people and
vehicles, sensing technologies have already been used in the
past [46]. The usage of flight-tracking data in the aviation
industry for applying advanced analytics methods has been
investigated in several studies. In [10], the air traffic flow was
characterized for better traffic flow management. The same
type of study is conducted in [47] and [48] for better airspace
design, airspace monitoring and performance assessment.

In [49], potential events were detected and identified by
assessing the deviations in recorded trajectories’ data. This
study determined the efficiency of aircraft operations in a
complex systemized terminal maneuvering region. The per-
formance of aircraft operations is assessed in the area of
London’s multi-airports due to actual air traffic flow and
standard route structures. Basically, this work falls under the
domain of traffic pattern recognition and flight data analy-
sis, particularly in the terminal maneuvering areas (TMA).
The methodology followed in this work is comprised of two
modules. The first module is termed as data-driven 4D (x,
y, z, t) adherence calculation process. The ultimate objec-
tive of this process is to assess trajectory deviation, identify
recurrent patterns and thus assess the 2D interdependencies
of the standard routes and finally determine the high-demand
routes. In the second module, concurrence events that may
result in conflicts and can cause a lack of adherence are
determined. Nonetheless, the above study has been able to
give some insights about air-traffic flows by identifying their
patterns, but more emphasis is on TMAs such as airports.
Furthermore, it does not cover any UAV traffic flow within
a densely populated low-dynamic airspace.

Murca et al. [50] applied various clustering methods
to learn traffic flow patterns in both spatial and temporal

dimensions. The authors analyzed these patterns for com-
plex and super-dense metroplex airspace and estimated the
predictability, capacity and efficiency of the metroplex.
They also characterized the dynamics of air-traffic opera-
tions. Bombelli et al. [51] used clustering to identify gen-
eral routing structures in US airspace enroute trajectories.
Amerson et al. [52] applied trajectory clustering methods to
estimate the effects of convective weather on flow rates and
dominant routes between New York and Fort Worth cen-
ters. The ultimate goal of the above studies was to develop
high-fidelity models and learn the actual traffic route network
for better traffic flow management.

Ren and Li [53] compared flight trajectory data for China
and US to learn the air traffic routes, and discovering airspace
utilization patterns and some significant network structures.
The horizontal efficiency of enroute flows was evaluated
by Liu et al. [54], accomplished with the help of trajectory
clustering for US airspace.

The authors estimated the horizontal efficiency by measur-
ing the ratio between the length of the shortest routes and
the real trajectory lengths. They also developed a statistical
model to assess the impact of various parameters on trajectory
inefficiency. It was observed in this study that the most sig-
nificant causal factor for enroute inefficiencies is convective
weather.

A number of clustering algorithms have been used in deter-
mining the spatial and temporal traffic patterns using flight
data. The significant clustering methods that are widely used
include OPTICS [28], Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN) [55],
k-means [56], and DBSCAN [29].

Similarly, Samantha et. al. [57] also contributed to making
modern aviation systems safer by means of high-precision
trajectory prediction and robust anomaly detection methods.
This work also focused on the terminal airspace trajectory
prediction and anomaly detection methods by the identifi-
cation of air traffic flows. Since the air traffic flow patterns
are identified using clustering algorithms whose performance
depends on the characterization of an appropriate distance
function, the selection of this distance function like Euclidean
distance becomes a challenge due to the divergent and con-
vergent nature of traffic airflows within the terminal airspace.
The novelty of this work is the adoption of a weighted
Euclidean distance function to improve trajectory clustering
within the terminal airspace. In this work, numerous weight-
ing schemes were evaluated by applying the HDBSCAN
algorithm to cluster the trajectories. The key finding in this
work was that if the trajectory points closer to the border
of the terminal airspace, but not necessarily at the border,
are weighted highest, then a more accurate clustering is
computed.

The above study determined air-traffic flows by identifying
patterns in terminal maneuvering areas, and more emphasis
was placed on optimizing a weighted distance function so that
the best possible clustering is achieved. This study doesn’t
address any UAV traffic flows in the terminal maneuvering
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areas within a densely populated low-altitude highly dynamic
airspace.

In a PhD study [58], a flight trajectory data analytics
framework was developed to provide a high-fidelity char-
acterization of air traffic flows from large-scale aircraft-
tracking data. This work applied machine learning methods
to discover spatial and temporal trends in aircraft movement.
The proposed framework allowed to automatically learn the
airspace structure, assess the use of the airspace and identify
patterns of airspace usage. For this, it included three modules:
(1) clustering flight trajectories at the spatial scale to identify
trajectory patterns, (2) trajectory classification by using Ran-
domForests algorithm to assess flight trajectory conformance
against the learned airspace structure and identify air traffic
flows, (3) clustering air traffic flows at the temporal scale to
identify traffic flow patterns. This framework was used to
obtain a detailed characterization of air traffic flows in the
terminal areas of multi-airport systems including New York,
Hong Kong and Sao Paulo.

This work also highlighted the influence of weather
conditions on airspace use and traffic performance and
recommended the integration of weather forecasting in
decision-making. It utilized the above data analytics conclu-
sions to develop a data-driven approach for airport capacity
planning towards an improved decision support system. This
decision support system used predictive modelling for capac-
ity estimation and prescriptive modelling for capacity allo-
cations. The authors used a random forest–based supervised
learning method to predict traffic flow patterns.

Although the above PhD thesis covered a lot of facets in
air traffic flow prediction, it did not evaluate the enroute
traffic behaviors and thus did not visualize the routing pat-
terns between origin and destinations. Moreover, the impact
of adverse weather conditions to discover feasible rerouting
options were not addressed. Furthermore, the work did not
cover the domain of TMA or enroute traffic patterns in the
UTM context.

A novel framework for analyzing air traffic flow was
proposed in [59]. This framework is based on hierarchical
density-based spatial clustering of applications with noise
(HDBSCAN), an improved version of the clustering algo-
rithm DBSCAN. A single input parameter is used to manage
clusters of distinctive densities in this improved version.
In this study, two methods – symmetrized segment-path dis-
tance (SSPD) and Euclidean distance (ED) – that are based on
two different distance functions were evaluated. Traffic pat-
terns in both terminal and enroute areas are widely analyzed
using this framework; thus, it is a quite useful framework.

Although this work employed a new dynamic clustering
algorithm for predicting air traffic flows, the focus is on the
distance function selection for better optimization results.
HDBSCAN may be utilized for clustering UTM data traffic
flow to consider the effects of noise.

Air traffic trajectories can be separated by an approach
used in [60], carried out in a constrained area through oper-
ational procedures. In the Toulouse terminal maneuvering

area, the clustering algorithm is applied on a set of real
trajectories. It is observed that a better understanding of traffic
structure can be achieved by a DBSCAN-based clustering
method, and schedule landings of aircrafts can be controlled
at Toulouse–Blagnac Airport. A cluster of significant tra-
jectories with useful information has also been identified
through this study. Moreover, these trajectories are paving
the way for a probabilistic approach to carry out risk assess-
ment in air traffic. Although this work validated the use of
DBSCAN-based data analytics methodology for air traffic
flow separations, it did not disclose any specific patterns’
classification and the scope of terminal maneuvering areas
in ATM space.

The scope of analysis in all previously mentioned studies
is constrained to air traffic management and does not take
into account the challenges in the UTM context. Furthermore,
in operational performance analysis, the influence of airspace
structure is generally disregarded in older works. Moreover,
the effect of weather conditions in defining air traffic flows
has been examined in few studies. To compare and charac-
terize the air traffic performance at various scales, the entire
flight trajectory has been considered in our work, in con-
trast with previous works, and includes terminal maneuvering
areas and enroute trajectories for UTM airspace.

III. METHODOLOGY
A. SIMULATION SETUP
The suggested methodology is evaluated and verified by
running simulations for the airspace of Bedfordshire, UK.
TABLE 1 depicts places that may be restricted for flights,
such as airfields, recreational areas and prison. They
include four airfields: Luton, Cranfield, Halton and Old
Warren (Orange), four recreational areas: Dunstable, Sandy,
Cardington andGraveley (Yellow), andMiltonKeynes Prison
(Blue). The blue color trajectory corresponds to Covid-19
sample missions by UAVs (1,2,3), the magenta color trajec-
tory shapes represent the package delivery service by UAV-4.
The cyan color trajectory represents the package delivery
service by UAV-5. The red color trajectory presents the fire
surveillance missions, and the black lines belong to recre-
ational users. To make the simulation more realistic, the
following simulation parameters are taken into consideration:

1) Structure of airspace: Our simulation framework does
not allow us to simulate ascending and descending
maneuver; thus, the cruise phase of UAVs has been
displayed exclusively in 2D (x, y).

2) Fixed start and end position: As part of the simulation,
the UAV-mission start and end positions have been set
to mimic typical everyday operations and emergency
services.

3) Priority levels: Due to the urgency of some flights,
it is necessary to prioritize these over less pressing
services. For instance, this is relevant for emergency
service flights, including air ambulances or search and
rescue services, which require the ability to move freely
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FIGURE 1. Simulation environment created by air map.

in the airspace and have fast, effective responses when
involved in conflicts. In light of this, NASA UTM
proposed, in its ‘‘prioritization’’ recommendation, that
each aircraft service receives a varied priority level [61].
Specifically, the U-space recommendation wished to
introduce eight priority levels, numbered between one
and eight, where eight is the lowest priority [62]. In this
study, each flight has been assigned a service priority
level, ranging from level 1 (highest priority) to level 4
(lowest priority). The following is a description of each
level of priority:
1. Fire surveillance services using loiters’ trajectory

patterns.
2. COVID-19 sample test delivery service to multiple

clinics.
3. Package delivery service from multiple post offices.
4. Recreational UAV user (hobbyist flyers).

4) Dynamic no fly zones (NFZs): In some hours, air-
fields and recreation areas considered for simulation are
dynamic in nature. This dynamism is random, making
some areas available and others unavailable during the
whole hour.

5) Random departure time: To make the system more
realistic, the exact time at which each hobbyist’s UAV
departs is set randomly between 1 and 10 minutes in a
1-hour simulation scenario period.

6) Weather ambiguity: We have considered different
weather conditions classified as adverse and severe.

During flight planning and implementation, as well as
post-flight actions, a UTM infrastructure is able to deliver
specific services to operators. Such services include flight
planning, electronic identification, approving flights, man-
aging airspace capacity, geofencing, UAV tracking, airspace
dynamic information, meteorological information, providing
support in conflict detection, manned air traffic management

interfaces [63]. The UTM infrastructure ultimately requires
the use of drones to be able to effectively exchange infor-
mation continuously with these services, and this requires
strong, consistent, and low-latency Drone-to-Infrastructure
(D2I) communication data links. A comprehensive evalua-
tion and performance study is presented in [64], considering
particular communication challenges like channel modelling,
physical layer techniques, and security, etc. However, the
applied communication channel aspects that may be hindered
during highly dense UTM operations are not considered in
this work. In this study, we assumed that the bandwidth is
sufficient to meet the UAVs’ rate requirements and inter-
ference is trivial as different users and UAVs use different
frequencies.We have assumed throughout this work that there
are no communication blackouts and there is a uniform com-
munication performance across all areas. This underpins the
focus of our work, where this paper proposes a data analytics
framework to characterize traffic flow patterns of unmanned
traffic management (UTM) airspace by analyzing simulated
historical data.

B. PATH PLANNIG OPTIMSATION
Path planning is the most critical research area focusing
on determining an optimal path between UAVs’ source and
destination. UAVs may come across several obstacles dur-
ing their operations in a dynamic environment, the path
should be determined in such a way that there should be
no collisions between the UAV and its surrounding obsta-
cle [65]. The major challenges for an optimal path planning
of UAVs are listed in [66]. Several research approaches have
been proposed in recent years that describe path planning
of UAVs and address different issues. Researchers focus on
different path planning issues of UAVs in context to the
complexity and shape of UAVs. The authors of [67], for
example, assessed coverage approaches and found that they
are categorized according to a classical taxonomy, includ-
ing precise cellular decomposition, no decomposition, and
estimated cellular decomposition. Various shapes of the area
of interest, for instance, rectangular, concave, and convex
polygons, are also considered here. Through the years, com-
puter vision technology has progressed to the point that it
facilitates UAV localization as well as obstacle detection and
avoidance. Al-Kaff et al. [68] presented a broad review of
computer vision algorithms and their applications for the
autonomous navigation of UAVs. A comprehensive analysis
on the execution of computer vision technologies for control,
tracking, navigation, and obstacle avoidance of UAVs was
given by Lidia et al [69]. Artificial Intelligence (AI) is being
put into operation in UAVs navigation systems in conjunction
with computer vision technology to allow them to develop
humanoid awareness. The nonlinear trajectory is addressed
by a novel DeepReinforcement Learning approach tomanage
numerous UAVs with the overall goal to track multiple first
responders (FRs) throughout challenging 3D environments,
including those with a range of obstacles and occlusions,
as proposed in [70].
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The non-availability of historic UTM traffic data prompts
the generation of data for the analysis of UAV traffic flow
patterns using a simulation framework. In this work, particle
swarm optimization (PSO) is utilized to provide optimal
paths from a UAV service start point to the delivery point.
PSO is a stochastic optimization method that was devel-
oped by J. Kennedy and R. Eberhart in 1995. It is a swarm
intelligence–based metaheuristic algorithm capable of tack-
ling complicated mathematical problems in engineering [71].
The main advantages of PSO are that it is simple to under-
stand, easy to implement, and converges rapidly compare
with other traditional global optimisation methods such as
genetic algorithms and simulated annealing [72]. PSO is
useful for estimating and optimizing trajectories from point A
to point B. As a result, PSO can track an optimal trajectory
while using the least resources possible and avoiding every
obstacle and NFZ.

C. WEATHER EFFECTS’ IMPLEMENTATION
For a UAV’s operation, weather hazards are classified into
moderate, adverse and severe [73]. Moderate hazards are
those that result from phenomena that reduce visibility but do
not harm the aircraft. Severe weather hazards are those that
might cause significant damage to an aircraft or result in its
loss of control. Adverse hazards weather conditions that have
potential to cause loss of control, loss of communication and
diminished aerodynamic performance and may negatively
affect the operator. Thus, it is well accepted that flying in
severe weather should be avoided. The weather has a massive
impact on UAVs’ operation. Different types of inclement
weather can have a significant impact on a UAV, which are
mentioned below.

1) PRECIPITATION
Precipitation can negatively affect the operation of a UAV by
water getting inside and ruining electrical components [73].
This will make a UAV completely inoperable and cause it to
crash. To deal with the adverse precipitation, UAVs should
have proper insulation. The weight of water on the UAV’s
wings due to rain can be used to evaluate the deviations
in UAV waypoints from the planned trajectory caused by
rainfall. The value of precipitation at each cm2 area is low
when the UAV flies in moderate rain. The small amount of
water falling from a UAV’s wing will add a less amount of
water weight to the total weight of the UAV and rainwater.
If the precipitation is heavy, the amount of rain falling on the
UAV’s wings per cm2 area causes an imbalance in the weights
of left and right wings. Equation (1) gives the imbalance of
weight expressed as:

ωw = ωs + ωr (1)

where ωw represents the UAV’s wings’ accumulative weight,
ωs is the structured weight, and ωr is the water weight on the
UAV’s wings’ due to rain.ωr is further classified into the total
water weight on each wing ωp and the weight of water falling

TABLE 1. Scale of weather classifications used in this study.

from the UAV’s wings’ ωf . The mathematical representation
of ωr yields:

ωr = ωp − ωf (2)

The precipitation-caused deviation of way points from the
planned trajectory is directly proportional to the UAV’s wing
areas. When subjected to precipitation, the rotary wing of the
UAV shows more resistance as compared with the fixed wing
to the deviation.

2) WIND
Drones can be blown off course by strong winds, making
them impossible to control during takeoff, in-flight, or land-
ing, thus resulting in a crash. When the wind direction is
normal to the direction of the UAV, the wind forces the UAV
to change its trajectory [74]. Strong winds have the potential
to affect an unmanned aircraft’s ground speed and flight
path. Wind speeds can easily exceed the maximum speeds
of UAVs, unlike manned aircrafts. Fixed-wing UAVs have an
aerodynamic structure that helps them maneuver through air
streamlines, whereas even at lower wind speeds, rotary-wing
UAVs are more likely to struggle. That is why fixed-wing
UAVs have a higher maximum speed than rotary-wing UAVs
[73]. The mathematical representation of high-speed winds’
impact on the operation of UAV is presented as follows:

Suppose the direction of wind is denoted by β1, and the
deviation in a UAV’s trajectory caused by the wind is denoted
by β2. m1 and m2 are vertical line equations slope. The
relationship between the slopes and directions of wind and
the deviation of the UAV is as follows:

m1 = tanβ1 (3)

And

m2 =
y(z+ 1)− y(z)
x(z+ 1)− x(z)

(4)

where z is the simulation discretized steps. A vertical line
is formed at the instant the UAV interacts with the wind at
every step. The change in direction along x-axis and y-axis is
defined by:

x = cosβ2, y = sinβ2 (5)

Tanβ2 =
(m2 −m1)

(1+ (m2) (m1))
(6)

Table 1 shows two different weather classifications based
on the Beaufort wind scale and rainfall precipitation.

130116 VOLUME 10, 2022



A. Alharbi et al.: Modeling and Characterization of Traffic Flow Patterns

D. DECONFLICTION STRATEGY
As the number of UAVoperations increase, it is vital to imple-
ment effective measures for managing airspace conflicts by
preventing two or more UAVs from operating in the same
place simultaneously. These conflicts are high-risk scenarios
that may result in damage to assets or human fatalities.

The NASA UTM recommendation aims to allow UAV
operators to prevent these airspace conflicts by accurately
exchanging information through supporting services. This
concept, known as strategic deconfliction, is the first of
three layers that form the conflict management model laid
out in the recommendation, with the other two layers being
separate provision and collision avoidance. The key notion
surrounding this first layer is prioritization, which involves
designating priorities using the UTM system and handling
UAV operations in such a way as to improve situational
awareness and encourage more communication between
airspace users. To resolve potential UAV conflicts, our recent
work [75] outlined some possible deconfliction strategies,
which consider the UAV priority mechanism we previously
mentioned.

E. FRAMEWORK FOR CHARACTERIZATION OF AIR
TRAFFIC PATTERN
For the identification and characterization of UAV traffic
flow patterns, a flight trajectory–based framework that uses
the DBSCAN algorithm, and the Gaussian kernel density
estimator has been described here. Since the UTM traffic
flows are related to UAV missions following the same tra-
jectory paths on different time schedules, deviations in the
planned paths are expected due to the presence of dynamic
airspace architectures, weather uncertainties and random
hobbyist flights. The characterization of traffic flows thus
needs the detection of trajectory patterns for each mission
separately for characterization. In the past, a number of
researchers have conducted ATM traffic-flow pattern iden-
tifications, using DBSCAN for terminal-maneuvering areas
around airports [49], [50], [58], [59], [60] as already dis-
cussed in section II-B. Our proposed framework comprises
the following functions:

1) DBSCAN–based clustering of UAV trajectories in the
spatial domain.

2) Identification of UAV mission-based clustered groups.
3) Statistical analysis of noisy cluster groups and valid

mission trajectories.
1. Valid clusters are clusters that belong to the class of

one of the three planned missions.
2. Noisy clusters are clusters that pertain to random

flying of UAVs by hobbyists.
4) Characterization of UTM traffic flows using detected

mission clusters.
5) Congestion analysis of UTM airspace Using a Gaussian

kernel density estimator for UAV trajectories.

This framework uses the above functions to automatically
learn and identify the airspace structure. The main purpose

FIGURE 2. Overview of the UTM airspace characterization approach.

of trajectory clustering is to find groups of trajectories in
the spatial dimension that belong to valid missions in the
presence of random and dynamic factors. The framework also
helps to find congestion patterns in the UTM airspace through
calculations of air traffic density. The methodology of the
above-stated flight trajectory framework for the characteri-
zation of air traffic flow for UTM is shown in TABLE 2.

Clustering tasks can be performed using a variety of
approaches and algorithms, which can be classified into
three sub-categories: partition-based (k-means), hierarchi-
cal (divisive, agglomerative) and density-based (DBSCAN).
With normal-shaped clusters, hierarchical- and partition-
based clustering techniques are extremely helpful. DBSCAN,
on the other hand, is more efficient in detecting outliers
or arbitrarily shaped clusters. In the presence of abnormal
trajectory profiles, DBSCAN identifies the core trajectory
patterns. It has ability to identify non-convex clusters
and eliminate the need to predetermine the number of
clusters.

In this study, DBSCAN is chosen because of two reasons:
(a) the algorithm can decide the number of clusters automati-
cally, and (b) outliers can be identified. These characteristics
meet the requirement of trajectory clustering because (1) the
number of typical UAV air traffic flow patterns is unknown
with random factors such as dynamic objects, wind and ran-
dom flights of UAV hobbyists, (2) UAV flights undergoing
abnormal deviation can also be extracted from clusters as
outliers. Successful applications of DBSCAN in air transport
research can be found in the literature [76], [53].

DBSCAN clustering depends on the input parameters
epsilon and minPts [58] as follows:
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1) Epsilon: Distance threshold. It specifies neighbor dis-
tance. If the distance between two points is less than or
equal to epsilon, then it is considered neighbor.

2) Minimum points (minPts): For defining cluster, mini-
mum number of data points.

Core points, border points and outliers are defined based on
the above parameters:
1) Core point: A point is considered core point if it is

surrounded by at least minPts points (including the point
itself) within the epsilon radius.

2) Border point: It is part of a cluster because it is within
the epsilon of the core points, but it doesn’t meet the
criterion of minPts.

3) Outlier: When the point is not a core point and is also
unreachable from any core point, then it is called an
outlier.

The clustering process works on three main concepts, namely
epsilon neighborhood, density reachability, and density con-
nectivity, given below:

The Di observation epsilon neighborhood contains all
observations that are within the epsilon distance:

Nε (Di) = {DJ ∈ Z/d
(
Di,Dj

)
≤ ε

Ed (Di,Dj) =
∥∥Di − Dj∥∥2 (7)

where Di and Dj are two different trajectories taken from (7),
and ε represents epsilon. The observation trajectory DJ is the
density reachable from Di if

DJ ∈ Nε (Di)

|Nε (Di)| ≥ minPts (8)

If there is chain of Di, . . . ,DJ such that each subsequent
observation is directly density-reachable from the preceding
one, then DJ is density-reachable from Di.
DJ is the density connected to observationDi if both obser-

vations are density-reachable from another observation Dk .
The algorithm begins with an arbitrary database instance

and determines its epsilon neighborhood. Observation and
neighborhood start clustering if it contains at least minPts,
which is the core-point condition. The same procedure
is applied for the neighbor’s ε–neighborhood iteratively
retrieved until the border points are achieved, or else the
observation is classified as noise, and the algorithm moves
on to the next database instance. If there are newly discovered
core points, then this observation instantly labelled as noise
can become part of the cluster, and the points are defined as
density-connected points. TABLE 3 illustrates the DBSCAN
concept.

The following methodology is adopted in this regard:
1) Pre-processing data by resampling the data for better

resolution.
2) Tuning the DBSCAN parameters heuristically for

extracting valid mission trajectories as one cluster or
class.

3) Labelling different cluster groups pertaining to one
mission.

FIGURE 3. DBSCAN clustering [58].

4) Visualizing the group of mission clusters as aggregate
or combined plots for identifying different deviation
patterns for each mission.

5) Reporting the statistics of trajectory points per cluster.
6) Calculating the percentages of valid and noisy clusters.

Since the data is generated using the PSO simulation
framework, no data filtering is required; however, for the sake
of better resolution, the trajectory data for 100 UAVs with
100 interpolated sample points is up-sampled to about more
than 20000 sample points for smooth DBSCAN clustering.
The DBSCAN algorithm is applied for the clustering and
classification of the above mixed-mission data for three sce-
narios; further details are provided in the following section.
Google Colab–based Python environment is used to run the
DBSCAN clustering algorithm. The parameters epsilon ( ε)
and minimum points (minPts) are tuned for each dataset
accordingly, in order to acquire better results. In this man-
ner, different mission-trajectory patterns are identified in this
unsupervised learning mechanism.

Additionally, the hobbyists’ single-leg trajectories were
identified as outliers in this work. The clustering for these
scenarios is tuned and achieved with different epsilon (ε)
and minimum points (minPts) using the heuristic method are
presented in Table 2.

Once the clustering is done using the DBSCAN algo-
rithm, a detailed cluster analysis is conducted using the
trajectory matrix and labelled clusters to visualize different
mission trajectory patterns and their shapes. Furthermore,
aggregate or combined cluster patterns for different missions
are plotted and analyzed. The analysis is also supported
with the help of the percentage of valid and noisy clus-
ters found using DBSCAN. The tally of different trajectory
patterns of various missions is also obtained. We further
evaluated the percentages of various valid mission tra-
jectories detected per cluster in this analysis using pie
charts.
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TABLE 2. DBSCAN cluster’s parameters for simulation scenarios.

IV. SIMULATION SCENARIO AND RESULTS
A significant amount of research has been conducted on the
use of UAVs in emergencies, for e.g., where they are used
to transport much-needed medical supplies, food and water
to a flooded area [77]. This indicates that academics are
becoming more interested in UAV-assisted disaster manage-
ment [78]. There is special need to develop scenario-driven
planning approaches that aim to optimize plans for UAVs
and enable the selection of who to serve, which routes to
take and how much to deliver [79]. Due to limited resources
and other restrictions, planning a relief operation is difficult,
particularly for last mile delivery activities (from distribution
centers to beneficiaries) [80]. A requirement for ‘‘empirically
grounded analytical modelling papers’’ in the domain of
research on disaster relief operations have been distinguished
in [81].

To present our problem, we considered diverse situa-
tions that includes COVID-19 sample delivery to multiple-
clinics. We also consider the Royal mail delivery along with
square loitering-based fire surveillance missions. Further-
more, we considered the situations where flying hobbyists are
flying their UAVs within the same time frames.

It is assumed that the Luton–Bedfordshire National Health
Service (NHS) hospital is currently housing a fleet of three
UAVs (UAV1, UAV2, and UAV3) for COVID-19 sample test
delivery missions to multiple clinics in a defined distribution
network. The UAVs’ shuttle service will occur each hour.
The delivery of mail packages is from Luton central delivery
office to the multiple-post office. This mission fleet consists
of two UAVs (UAV4, UAV5); one UAV will be allocated for
the areas of Graveley, Old Warren, Sandy and Cardington,
the second UAV will cover the remaining areas (Cranfield,
Halton, Dunstable, and Milton Keynes Prison. The purpose
of the central mail office to use two UAVs for delivering
packages to multiple post offices is to reduce delivery time
and gain customer satisfaction.

The firefighting-based rescue operations rely heavily on
the surveillance operation using cameras. The initial videos
and pictures taken by the payload cameras would help define
the course of action in fire-fighting operations. Currently,
only one square loiters operation is considered in our sce-
nario.We are considering aUAV-6 available atMiltonKeynes
Prison Fire Station as a base station for these missions.

We are also considering where hobbyists are flying their
UAVs alongwith the above-plannedmissions in this scenario.
We assume these flying trajectories with one leg and random

TABLE 3. The description and schedule for uavs missions.

TABLE 4. Technical parameters of UAVs.

start and finish locations. The plan and schedule for each
mission are presented in Table 3 below.

We also assume that the UAVs are available at zero time
and flying at constant speeds of 90 km/hr. It is further sup-
posed that the times of delivery depend on the sequence
of customers to be served along flight routes. Breakdown
and maintenance times and costs are not considered. Each
UAV follows a particular route, starting and ending at the
same depot; the mission of a UAV is completed when it
completely follows the assigned route and reaches back to the
depot safely. To simulate more complex dynamic airspace,
we considered 100 UAV trajectories, out of which 73 belong
to special UAV missions and 27 for the random flights by
hobbyists. Technical parameters of the UAVs are presented
in Table 4.

We have simulated a multi-mission scenario between
9:00 am to 12:00 pm for the Bedfordshire area where four
missions were taking place. Three different sub-scenarios
were created based on these hours as follows:

A. SCENARIO 1—NFZs WITH NO WEATHER CONSTARINT
AND DYNAMIC OBASTACLES
This simulation runs between 9:00 am and 10:00 am in
the environment illustrated in FIGURE 4. In this simulated
scenario, all nine NFZs are static with no dynamic obstacles
and no weather constraints. As a result, no UAV could fly
over four airfields, four recreational areas and one prison.
However, any missions related delivery can be accomplished
for these regions if applicable. The recreational users however
are prohibited to fly over these NFZs.

B. SCENARIO 2—STATIC AIRFIELD AND DYNAMIC
RECREATIONAL AREA WITH EXTREME
WEATHER CONDITIONS
The second simulation scenario runs between 10:00 am and
11:00 am. The difference with the first scenario is that any
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FIGURE 4. Simulation scenario 9:00 am to 10:00 am.

FIGURE 5. Simulation scenario 10:00 am to 11:00 am.

NFZ corresponding with recreational areas are dynamic,
making some areas available and others unavailable in this
hour. FIGURE 5 shows Dunstable, Sandy, Cardington and
Graveley opened their airspace. Therefore, some UAVs could
fly over dynamic NFZs during the simulation time. This
scenario also incorporated the effects of extreme weather,
dynamic in spatio-temporal axes, which would result in
severe damage or loss of control of an UAV. Changes in
extreme weather condition make it practically impossible to
finish the flight of UAVs and have a significant impact on the
success of planned missions of surveillance and COVID-19
sample distribution. Thus, UAVs avoid flying in extreme
weather.

C. SCENARIO 3—DYNAMIC AIRFIELD AND STATIC
RECREATIONAL AREA WITH DIFFERENT WEATHER
CONDITION (RAIN AND WIND)
In this simulated scenario, airfields are dynamic, while all
four recreational areas and the prison is kept static. Among

FIGURE 6. Simulation scenario from 11:00 am to 12:00 pm.

the four airfields, Luton and Cranfield airfields are available,
as shown, and therefore UAVs of flying hobbyists can fly over
Luton and Cranfield areas at some points. This scenario takes
place between 11:00 am and 12:00 pm. Effects of adverse rain
and wind have been considered, as shown in FIGURE 6.

V. AIRSPACE TRAFFIC FLOW PATTERNS,
CHARACTERIZATION AND DENSITY DISCUSSION
A. IDENTIFICATION OF UTM AIR TRAFFIC PATTERNS
USING DBSCAN
This section defines the results of identifying different tra-
jectory patterns in the planned UAV missions explained in
section IV above. The mission legs and their trajectories are
shown in FIGURE 4, FIGURE 5 and FIGURE 6 under three
different scenarios. These three scenarios perturb the ideal
mission plans with the introduction of various dynamic ran-
dom factors such as recreational areas, airfields and different
uncertain weather conditions that cause trajectory deviations
and result in different mission trajectory patterns that can’t be
identified visually.

An ideal case scenario was also simulated to create a
reference UAV mission trajectory pattern that considers the
whole airspace open without any static or dynamic obstacles
and weather constraints. The results and analysis for the ideal
case scenario and three main scenarios is narrated below:

1) SCENARIO 0—IDEAL CASE WITHOUT NFZ, WEATHER
CONSTRAINTS AND DYNAMIC OBSTACLES
The intent of the DBSCAN clustering in our work is to
assign trajectories to clusters in an unsupervised way similar
to [50] and [82], thus identifying and separating the regular
mission trajectories within the noise of recreational hobbyist
missions. The input features used in DBSCAN-based trajec-
tories clustering are 2D horizontal position vectors (X, Y)
of all UAVs. These feature data are resampled to increase
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FIGURE 7. Scenario-0 DBSCAN results.

the resolution and provide equal spacing between consec-
utive trajectory points of each UAV. The regular mission
trajectories (Covid-19 sample delivery and package deliv-
ery services) form regular shapes such as rectangles and
trapezia through interconnected straight-line segments, while
the recreational flyer’s missions are shown as straight-line
segments. The DBSCAN has successfully detected regu-
lar missions from the provided trajectory data set of the
whole airspace without prior knowledge of any mission.
The DBSCAN clustering results explicitly show the sepa-
rate detection of UAV missions as line segments in different
colors, such as dark green, light green, and yellow, while
the recreational UAV users (hobbyist flyers) are detected and
shown as line segments marked as noise (outliers) cluster
group in violet color.

The clustering for this scenario is tuned and achieved with
epsilon (ε = 0.6) and minimum points (minPts = 3). The
detailed low-level clustered trajectory patterns detected with
the above classifiers are depicted in FIGURE 7. It can be
observed from the separated cluster graphs in FIGURE 8 that
COVID-19 shuttle service trajectory patterns (UAV1, UAV2,
UAV3) are detected with much higher numbers in clusters 3,
4, 5, 6, 8, 9, and 10. Also, the UAV4 and UAV5 package
delivery service trajectory patterns are well detected and sep-
arated (clusters 7,11) from the denser areas where the outliers
(such as random UAVs flying) have covered the airspace
more comprehensively. Two types of trapezoidal trajectory
patterns were detected, as shown in FIGURE 9.

We also evaluated the percentages of trajectory points
per cluster for Scenario-0 as shown in FIGURE 10 below.
It is evident that most of the trajectories detected are of the
COVID-19 sample delivery missions as shuttle service with
56%weightage compared with delivery package services that
constitute 44% of the trajectories of missions.

2) SCENARIO 1—NFZ WITH NO WEATHER CONSTRAINTS
AND NO DYNAMIC OBSTACLES
The detailed low-level clustered trajectory patterns detected
with the above classifiers are shown in FIGURE 11. It can be
observed from the separated cluster graphs (FIGURE 12) that

FIGURE 8. Scenario-0 DBSCAN detected mission cluster plots.

FIGURE 9. Scenario-0 detected combined mission patterns.

FIGURE 10. Scenario-0 trajectory count per cluster (%).

UAV1, UAV2, and UAV3 COVID-19 shuttle service trajec-
tory patterns are detected with amuch higher confidence level
in clusters 3, 4, 5, 6 and 9. UAV4 and UAV5 package delivery
service trajectory patterns are detected in clusters 7 and 8.
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FIGURE 11. Scenario-1 DBSCAN results.

FIGURE 12. Scenario-1 DBSCAN detected mission cluster plots.

As observed, the presence of active static NFZs has clearly
deviated the ideal straight line–based trapezoidal trajecto-
ries to a distorted shape for UAVs for COVID-19 samples.
Also, the package delivery service UAV trajectories are much
distorted from the ideal shapes for both UAV4 and UAV5
missions. The combined trajectory patterns, as depicted with
the help of DBSCAN, are also shown in FIGURE 13.

We also evaluated the percentages of trajectory points per
cluster for Scenario-1 as represented in FIGURE 14 below.
It is evident that most of the trajectories detected belong to
the COVID-19 sample delivery missions as shuttle service
with 63% weight compared with delivery package services
that constitute 37% of the detected missions.

3) SCENARIO 2—STATIC AIRFIELDS AND DYNAMIC
RECREATIONAL AREAS WITH EXTREME
WEATHER CONDITIONS
The detailed low-level clustered trajectory patterns detected
with the above classifiers are shown in FIGURE 15 and

FIGURE 13. Scenario-1 detected combined mission patterns.

FIGURE 14. Scenario-1 trajectory count per cluster (%).

FIGURE 15. Scenario-2 DBSCAN results.

FIGURE 16. It can be observed from the separated cluster
graphs that UAV1, UAV2, UAV3’s COVID-19 shuttle service
trajectory patterns are detected with a much higher confi-
dence in clusters 3, 4, 5 and 7. UAV4 and UAV5’s delivery
package service trajectory pattern is only detected in cluster 6.
Moreover, the presence of active static NFZs, dynamic obsta-
cles and extreme weather conditions has clearly deviated the
ideal trapezoidal trajectories to much more distorted shapes
for the COVID-19 sample UAVs. Also, it can be seen that
the delivery package service UAVs’ trajectories are much
distorted from the ideal straight line–legs and Scenario-1 for
bothUAV4 andUAV5missions. The combined trajectory pat-
terns depicted with the help of DBSCAN are also presented in
FIGURE 17. The percentages of trajectory points per cluster
for Scenario-2 as represented in FIGURE 18.
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FIGURE 16. Scenario-2 DBSCAN detected mission cluster plots.

FIGURE 17. Scenario-2-detected combined mission patterns.

FIGURE 18. Scenario-2 trajectory count per cluster (%).

4) SCENARIO 3—DYNAMIC AIRFIELDS AND STATIC
RECREATIONAL AREAS WITH DIFFERENT WEATHER
CONDITIONS (RAIN AND WIND)
The detailed low-level clustered trajectory patterns detected
with the above classifiers are shown in FIGURE 19 and
FIGURE 20. It can be observed from the separated clus-
ter graphs that COVID-19 shuttle service trajectory patterns
(UAV1, UAV2, UAV3) are detected with a much higher
confidence in clusters 3, 5, 6, 8 and 9. UAV4 and UAV5’s
delivery package service trajectory pattern is detected in

FIGURE 19. Scenario-3 DBSCAN results.

FIGURE 20. Scenario-3 DBSCAN detected mission cluster plots.

clusters 4 and 7. It can also be noted that presence of dynamic
airfields, adverse winds and rain conditions has clearly devi-
ated the ideal trapezoidal trajectories to much more distorted
shapes for the UAVs carrying COVID-19 sample. Addition-
ally, the delivery service UAVs’ trajectories are severely
distorted from the ideal straight line–legs, scenario-1 and
scenario-2 for both UAV4 andUAV5missions. The combined
trajectory patterns depicted with the help of DBSCAN are
also presented in FIGURE 21.

The percentages of trajectory points per cluster is repre-
sented in FIGURE 22.

B. STATISTICAL ANALYSIS OF CLUSTERS AND VALID
TRAJECTORIES
The performance of DBSCAN-based mission clusters’ detec-
tion is depicted in Table 5 below. The table presents the per-
centages of valid mission clusters and noisy clusters detected.
As observed, under ideal weather conditions and no obstacles,
DBSCAN detected more than 81% of valid mission clusters
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FIGURE 21. Scenario-3- detected combined mission patterns.

FIGURE 22. Scenario-3 trajectory count per cluster (%).

from the provided dataset. It is also observable that in the
presence of static NFZs, the deviation in trajectory patterns
reduced detection capability to almost 77%. These percentage
levels have been further reduced to 71% in the presence of
static airfields and dynamic recreational areas along with
dynamic extreme weather clouds that passed by in almost
all of the missions’ execution areas at different times during
the hour, heading between south-west and north-east. This
percentage of valid clusters’ detection has been reduced to
almost 58% with dynamic airfields, static recreational areas,
and weather conditions like wind and rain.

We also analyzed the number of valid missions detected
from the overall cluster groups that should belong to sub-
sets of COVID-19 sample delivery, package delivery and
fire surveillance operation as presented in Table 6. Shuttle
service–type missions were identified in large numbers as
compared with one-time fire surveillance missions. This may
be due to the reason that fire surveillance square loiter is
missed in the detection mechanism because of the interfer-
ence of much higher hobbyists’ UAVs single-leg trajectories
in this area. This also indicated the presence of much denser
trajectories from diverse missions, dynamic environments,
and random UAV flights in this area. The Gaussian density-
based probability densities of this region may reflect the
presence of congestion in this zone, which will be presented
and discussed in Section C below.

C. UTM AIR TRAFFIC FLOW CHARACTERIZATION
This section presents a characterization of UTM air-traffic
flows, with the help of the above mission clusters, as detected

by DBSCAN. We will introduce three key characteriza-
tion parameters (KCP), namely: Distance from Centroid
(DFC), Distance To Complete Mission (DTCM), and Time
To Complete Mission (TTCM). These parameters present
the traffic-flow behavior and efficiency of the UTM airspace
in three different scenarios, as explained in our simulation
section. DFC is the measure of the horizontal deviation flows,
whereas the DTCM and TTCM address the efficiency of
UTM air traffic. These model parameters may facilitate the
derivation of future configurations of UTM airspace struc-
tures. The concept of distance from centroid is inspired by
several studies, as referenced below.

One recent article [83] uses the concept of convex
polygon and centroid detection for UAV obstacle avoid-
ance. In this study, the sensor carried by the UAV detects
an obstacle, and the detected part is constructed with
a convex polygon. The convex polygon with m vertices
(C0,C0)(C1,C1) . . . , (xm−1, ym−1) of the obstacle with cen-
troid (Cx ,Cy) is constructed, and a collision-avoidance cone
is generated about this centroid to set the threshold angles
for collision avoidance. The research in [84], in order to
achieve better path planning of new areas to be covered during
UAV search-and-coverage missions, uses the distance from
centroid of uncovered portions of the boundary search region.

Lalak and Wierzbicki [85] use distance from centroid
for detection and classification of aviation objects based on
imagery data. In that study, Euclidean distance between the
edges of an aviation object from its centroid is used to detect
the geometry of the aviation object. For example, if this
distance remains constant, thismeans a regular object shape is
being detected, whereas if this distance varies, some irregular
object (such as a polygon) is the subject.

Our work also employs this approach, and we measure
the distances from the mission polygon centroid (DFC) to
each point along the trajectory, in order to report deviations
in missions along the whole trajectory. The concept of DFC
measurement for shuttle-servicemissions and trajectory devi-
ations is presented in FIGURE 23.

The centroids (Cx ,Cy) are calculated using the area of
mission polygon. The mission is represented by orange-
colored contours. The black and green circles represent the
maximum and minimum distances from centroids, namely,
max_DFC and min_DFC, respectively. The DFC (x1, y1)
and DFC (xN, yN) represent the distances from the centroid
for trajectory points. We reported the maximum, minimum,
mean and standard deviations in three different scenarios,
in order to present the effects of dynamic obstacles, weather
constraints and high-priority missions on these deviations.
These factors indirectly affect efficiency, and they also high-
light traffic-flow behaviors in UTM shuttle-service-based
missions. Moreover, we were able to present a statistical
analysis of DFC across different types of mission, to correlate
and infer the type of shuttle-service missions that adversely
affected traffic flow, and vice-versa.

Our work is inspired by the methods cited above, and
we suggest distance from centroid (DFC) as one of the key
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TABLE 5. Valid mission & noisy clusters’ percentages.

TABLE 6. Number & type of missions detected with DBSCAN.

FIGURE 23. The concept of DFC measurement.

factors in understanding both UAV mission-path deviations
and future capacity enhancements. This factor may form
the basis of future efforts to ascertain traffic-flow behavior,
especially for time-scheduled shuttle-service missions, and it
plays a key role in dictating UTM traffic flows. This is the
case, because shuttle-service missions of the same, or dif-
ferent, UAVs at a depot try to follow the same optimized
planned trajectory in different time frames at margins of
twenty minutes’ delay, as simulated in our study. Nonethe-
less, the presence of dynamic obstacles, weather conditions
and emergency operations prevent this, and deviations are
forced that must then be evaluated by the UTM authority.
Furthermore, it should be understood that the concept of
traffic-flow behavior is slightly different from that of the
ATC domain, as most urban-operation UAVs may operate
in an airspace zone of 60 km x 60 km or less, without

any terminal-maneuvering-area (TMA) requirements. This
is especially true for vertical take-off and landing (VTOL)
UAVs. Moreover, a number of the UAV missions are closed-
loop scheduled missions, which do not evince any merging or
leaving trends. This makes it necessary tomodel the deviation
trends using DFC statistics.

Since both NHS Covid-19 sample delivery and the
package-delivery servicemissions of UAVs form closed poly-
gons, we used Euclidean distances from the centroid of
this closed polygon (named Distance from Centroid (DFC))
as one of the modeling parameters. This was deployed
for the UTM air-traffic-flow characterization of both the
NHS and package-delivery service mission patterns detected,
as described above, by DBSCAN.

The centroid is also known as the ‘‘center of gravity’’ or the
‘‘center of mass’’. This assumes the polygon is closed, so that
the last point position (xN ,yN ) is the same as the first (x1, y1),
where N is the number of points in the mission trajectory set,
or in mathematical-shape terms, the number of vertices in the
polygon. The x and y co-ordinates of this centroid (Cx ,Cy),
for a polygon of this kind, are governed by the following set
of equations [83], [86]:

Cx =
1
6A

∑N−1

i=0
(xi + xi+1) (xiyi+1 − xi+1yi) (9)

Cy =
1
6A

∑N−1

i=0
(yi + yi+1)(xiyi+1 − xi+1yi) (10)

where x and y are the co-ordinates of our trajectory T (x, y).
A is the area of the mission polygon. The polygon is com-
prised of line segments between N vertices (xi, yi), i = 1 to
N . The position of the last vertex (xN , yN ) is assumed to be the
same as the first (i.e., the polygon is closed). Subsequently,
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the area of this closed polygon is calculated using the follow-
ing equation:

A =
1
2

∑N−1

i=0
(xiyi+1 − xi+1yi) (11)

In this study, we used the built-in function centroid in
MATLAB to calculate the centroids of our mission poly-
gons. The Distance from Centroid (DFC) is a Euclidean
distance between the centroid of the mission polygon and
current trajectory point T (x, y), as shown in the equation
below:

ADFC
(
Cm,Tj

)
=

√(
Cmx−xj

)2
+
(
Cmy − yj

)2 (12)

where Cm is the centroid for any mission (m), and Cmx ,Cmy
represents the x, y co-ordinates of the centroid. The Tj repre-
sents the jth point of the trajectory, with (xj, xj), co-ordinates.

Once the centroid was known, we calculated the Euclidean
distance between this centroid Cx ,Cy for each point in
the mission trajectory (DFC). This was done to ana-
lyze the deviation trends, using the statistical measures
of mean, max, min and standard deviation (mean_DFC,
max_DFC, min_DFC, std_DFC) for each mission detected
by DBSCAN.

Furthermore, in order to characterize the traffic-flow
behavior based on distance to go, we also computed the
Distance To Complete Mission (DTCM) that each UAV
mission traversed; this was because ideal planned distance
might differ from the real planned distance in the presence
of the aforementioned constraints. This was followed by
the calculation of the Time To Complete Mission (TTCM),
using a constant UAV speed (Uv) of 90 km/hr. The mathe-
matical representation of these two parameters is presented
below:

DTCM=‖Ti − Ti+1‖2=

√∑n−1

i=0
(xi − xi+1)2+(yi − yi+1)2

(13)

where n is the number of trajectory points in the mission.

TCM =
DTCM
Uv

(14)

The above parameters were measured and presented for
three simulation scenarios, along with the ideal scenario-0;
and in this way, we considered the ideal weather conditions
and absence of no-fly zones.

1) UTM TRAFFIC FLOW CHARACTERIZATION—SCENARIO-0
This section includes the results and discussion concern-
ing the KCPs (DFC, DTCM and TTCM) for the ideal case
scenario, with normal weather conditions, and without NFZ
restrictions.

a: DISTANCE FROM CENTROID (DFC)
The detected mission polygons with centroids for both NHS
Covid-19 sample delivery and commercial package-delivery
services are presented in FIGURE 24. Next, we present

FIGURE 24. Scenario-0: Covid-19 sample delivery (left) and delivery
services (right) mission polygons with centroids (*).

FIGURE 25. Scenario-0: NHS and delivery services (DS) missions DFC
statistical distribution.

the statistical distribution of DFC for all these missions
by analyzing the mean, maxima, minima and standard
deviations for the DFC curves. In addition, this analysis
evaluates the deviations of the above factors, along with
the deviation of centroids for each detected mission for
NHS Covid-19 sample delivery (NHS) and the package-
delivery services (DS). The results are presented graphically
in FIGURE 25.

It is clear that in the ideal case scenario, UTM traffic-flow
patterns, as identified by DBSCAN, exhibited zero deviation
of DFC values for all the high priority NHSCovid-19 sample-
delivery missions, as well as the commercial (Royal Mail)
delivery services. Thus, a clear, sunny day, without any NFZ
constraints, exhibits a zero deviation in mean, max, min
and standard deviations for DFC. Furthermore, the (x, y)
centroids of the described missions retained their constant
positions in this scenario. This means that every group of
shuttle-service missions followed the same path, without any
deviations.

b: DISTANCE TO COMPLETE MISSION (DTCM) AND TIME
TO COMPLETE MISSION (TTCM)
This section provides the DTCM and TTCM analysis for the
ideal case scenario, whereby the DTCM and TTCM metrics
are calculated using (13) and (14). A constant UAV speed
of 90 km/hr is assumed in these calculations. FIGURE 26
demonstrates that zero deviation in DTCM and TTCM values
was observed for all the high-priority NHS Covid-19 sample-
delivery missions, and also for the commercial-delivery
services, in the case of moderate weather without any NFZ
constraints.
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FIGURE 26. DTCM & TTCM distribution for Scenario-0.

FIGURE 27. Scenario-1: Covid-19 sample delivery (left) and delivery
services (right) mission polygons with centroids (*).

2) UTM TRAFFIC FLOW CHARACTERIZATION—SCENARIO-1
This section includes the results and discussion regarding the
KCP (DFC, DTCM and TTCM) for Scenario-1, whereby the
Bedfordshire area was assumed to have an active static NFZ,
without any dynamic obstacles or weather constraints.

a: DISTANCE FROM CENTROID (DFC)
The detected mission polygons with centroids for NHS
Covid-19 sample delivery and the package-delivery services
are presented below, in FIGURE 27. Next, we present the
statistical distribution of DFC for all these missions, by ana-
lyzing the mean, maxima, minima and standard deviations
for DFC curves. This analysis also assesses the deviations
of the above factors for a group of hourly shuttle-service
missions. The NHS-1 to NHS-7 shuttle services belong to
one group, whereas DS1 and DS2 belong to another group,
and DS3, DS4 constitute the same group. We also measured
the deviations of centroids for each detected mission. The
statistical distribution is presented graphically in FIGURE 28.

It is evident, from the analysis above, that in the case of
Scenario-1, traffic-flow patterns show deviations in DFC val-
ues for all the high-priority NHS Covid-19 sample-delivery
missions, as well as for the commercial-delivery services. The
range of deviations in mean, maxima, minima and standard
deviations for the DFC curves in this case are as follows. The
mean DFC varies between 0.04 km and 1.6 km; the maximum
DFC varies between 0.01 km and 4.35 km; the minimum
values lie between 0.05 km and 1.14 km; and the standard
deviation varies between 0.002 km and 1.16 km. In addition
to this spread, a shift is also observed in centroid positions.

FIGURE 28. Scenario-1: NHS and DS missions DFC statistical distribution.

Specifically, the X centroid varies between 0.03km and
0.96 km, and the Y centroid shifts between 0.02 km and
1.55 km. This means that the NHS and the delivery shuttle-
service missions changed their routes in both X,Y planes, and
they also increased their spread from the mission polygon
centroid by a maximum distance of approximately 4.3 km.

b: DISTANCE TO COMPLETE MISSION (DTCM) AND TIME
TO COMPLETE MISSION (TTCM)
This section provides the DTCM and TTCM analysis for
the case Scenario-1. The characterization parameters are
presented using a stacked bar chart, as shown below in
FIGURE 29.

We also observed deviations in the DTCM and TTCM
for each group of the shuttle-service missions belonging to
the NHS emergency services and commercial services. This
analysis demonstrated that, in the presence of static NFZ in
the Bedfordshire area, there was some significant deviation
of DTCM and TTCM values. For example, the DTCM for
the hourly NHS shuttle services varied between 0.3 km and
1.54 km, whereas the DTCM variations for the hourly deliv-
ery services shuttle missions ranged between 0.4 km and
20.98 km. The TTCM for the NHS missions varied between
0.24 minutes and 1 minute. The commercial delivery shuttle
services exhibited an increase in their mission times from
0.27 minutes to 13.98 minutes.

3) UTM TRAFFIC FLOW CHARACTERIZATION—SCENARIO-2
This section presents the results and discussion regarding the
three KCP for Scenario-2. Here, the Bedfordshire area has
static airfields and dynamic recreational areas, with extreme
weather conditions.

a: DISTANCE FROM CENTROID (DFC)
The detected mission polygons with centroids for our sce-
nario missions are presented below, in FIGURE 30. Similarly,
we present the statistical distribution of DFC for all these
missions by analyzing the mean, maxima, minima and stan-
dard deviations for DFC curves. The statistical distribution is
presented graphically in FIGURE 31.

The analysis demonstrates that, in the case of Scenario-2,
traffic-flow patterns evince significant deviations in DFC
values for both high priority NHS Covid-19 sample-delivery
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FIGURE 29. DTCM & TTCM distribution for Scenario-1.

FIGURE 30. Scenario-2: Covid-19 sample delivery (left) and delivery
services (right) mission polygons with Centroids (*).

missions and delivery services. The mean_DFC varies
between 0.06 km and 1.19 km; meanwhile, the maximum
DFC varies between 0.05 km and 2.059 km, the minimum
values lie between 0.128 km and 6.38 km, and the standard
deviation varies between 0.005 km and 1.97 km. In addition to
this spread, a large shift in centroid positions is also observed;
the X centroid varies between 0.108km and 1.88 km, and
the Y centroid shifts between 0.2 km and 1.44 km. This
means that NHS and the delivery shuttle-service missions not
only changed their routes in both X, Y planes, but they also
shifted their polygon centroids with reference to the ideal case
scenario.

b: DISTANCE TO COMPLETE MISSION (DTCM) AND TIME
TO COMPLETE MISSION (TTCM)
As indicated in FIGURE 32, deviations can be observed in
DTCM and TTCM values for each group of shuttle service,
for static recreational areas, dynamic airfields and extreme
weather fronts in the Bedfordshire area. The DTCM values
for hourly NHS shuttle services varied between 0.82 km
and 8.5 km, whereas the DTCM variations for the hourly
delivery shuttle-service missions ranged between 20 km to
73 km, when we compared results with ideal case Scenario-0.
The TTCM for NHS missions ranged between 0.54 minutes
and 5.67 minutes. The package-delivery services missions
registered an increase in mission-completion times between
13 minutes and 49 minutes, with reference to ideal case
Scenario-0. This clearly shows that the extreme weather
fronts, along with the dynamic recreational-area constraints,

FIGURE 31. Scenario-2: NHS and DS missions DFC statistical distribution.

FIGURE 32. DTCM & TTCM distribution for Scenario-2.

resulted in elongated mission distances and times, and these
factors thus require attention from UTM authorities.

4) UTM TRAFFIC FLOW CHARACTERIZATION—SCENARIO-3
This section presents the results and discussion concerning
the three KCP for Scenario-3, whereby the Bedfordshire
area has dynamic airfields and static recreational areas, with
‘‘rainy and windy’’ weather conditions.

a: DISTANCE FROM CENTROID (DFC)
The detected mission polygons with centroids, for our sce-
nario missions, are presented in FIGURE 33, and the statisti-
cal distribution is presented graphically in FIGURE 34.

It can be seen from the above analysis that, in the case of
Scenario-3, traffic-flow patterns evince significant deviations
in DFC values. The mean_DFC varies between 0.014 km
and 3.20 km, whereas the maximum DFC varies between
0.016 km and 8.6 km, the minimum values range between
0.06 km and 1.62 km, and the standard deviation varies
between 0.053 km and 2.593 km. In addition to this spread,
a large shift is also observed in centroid positions; the
X centroid varies between 0.0.4km and 1.709 km, and the
Y centroid shifts between 0.008 km and 1.035 km. This
means that NHS and the package-delivery services missions
not only change their routes in both X,Y planes; they also
shift their centroids.

b: DISTANCE TO COMPLETE MISSION (DTCM) AND TIME
TO COMPLETE MISSION (TTCM)
As FIGURE 35 indicates, more deviations are observed
in DTCM and TTCM values for each group of NHS and
package-delivery services, due to the constraints imposed
by dynamic recreational areas, static airfields and adverse
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FIGURE 33. Scenario-3: Covid-19 sample delivery (left) and delivery
services (right) mission polygons with centroids (*).

FIGURE 34. Scenario-3: NHS and DS missions DFC statistical distribution.

weather conditions, such as rain and wind in the Bedfordshire
area.

The DTCM values for hourly NHS shuttle services vary
between 0.05 km and 4.99 km. The DTCM variations for
hourly delivery shuttle-service missions, meanwhile, range
between 0.47 km and 6.91 km. TTCM for NHS missions
varies between 0.038 minutes and 3.32 minutes. The delivery
services missions evinced an increase in mission-completion
times from 0.317 minutes to 4.60 minutes. This shows that
rainy and windy conditions, along with NFZ constraints, also
resulted in extended mission distances and times, and these
variables will be affected by the efficiency of airspace.

D. UTM AIRSPACE CONGESTION ANALYSIS USING
GAUSSIAN KERNEL DENSITY ESTIMATOR (KDE)
The authors will, in this section, estimate airspace density
for the Bedfordshire area. The aim of this analysis is to locate
the regions or zones of higher density or congestion that
may reflect the safety and availability of UTM airspace. The
traffic density, which is defined as the amount of aircraft
traversing a particular sector, is a conventional metric of air
traffic complexity [87]. The density of UAVs’ trajectories in
an available region has been estimated by analyzing thewhole
airspace. All scenarios discussed previously have been uti-
lized for the purpose of evaluating the UTM airspace density
on the spatial scale. High to low density of UAVs is denoted
by yellow to violet colors that mark more populated areas and
less populated areas, respectively.

During severe weather disorders along with emergency
operations conducted through UAVs, the UTM operator is
responsible for ensuring the safety of flight operations. In the

FIGURE 35. DTCM & TTCM distribution for Scenario-3.

above regard, UTM service providers also judge the capac-
ity of the airspace in order to determine the availability of
alternate routes for smooth UTM traffic flow. One of the
examples is the diversion of flight movements to off-peak
times or suggesting alternate nearby airports/depots with less
congestion or diversion to less congested traffic segments.

The visualize and predict the congestion will help the UTM
operator to divert the less priority UAV missions such as
recreational UAV flyers to lesser congested areas, in order to
regulate the traffic flow and significantly reduce the conges-
tion in the airspace, also offering more availability to upcom-
ing high priority UAV missions. This may help the UTM
authority to better manage the airspace safety and availability
under real conditions.

The analysis of the data conducted in this study facilitates
risk analysis and enhances the planning of trajectories in var-
ious aircraft zones taking into account each dynamic param-
eter that could result in aircraft deviating from their normal
trajectory. These findings enable cross-route comparisons of
the efficiency of the traffic flow in varying flight situations,
in addition to the determination of the factors causing aircraft
deviations from their standard routes. Moreover, the airspace
density pinpoints some ideal regions to conduct UAV opera-
tions that minimizes the impact on conventional ATM.

Information pertaining to the flow and performance of
traffic sourced from the analysis of trajectory data can lay
the foundation for the development of innovative approaches,
processes and tools for supporting decisions in the field of
air traffic management. For example, this innovation spans
from developing an artificial intelligent architecture capable
of predicting airspace congestion patterns to classifying safe
and dangerous regions using historic UAVs traffic patterns.

In our work, airspace density has been evaluated using
the Gaussian Kernel Density Estimator. KDE is frequently
employed in the field of computer vision for identifying
target objects as in [88]. Additionally, it is utilized for the
visualization and analysis of spatial data, with the aim of
forecasting event trends [89]. It is also widely applied in
areas such as analyzing damage and assessing risk [90]. KDE
is also applied in the transportation field. Laxhammar et al.
utilized KDE for the purpose of identifying abnormalities in
marine traffic [91].

We used both x and y data pairs as the dataset fed to
Kernel Density Estimation (KDE). KDE is a non-parametric
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technique utilized for the estimation of data distribution
according to a finite sample dataset with no presumptive
distributional properties [92]. It is well understood that out
of different probability density functions, (pdf) optimally
demonstrates how the 100% probability mass is distributed
across the values of a random variable, X. The traditional
empirical representation of pdf, namely the histogram, is
significantly subjective due to the fact that it is dependent
on the subjective selection of the amount (or widths) of class
intervals (bins) to which the sample range is then divided,
as well as the selection of the starting point. These limitations
do not apply to the kernel estimation of probability density
function. When applied practically, it largely generates a
smooth empirical pdf according to specific locations of the
entire sample data.

We computed the KDE based PDF for our bivariate trajec-
tory data (x, y) using the gaussian_KDE () function in python.
This function automatically determines the estimator band-
width using Scotts Rule as the default parameter. We then
used the computed PDF for providing congestion contours
representing the congestion percentages (%) by normalizing
the PDF data between 0 and 100. The original PDF lies
between 0-1 and represents the per unit increase in kilometers
of bivariate data of two trajectory variables x and y. This per-
centage congestion is plotted as contour maps for the whole
span of spatial trajectory data. The results and discussion for
KDE and % congestion contours are provided below for each
simulation scenario.

A KDE estimation graph for Scenario-1 of UAV missions
with static NFZs, no weather constraints and no dynamical
obstacles for the first hour (9:00 am to 10:00) is presented
in FIGURE 36.

It has been observed that static areas (NFZs) also exert
some impact on the UAV trajectories, resulting in large devi-
ations that cause congestion in different regions of the UTM
airspace over Bedfordshire. The regions of Dunstable, Sandy,
Cardington and Graveley evince lower regional congestion,
as compared with others. It is also observed from percentage
congestion contour plots that some areas near Milton Keynes
prison present more than 80% congestion levels. This is a
result of local emergency firefighting operations. This obser-
vation suggests the need to regulate the traffic flow in these
congested UTM traffic-flow zones.

A KDE estimation graph for Scenario-2 of UAV missions
with static airfields and dynamic recreational areas with
extreme weather conditions for the second hour (10:00 am
to 11:00), is presented in FIGURE 37. These dynamics are
sporadic, with some regions available and others unavailable
throughout the hour.

In this scenario, it has been observed that the density is
increased due to a large variation in dynamic and static areas
during the hour. Dynamic extreme weather conditions also
play an important role in increasing the density of UAV tra-
jectories in some areas as their trajectories deviates to avoid
static NFZs and weather fronts. Due to extreme weather con-
straints, maximum UAVs trajectories confined themselves to

FIGURE 36. Airspace congestion identification for scenario1.

FIGURE 37. Airspace congestion identification for scenario 2.

a limited area in the whole airspace, as represented by the
yellow and green colors in FIGURE 37. It is observed from
congestion contour plots that some areas near Milton Keynes
and Luton experience more than 80% congestion levels.

KDE analysis for the third hour of data simulation
with dynamic airfields, static recreational areas and dif-
ferent weather conditions (rain and wind) is presented
in FIGURE 38.

It is observed from congestion contour plots that some
areas near Milton Keynes, Luton and Dunstable experience
more than 70% congestion levels. There is also an obser-
vation of about more than 50% congestion levels in some
parts of north-west and south-west of Bedfordshire area and
thus UTM traffic flow may be regulated in these zones.
It is thus inferred that regions in the north- west and south-
east are more prone to hazards and conflicts, as both areas
saw maximum UAV-trajectory congestion exceeding 50%,
reaching a maximum of 90% congestion levels for some
smaller areas. The reason for the lower congestion of the
north-east and south-west regions, conversely, is that they
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FIGURE 38. Airspace congestion identification for scenario 3.

are generally occupied by static and dynamic NFZs with
extreme weather constraints; therefore, most UAVs keep
their trajectory points away from these regions, avoiding
NFZs and extreme weather, leading to more UAV conges-
tions in the remaining airspace regions. This also explains
why only the fire-surveillance missions by UAV-6 fail to be
detected by the DBSCAN algorithm, as this is considered
a noisy pattern and is thus lost in this congested area. The
temporal weather effect shows that extreme weather fronts
and adverse wind and rain cause some local hotspots, with
congestion levels more than 90% as compared to normal
weather conditions.

VI. CONCLUSION AND FUTURE WORK
This work has proposed and implemented a framework for
UTM traffic flow’s spatial and spatiotemporal patterns iden-
tification and characterization using DBSCAN clustering
algorithm. Moreover, this work has analyzed the airspace
density using the Gaussian kernel density estimator (KDE)
for different UAVmissions under variable airspace structures
and environmental factors. UAV missions considered in this
study as an application use case are essential delivery services
for COVID-19 samples, package delivery services and emer-
gency fire surveillance tasks. This work also considers the
influence of random flights of UAV hobbyists or recreational
users during the execution of above essential missions. The
effect of airspace structure configurations like static NFZs,
dynamic airfields, recreational areas and environmental fac-
tors such as weather conditions including wind, rain and
extreme weather have also been incorporated and studied in
this work.

It has been observed that the unsupervised learning
algorithm DBSCAN can detect and identify 82% of UAV
missions under ideal weather conditions and in absence of
flying restrictions. The valid missions’ detection capability
of DBSCAN is reduced by 4% under NFZ restrictions and
by 10% in the ideal scenario with static airfields, dynamic
recreational area restrictions and extremeweather fronts. This

performance is further deteriorated by almost 23%with static
recreational areas, dynamic airfields and bad weather condi-
tions including wind and rain. The noisy clusters incorporate
almost all single-leg trajectories belonging to recreational
users.

It has been observed that types of mission such as
COVID-19 sample delivery and package delivery that run as
shuttle services were identified in large numbers as compared
with the one-time fire surveillance mission because this mis-
sion is in the region of maximum interference or congestion,
and there is a greater concentration of random trajectories
of hobbyists’ UAVs as presented in the KDE-based density
graphs. This phenomenon resulted in the declaration of such
a square polygon as an outlier cluster pattern.

It is also evident from the detected mission-cluster patterns
that the ideal trapezoid trajectory polygon shapes, as expected
in ideal case Scenario-0 (FIGURE 8 and FIGURE 9, are
changed and deformed (FIGURE 13, FIGURE 17 and
FIGURE 21), showing the presence of NFZs, obstacles
and weather constraints. The packages-delivery-mission pat-
terns seem most affected; these show far more diversions
and present ‘‘flower-petal’’ shapes, as compared with the
ideal Scenario-0. The reason for this is that this mission
is obliged to provide emergency services, when NFZs and
dynamic obstacles are present along with the worst weather
conditions.

It can also be concluded from the UTM mission charac-
terization that severe weather conditions and dynamic NFZ
are the key sources of UTM-mission unpredictability in
the Bedfordshire area. It is observed that UTM missions
disperse more in the airspace, with a maximum spread of
about 8.6 km. Furthermore, there appears to be a shift in
the mission centroids by a maximum margin of 1.88 km in
horizontal directions, and of 1.55km in a southerly direction.
Indeed, there seems to be increased shifting of missions in
the horizontal directions. The commercial package-delivery
services are subject to stronger adverse effects, in compari-
son with the emergency NHS Covid-19 sample-delivery ser-
vices. Moreover, the mission ranges increased drastically, by
20 km to 79 km in the worst cases, as compared with ideal
weather conditions without any NFZ restrictions. Similarly,
the mission-completion times also increased by an order of
14 to 49 minutes in the worst-case scenarios.

For a better congestion analysis using KDE, the percentage
congestion contours are evaluated to provide better sugges-
tions for UTM operator as visual data analytics to regu-
late better traffic flow based on congestion figures. The hot
zones with more than 80% congestion levels in Bedfordshire
area are pinpointed in this study using the above approach.
It is inferred from the KDE analysis that the north-west
and south-east regions are more congested, as compared
with other regions of Bedfordshire airspace. The DBSCAN
clustering algorithm thus detects UAV trajectory patterns
where there is less congestion as compared with densely
packed trajectory zones due to random single-leg missions of
UAV-flying hobbyists. It is hence concluded that congested
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areas depict conflicts and concerns related to the safety of the
airspace.

It is thus inferred that clustering algorithms can be good
candidates in classifying and detecting up to 82% of the UAV
mission trajectories, and these statistics reduce to about 58%
in the worst-case scenarios. The performance of detection is
deteriorated due to the presence of noisy trajectory patterns
belonging to random UAV flights of hobbyists, dynamic
airspace structure and weather constraints. Moreover, Gaus-
sian kernel density-based estimators may help in evaluating
the congestion in the airspace

This future work under progressmentioned above concerns
designing and developing an AI (artificial intelligence)-
based architecture capable of predicting airspace congestion
patterns and classifying safe and dangerous regions using
historic traffic patterns of UAVs. Moreover, we are con-
sidering the application of the above work regarding UTM
airspace patterns’ identification and congestion measurement
for some other UK airspace regions that have a more diverse
set of airspace configurations and expect a much denser UAV
traffic flow. We are also proposing to design more realis-
tic and complex operational scenarios in future works. The
knowledge derived from the above studies regarding traffic
flows and their performance analysis can form the basis to
design and develop new approaches, practices, and decision
support tools for better air traffic management.
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