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Abstract
This study presents an application of feedforward and backpropagation neural net-
work (FFBP-NN) for predicting the kerf characteristics, i.e. the kerf width in three 
different distances from the surface (upper, middle and down) and kerf angle dur-
ing laser cutting of 4 mm PMMA (polymethyl methacrylate) thin plates. Stand-off 
distance (SoD: 7, 8 and 9 mm), cutting speed (CS: 8, 13 and 18 mm/sec) and laser 
power (LP: 82.5, 90 and 97.5 W) are the studied parameters for low power  CO2 laser 
cutting. A three-parameter three-level full factorial array has been used, and twenty-
seven  (33) cuts are performed. Subsequently, the upper, middle and down kerf 
widths (Wu, Wm and Wd) and the kerf angle (KA) were measured and analysed 
through ANOM (analysis of means), ANOVA (analysis of variances) and interaction 
plots. The statistical analysis highlighted that linear modelling is insufficient for the 
precise prediction of kerf characteristics. An FFBP-NN was developed, trained, vali-
dated and generalised for the accurate prediction of the kerf geometry. The FFBP-
NN achieved an R-all value of 0.98, in contrast to the ANOVA linear models, which 
achieved Rsq values of about 0.86. According to the ANOM plots, the parameter 
values which optimize the KA resulting in positive values close to zero degrees were 
the 7 mm SoD, 8 mm/s CS and 97.5 W LP.
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Introduction

Any material removal process utilising a laser beam as a cutting tool presents many 
benefits such as fast cutting speed (and thus higher productivity rates), high accu-
racy, good control of the Heat Affected Zone (HAZ) and minimal deformation, espe-
cially when low power  CO2 lasers are used [1, 2]. Low power lasers are employed 
to process polymer-based materials in a wide range of applications [3–6]. The mate-
rial melts and evaporates quickly during the laser cutting process, mainly due to the 
favourable material thermal properties and the beam density [7–9]. Laser process-
ing of the PMMA thermoplastic is used in various applications like automotive and 
transportation (bumpers, panels, fenders), electronics (screens made from PMMA, 
covers for PC or 3D printers, etc.), furniture (door canopies, functional balustrades), 
welfare (cabinets), lighting (transparency and brilliance optical applications), etc. 
[10–15].

The cutting quality is characterised through a number of features, such as the kerf 
width, the kerf angle, the roughness of the edge, the formation of burrs, and the 
depth of the HAZ to name few [1]. For assessing the state of the art, a thorough lit-
erature review was undertaken. A number of academic libraries and databases were 
queried using relevant search strings, such as “laser” AND “cut” AND “PMMA”. 
Scopus indicated that over the last 20 years more than one hundred papers have been 
presented on this topic. However, very few researches have been focused on PMMA 
kerf width and kerf angle optimisation and modeling (nine was found using “laser” 
AND “cut” AND “PMMA” AND “kerf”). In the following paragraphs, the more rel-
evant and significant studies are being reviewed and discussed.

Kerf width is one of the most studied factors for the laser cutting quality perfor-
mance [16–18] of thin thermoplastic materials and is affected by a number of pro-
cess parameters such as the focusing distance, spot diameter, cutting speed, assist-
gas pressure and laser power (see Fig. 1; [2, 7]).

A wide experimental range of laser power and cutting speed values has 
been investigated in the literature [19–21]. The kerf characteristics (upper and 

Fig. 1  Process parameter and quality characteristics of laser cutting
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bottom width, melted transverse area, melted volume per unit time and mean 
roughness values on cut edges) were measured by Caiazzo et al. [21]. The laser 
power (200–1400 W) and the cutting speed (18–150 mm/s) are optimised for the 
 CO2 laser cutting of polymeric materials (PE, PC, PP) of different thicknesses 
(2–10  mm) using the ‘trial and error’ experimental method. The focal length 
was 127 mm, and the focal spot diameter adjusted to 0.2–0.3 mm. Such process 
parameters resulted in kerf widths (upper and bottom) between 0.1 and 0.5 mm 
and average roughness (Ra) of up to 5  μm. The researchers, however, did not 
propose any model for predicting the process performance. They concluded that 
lower power values are suitable for cutting polymeric materials and that the laser 
cutting speed is a critical parameter.

A preliminary evaluation of the results of the cutting parameters in a range of 
polymeric materials (PMMA, PC, PP, etc.) was carried out by Davim et al. [1]. They 
studied the quality of cut (burr length and heat-affected zone depth) without try-
ing to model the quality metrics. Thin (6 mm) PMMA plates were cut using  CO2 
laser (high frequency, continuous mode, Gaussian profile) with power in the range 
between 350 and 650 Watt and cutting speed between 25 and 58 mm/s [19]. The 
focal spot size was about 0.3 mm, and the focal depth about 1.5 mm. Surface rough-
ness parameters (Ra, Rt, Rz, Rp), dimensional precision and the depth of the heat-
affected zone were studied and optimised using evolution diagrams of each metric 
according to the cutting speed and laser power. They have measured the depth of 
the HAZ between 0.12 and 0.37 mm, without burr and low average surface rough-
ness (Ra < 1 μm). It concluded that when the laser power increases, the depth of the 
HAZ also increases and the roughness decreases. In contrast, the opposite effects are 
being observed when the cutting speed increases. No mathematical model (analyti-
cal or experimental) was developed for the above-studied kerf characteristics.

The effects of laser power (0.275–2.5 W) and cutting speed (7–64 mm/s) of  CO2 
laser on the width and depth of micro-channels manufactured from (1 mm) PMMA 
of different molecular weights have been investigated experimentally by Nayak et al. 
[20]. The laser had a wavelength of 10.6 μm, lens focal length of 50.8 mm, spot size 
up to 0.13 mm and a maximum power of 25 W. They found that the depth increases 
with an increase in power or a decrease in beam speed, or a decrease in molecular 
weight. The width increases with a laser power surge. As with the previous studies, 
no predictive models for depth and width were proposed.

The impact of the spot diameter (focal length 200–210 mm), laser beam speed 
and incident power during PMMA miniaturised structures processed by a low power 
 CO2 laser (50 W, Gaussian continuous wave, minimum spot radius about 0.25 mm) 
have been investigated experimentally by Romoli et al. [3]. By incorporating an ana-
lytical model for the depth of cut and an empirical model for the width, the laser 
power and speed optimized, achieving depths between 0.05 and 0.6 mm as well as 
various widths from 0.15 to 0.4 mm.

Varsi and Shaikh [18] used a low power  CO2 laser (25  W, Gaussian, continu-
ous) for cutting 8  mm thick PMMA plates. A three-parameter, five-level full fac-
torial experimental design has been applied to investigate the impact of the power 
(13–23 W), speed (202–586 mm/s), and several passes (1–5) on kerf angle. They 
developed regression predictive models for controlling the process and concluded 

374 Lasers in Manufacturing and Materials Processing  (2021) 8:372–393

1 3



that a higher number of passes, lower speed and higher power resulted in a lower 
kerf angle.

Empirical or soft computing (neural networks or genetic algorithms) models 
based on experimental design methods were also developed in the literature [22]. 
The most characteristic ones are presented in the following paragraphs.

Polymeric materials (PMMA, PC and PP) were investigated when a continuous 
 CO2 laser cut by Choudhury and Shirley [23]. Laser power (200–400  W), speed 
(3.3–6.6  mm/sec) and pressure (2.5–3.5Bar) tested, and the kerf characteristics 
(HAZ depth, Ra, dimensional deviation) were investigated using a linear ANOVA 
analysis. All plates had 3 mm thickness. The central composite experimental design 
applied to reduce the experiments. They measured average surface roughness for 
PMMA plates up to 9  μm with a standard deviation of 1.1  μm and HAZ depth 
between 130 and 210 μm. They extracted predictive models based on the response 
surface methodology (RSM). It was concluded that the HAZ depth for all polymers 
increases with the increase of the power or decrease of the beam velocity and that 
the surface roughness was most affected by the laser speed and the air pressure.

Nukman et  al. [24] studied the kerf width during  CO2 laser cutting of Perspex 
glass thin plates (3–5 mm). Laser power (100–500 W), cutting speed (3.3–20 mm/s), 
stand-off distance (1–10 mm) and gas pressure (0.5–4.5 bar) were tested. A four-
parameter three-level Taguchi design based on the L9 orthogonal array is used. Two 
models, an FFBP and an optimized GA-Taguchi NN, were developed for the kerf 
width predictions. They measured kerf widths between 0.5 and 1.5  mm and con-
cluded that the developed FFBP-NN was not appropriate for accurate predictions. 
Consequently, they used a hybrid Neural Network-Genetic Algorithm (NN-GA) 
model to improve predictions. With the hybrid model, the error reduced to below 
10%.

Hossain et  al. [17] studied the stand-off distance (1–10  mm), gas pressure 
(0.5–4.5 bar), velocity of cut (3.3–20 mm/s) and laser power (100–500 W), accord-
ing to the minimum kerf width. The focal length was kept constant at 127 mm. They 
developed an intelligent fuzzy expert system (FES) model to predict the kerf width 
in  CO2 laser cutting of (3 mm) PMMA thin plates. The FES model was completed 
by eighty-one (81) experiments based on a four-parameter three-level full factorial 
design. They measured kerf widths between 0.5 and 1.5 mm and concluded that the 
predictions made by the FES model were satisfactory in terms of relative error and 
goodness of fit and that can be used in PMMA laser machining simulation.

Moradi et  al. [10] studied the laser power (20–40  W), the cutting speed 
(2–18 mm/s) and the focal plane position (0–4 mm) during PMMA  CO2 laser cut-
ting (3.2 mm). They used a central composite design (three-parameter five-level, 17 
experiments), quadratic polynomial functions, and response surface methodology 
(RSM) to model the kerf characteristics; top and bottom kerf, kerfs ratio, HAZ and 
average surface roughness (Ra). They measured the HAZ depths between 0.15 and 
0.45 mm, kerf widths (top and bottom) between 0.15 and 0.6 mm, and Ra between 
1 and 15 μm. They found that increasing the cutting speed, reducing the focal posi-
tion level, or reducing the laser power resulted in the reduced bottom kerf. They also 
concluded that when the focal plane was lower than the upper part surface, the kerf 
characteristics improved.
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Moradi et  al. [25] developed a finite element model to simulate the  CO2 laser 
cutting of (3.2 mm) PMMA plates. They concluded that increasing the laser cutting 
speed from 4 to 20 mm/s and decreasing the laser power from 50 to 20 W results in 
reducing the heat-affected zone. Also, it is mentioned that the depth of the kerf for 
different laser power values, speed and laser focal plane can be predicted by apply-
ing the proposed FEM model.

The effects of power (120–150  W), velocity (1.66–5  mm/s), gas pressure 
(1–3 bar) and plate thickness (4–12 mm) on the upper and down kerf width as well 
as on kerf angle have been experimentally investigated by Elsheikh et  al. [26]. A 
continuous  CO2 laser was used (wavelength, 10.64 μm; constant stand-off distance, 
6 mm; focal length, 50 mm). An L18 Taguchi table (one parameter with two levels 
and three parameters with three-level) is implemented, and the kerf characteristics 
were statistically analysed using the ANOVA analysis. The kerf widths (top and bot-
tom) were measured between 0.2 and 0.9  mm, and the kerf angles between 0.01 
and 2 degrees. They determined that the most dominant parameter was the thick-
ness of the sheet, and when it increases, all the measurements of the ’kerf’ decrease. 
The second most influential parameter was the cutting speed and found that when it 
increases, the kerf widths decrease. Finally, they developed regression models and 
applied a genetic algorithm to optimize the process.

Concluding, all the above investigations studied theoretically or experimentally 
the kerf characteristics of the thermoplastic PMMA thin plates (3–12 mm) within 
the following laser power and velocity ranges: (i) miniaturised structures: power bel-
low 2.5 W and velocity up to 64 mm/s [20], or power between 13 and 23 W and 
velocities between 202 and 586 mm/s [18]; (ii) Thin plate cutting with power higher 
than 100  W and velocities up to 150  mm/s [1, 17, 19, 21, 23, 24, 26], or power 
between 20 and 40 W and velocities between 2 and 18 mm/s [10, 25]. The kerf char-
acteristics that measured were: (i) average surface roughness between 1 and 15 μm, 
(ii) kerf widths (top and bottom) between 0.1 and 1.5 mm, (iii) kerf angle between 0 
and 2 degrees, and (iv) HAZ depth between 0.1 and 0.33 mm.

The above literature review demonstrates that there is a gap of experimental work 
for laser power between 50 and 100 W. The velocity and stand-off distance at the 
upper surface should be considered, too, when studying the kerf characteristics, as 
they are predominant parameters [10]. For 4  mm PMMA sheets and using about 
90 W laser power, the upper limit for laser speed is about 30 mm/s in order to have 
laser penetration [27].

Thus, after preliminary work to have a thorough cut for all experiments was 
decided to include as tested parameters: the laser power (LP: 82.5–97.5 W), cutting 
speed (CS: 8–18  mm/s), and stand-off distance (SoD: 7–9  mm). A low-cost con-
tinuous wave  CO2 laser is utilized with a max power of 150 W. The thickness of the 
PMMA plates selected to be 4 mm as proposed by the literature review. A three-
parameter three-level  (33) full factorial experimental design is selected for investi-
gating the proposed kerf characteristics experimentally (Wu, Wm, Wd and KA) [28, 
29]. The effects of process parameters and their interactions are analysed using sta-
tistical analysis tools, and NN modeling is proposed due to strong parameter interac-
tions. The methodology proposed in [30, 31] regarding the implementation of statis-
tical methods for the post-processing of experimental data guides the present work.
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Materials and Methods

A low power continuous  CO2 laser ( BODOR model BCL 1325B; wavelength 
10.6 μm) was used for conducting the experiments [32]. A conical convergent noz-
zle with a tip diameter of 2  mm is utilised. The configuration of the mirrors and 
lens is shown in Fig.  1a. The assist gas was air at 1 bar constant pressure. Beam 
focal length adjusted at 46 mm when the stand-off distance (SoD) is 8 mm from the 
upper surface. In this SoD, the laser spot diameter is about 0.3 mm. The airflow dis-
tribution and the spot diameter at the upper surface change when the SoD changes. 
The experimental cuts were designed using the Laser Engraving & Cutting Software 
RDWorks8.0 [33].

The laser nozzle tip is set in a different stand-off distance for each of the three 
PMMA work-pieces, at 7, 8 and 9  mm, respectively. The cuts were straight lines 
with a length of 10 mm in the X direction (Fig. 2b). All the workpieces were of a 
4 mm thickness PMMA with a melting point of 160 °C and a density of 1.18 g/cm3.

The upper (Wu), middle (Wm) and down (Wd) kerf width were measured using 
an optical microscope [34], and readings were obtained with the ‘ImageJ’ software 
[33]; see Fig. 2c. The upper and down kerf widths were measured as an average of 

Fig. 2  a Mirrors and lence configuration, b Cut work-pieces, c microscope image, and (d) kerf width 
measurements
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four measurements (T1-T4; B1-B4), while middle kerf width readings as an average 
of three values (F1-F3), Fig. 2d. The kerf angle (KA) was calculated using the fol-
lowing formula (Eq. 1; [26]):

where 4 is the specimens thickness in mm.

Design of Experiments

A three-parameter three-level full factorial experimental design is used  (33) 
(Table  1). This experimental design is utilised in contrast with the literature that 
the fractional factorial (Taguchi, CCD, or mixed) design is used [10, 17, 23, 24, 26] 
to obtain more experiments for the statistical modelling process [35]. Twenty-seven 
measurements of kerf widths and kerf angles are tabulated in Table 2. The Stand-
off Distance (SoD, mm), Cutting Speed (CS, mm/s), and Laser Power (LP, W) are 
used as input parameters (columns 2–4), while the last four columns are used for the 
upper (Wu, mm), middle (Wm, mm), down (Wd, mm) kerf widths and Kerf Angle 
(KA, deg).

For selecting the parameter, factor, levels, the following procedure was followed. 
Initially, the laser power levels were selected (82.5, 90 and 97.5 W). These values 
have not been tested before in literature for kerf optimization. Prior to this, prelimi-
nary cuts were undertaken in order to select the beam velocity levels. It was found 
that the 8, 13, and 18 mm/s cutting speed values cut all nine combinations with the 
following power values: 82.5, 90 and 97.5 W at a stand-off distance of 8 mm. These 
values are following those proposed in [27]. Then, the average surface roughness 
is measured, resulting in similar range values (lower than 5 μm) than those stated 
in the literature [21, 23, 36]. Having undertaken a number of different setups (with 
regard to the stand-off distance) maintaining the same aforementioned parameters, 
all PMMA’s cuts were executed completely at the 7 and 9 mm stand-off distances. 
Finally, the gas pressure was not investigated and kept constant at 1 bar because Ra 
values close to 0.61 μm were achieved (see [36]), very close to mechanical cutting 
processes.

Additionally, in order to investigate how the stand-off distance (SoD) affects the 
upper and down kerf widths with values smaller than 7 mm (Fig. 3a), six cuts per-
formed with SoD of 6, 5, 4, 3, 2 and 1 mm, respectively. It was concluded if the 
stand-off distance is smaller than 7 mm, the resulting kerf is not acceptable (Wu big-
ger than 0.8 mm; Fig. 3b).

(1)KA(deg) = tan
−1

(

Wu −Wd

2 ∗ 4

)

Table 1  The three-parameter 
three-level  (33) design

No Process Parameter Level 1 Level 2 Level 3

1 Stand-off distance-SoD (mm) 7 8 9
2 Cutting Speed-CS (mm/s) 8 13 18
3 Laser Power-LP (W) 82.5 90 97.5
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Experimental Results and Analysis

The experimental results initially were analysed using main effect plots (Fig.  4). 
These plots, also known as ANOM diagrams for averages of level sets, are descrip-
tive and can demonstrate which parameter mostly affects the quality measurement.

According to these plots, cutting speed (CS) mean values have the biggest 
variance for upper, middle and down kerf width and the kerf angle metrics. 
The increase of cutting speed redistributes the energy inside the kerf geometry 

Table 2  Full experimental array for the kerf widths and kerf angle

Input parameters Output parameters

No SoD (mm) CS (mm/s) LP (W) Wu (mm) Wm (mm) Wd (mm) KA(deg)

1 7 8 82.5 0.438 0.443 0.453 -0.11
2 7 8 90.0 0.424 0.421 0.406 0.13
3 7 8 97.5 0.427 0.436 0.405 0.16
4 7 13 82.5 0.337 0.320 0.307 0.21
5 7 13 90.0 0.343 0.320 0.294 0.35
6 7 13 97.5 0.336 0.343 0.318 0.13
7 7 18 82.5 0.326 0.274 0.224 0.73
8 7 18 90.0 0.372 0.312 0.232 1.00
9 7 18 97.5 0.366 0.325 0.272 0.67
10 8 8 82.5 0.478 0.477 0.446 0.23
11 8 8 90.0 0.477 0.469 0.434 0.31
12 8 8 97.5 0.470 0.457 0.430 0.29
13 8 13 82.5 0.445 0.395 0.345 0.71
14 8 13 90.0 0.431 0.388 0.337 0.68
15 8 13 97.5 0.428 0.376 0.326 0.73
16 8 18 82.5 0.429 0.358 0.298 0.93
17 8 18 90.0 0.422 0.350 0.294 0.91
18 8 18 97.5 0.401 0.366 0.289 0.80
19 9 8 82.5 0.575 0.479 0.539 0.69
20 9 8 90.0 0.507 0.414 0.480 0.67
21 9 8 97.5 0.516 0.458 0.501 0.42
22 9 13 82.5 0.484 0.298 0.405 1.33
23 9 13 90.0 0.476 0.286 0.390 1.36
24 9 13 97.5 0.428 0.251 0.361 1.27
25 9 18 82.5 0.435 0.174 0.325 1.87
26 9 18 90.0 0.422 0.163 0.326 1.85
27 9 18 97.5 0.434 0.192 0.330 1.73
Average 0.431 0.388 0.327 0.74
St.dev 0.059 0.068 0.091 0.54
Min 0.326 0.274 0.163 -0.11
Max 0.575 0.539 0.479 1.87

379Lasers in Manufacturing and Materials Processing  (2021) 8:372–393

1 3



resulting in smaller upper widths, even smaller down widths and higher kerf 
angles.

The stand-off distance (SoD) is very critical for the upper kerf width and the 
kerf angle. The decrease of SoD from 9 to 8 mm, decreases the spot diameter at 
the upper surface and redistribute the airflow on the upper surface resulting in 
better upper kerf width and kerf angle (See Fig.  3a). Then when SoD becomes 

Fig. 3  a Effects of SoD on kerf width and b Kerf widths (Wu = 0.816  mm, Wd = 0.393  mm) when 
SoD = 6 mm, LP = 82.5 W and CS = 8 mm/s
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7 mm, all the kerf attributes improved, resulting in widths closer to 0.3–0.4 mm 
and kerf angles closer to 0.4 degrees.

Finally, the laser power (LP) changes are not critical for all the kerf attributes 
at the specific experimental area studied. The higher value of 97.5 W optimises 
the upper kerf width and kerf angle. The redistribution of energy and mass flow 
that causes are not capable of greater changes in kerf attributes.

The parameters’ level that results in the best kerf metrics is calculated as well. 
Using a cutting speed of 18 mm/s minimises the kerf widths (Wu, Wm and Wd) 
and maximises the kerf angle (KA). On the other hand, a stand-off distance of 
7 mm minimises the upper kerf width, whereas the stand-off distance that mini-
mises the down kerf width is 9 mm. The kerf angle is optimised when the cutting 
speed is 8 mm/s and the stand-off distance 7 mm. The laser power mean values 
are shown small variances, and hence they did not take into account.

Then the ANOVA analysis (Table  3, 4, 5, 6) is applied. Following that, the 
interactions between the stand-off distance and the cutting speed are investigated. 
At the same time, according to the ANOVA analysis, these two parameters have 
a significant impact on all kerf metrics (F > 4, P < 0.05). Additionally, the laser 
power was insignificant in the proposed experimental area for all kerf metrics 
(F < 2 and P > 0.05) [35]. The main effect plots also show that the stand-off dis-
tance and the cutting speed result in major spreads while laser power is not.

Table 3  ANOVA for the upper 
kerf width (Wu)

DoF SoS MS F P %

SoD 2 0.047755 0.023877 52.13 0.000 52.8
CS 2 0.032477 0.016239 35.45 0.000 35.9
LP 2 0.001077 0.000539 1.18 0.329 1.2
Error 20 0.009160 0.000458 10.1
Total 26 0.090470
R-sq 89.9
R-sq(adj) 86.8
R-sq(pred) 81.5

Table 4  ANOVA for middle 
kerf width (Wm)

DoF SoS MS F P %

SoD 2 0.015236 0.007618 16.89 0.000 12.8
CS 2 0.094141 0.047070 104.36 0.000 79.3
LP 2 0.000356 0.000178 0.39 0.679 0.3
Error 20 0.009021 0.000451 7.6
Total 26 0,118,754 12.8
R-sq 92.4
R-sq(adj) 90.1
R-sq(pred) 86.1
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The 7 mm stand-off distance optimises the Wu, Wm and KA while the 9 mm 
optimises the Wd. The 18 mm/s cutting speed optimises the Wu, Wm and Wd 
and the 8  mm/s the KA. The laser power is proven to have an insignificant 
impact on the kerf metrics. Optimised values for each of the kerf metrics can be 
concluded straightforwardly by the main effect plots (ANOM analysis, Fig. 4).

The ANOVA analysis demonstrated that the key parameter affecting the upper 
kerf width and kerf angle is the stand-off distance (52% and 48%, respectively). 
In comparison, the cutting speed dominates for the middle and down widths 
(79% and 84%, respectively). The error percentage of ANOVA linear analysis is 
about 15% for all metrics concerning the Rsq predicting values.

The interactions charts between the stand-off distance and the cutting speed 
follow as these two parameters are the most important ones (see the ANOVA 
analysis). These interactions charts (Fig.  5) show an antisynergistic relation 
between the stand-off distance and the cutting speed. For such interactions, non-
linear or neural network models have been used to achieve accurate predictions 
[37]. Finally, in Fig. 6, the surfaces plots for all metrics illustrated according to 
the cutting speed and the stand-off distance.

Table 5  ANOVA for down kerf 
width (Wd)

DoF SoS MS F P %

SoD 2 0.013247 0.006623 6.76 0.006 6.1
CS 2 0.182492 0.091246 93.19 0.000 84.2
LP 2 0.001472 0.000736 0.75 0.484 0.7
Error 20 0.019583 0.000979 9.0
Total 26 0.216794
R-sq 90.9
R-sq(adj) 88.2
R-sq(pred) 83.5

Table 6  ANOVA for down kerf 
angle (KA)

DoF SoS MS F P %

SoD 2 3.68185 1.84093 61.47 0.000 48.1
CS 2 3.31540 1.65770 55.35 0.000 43.3
LP 2 0.06320 0.03160 1.06 0.367 0.8
Error 20 0.59901 0.02995 7.8
Total 26 7.65947
R-sq 92.1
R-sq(adj) 89.8
R-sq(pred) 85.7
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FFBP‑NN Set up

After the ANOVA analysis and interactions study, four separately FeedForward 
BackPropagation Neural Network (FFBP-NN) models were developed to predict the 
kerf geometry (upper, middle and down widths and kerf angle) [38]. Upper, middle 
and down kerf widths (Wu, Wm and Wd), and kerf angle (KA) are used as output 
vectors for the four apart FFBP-NNs, while the Stand-off Distance, Cutting Speed, 
Laser Power and the constant value one (SoD, CS, LP and 1) as input parameters 
(see Fig. 7a). All input and output are normalized in the range of 0 to 1, using the 
map min–max method. Normalization is suggested for better training performance 
and generalization capability [39]. The data randomly separated into three sub-data-
sets: training (70%), validation (15%) and test (15%).

The “nntool” toolbox (MATLAB R2015) has been used to develop the FFBP-NN 
model. For similar mechanical applications, where the performance metrics have to 
be assigned according to the input parameters, a simple FFBP-NN with one hidden 
layer is considered adequate [40].

SoD

LS

LP

1

2

3

8

Wu
Wm
Wd
KA

1

(a)

(b) (c)

Fig. 7  . a FFBP-NN models topology, b Linear transfer function (purelin) and c Hyperbolic tangent sig-
moid transfer function (tansig)
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The typical BackPropagation (BP) algorithm is used for the NN training proce-
dure. BackPropagation is a Gradient Descent (GD) algorithm that minimises the 
Mean Square Error (MSE). Levenberg–Marquardt algorithm (trainlm) is used as 
a training function to solve non-linear least squares curve fitting [41]. The adapta-
tion learning function is the ‘learngdm’, which updates the weight and bias val-
ues according to Levenberg–Marquardt optimization [42, 43]. The initial momen-
tum parameter ‘mu’ has been set at 0.3, the ‘mu’ decrease factor at 0.1, while 
the ‘mu’ increase factor at 10 and the ‘mu’ maximum at  10^10. The training pro-
cess stops when the maximum number of epochs equals 1000. The performance 
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is minimized to zero, or the performance gradient falls below  10^(−7) and finally 
when the maximum validation failures become six (6).

For the hidden layer, eight neurons have been used (Fig.  7a), alongside 
the hyperbolic tangent sigmoid (tansig) transfer function (Fig. 7b), while lin-
ear function (purelin) has been used for the output (Fig. 7c). The number of 
neurons in the hidden layer is decided after simulations between six, eight, 
and twelve. All four FFBP-NN models have the same topology and learning 
parameters.
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By implementing this topology and after three repetitions, we get R values 
that exceed 0.98 for all the different datasets (training, validation, test and all), as 
depicted in Figs. 8, 9, 10, 11, for the kerf attributes.

All predictions are very close to actual values (Table  7, Fig.  12b). For 
the given datasets and topology, the MSE of kerf angle (KA) optimised at 
0.0014647, epoch 0 (Fig.  12a). By studying the residuals plots of the KA, 
the errors are distributed without significant deviations between the datasets, 
increasing the significance of the R correlation coefficient as a performance 
metric of this NN model (Fig. 12c). The same conclusions are observed for all 
kerf attributes. To this end, the full factorial experimental work offers enough 
data to train the model to predict the desired, process-related outputs with high 
accuracy.
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Conclusions

An FFBP-NN has been implemented in this work to predict the kerf geometry of 
(4  mm) PMMA thin plates during the continuous low power  CO2 laser cutting 
process. Stand-off distance (7, 8 and 9 mm), cutting speed (8, 13 and 18 mm/s), 
and laser power (82.5, 90 and 97.5  W) were used as input and kerf geometry 
attributes (upper, middle and down kerf widths, and kerf angle) as output param-
eters, respectively.

A full factorial experimental design  (L27:  33 design) is used, and statistical 
modelling is followed. The experimental and statistical study showed that:

• the dominant parameter is stand-off distance for the upper kerf width and kerf 
angle,
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• the cutting speed is the most significant parameter for the middle and down 
kerf widths,

• strong interactions recorded between the cutting speed and stand-off distance, 
and

• the parameter values which optimize the kerf angle resulting in positive values 
close to zero degrees, were the 7 mm stand-off distance, 8 mm/s cutting speed 
and 97.5 W laser power.

After that, a Feed-Forward Back Propagation Neural Network (FFBP-NN) 
trained, validated and generalised, having one hidden layer and eight neurons as 
proposed by similar studies in the literature. All data normalized using the map 
min–max rule. Using the proposed ’FFBP-NN’ models, the upper, middle and 
lower kerf width, and the kerf angle optimised for better production times and 
smaller kerf angles. All average surface measurements (Ra) for the 8 mm stand-
off distance are lower than 5 μm, following the literature [21, 23, 36].

As future work, the authors propose applying neural networks for predicting 
more kerf characteristics like the average surface roughness and the HAZ zone 
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depth. Also, the investigation of assist gas pressure and the expanse of laser 
power range and PMMA thickness is suggested.
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Table 7  FFBP-NN errors Actual Predected

No Wu-a Wm-a Wd-a KA-a Wu-p Wm-p Wd-p KA-p

1 0.438 0.443 0.453 -0.11 0.464 0.423 0.432 -0.010
2 0.425 0.421 0.407 0.13 0.437 0.447 0.408 0.090
3 0.427 0.436 0.405 0.16 0.428 0.417 0.411 0.018
4 0.337 0.320 0.307 0.21 0.332 0.325 0.319 0.247
5 0.343 0.320 0.295 0.35 0.344 0.330 0.310 0.287
6 0.336 0.343 0.318 0.13 0.341 0.339 0.310 0.191
7 0.326 0.274 0.224 0.73 0.341 0.300 0.226 0.696
8 0.372 0.312 0.232 1.00 0.358 0.312 0.225 0.674
9 0.366 0.325 0.272 0.67 0.371 0.329 0.276 0.656
10 0.478 0.477 0.446 0.23 0.510 0.485 0.462 0.257
11 0.477 0.469 0.434 0.31 0.477 0.485 0.433 0.342
12 0.471 0.457 0.430 0.29 0.468 0.468 0.431 0.375
13 0.445 0.395 0.345 0.71 0.447 0.381 0.330 0.679
14 0.432 0.388 0.337 0.68 0.435 0.385 0.336 0.708
15 0.428 0.376 0.326 0.73 0.420 0.376 0.324 0.776
16 0.429 0.358 0.298 0.93 0.428 0.335 0.291 0.954
17 0.422 0.350 0.294 0.91 0.424 0.352 0.289 0.885
18 0.401 0.366 0.289 0.80 0.406 0.363 0.289 0.855
19 0.575 0.539 0.479 0.69 0.551 0.524 0.463 0.568
20 0.508 0.480 0.414 0.67 0.507 0.465 0.437 0.592
21 0.516 0.501 0.458 0.42 0.499 0.492 0.433 0.538
22 0.484 0.405 0.298 1.33 0.490 0.410 0.300 1.323
23 0.476 0.390 0.286 1.36 0.465 0.382 0.292 1.348
24 0.428 0.361 0.251 1.27 0.436 0.385 0.237 1.304
25 0.435 0.325 0.174 1.87 0.432 0.324 0.175 1.852
26 0.422 0.326 0.163 1.85 0.427 0.340 0.158 1.836
27 0.434 0.330 0.192 1.73 0.424 0.335 0.192 1.783
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