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Abstract 

Ecosystem respiration is a major component of the global terrestrial carbon cycle and is 

strongly influenced by temperature. The global extent of the temperature-ecosystem 

respiration relationship, however, has not been fully explored. Here, we test linear and 

threshold models of ecosystem respiration across 210 globally distributed eddy covariance 

sites covering the most extensive temperature range ever studied. We find thresholds to the 

global temperature-ecosystem respiration relationship at high and low air temperatures and 

mid soil temperatures, which represent transitions in the temperature dependence and 

sensitivity of ecosystem respiration. Annual ecosystem respiration rates show a markedly 

reduced temperature dependence and sensitivity compared to half-hourly rates, and a single 

mid-temperature threshold for both air and soil temperature. Our study indicates a distinction 

in the influence of environmental factors, including temperature, on ecosystem respiration 

between latitudinal and climate gradients at short (half-hourly) and long (annual) timescales. 

Such climatological differences in the temperature sensitivity of ecosystem respiration have 

important consequences for the terrestrial net carbon sink under ongoing climate change. 

Main 

Carbon losses from terrestrial ecosystems determine the direction and magnitude of carbon-

climate feedbacks1,2. The trajectory of future climate change therefore depends on the 

biological processes that underpin ecosystem fluxes. Ecosystem respiration (Re), the 

cumulative respiration of autotrophs (plants) and heterotrophs (bacteria, fungi and animals), 

represents a major component of the global carbon cycle3. Temperature strongly influences 

Re through the laws of thermodynamics4–6, but the global extent of the temperature-Re 

relationship has not been fully explored7,8. 

Temperature-mediated variations in Re are typically described as an exponential function in 

Earth system models (ESMs)2. That is, globally static Q10 values of around 2 represent a 

doubling of ecosystem CO2 fluxes with an increase in temperature of 10 °C, when all other 

terms are equal9. Empirical and theoretical studies, however, have documented conflicting 

temperature-Re relationships. Latitudinal shifts in the temperature sensitivity of Re have been 

observed in empirical studies, with ecosystems experiencing greater increases in Re with 

temperature at high, compared to mid and low, latitudes8,10,11. At the same time, global 

syntheses have proposed convergent temperature sensitivities of Re across different 

climates and ecosystem types4,12,13.  

The influence of temperature on ecosystem respiration is mediated by the temperature 

sensitivity of individual physiology, community composition and biotic interactions of all the 

organisms inhabiting an ecosystem13,14. At the individual-level, metabolic rates scale with 
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body mass and increase exponentially with temperature according to the Boltzmann factor, 

e-E/kT, where E is the activation energy (eV), k is the Boltzmann’s constant (8.62 × 10-5 eV 

K−1), and T is temperature (in Kelvin)6. Widescale application of the Boltzmann factor to 

individual metabolic rates has revealed a common value of E between 0.6 and 0.7 eV5,6,15. At 

the ecosystem-level, models based on metabolic theory indicate exponential temperature-Re 

relationships across diverse ecosystems with a value of E surprisingly similar to individual 

metabolic rates (0.65 eV; Q10 ~ 2.504,13). Yet, models of the temperature-Re relationship have 

focused on a limited temperature range between 0 and 30 °C, even though terrestrial 

ecosystems experience temperatures between -60 and 50 °C16. 

In this study we test the generality of the temperature-Re relationship, described by a general 

ecosystem model, across the most extensive temperature range yet investigated. The 

model, founded in metabolic theory, gives the linear expression: ln(𝑅 ) =  , , + ln[(𝑏 )(𝐶)]                                           (1) 

where ln(Re) is the natural logarithm of ecosystem respiration, in W ha-1; (1,000/T) is the 

reciprocal of absolute temperature; b0 is the intensity of cellular metabolism; and C is the 

size distribution of organisms (assumed to be independent of Re according to the energy 

equivalence rule)4. The model predicts a general linear relationship between (1,000/T) and 

ln(Re), with an expected slope (𝐸 from hereon in) across diverse ecosystems equal to -7.50 

K (0.65 eV, with a plausible range between -2 and -11 K, or 0.2 and 1.2 eV)10. However, we 

would expect climatological differences in resource supply17,18 and community 

composition14,19 to alter 𝐸 across the global temperature range. We would also expect 

divergent relationships between metabolism and resource supply with temperature to modify 

the temperature-Re relationship over time13,20.   

Results 

We test the global extent of the linear temperature-Re relationship predicted by metabolic 

theory, by applying the model presented in Eq. 1 to measurements across 210 globally 

distributed FLUXNET sites21 (Figure 1 and Supplementary Data 1). Both short-term (half-

hourly) and long-term (annual) measurements were tested for air and soil temperature. The 

half-hourly FLUXNET dataset is presented with more conventional temperature and Re units 

in Extended Data 1. The linear model (Eq. 1) was compared to a threshold model, which 

accounts for variations in the activation energy (𝐸) in Eq. 1 above and below specified 

temperature breakpoints (see Methods). That is, the threshold model accounts for shifts in 

the temperature sensitivity of Re across the global temperature range, and explains 

latitudinal shifts in the temperature-Re relationship observed in empirical studies8,10,11. All 
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models were linear mixed effects models and goodness of fit comparisons used Akaike 

Information Criterion (AIC) measurements.  

Figure 1  

The threshold model, which integrated two temperature breakpoints of -24.8 ±0.15 and 15.1 

±0.22 °C, better explained Re rates over the global extent of air temperatures in the 

FLUXNET dataset than the linear model (ΔAIC = 3,839,265, Figure 2). Similar to previous 

findings4,13, the threshold model indicates a temperature sensitivity of Re indistinguishable 

from that of -7.50 K (0.65 eV, dashed line in Figs. 2a & b) predicted by metabolic theory 

(likelihood ratio test: χ2 = 0, p = 1) between temperature breakpoints (𝐸 = -7.42 K, 0.64 eV, 

Q10 ~ 2.45 between 15.1 and -24.8 °C, solid line in Fig. 2b). Evaluation of the linear model, 

on the other hand, gives an activation energy for global Re rates of -7.30 K (0.63 eV, solid 

lines in Fig. 2a), significantly different from that predicted by metabolic theory (likelihood ratio 

test: χ2 = 20009, p < 0.0001). Importantly, the threshold model indicates a lower temperature 

sensitivity of Re at higher temperatures (𝐸 = -2.84 K, 0.25 eV, Q10 ~ 1.41 above 15.1 °C) and 

extreme temperature sensitivity of Re at very low temperatures (𝐸 = -30.53 K, 2.64 eV, Q10 ~ 

40.79 below -24.8 °C). The threshold model therefore primarily improves predictions, 

compared to the linear model, of the temperature-Re relationship at low and high latitude 

sites (Figs. 2f & g). High measured variability in Re across the global temperature range, 

however, likely reflects the interactive effects of disturbance events, plant phenology and soil 

water and nutrient limitation on ecosystem metabolism.  

Figure 2 

Given the importance of belowground communities in Re
14,19, linear and threshold models 

were tested for the global relationship between soil temperature and ecosystem respiration 

(Figure 2 and Supplementary Table 2). A single temperature threshold of 11.4 ±0.29 °C 

emerged for soil temperature, with little evidence for a lower temperature breakpoint 

(likelihood ratio test: χ2 = 0, p = 1). Above the temperature threshold, the activation energy of 

Re was lower than that observed for air temperature (𝐸 = -2.18 K, 0.19 eV, Q10 ~ 1.30), while 

below the temperature threshold the activation energy was steeper than that between air 

temperature thresholds (𝐸 = -13.37 K, 1.16 eV, Q10 ~ 5.05). The absence of a lower 

threshold for Re with soil temperature is likely explained by thermal insulation from snow 

cover at low temperatures22 resulting in much fewer observations, compared to air 

temperature, of the soil temperature-Re relationship below 0 °C.  

To account for the relative uncertainties of eddy covariance measurements below -20 °C23, 

alongside the emergence of a single temperature breakpoint for soil temperature, we tested 

the sensitivity of the air temperature threshold model to temperature ranges with few 
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available measurements (Extended Data 2). Ecosystem respiration data were classified in 5 

°C temperature intervals and intervals containing < 1% of all measurements (n < 235,521) 

were defined as low frequency intervals. Such intervals were present at both high (> 36 °C) 

and low (< -19 °C) temperatures. Each low frequency temperature interval was removed one 

by one, as well as all together (~ 1.8 % of the dataset), to investigate the sensitivity of the 

threshold model. The test provides supporting evidence of the robustness of temperature 

breakpoints to the removal of each temperature interval one by one. However, there was no 

support for a lower temperature breakpoint (-24.8 °C in Fig. 2b & c) when all low frequency 

intervals or all those < -19 °C were removed. Instead, a single temperature breakpoint of 

14.6 °C emerged (Extended Data 3 and Supplementary Table 3). The lower air temperature 

breakpoint should therefore be considered with caution until more accurate Re 

measurements at low temperatures can be made. Re rates nevertheless display a sharp 

decline at lower temperatures for both air (Fig. 2b) and soil (Fig. 3b) temperatures.  

Figure 3 

Sharp declines in Re at low soil and air temperatures likely indicate pulse responses of soil 

respiration to rewetting and thawing events24, attributed to the suppression of microbial 

activity under water limitation in freezing conditions25 and an uncoupling of the temperature 

dependence of microbial respiration from thermodynamic laws26. Differences between global 

temperature-Re relationships for air and soil temperature at short timescales also suggest 

shifts in the contribution of aboveground and belowground communities to Re across the 

global extent of temperatures. For instance, a lower activation energy for the temperature-Re 

relationship at higher soil temperatures (𝐸 = -2.18 K > 11.4 ±0.29 °C, Fig. 3), compared to air 

temperatures (𝐸 = -2.84 K > 15.1 °C, Fig. 2), could indicate a relative reduction in the 

contribution of belowground autotrophs and heterotrophs to Re in warmer climates. On the 

other hand, the lower threshold for the temperature-Re relationship at low air temperatures 

could reflect a temperature limit for the metabolism of aboveground communities, whereas 

the absence of a lower temperature threshold for soil temperature suggests the importance 

of belowground communities as components of Re in mild to cold climates.  

Global air temperature thresholds were consistent across climates, but the goodness of fit of 

the threshold model (pseudo r2 and ΔAICs compared to the linear model, Fig. 4) declined 

with a decrease in overall temperature range at lower latitudes. For instance, the 

temperature dependence of Re (variation in Re rates explained by temperature) was greater 

in cold, higher latitude, climates (tundra and boreal, r2
m > 0.60), compared to mild 

(temperate, r2
m = 0.48) and warm, low latitude, climates (mediterranean and tropical, r2

m ≤ 

0.09). In warmer climates, random effects had a much greater influence on Re than in mild or 

cold climates, with FLUXNET site and latitude explaining more variation in tropical and 



6 
 

mediterranean ecosystems (Supplementary Table 4). Across the 210 sites, the threshold 

model better predicted the temperature-Re relationship in the majority of cases (n = 197, 

Supplementary Data 1), while temperature explained more of the variation in Re rates at 

sites with greater temperature ranges and higher latitudes (and Extended Data 4).  

Q10 estimates from the threshold model reflect latitudinal shifts in the temperature sensitivity 

of ecosystem respiration, with tropical, mediterranean, temperate, boreal, and tundra 

climates yielding Q10 values of 1.38 ±0.01, 1.82 ±0.43, 2.32 ±0.31, 2.67 ±0.10, and 2.90 

±0.12 respectively, compared to a global Q10 of 2.26 ±0.35, and higher Q10 estimates based 

on the soil temperature threshold model (Supplementary Table 5). Empirical observations of 

Re, soil respiration and carbon turnover rates are comparable with threshold model 

estimates of higher temperature sensitivities of Re at high-latitudes and lower temperature 

sensitivities of Re at low-latitudes10,27. Weaker temperature control in the linear model, similar 

to ESMs that implement static global Q10 values, cannot capture shifts in Re temperature 

sensitivities across the global temperature range (Supplementary Table 5).  

Figure 4 

Annual temperature-Re relationships were analysed across site years to investigate whether 

climatological differences in the temperature dependence and sensitivity of Re emerge over 

longer timescales. The threshold model explained the temperature-Re relationship better 

than the linear model at longer timescales for both air and soil temperature (Fig. 5). 

Surprisingly, threshold models converged for air and soil temperature, with a single mid-

temperature breakpoint of 11.0 ±0.16 °C (Figs 5b & d). Above the temperature threshold, 

annual Re rates declined with increasing mean annual temperatures from mid to low 

latitudes, while the activation energy below the temperature threshold was markedly reduced 

(Figs 5a & c, 𝐸 ~ -4.90 K, 0.42 eV) compared to short timescales. Weaker temperature 

relationships at longer timescales is reflected by global Q10 estimates of 1.34 ±0.55 and 1.29 

±0.58 for air and soil temperature, respectively (Supplementary Table 6). An overall lack of 

Re variation explained by temperature (r2
m < 0.14) likely reflects the importance of 

confounding effects from soil water, nutrient limitation, and resource availability, alongside 

thermal acclimation, at longer timescales. The threshold model was further consistent for 

annual soil respiration and air temperature measurements from the Global Soil Respiration 

Database28, with a single temperature breakpoint of 5.5 °C (Extended Data 5 and 

Supplementary Table 6).  

Figure 5 
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Discussion 

Our study shows how latitudinal shifts in Re temperature sensitivity at both short and long 

timescales correspond to transitions in the global temperature–Re relationship across 

temperature thresholds. Importantly, temperature thresholds also indicate differences in the 

temperature dependence of Re, with more variation in Re rates explained by temperature in 

cold compared to warm climates. In cold climates, temperature strongly influences metabolic 

activity of belowground microbial communities19,25,26. In warm climates, ecosystem 

metabolism is limited by water and nutrient availability, and resource availability to biological 

communities18,27,29–31.  

Both the temperature sensitivity and dependence of annual Re rates is markedly reduced 

compared to the short-term Re temperature response, suggesting the dominance of resource 

effects on ecosystem metabolism at longer timescales13. For instance, primary production 

directs carbon availability for ecosystem metabolism and typically shows a weaker 

temperature dependence20,32. Nutrient availability further drives preferential allocation of 

photosynthate C above- or below-ground, with consequences for carbon availability and 

quality to different ecosystem components17.  

Thresholds to the temperature-Re relationship shown here will undoubtedly result from 

temporally divergent sensitivities between ecosystem components (e.g. below- and above-

ground, heterotrophic and autotrophic) and several environmental controls over time. 

Variable acclimation of the different components of Re to these environmental controls may 

further influence the temperature dependence and sensitivity of Re by modifying the 

temperature response of catabolic and anabolic pathways33–35. Although we would expect 

such mechanisms to occur as gradual state changes rather than the sharp breakpoints 

described here, our study indicates consistent temperature thresholds at which ecosystem 

metabolism changes at a global scale. However, such results need to be validated for 

different ecosystem components as detailed measurements become available, and for 

decadal timescales over which the influence of anthropogenic factors can be detected.  

Biosphere feedbacks with future climate changes will be strongly influenced by the 

temperature-Re relationship36,37 and latitudinal shifts in Re temperature sensitivity as 

identified here will have important consequences for the global net land carbon sink38. For 

instance, while huge stores of labile carbon in permafrost regions could be released if 

temperatures rise above lower thresholds for microbial decomposition26, CO2 fertilisation in 

tropical and boreal regions could enhance carbon gains through primary production relative 

to losses through Re
30,39. Climate change forecasts by ESMs would thus be improved by 

accounting for temperature thresholds of Re at a global scale. A higher resolution 
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understanding of Re-climate feedbacks, however, requires strategic disentangling of the 

multiple environmental controls on the aboveground, belowground, heterotrophic, and 

autotrophic components of terrestrial ecosystem carbon fluxes.  

Methods 

The FLUXNET dataset 

FLUXNET is a global network of micrometeorological sites providing eddy covariance CO2 

exchange observations between terrestrial ecosystems and the atmosphere21. The 

FLUXNET 2015 dataset used in this study provides half hourly temperature and night-time 

Re measurements over 1454 site years and a latitudinal range of 78.92 °N to 37.43 °S. 

Observations across the 210 sites, which range from arctic tundra to tropical rainforest 

ecosystems, provide an extensive temperature range of 89.7 °C, from -43.4 to 46.3 °C 

(Figure 1 and Supplementary Data 1).  

The FLUXNET dataset is subject to a data processing pipeline which include data quality 

controls checks, filtering of low turbulence periods and partitioning of CO2 fluxes into 

respiration and photosynthesis components using established methods21. Disentangling 

respiration and photosynthesis fluxes during the day is complex and the extraction of Re 

relies on modelling techniques with high uncertainty. Night-time CO2 exchange 

measurements thus provide the best approximation of Re, and uncertainty has been 

minimised for the FLUXNET dataset by employing quality control procedures21. Here, non-

gap-filled half hourly (µmol CO2 m-2 s-1) and annual (g C m-2) night-time Re 

(RECO_NT_VUT_MEAN), air temperature (TA_F) and soil temperature (TS_F) 

measurements were compiled from the FLUXNET 2015 dataset 

(https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). Re measurements were then 

converted to units of metabolic energy (W ha-1)4 by taking 0.272 J µmol CO2 and 10,000 m2 

ha-1.  

Model analysis  

The linear model (1) for describing the temperature-Re relationship was fitted to the global 

FLUXNET dataset, for both air and soil temperature. To test for the presence of temperature 

thresholds to the linear temperature–Re model at a global scale, which explain shifts in Re 

temperature sensitivity across climates, we compare the linear model in Eq. 1 to a threshold 

(piecewise) model. The threshold model, with two temperature breakpoints, gives: ln(𝑅𝑒)  =  𝐸 𝑓 (1,000/𝑇, 𝑘 )  +  𝐸 𝑓 (1,000/𝑇, 𝑘 , 𝑘 ) 𝑘2)  + 𝐸 𝑓 (1,000/𝑇, 𝑘 ) +  ln[(𝑏 )(𝐶)] (2) 

where 𝐸1, 𝐸2 and 𝐸3 represent activation energies for different temperature (1,000/T) ranges, 

determined by the two temperature breakpoints (k1 and k2) and f represents the functions: 
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 𝑓1 =  1,000/𝑇, 1,000/𝑇 ≤ 𝑘1𝑘1, 𝑘1 > 1,000/𝑇 

𝑓2 =  0,                                 1,000/𝑇 ≤ 𝑘11,000/𝑇−  𝑘1, 𝑘1 ≤ 1,000/𝑇 ≤ 𝑘2𝑘2 −  𝑘1,         1,000/𝑇 > 𝑘2  

𝑓3 =  0,                       1,000/𝑇 ≤ 𝑘21,000/𝑇, 1,000/𝑇 > 𝑘2 

The threshold model first introduced a single temperature breakpoint to the linear model, so 

that the activation energy (𝐸, with more negative values indicating higher temperature 

sensitivity) varies above and below a specified temperature. Temperature breakpoints were 

tested for the temperature (1,000/T) range between 3.1 and 4.4, for every increment of 0.001 

(~0.07 °C). Differences in linear and threshold model AIC’s were then compared for every 

temperature breakpoint. The highest ΔAIC was taken as providing the most support for a 

temperature breakpoint, as long as ΔAIC > 5 for additional degrees of freedom and p < 0.05 

in a likelihood ratio test. Then, the threshold model integrated an additional temperature 

breakpoint, taking the first temperature breakpoint with the greatest support  as a fixed 

value. Model AIC’s for each second temperature breakpoint were compared to the single 

threshold model and the second threshold was selected based on the highest ΔAIC given 

the conditions outlined above. Temperature breakpoints were identified for short (half-hourly) 

and long (annual) temperature-Re relationships.  

All models were linear mixed effects models, with FLUXNET site and latitude set as random 

effects. First, the models were tested for the global dataset and then for broadly classified 

climate zones (cold, mild, and warm) and climates (tundra, boreal, temperate, 

mediterranean, and tropical). Some generalisations were necessary during climate 

classification. For instance, alpine sites at mid-latitudes were classified as boreal climates 

(Supplementary Data 1). Linear and threshold models were further tested for each 

FLUXNET site. Finally, annual Re rates were used to investigate changes in temperature 

breakpoints, and linear and threshold model performance, at long timescales for air and soil 

temperature. Long timescale models accounted for latitude and year as random effects. 
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Figure 1. Global distribution of the FLUXNET sites. Site locations (n = 210) are displayed over a 

world mean annual temperature (MAT) map. Symbol diameter represents the number of site years 

(range: 1 to 22 years) and the inset left-hand figure shows the distribution of site years (n = 1454) by 

MAT.  
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Figure 2. Global extent of the temperature-ecosystem respiration (Re) relationship. Night-time 

half hourly ecosystem respiration measurements from the FLUXNET dataset (symbols), broadly 

classified as tropical (magenta), mediterranean (orange), temperate (yellow), boreal (purple) or tundra 

(green) climates. Left-hand plots (a, d & f) present predictions from the linear model (Eq. 1) and 

middle plots (b,e & g) from a threshold model with two temperature breakpoints (Eq. 2), of the 

temperature-ecosystem respiration relationship. The right-hand plot (c) shows the presence of two 

temperature breakpoints (black line: air (1,000/T)= 4.027, -24.8 °C; grey line: air (1,000/T) = 3.469, 

15.1 °C), identified by the threshold models performance (ΔAIC’s compared to the linear model where 

higher values provide a better fit to the FLUXNET dataset). Goodness of fit measures indicate the 

pseudo r2 for marginal (fixed) effects (r2m) and conditional (fixed and random) effects (r2c), with top 

plots (a & b) showing predictions of the fixed effects only (temperature, solid lines) in each model 

compared to the activation energy of -7.50 K predicted by metabolic theory (dashed lines, r2m = 0.361; 

r2c = 0.542). Middle plots (d & e) present model predictions against observed FLUXNET 

measurements (solid black 1:1 lines would demonstrate perfect prediction), and bottom plots (f & g) 

show model residuals against latitude. Full details of the linear mixed effects models are presented in 

Supplementary Table 1. 
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Figure 3. The global soil temperature-ecosystem respiration relationship. Night-time half hourly 

ecosystem respiration measurements from the FLUXNET dataset (symbols), broadly classified by 

climate with symbol colours as in Figure 2. Predictions of the temperature-ecosystem respiration 

relationship are compared for a) the linear model and b) the threshold model, for the fixed effects of 

temperature (solid lines). Both models are compared to the activation energy of -7.50 K predicted by 

metabolic theory (dashed lines, r2m = 0.173, r2c = 0.500). The right-hand plot (c) shows the presence of 

a single temperature breakpoints (black line: soil (1,000/T) = 3.515, 11.4 °C), identified by the 

threshold models performance (ΔAIC’s compared to the linear model where higher values provide a 

better fit to the FLUXNET dataset). Full details of the linear mixed effects models are presented in 

Supplementary Table 2.  
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Figure 4. Temperature thresholds of ecosystem respiration (Re) across five climates. Night-time 

half hourly ecosystem respiration measurements from the FLUXNET dataset (symbols), classified as 

a) tundra, b) boreal), c) temperate, d) mediterranean, and e) tropical, with symbol colours as in Figure 

2. Solid lines show threshold model predictions for the fixed effects of temperature, and dashed lines 

show an activation energy of -7.5 K predicted by metabolic theory. ΔAICs indicate a greater goodness 

of fit of the threshold compared to linear model. Full details of the linear mixed effects models are 

presented in Supplementary Table 4. 
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Figure 5. Long-term temperature thresholds of ecosystem respiration (Re). Mean annual Re and 

either a) air or c) soil temperature measurements (symbols), with symbol colours representing climate 

as in Figure 2. Plots show predictions from the threshold model (solid lines, for the fixed effects of 

temperature only). Both threshold models identified a single temperature breakpoint of 11.0 °C, with 

little support for a second temperature breakpoint (ΔAIC < 5 and p > 0.05). Dashed lines indicate an 

activation energy of -7.50 K as predicted by metabolic theory and ΔAICs are between the linear and 

threshold models. Full details of the threshold mixed effects models are presented in Supplementary 

Table 6. 
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