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STRillART 

The Whitham-Walkden theory for the estimation of the strength 
of shock waves at ground level from aircraft flying at supersonic 
speeds is applied to the case of a typical projected supersonic civil 
transport aeroplane. 

If a figure of 2 lb/sq.ft. (including a factor of 2 for ground 
reflection) is taken as an upper limit for the acceptable strength of 
the bow wave from such an aircraft it is shown that restrictions on 
the climb and flight plan will be involved. The advantage of the 
employment of larger engines with or without afterburning is discussed, 
with reference also to the penalties involved owing to the increase in 
weight of the aircraft and its direct operating costs. 

Finally it is suggested that an aircraft of given volume could be 
designed, by suitable choice of thickness and lift distribution, to 
minimise the strength of the shock waves in the far field. 
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NOTATION 

a 	speed of sound; radius; half width (smaller) of rectangular plate 

A 	area 

b 	half width (larger) of rectangular plate 

B 	Iv_ I  

CZ 	lift coefficient 

distance between shock waves 

D 	flexural rigidity 

Young's modulus 

F(T) 	Tv'hithom P-function 

g acceleration due to gravity 

h thickness of thin plate; altitude 

Ki/AAP 
K 	equivalent total stiffness 

1 	length of aircraft 

lift 

m 	
= 14.!/AtIP 

11 	Mach number; total mass 

NV 	equivalent total mass 

p 	pressure 

Pb 	air pressure at altitude h 

lg 	
air pressure at ground level 

GP 	pressure jump across shook wave; local load per unit area 

R(x) 	body radius distribution 

semi-span 

S 	wing area; body cross-sectional area 



Notation (Continued) 

SsS
te
, S3'  St  equivalent body areas 

t 	time; distance aft of nose 

passage time of shock waves 

To 	(see text) 

u 	velocity component 

tT 	deflection of plate 

w 	static deflection 

yrs 	static deflection according to large deflection theory 

xsysz co-ordinates 

Z 	total wing semi-thickness 

y 	ratio of specific heats 

8 	amplification factor 

Poisson's ratio 

describes the characteristic curves 

density 

material density 

OP(az) density difference 

maximum stress 

0 	polar angle 

circular frequency 

Suffixes 

ground level 

f 
	

front shock crave 

r 	rear shock wave 

centre 

Bars denote quantities made non-dimensional by the aircraft length 1 
(except in Appendix 1). Other syiabols are definedvfnere they occur 
in the text. 



. Introduction 

The advent of aircraft flying at supersonic speeds during the past 
decade has brought with it the problem of the supersonic lbangs". Early 
experiences showed that for aircraft going supersonic in a dive or 
supersonic in straight and level flight some minor damage (or major 
damage in some isolated cases for flight at low altitudes) to structures 
was incurred. The damage was usually slight, such as the displacement 
of a roof tile or a cracked window pane. In all these cases the a'Ircraft 
involved were military aircraft and up to date, the damage mentioned 
above has been limited by restricting such flights to regions over the 
sea or over sparsely populated areas. 

However in view of the possibility of bringing into service in the 
near future supersonic civil transport aeroplanes, whose flight paths 
could not easily be restricted to avoid at least soma closely populated 
areas, it would seem desirable to investigate the strength of the shock 
Waves from such aircraft and to assess the likelihood of their causing 
damage to structures, such as the cracking of plate glass windows. 

It will be shown below that for a typical supersonic civil transport 
of about 300,000 lb. all up weight the strength of the shock Waves 
(including a ground reflection factor of 2) on the grottad. will be of 
the order of 2 lb./sci.ft. during the climb and in level flight at 
60,000 ft. Current experiences with smaller aircraft have indicated 
that such a shock pressure can cause very slight nAmage to buildings. 
However little or no experience exists of detailed supersonic flights 
over heavily populated centres and so it cannot be said. with any 
certainty that shock waves of this intensity or greater will be acceptable. 
It would therefore seem important at this interim stage to look closely 
into the design of supersonic civil aircraft and to see if there is 
any -aay of reducing the strength of the bow or tail shock waves, or 
both, which -would at the same time not impair its low drag and lifting 
characteristics. These aspects of the prdblem are all rather tentatively 
discussed. below but no firm conclusions are drawn. 

It Should be pointed out that this report is in the form of a 
progress report and is introduced to merely highlight certain aspects 
of the problem. 



2. Strengths of Shock 7aXeS 

Whitham (1 ,2) has developed a theory for the determination of the 
s 	rengths of shock raves at large distances from aircraft or missiles 
travelling at steady supersonic speeds. Whitham's Dapers deal with 
the cases of a body of revolution and a thin symmetrical ring, whereas 
Vialkden (3) has extended the method to the case of a general wing-
body combination provided the body is axi-symmetrical and at zero 
incidence. 

Illitham's theory is based on the determination of the pressure at 
large distances from the body by linear theory. The co-ordinates of 
the characteristic on which this pressure must act are then found and 
from the geometry of the characteristics the paths of the shock waves 
are calculated. For non-circular bodies the flow in each plane, 
e = constant is treated separately. 

The case of non-uniform motion can be treated in a similar way but 
will not be treated here. (Sec Ref. Li. by Pao). 

The calculations for the strength of the bow wave from a body of 
revolution are straightforward, even when the cross-sectional area is 
not an analytical function of the axial distance. On the other hand, 
the calculations for the case of the lifting ring with thickness arc 
not so simple, and few numerical results have been obtained. 

If however, only the strengths of the shock raves in the vertical 
plane below the aircraft azo required the calculation is no more 
difficult than that of the body of revolution provided the lift 
distribution as well as the thickness distribution is known. It can 
be shown that the effects of wing thickness, body thickness and ring-
body interference are additive to the lifting effect of the ring. 

3. "aithamWalkden Theory 

If the overall length of the aircraft is denoted by 1 its NA& 
nuMber as NI and the unifomnembient pressure as ph, Walkden shows that 

the pressure jump across the bow shock wave in the vertical plane below 
the aircraft (0 = 	w/2) in the far field is given. by 

A pi. 
= --r  

( Y+ 1)7  
F(r 

  

• 0 

 

where h is the verticalidistance below the aircraft centre-line 
B equals (NI2  - 1)1. 
I describes the characteristic. curves 
To is the value of rat which F(r -17/2) is zero and 

fT 
P dr 

is a maximum over the length of the body 



r 
S"(t) St(t) S2(t) 	(t) 

tom- ..•Lx dt 	(2) 

S( t) is the body cross sectional area 

S (t) is the wing body interference effect which can be of 
either sign 

S2  (t) is the wing thickness effect 

S 3(t) is the lifting effect 

and a prime denotes differentiation with respect to t 

The interference effect is fauna from 

dS 	
= 4 R( ) 	-xi. 	 (3) 

where x is the distance behind the nose of —the aircraft 

R(x) is the body radius distribution 

and 2Z(x) is the wing thickness distribution alongthe body 
centreline 

The wing thickness effect is found from 

aS 	r+5 
= 2 1 

S 
dx 

Z(x, y,) dy 

where s(x) is the local semi-span, and 

2 a(x, y,) is the total wing thickness for the gross wing 
(i.e. including that covered by the body)  

The wing lifting effect is found from 

asp  
dy ( 5) 

where 40(x,y,) is the localload per unit area on thieving surface. 

and 

T 	
21T 
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T= x Bh+  (9) 

Equation (2) can be written 

fr  6234 elt 
tyz 

d. where Sll  = 	(SI  - 	S
2 

 dt 	1 	2 

In In equation (6) the contributions to the integral from 

S must be zero upstrecm of the wing leading edge. In what 3 
it will be assumed that the origin of the body and the wing 
at x = 0. This corresponds to an integrated layout. 

Since the loressuse in the far field is given by 

P 	Ph 	ym2  Fsr. 7L

Ph 	(2 Bh)2.  

on the characteristic given by 

S S and 
1 	2 

follows 

arc coincident 

(8) 

it can be seen that positive values of F(r, -/r/2) corrospond to regions 

of compression whilst negative values of P(r, - W/2) correspond to 

regions of expansion. 

The compression and expansion waves which canibine to form the bow 
=me in the for field are therefore confined to the region 0 4r s To, 
and the tail wave results from the waves corresponding to the region 
To  ( 7 4co. The pressure jump in the far field corresponding to the 
rear shock must be 
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Uhitham has shown that 

F(r,6)dr ao = 0 



Thus for a body of revolution without lift, 

r F(7-  0- 7r/2) d T 6 0. 

0 

(12) 

from which it follows that the far field pressure jumps across the bow 
and stern shock must be the same magnitude. 

For slender bodies this result must be a close aopromimation even 
when bodies of irregular section shape are used, since the variation in 
St with 0 should be small. Then the pressure signal on the ground 

must have the characteristic N wave shape associated with the far field 
disturbance.( Fig . 	. 

This result cannot be correct for the lifting body, since then the 
surface integral of pressure on the ground must be equal to the total 
lift. Thus, in the lifting case, the pressure signal on the ground 
must be of the form shown in Fig. lb. It follows that, for positive 
lift, the pressure rise associated with the bow wave must always be 
greater than that associated with the stern wave. The pressure jump 
associated with the bow wave is not necessarily greater in the case of 
a lifting configuration than that arising from the sane configuration 
at zero lift. The vihole of the lifting effect can be associated with 
the region T 	t < c. in which case the front pressure jump will be 
the same in tie lifting and non-lifting cases. 

The theory developed by Whithara related to an atmosphere of 
uniform ambient pressure ph. In Appendix 1 it is shown that the 

correction factor to 7/hitharni s results, in order to allow for the 
increase in ambient pressure with decrease in altitude is approximately 

CA J 
	

( 1 3 ) 

that is, the pressure jump across the shock wave is proportional to the 
square root of the ratio of ambient pressure. 

Thus, for anon-homogeneous atmosphere the pressure jump across the 
front shock at the ground is, from equation (1), 

1 
O 	 12)3.4  

= 	ame.d.aselenT 

Y + 1)2 	h4  -11r12  
• (Pg Ph)2 F(r, F/2)(17-  

1 2  
	 N.) 



TaID rear shock pressure jump at the ground, is from equation (10) 

( ZIP) g 	y 151 

Note: 	for y =1.4. 

 

(p
g  ph 	

.17(r -ir/2)dr 

L. To 
	 (15) 

 

24  = 1.075 
(y+ 1)-2-  

4. 	The Response of a Thin Pane1 to an 11/41-wat.ve 

It is shown in Appendix 2 that for the N-type shod: waves from a 
supersonic aircraft, the pressure distribution near the ground is given 
by 

2t 
P - Pg  = 4(1  -T) 	o ‹ t T 	 (16) 

= 	0 	 t > T 

where p
g 
 is the ambient pressure at ground level 

is the pressure rise across the bow and tail waves 

and. T is the 	for.the bo'-r and. tail- wavos. 

From the equation of motion for a thin panel of thickness h 
subjected to the above impulsive pressure distribution the response 
of the panel can be determined and its maximum deflection and stress 
found. It is shown in Appendix 2 that if the mode of vibration is 
equal to the static deflection made for a uniformly distributed load, 
the maximum dynamic deflection is roughly twice the static deflection. 
This occurs when wT At 5.5, where w is the plate natural cirollinr 
frequency and T is the passage time of the shock waves. For other 
values of wT the dynamic deflection is reduced but in most practical 
cases (typically windows) it would seem that the static deflection is 
always exceeded. 

As a typical example lot us consider the case of a plate glass 
shop window in. thick and having sides 128 in. by 90 in. Such a 
windcw was described in Ref. 7 as having been cracked parallel to its 
shorter side by an NT wave of strength (including ground. reflection) 
of 1.75 lb./sq.ft. approximately (the report states that the above 
pressure was measured at another station on the same flight, but it 
was likely that this pressure vas exceeded in the vicinity of the 
window) and a passage tin between shook waves of 0.136 secs. 



The height of the aircraft was 25,000 ft. and it was flying at i = 1.22. 
If we use the formulae given in Appendix 2 for the rectangular plate 
having the following characteristics, and assure it is simply supported 
at the edges, 

109 ib./fe 

P
m 

= 5 slugs/fe,  

b x a = 5.34 ft. x 3.75 ft. 

h = 1/48 ft. 

V = 

then 	uT = 2.8 

7 	RI 1 

8 =I,  1 .25 

and the maximum stress 

Tm 	
1000 lb./inF. 

Now for plate glass windows a maximum static working stress of 
1000 Ibeiir? is recommended. This provides a nominal factor of safety 
f about 10 but since it allows for inhomogeneities and stress concentrations 

set up in fixing, the true factor of safety may be very much less. 
It should be noted also that the fatigue strength of glass (Ref. 8) is 
good and the maximum breaking stress for impulsive loading exceeds that 
for static loading by a factor of about 1.2. Nevertheless it would not 
appear impossible for such a plate glass window to have been damaged 
by this shock wave of only moderate strength. 

This example together, with general deductions from the above 
theory as applied to structures other than glass windows, confirms the 
experience to date on the operation of supersonic aircraft over land 
that only minor structural damage will result with shock waves of less 
than 2 lb./sq.ft. (including ground reflection). It would seem that when 
damage to a structure has occurred the structure was either over-
stressed or on the point of failure. The present calculations however 
do not give us a lead as to what maximum shock wave amplitude can be 
accepted without fear of ,:al- ao4cre to typical hones and buildings. 
Certainly current experience indicates that a 1 113,/sci.ft. (including 
a reflection factor of 2) shock w.ame would not cause structural damage, 

4  The possibility of multiple reflection of the shock wave in. its 
passage over closely spaced buildings, such as in a large town 
or city, should not be overlooked. 



0.0261 x - 0.0838 TcF + 1.0346 3E3  — 2:9045 72'4- 9.5796 3E5] 

- 12.7503 x 	2.5595 5E9  — 21.7812 6 	2/1..3192 1'7  

at least not of any magnitude. This is not to say, howevur, that 
incidents of a secondary nature would not arise, such as accidents to 
people, who are momentarily startled, of which many emamples could be 
enumerated. The upper limit of shock wave amplitude which is acceptable 
for no appreciable damage to buildings can only be arrived at by trial 
and experiment. 

5. 	Effect of Limiting the Ground Pressure Rise on the!plidbPath 

In order to investigate the magnitude of the pressure rises on the 
ground associated with the far field disturbances caused by a supersonic 
aircraft, the above theory has been applied to the typical slender 
airliner of integrated layout shown in Fig. 3. 

The nlanform assumed was of 9  ogees shape given by 

5r-  = 0.1615 	— 0.173R2  + 1.509 3E3  — 1.980 3c44-  + 0.7155 '2175  

(17) 
where (ms  y) are measured in terms of the aircraft length 1. 

. 	Slender wing theory suggests that the distribution of lift along 
such a configuration is proportional to y 	. This leads to the 

a 
condition that the local chordwise loading is given by 

= • 36.83 2 y L2  py  S CL  g(x) (18) 

and the total lift 
	

P aL a
dx 

The thickness distribution along the length of the aircraft was of 
Lord V shape (see Ref. 6) given by 

s(R)  = 0.0324 .37: 	_Li 	a! 	 (19) 

Since the aircraft was of very slender form, St, as defined by equation 

(7) was taken to be S(1). The values of F(r, - 17:2-) as give n. by equation 

(6) were caleninted over the length of the aircraft for varied values 
of B S CL. From the dist*ibution of F(1.0  - 17/2) with 70  the value of To 



for each value of B S CL 
was evident, and allowed 

0 
to be determined for each case. For a series of Mach numbers, the 
altitude of the aircraft was calculated for each value of B S CL 
and hence the pressure rise across the bow wave could be evaluated from 
equation (14). Fig. 4. is a cross plot of these results showing the 
pressure rise, with no allowance for ground reflection, as a function 
of the aircraft height, and speed. These results correspond to level 
flight at constant speed at each point. 

If a value of the pressure rise, with no ground reflection factor, 
of 1.0 lb,/ft2  is accepted as a value not to be exceeded, then the 
aircraft must not exceed a Mach number of 1.06 at 40,000 ft. altitude 
and a Mach number of 1.23 at 50,000 ft. and can only accelerate from 
M = 1.5 to M = 2.0 above 54,000 ft. The pressure signal on the 
ground at these points, if the aircraft flies at zero lift, would be 
about 0.5 lb./ft: without reflection. A calculation for a slender 
configuration of similar weight with an aspect ratio of 1.25 and a wing 
loading of 36 lb./ft!, the length and cross-sectional area adjusted to 
suit, gave a 1.0 lb./ft! boundary very similar to that shown in Fig. 4. 

The high altitude at which it is necessary to fly at low supersonic 
Mach number suggests that this region is likely to correspond to very 
low rates of climb and acceleration. Fig. 4. shows the calculated rates 
of change of energy height with time available for the cxamole aircraft. 
The engine size was determined from the optimum cruise condition. It 
is apparent that, even at maxim= all out r.p.m. the aircraft cannot 
exceed a Mach number of 1.2 to 1.3 without giving rise to a pressure 
increment on the ground greater than 1.0 lb./ft? (no reflection factor). 

The available acceleration at low supersonic speeds can be increased 
by increasing the size or number of the engines with or without a 
decrease in wing area. Both these modifications -will load to en increase 
in cross-sectional area end weight which are likely to increase the 
altitude at which supersonic flight is acceptable. It follows that, 
since :layout, weight and performance are so inter-related, the weight 
and dizcot operating costs of a supersonic airliner are likely to 
increase considerably as a result of imposing a limitation an the 
pressure rise across the bow wave at ground level. 

It may be that the most attractive solution is to use some degree 
of afterburning during the supersonic part of the 	Certainly the 
scheme is attractive if the cruise thrust and fuel consumption are not 
affected by the presence of the afterburner. 

Some degree of alleviation of the magnitude of the pressure rises 
in the N wave near the ground can be attained, for a standard atmospheric 
condition, by the aircraft climbing during the law supersonic speed 
regions. This moans that there must be an excess of thrust over drag, 
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which in any case is not likely to be large. However, the alleviation 
depends upon the refraction of the pressure disturbance rays which is 
very dependent upon the .temperature distribution with altitude and 
upon the wind gradient. Consequently the amount of alleviation would. 
vary from asy to day and is not very amenable to precise calculation 
even if accurate atmospheric data is available. 

6, majilmEamjaisag on the Ground 

17hitham (1) has shown that in the fax field, the front shock 
pressure rise precedes, and the rear shock pressure rise follows the 
Mach line corresponding to the point r= T

o by a distance approximately equal to 

4 

+ 1 ) 	 rjf !KT, 0) dt 	 (20) 
B 2  

where the limits of integration are 0 to To  for the front wave and T 
to infinity for the roar wave, andris the distance normal to the flight 
path of the aircraft in the plane defined by 6. 

Since the nressure jun is also proportional tol F(7-20)dt 
1 7  

with the sane respective limits of integration as equation (20) it 
follows that the distance between the shock waves is approximately 

14.2 	 r  
a(e) =B 

Y 	(Ph' P) 	

Lpf +Pr) 6  

g 

(21) 

where GPf andAPr  are the front and rear pressure jumps at a distance r 

from the aircraft in the plane defined by 0. 

The ground reaction due to the reflected wave, will have the N 
tyre distribution in the x direction and will have a pressure intensity 
twice the far field pressure signal. 

Since the surface integral of the ground reaction must equal the 
lift the transverse lift grading on the ground is given by 

X = 

oy 
r 

(Ph Pg)-1: 

y2 (Y + 4)  
B 	y (LP;-  o 

ID 2 (22) 

where y is the lateral distance along the ground between the plane at 
the angle 0 anti the vertical plane containing the aircraft flight path. 



The libitham-Walkden theory depends upon the assumption that the 
pressure distribution in the far field associated. with the lifting 
effect is determined by sin 6F(r,0) and therefore, for the slender 
configuration me have considered, dL must vary approximately as 

4Y 
sin 0, if the aircraft is flying straight and level. 

Thus the total lift is given. by 

L =(u0) 
0--2  

= 2h  ek 6= 2 

f 	
sin e ae 

0 

(23) 

Bence from (22) and (23), 

M2  LX-1-.1/ 	(1111 L= 2 - • -- B 	y 	(P
h 

 p
g
) 

\ 

4-r it, e= 

It follows that once the intensity of the front shock has been 
calculated, that of the rear shock can be obtained directly from 
equation (24). It can be seen that, for a given lift the maximum 
pressure jump on the ground decreases as APr  decreases. If the influence 
of the ring can be contained in the region 

(To) 

	

	s r 4 a 
zero lift 

then API, will be dependent only upon the thickness distribution. This 

suggests that the lift should be towards the rear last of the configuration. 
It seems probable that, for a given length and thickness distribution, 
the value of To  will increase with L, which means that the lift must 

be concentrated in an even smaller length. Since the centres of lift 
and gravity must be coincident for trim, there is obviously a limit 
to the aft position of the lifting region. The further aft the centre 
of gravity the higher the lift at whichApf  combo kept equal to Apf  

with no lift. This suggests another reaon why engines at the back of 
the aircraft are attractive. 

It seems probably, that by choosing a suitable thickness distribution, 
the pressure intensities in the fax field can be ninimised for a given 
lift distribution and a limited range of lift. 
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7. Conclusions 

(a) The pressure intensities in the far field can be calculated for an 
aircraft with lift by adding to the thickness distribution an additional 
equivalent thickness distribution which is a function of the lift 
distribution, total lift and Mach number. 

(b) The effect of lift on the pressure intensities in the fax field can 
be of the same order as that due to thickness. 

(c) It is probable that, if the maximum pressure rise in the far field 
below an aircraft is of the order of 1 lb./ft. (2 lb./ft. with reflection), 
some large plate glass windows will be damaged. Since the variation of 
pressure intensity varies slowly with lateral distance from the 
vertical plane containing the path of the aircraft, such damage 
is likely to occur over a wide strip below the aircraft's path. 

(d) A limitation on the pressure rise on the ground is likely to limit 
the height at which large supersonic aircraft of integrated layout can 
accelerate from M = 1.1 to 1.5 	above 45,000 to 55,000 ft. respectively. 
This is likely to restrict the climb path of such an aircraft to regions 
where the availa:ble acceleration is small unless the thrust available 
and possibly the wing area are increased beyond that required for other 
parts of the flight plan. This must lead to an increase in weight and 
therefore aggravate the far field pressure rise problem. It is 
probably that some form of afterburning is the best solution, provided 
the cruise thrust and s.f.c. are not materially changed. 

(e) There is some indication that an aircraft could be designed to 
minimise the far field pressure rises for a given volume, over limited 
ranges of total lift. This would involve choosing suitable thickness 
and lift distributions. A limitation on the method is likely to result 
from the necessity to trim the aircraft. 



. References 

- 13 - 

1.  Whitham, The flow pattern of a supersonic 
projectile. 
Communications in Pure and Applied 
Mathematics, Vol. V p.290 (August 1952) 

2.  Whitharn, G.B. On the propagation of veak shock waves. 
Journal of Fluid Mechanics, Ve1.1, p.290 
(Sept. 1956). 

3.  Walkden, F. The shock pattern of awing-body 
combination, far from the flight path, 
The Aeronautical Quarterly, Vol. IX, 
p.164( May 1958). 

4.  Rao, P.S. 

Warren, C .H 

Supersonic Bongs, Part 1. 
The Aeronautical Quarterly, Vol.VII 
p.135 (May 1956). 

An estimation of the occurrence and 
intensity of sonic bangs. 
R.A.E. Tech.Note Acre 23340  Sept. 1954. 

6.  Lord, W.T.$  
Green, B. 

Some thickness distributions for narrow 
wings. 
R, ..E. Tech, Note 2995 (Feb 	1957) 

7.  Randall, D.G. Methods for estimating distributions 
and intensities of sonic hangs. 

Tech.Note Aero.2524 (Aug. 1957). 

8.  Stanworth, J.E. Physical properties of glass. 
Oxford (1950). 

9.  Maglieri, D.J., 
Hubbard, H.H.0  
Lansing, D.L. 

Ground measurements of the shockwave 
noise from airplanes in level flight 
at Mach numbers to 1.4 and altitudes 
to 45,000 feet. 
NASA Tech. Note D-48 (Sept. 1959). 

10.  Timoshenko, S. Theory of plates and shells. 
McGraw Hill. (1940). 

11.  Lamb, H. Hydrodynamics. 
Dover Publications New York (1945). 

12.  Carlaul  H.S., 
Jaogar, J.C. 

Operational methods in applied mathematics. 
Oxford (1941). 



APPMEDIX 1 

92121±pmaeon of shock waves f_rom.  a 

paving bed in a nonuniform 
.a..memmonmalamm•a-mwom,. 

The propagation of shock waves towards the ground from aircraft 
flying at supersonic speeds at high altitude involves some consideration 
of the variation of the atmospheric pressure, density and temperature 
with height. In the general theory of Whitham, the attenuation of the 
shock waves from the moving body is calculated for the case of propagation 
in a uniform atmosphere. In this appendix an approximate estimation will 
be made of the correction term to be applied to Whitham's theory for 
the propagation in a non-uniform atmosphere. 

It can easily be shown (see Lamb, Ref. 11, p.543) that the general 
effect of the increasing atmospheric pressure towards the ground is to 
increase the amplitude of the shock wave propagating towards the ground 
and this effect is very much greater than that associated with the 
temperature increase towards the ground. It can nlo be shuwi that over 
the distances of interest in practical cases the combined effects of 
viscosity and thermal conductivity as well as atmospheric turbulence 
in attenuating and distorting the shock wave along its path are negligible 
compared with the former effects. These latter effects would however 
need careful consideration for flight at much higher altitudes then 
those considered here. 

If further products of small quantities are neglected, as well as 
the changes in entropy across the shock wave, the equation for the 
perturbation density associated with the motion of the shock wave is 

a2(8p) 	a 	a2 (op 	— g -4112)  
&t2  

(A.i) 

where 4 is the difference between the density and the local atmospheric 
density, and x is measured vertically downwards in the atmosphere. 

This equation is obtained from the equations of continuity and 
motion which are respectively 

dp 	 ' i dpui 	
acu. 	dPIL i = 0 ; 	+ ---- u1  = -3-2 'xi (A.2) .. 	+ n 

at + ax. 	 at 	ax. 	ax. 3. 	 I 

If we subtract the divergence of the second of (A.2) from the time 
derivative of the first, and noting that in the undisturbed atmosphere 
(at least in the model we have assumed) 

(2
axa 
 ) 	a7: x. (A.3) 

ax. 	a ax. 
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with Xi  E (g , 0, 0) and a2  = 
follows. 

: then equation (A,'1) irmediately 

Since a = a(x) we can write A.1) in the form (writing z for 8P) 

a t2  

a2  v2  z Os. (A.4) 

In order to simplify the solution of (A.4), but not at the same time 
modifying.  its essential properties, me will replace a? by an.average 

value a and (g da ) by an average value g , Thus we have 

ztt - E2 	Amp 
	 zx 
	 (A-.5) 

Now at distances far from the boc1y the magnitude of the perturbation 
density would in Vhithemis solution be obtained from 

ztt 
72 v2 	

= 0 
	

(A.6) 

In principle therefore we can find the change in the amplitude function, 
associated with the non-uniform atmospheric conditions, by solving (A.5) 
from the known solution of (A.6). However it can be shown that this 
change in the amplitude function for a general wave motion:  is similar 
qualitatively to the change in the amplitude of a plane WOW propagating 
downwards through the atmosphere. It is this special case that is 
treated below. 

The solution of (A.5) with the boundary conditions Lim z(x,t) = 0 
t . 0 . 	az Lam----=0 and z(02t) = f(t) for t > 0, whore the origin of x 

at t 0 
is taken at the altitude corresponding to the initial formation of the 
shock wave, can easily be found by the method of the Laplace transform. 
The initial amplitude function (or density signal) can be of any form 
and would be typically an N.-wave. However for simplicity:  we will take 
f(t) = constant equal to unity, but it should be noted that this 
simplification does not affect the value of the amplification of the 
wave-front amplitude as the wave proceeds groundwarde. 

The solution of (A.5) for this weak plane shock wave problem is 
(see Carslaw and Jaeger Ref. 12 p.185) 

rt 

- 
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when (t 3/5) 	<< 1 , noting that J (y) A y/2 as y- , 0, we find 
2a. 

that (A.7) becomes 

z = exp 	
C1

+ n%2 -n 
4F.  

where 77 = 
2K2  

( A.8) 

 

Hence the increase in amplitude of the wave-front, given by t = x/s., 
as it travels groundwards increases exponentially with x. 

In the more general case of pseudo-spherical waves this increase 
in amplitude would be more than balanced by the spherical attenuation 
of the waves but these two factors must always be multiplied to find 
the perturbation density rise at the wave-front near the ground. We 
see from (A.8) that the profile of the wave is also changed. 

In the special case of an isothermal atmosphere 
Vag 

= 	 exp (4) 	 (A.9) 
7x=0 	PX=0 

where (a) is the constant (isothermal) speed of sound, so that the 
wave-front amplification factor 

, 
eXp (n) = 

	

	
(A.10) 

.'"x=0 

In the general gas g and a2  must be replaced by g and a as defined 
above but in most practical cases the approximation expressed. by (A.10) 
will be adequate. 

Accordingly Whithamt s modified formla for the strength of the bow 
shock wave from a body of revolution is 

	

i 	i  

lc 	- i 	 (I o  Kr )cir) 
L.?2 = 	Ps 	y 	,( zo 4

. 
 

Ph ( Y + 1)- h  2  i o 

where p
g 
 end ph  are the pressures at ground-level and at altitude 

respectively and Kr  is the ground reflection factor. This relation is 

the one used by Randall (1957) and others. 
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• 

 

     

     

According to the approximations made above 

P 	,\IP/i3x=0  . x=0 I- 

a 

    

so that when the relation expressed by (A.10) is used generally the 
variation of the speed of sound with altitude, which is admittedly 
small, will be neglected. 

(A.11) 
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A.741.DI 2 

The resp9pse of 	glass window to an 1\71-iwave 

The equation for the pressure distribution near the ground across 
the shock waves from a supersonic aircraft is 

P 	Ps = 	 (1.12) 0 < t < T 

0 

where p
g 
 is the ambient pressure at ground level 

fp is the pressure rise across the bow end tail waves. 

T is the passage time for the bow and tail waves. 

The equation of motion for the vibration of a thin plate of 
thickness h is, if w is the normal deflection, an  D is the flexural, 
rigidity of the plate, 

D 721:7 = L"-1)(1 	2t/T) 
	

0 st <T 

= 0 	 t > T 
0 0 0 0 

U 
 

pm  h 
at' 

( 	, 1 3) 

If we assume a mode of deflection and put wc  equal to the central 

deflection, then on integrating (A.13) over the area of the plate we 
find that 

t 	2t M 	 w = -K 	A Lip 	--/T) 0 t 

= 0 	 t > T 	
00000 	(A014) 

where M l  is the equivalent total mass of plate weighted for the particular 
mode of vibration 

K' is the equivalent total plate stiffness weighted for the 
particular mode of vibration 

and 	A is the plate 

For instance if the plate is circular with simply supported edges and 
the mode is that for static deflection under a uniformly distributed lofla 

 

and 

16v2 2 E .  
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where M is the tot-n-1  mass, E is Young's modulus, r.s.nav is Poisson's ratio. 

If m = f I/EL £p and k = KI/LAp end -the subscript on w is 

dropped the equation of motion (A.14) becomes 

m 	k w = 1 - 2t/2 	0 ‹t sT 

= 0 	 t > T 

with the boundary conditions 

(A.17) 

aw 
yr = 	 = 0 at t = 0 . 

If we write the natural frequency of the plate as 

(A.18) 

then it can be shown that the solution of (A.17) is 

ra W2  VIN = 1 ^ COS( Wt) " fd"T  (OA — Sin ( 6.1t)) 

2 + 	11( t 	T) 1 -- .cos w(t 	T) + 	(t 	T) 
CO a. 

where H(t T) is the Heaviside unit function. 

It follows that 
------------ 

— stow( t—T)) 

00000 UL019) 

m w2 v
4 	

=
21 	+ 4/6)2 T2 ) 

\I 	
sin w(t e ) 

for 0 < t T 

where 
tan we = 2 

(A.20)  

( 	w T) i 
 cos 

1 /4
65b 

/ 	- .LAIT 
2 i 

(A.21)  

ond. rn u.) 27( t) = 2 cos 65.1  2 2 sin(q) ( 

for t > T 

In the range. 0 s t s T the maxim.= value of w, written wm, occurs 

tan-1  (.624) 

when 
(it 
2 
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M w2  w.1n = 2 	tan-1  (A) 
2 

(A.22) 

Similarly in the range t > T the maximum value of w occurs when 

wT wt = 	nu' (n = 0, 1, 2 ...) 

2 
M CO 77 	= 2 cos(') 0.0 sin( ) 	 (A.23) 

From (A.22) and (A.23) we see that the lowest value of WI at 
which the maximum deflection occurs is when WT z5.5 and the corresponding 
maximum deflection is given by 

2,12 
	 (11..24) 

If we put in W2  rn = 8 then 8 is a number of order 2, an 

w = 	,8 
	

(A.25) 
KI  

Showing that 8 is the dynamic load magnification factor, since AG - 

K' 
is the static deflection of the plate under the uniformly distributed 
load 	per unit area. If this latter deflection is denoted by 7 

then 
vr = 8 ws 
	 (A,26) 

The values of w's 
for various shapes of plate are given *belay, 

for convenience, together with the values of the maximum stress. 
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Geometry 
Edge 

Condition 
Maximum 
Deflection 
ws  DAp 

 

Ma.Idmum 
Stress 
a 

/Am 	p 

Circiil  03r  
*us a 

Clamped 

Simpl y' 
Supported 

4 
a' /64 

( 	._.+7)_)...,a 4 
\ -1 	+v 

a! 	(Edgo) 
4.ha 

))  1.3,,...±2 2 

8 h2 

Square 
(2a x 2a) 

Simply 
Supported 

C Y+  , 	, c..4  

71-6  
approx. 

S.14.0 	a2  
2 	h2 

Rectangular 
. Short side 2a 

liond side 	2b 

Simply 
Supported 

6 	 a 4  24_ - 0.67 (3 +v) a2  /1.2  
b when - = 1.42 a 

0.81 (3 +0 a2  A2  

when b/a. = a 

2 
I., 
	2,2 + ) 

b) 	• 	1  
approx. 

It will be shown in general however that the deflection as calculated. 
from the formulae above will not be small compared with the plate 
thickness. The correction to the above results when w 	>>1, as sin 
given by Timoshenko, for a circiflAr plate with clamped edges is 
(when V = 0.25) 

;is /ws 	.2 (h1 )/ 3  

where w' is the central deflection according to the more exact 'raze 
deflection theory. 

The modified moximum stress for the clamped edge circillpr plate 
is accordingly 

p1 
(r/  m) 	- 0.423 (.21_2_.1\1A 

r=v 	 h 2  ) 	 (A.28) 
and 	

Fr) r=a 

at the centre and edge respectively. 

(A.27) 
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PLANFORM 

b) 	CROSS—SECTIONAL AREA 	QISTRIBUTION 

BASIC 	PARTICULARS 

MEAN CLIMB WEIGHT 300, 00016. SEMI -SPAN - LENGTH RATIO 	0'233 

GROSS WING 	AREA. 5,710 FT? PLAN FORM SHAPE PARAMETER 0'51 

CLIMB WING LOADING 52 "516/FT? NUMBER OF PASSENGERS 	100...120 
ASPECT RATIO 0. 915 STILL 	AIR RANGE 4,600 n.m. 

INCREASING 
PRESSURE 

AMBIENT 

PRESSURE 

FRONT 

PRESSURE RISE 

Li 	LENGTH OF 

AIRCRAFT 
--API REAR 

PRESSURE RISE 

INCREASING 
PRESSURE 

AMBIENT 

PRESSURE 

1 
1 

LENGTH OF 
FRONT L. 	 REAR 

AIRCRAFT 
PRESSURE RISE 	 PRESSURE RISE 

FIG la. FAR FIELD PRESSURE SIGNAL FOR 

AN AIRCRAFT WITHOUT LIFT. 

FIG. lb. FAR FIELD PRESSURE SIGNAL 	
FIG. 2. DETAILS OF EXAMPLE AIRLINER. 

FOR AN AIRCRAFT WITH LIFT. 
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2' 0 lb/ t REFLECTED) 

I 	 I 

HEIGHT 

FT 

50000 

40000 

60000 

I 

0 I 	 

20000 

10000 

0 
I.0 1.2 	 I 4 

MACH NUMBER 

.... 

O  I • 0 I filtt2  2• Oltatt2  

I 

REFLECTED) 
I 

I • 25 101.2  2- 5 113 ift2  REFLECTED 

I • 5Ib ft2 	tj3.0Ib ft2  REFLECTED 
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50000 

40000 
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FT 

30000 

FIG. 3. PRESSURE RISE ON GROUND ACROSS 
	 FIG. 4. CEILING, RATE OF CLIMB AND 

BOW WAVE FROM EXAMPLE AIRLINER 
	

GROUND PRESSURE RISE BOUNDARIES FOR 

EXAMPLE AIRLINER. 


