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1 Abstract 

 

Integrating sphere based multipass cells, unlike typical multipass cells, have an optically 

rough reflective surface, which produces multiple diffuse reflections of varying lengths. 

This has significant advantages, including negating scattering effects in turbid samples, 

removing periodicity of waves (often the cause of etalon fringes), and simple cell 

alignment. However, the achievable pathlength is heavily dependent on the sphere wall 

reflectivity. This presents a challenge for ongoing in-situ measurements as potential 

sphere wall contamination will cause a reduction in mean reflectivity and thus a 

deviation from the calibrated pathlength. 

With this in mind, two techniques for pathlength calibration of an integrating sphere 

were investigated. In both techniques contamination was simulated by creating low 

reflectivity tabs e.g. ≈5x7mm, that could be introduced into the sphere (and removed) in 

a repeatable manner. 

For the first technique, a four beam configuration, adapted from a turbidity method used 

in the water industry, was created using a 5cm diameter sphere with an effective 

pathlength of 1m. Detection of methane gas was carried out at 1650nm. A mathematical 

model was derived that corrected for pathlength change due to sphere wall 

contamination in situ, thus enabling gas measurements to continue to be made. For 

example, for a concentration of 1500ppm of methane where 1.2% of the sphere wall 

was contaminated with a low reflectivity material, the absorption measurement error 

was reduced from 41% to 2% when the model was used. However some scenarios 

introduced errors into the correction, including contamination of the cell windows 

which introduced errors of, for example, up to 70% if the particulate contamination size 

was on the order of millimetres. 

The second technique used high frequency intensity modulation with phase detection to 

achieve pathlength calibration. Two types of modulation were tested i.e. sinusoidal 

modulation and pulsed modulation. The technique was implemented using an integrated 

circuit board which allowed for generation of modulation signals up to 150MHz with 

synchronous signal processing. Pathlength calibration was achieved by comparison of 
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the phase shift for a known length with the measured phase shift for the integrating 

sphere with unknown pathlength over a range of frequencies. The results for both 

modulation schemes showed that, over the range of frequencies detected, 3-48MHz, the 

resultant phase shift varied as an arctangent function for an integrating sphere. This 

differed from traditional single passes where frequency and phase have a linear 

relationship. 
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1 Introduction 

“Human influence on the climate system is clear, and recent anthropogenic emissions 

of greenhouse gases are the highest in history. Recent climate changes have had 

widespread impacts on human and natural systems” – IPCC 2014[1]. 

1.1 The challenge for gas sensing 

The demand for gas sensors in the global gas market is being driven primarily by more 

stringent government regulations regarding safety in the workplace as well as emission 

control[2], [3]. Some of the specific areas where the demand for gas sensors has 

increased include the industrial, petrochemical and automotive sectors. Typical gases of 

concern in these sectors are listed in Table 1.1. 

Some of the safety risks that regulations aim to mitigate include workers exposure to 

toxic gases, or potential explosive situations due to gas leaks. Regarding environmental 

aspects, the Intergovernmental Panel for Climate Change (IPCC) has reported that the 

total anthropogenic greenhouse gas (GHG) emissions were the highest in human history 

from 2000 to 2010 (49 (±4.5) GtCO2eq/yr in 2010 i.e. CO2 equivalent in gigatonnes per 

year)[1]. Direct effects such as the growing industrialization in Asia, as well as indirect 

knock on effects such as wetland emissions in the Arctic and Tropics are just some of 

the factors that have contributed to this increase, according to the National Oceanic and 

Atmospheric Administration (NOAA)[4], [5]. 

1 
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Table 1.1: Typical gases of concern in various industries, adapted from[6] 

Industry Application Typical gases 

Gas supply Leak detection (field) 

Processing/distribution 

CH4 

CH4, H2S 

Waste/wastewater Safety CH4, other combustibles 

 Health CO, O2 deficiency, Cl2  

Petrochemical Environment NOx, SO2, CO, CO2, NH3 

 Health CO, CO2, HF, VOCs, HCN 

 Process monitoring & control O2, H2, NH3, H2S 

Automotive Emission control NOx, N2O, CH4,  

The consequences of these increased emissions e.g. more extreme weather fluctuations 

and a record low sea-ice extent[7], are causing concerns globally amongst policymakers 

that irreversible damage to our ecosystems may result if these trends continue. This has 

prompted efforts to achieve global agreement on mitigation strategies, such as the recent 

United Nations Climate Change Conference held in Paris in December 2015. A major 

mandate for nations was to reduce carbon emissions so that global warming over this 

century would be maintained at less than 2 degrees Celsius (°C) compared to pre-

industrial levels[8]. 
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Figure 1.1: In Cumbria, many people were evacuated from their homes after flooding 

caused by Storm Desmond (taken from BBC news, Dec 2015)[9]. This is an example 

of the kinds of consequences that result from more extreme weather fluctuations. 

With these environmental and safety considerations in mind, the types of gas 

measurements required by the end user can range from the long term monitoring of gas 

build up to short term localised emissions. Often these measurements require a gas 

sensor that can operate in challenging environments, such as making atmospheric 

measurements of methane while on board an aircraft[10] or measuring the toxic build-

up of hydrogen sulphide on petrochemical works[11]. It is these kinds of applications 

that this body of research is targeting, e.g. challenging environments where mechanical 

vibrations, temperature fluctuations or contamination have the potential to degrade 

sensor performance. To test sensor performance, methane (CH4) was chosen as the 

target gas for this research.  

Methane, a hydrocarbon, occurs naturally in air (with a concentration of 1.7-1.9 parts 

per million (ppm))[12]. It is also the primary component of natural gas, an energy 

source that has been championed by policymakers as an interim substitute for higher 

carbon fuels[13], [14], as demonstrated by the extensive natural gas pipeline network in 

the US (Figure 1.2). However it is a powerful greenhouse gas, and although present in 

much lower concentrations than carbon dioxide, has a global warming potential (GWP) 

that is 23 times higher over a 100 year time period[15]. The effects of methane on 

climate and atmospheric chemistry as well as its explosive nature at concentrations 

between 5%-15%[16] make it an important gas of interest whether in terms of the 

environmental impact or for safety. 
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Figure 1.2: In the US natural gas pipeline network it is estimated that there is a 

system wide loss of 80 billion cubic feet of methane annually[17], equivalent to a 

financial loss of approximately $207 million[18], taken from [19] 

In the context of the applications mentioned above, e.g. for longer term baseline gas 

monitoring or short term leak detection, ideally the sensor: 

 Is highly selective to the target gas i.e. does not suffer cross sensitivity to other 

gases. 

 Provides accurate and repeatable measurement capability with a sufficient 

dynamic range e.g. from ppm to % lower explosive limit (LEL) depending on 

the intended application. 

 Is capable of responding to the presence of the target gas within a timely 

fashion, e.g. provides sufficient warning to workers in the vicinity. 

 Can maintain performance in its environment, i.e. is immune to (or can correct 

for) drift. 

 Does not pose a risk by its presence (such as containing a potentially explosive 

element). 

 Can be portable or fixed, is easy to operate and cost effective for the end-user. 

There are many gas detection techniques that meet some of these criteria and a selection 

of these are discussed in more detail in Chapter 2. In general, non optical sensors such 

as flame ionisation detectors (FID) and electrochemical (EC) sensors dominate the gas 

market due to their low cost, however they can suffer from issues such as cross response 
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to other gases (FIDs cross respond to carbon containing gases) or temperature 

sensitivity (temperature changes can shorten the finite lifetime of EC sensors). Optical 

gas sensors, in particular those employing spectroscopic techniques, are an ideal choice 

where high selectivity and specificity is required[20], and their sensitivity is well suited 

to trace gas measurements. The approach of choice for this project is tunable diode laser 

spectroscopy (TDLS), a highly selective optical absorption method, suitable for 

measuring trace atmospheric components with a detection capability of sub ppm 

concentrations. This generic technique is in widespread use, especially for 

environmental measurements. 

1.2 Gas sensors based on tunable diode laser spectroscopy 

A number of gas sensing technologies[21], [22] based on tunable diode laser 

spectroscopy (TDLS), some of which are discussed in Chapter 2, have been 

successfully deployed in challenging environments such as on in-flight systems, 

facilitating high quality measurements of atmospheric gases such as methane and 

carbon dioxide. The typical TDLS setup, as seen in Figure 1.3, employs a tunable diode 

laser, with the output tuned to scan over the wavelength region where the gas of interest 

absorbs radiation (usually in the IR region) at very high resolution. The principle of 

operation is discussed in more detail in section 2.3.2. 

 

Figure 1.3: Typical TDLS setup-laser output is tuned to scan across the gas 

absorption line of interest 

The high resolution is achievable because of the narrow linewidth of the laser used 

(typically tens of MHz), which is up to three orders of magnitude narrower than the gas 

absorption linewidth (typically several GHz at atmospheric pressure)[23]. To achieve 

high signal-to-noise ratios, TDLS systems often employ multipass optical cells, where 
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the beam is folded a number of times between reflective surfaces thus increasing the 

interaction of light with the sample of interest, i.e. giving a long pathlength, in a 

relatively small volume. However the optical alignment of these cells is complex with 

tight tolerances for misalignment. Additionally, due to the configuration of these 

reflective surfaces, there is the potential for optical interference fringes to be created 

that can obscure the desired signal. With these limitations in mind, this body of research 

investigated using an integrating sphere as a multipass gas cell, with the aim of 

providing a more robust alternative for use in challenging environments such as those 

described in the previous section. 

1.3 Integrating spheres for gas sensing 

Though originally used to measure the total emission flux of light sources, in the last 40 

years the integrating sphere has been gaining attention in gas sensing research. A review 

of prior work, which is detailed in Chapter 4, has shown that integrating cavities as 

multipass cells can be a powerful tool for absorption measurements. An integrating 

sphere consists of an optically rough inner surface providing uniformly diffuse 

reflections, where multiple beams make multiple passes throughout the cavity wall, the 

result being an effectively long optical pathlength. The varying lengths and orientations 

of these beam passes, means that, unlike in typical multipass cells[24], the periodicity, 

and thus potential optical interference fringes between reflective surfaces is not present 

within the sphere. 
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Figure 1.4: Typical multipass cell vs. integrating sphere; multipass cells reflect a 

single beam multiple times resulting in a specular output. Integrating spheres reflect 

multiple beams simultaneously resulting in diffusive reflections. (Multipass cell 

photograph from [25]. 

The diffusive nature of the material eases alignment tolerances, as variations in the 

angle of incident light will not affect the observed radiance by the detector. Furthermore 

due to this scattering property of the cavity wall material, any further light scattering 

caused by particulates in the sample will have a minimal effect on the absorption 

measurement[26]. 

However the achievable effective optical pathlength is heavily dependent on the cavity 

wall reflectivity. This presents a challenge for ongoing in-situ measurements as 

potential cavity wall contamination will cause a reduction in mean reflectivity and thus 

deviation from the calibrated pathlength. This deviation, in the short term, results in 

erroneous gas absorption measurements, and in the long term, if the presence of 

contamination is not realised, can reduce the system’s sensitivity to an unacceptable 

level. The focus of this research was to investigate the performance of the integrating 

sphere as a gas cell when these deviations occurred. The ultimate aim was to provide a 

method for maintaining a calibrated pathlength, so that the integrating sphere could 

Single beam, multiple passes

Specular reflection at a 

smooth surface

Multiple beams, multiple passes Diffuse reflection at a 
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continue to provide accurate gas absorption measurements even in the presence of 

contamination. Overcoming this would move the integrating sphere based gas cell one 

step closer to becoming part of a gas sensor for field analysis and would provide 

confidence to users even in situations where contamination is minimised. 

1.4 Thesis aims and objectives 

The main aim of this research was to demonstrate the feasibility of an integrating sphere 

as a rugged tool for optical gas detection when in challenging environments, e.g. 

vibrations, gas samples with particulates.  

It was intended to accomplish this through the following research objectives: 

1, Devise a method for pathlength calibration of the sphere for use both at initial factory 

calibration but also when in-situ and in the event of contamination of the sphere. 

2. Test the calibration in the presence of quantified known levels of contamination to 

understand how contamination affected the diffusion properties of the sphere as well as 

the achievable detection limit.  

3. Perform gas measurements in the presence of both known concentrations of gas and 

contamination to test the pathlength calibration and also the efficacy of the setup for gas 

detection  

1.5 Thesis novelty 

The following points summarise the parts of this research that were considered to be 

novel. 

 Though some preliminary academic based research has been carried out to 

demonstrate how an integrating sphere functions as a multipass cell, there has 

been no investigation into how the sphere would function if its performance 

worsened, e.g. if the sphere wall became contaminated. The work carried out in 

this thesis investigated different techniques for calibrating and maintaining the 

sphere pathlength in the event of contamination degrading the performance. This 

included creating a repeatable methodology for testing the effect of 

contamination. 
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 A new mathematical derivation combining the typical gas laws with integrating 

sphere relations was produced, which was able to correct for pathlength changes 

due to sphere wall contamination, based on a so-called four beam analysis. 

 This setup, combined with the mathematical derivation, forms the basis of a 

patent application. The configuration was implemented and tested using the 

developed methodology. 

 Two systems, based on phase detection methods in the time domain were 

implemented using an integrated circuit board. To the authors knowledge the use 

of this type of signal generation and processing has not been previously 

attempted for an integrating sphere based gas sensor. 

 This combination of an easy-to-align integrating sphere gas cell with an 

integrated circuits approach allowed for implementation of a sensitive optical 

technique using lower cost components and a compact setup. At the time of 

writing, patents based on these systems are being considered. 

 The phase detection approaches have contributed further understanding of 

integrating sphere systems in terms of how the phase differs with varying 

modulation frequencies, which hasn’t been previously reported. 

1.6 Thesis chapter outline 

This first chapter, Chapter 1, has provided a background to this project; how integrating 

sphere based gas cells could benefit the gas sensing industry and in what way they are 

currently limited. The main aim of this research was to provide methods for pathlength 

calibration of an integrating sphere for gas detection. To focus attention, the chapter 

outlines the aspects of this research that were considered to be novel. Chapter 2 details 

some of the current gas detection technologies, both optical and non-optical, that are 

available commercially, emphasising the advantages and limitations of each. This aims 

to provide the industrial context in which an integrating sphere based sensor would sit. 

Chapter 3 introduces some of the considerations when designing an optical sensing 

instrument. This includes sensitivity limiting factors such as noise as well as sensitivity 

enhancing factors such as modulation techniques. Chapter 4 describes the theory of the 

integrating sphere, both in its original capacity as a tool for measuring lumen output and 

its adaptation as a gas cell. In particular, the chapter provides some insight into how the 
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properties of an integrating sphere are affected by introduction of gas or contaminants to 

the cavity. 

The next two chapters form the experimental sections of this body of research. Two 

different approaches to pathlength calibration were taken, which were then applied to 

detection of methane gas. Chapter 5 details the first approach, an intensity measurement 

based technique relating changes in cavity wall reflectivity, e.g. due to contamination, to 

the original calibrated system, and adjusting the pathlength accordingly. This facilitates 

accurate gas absorption measurement even in the presence of contamination. The 

second approach, as detailed in Chapter 6, introduces a phase detection technique, 

where high frequency intensity modulation is employed allowing for a pathlength to be 

calculated from temporal phase shift measurements. The final chapter, Chapter 7, 

concludes by reviewing the extent to which the objectives set our were achieved, then 

the benefits and limitations of these two experimental approaches, as well as the outlook 

for taking these techniques forward. 
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2 Gas detection technologies 

“The global gas detection equipment market, valued at US$ 2.2 billion in 2013, is 

expected to see a mean annual growth rate of 5.0% during the forecast period from 

2014 to 2022. Gas detection equipment are majorly used as a part of safety system for 

detecting leakage and presence of gases in a given area” – Transparency market 

research[27] 

In the gas detection industry there is no one technology that can achieve all of the 

criteria mentioned in Section 1.1. Sensors that give high selectivity, e.g. no cross 

response to other gases, and sensitivity, e.g. detection limits of low ppb or ppt, often 

come at a cost (for example due to the use of specialist components such as mid-IR 

lasers, highly reflective mirrors) that can be prohibitive for the end user. This chapter 

introduces some optical and non-optical technologies that are in current use, including 

those that are being deployed in the more challenging environments such as airborne 

platforms and petrochemical works. The advantages and limitations of each technology 

are discussed. Some additional information regarding the principles of optical 

absorption spectroscopy is included in this Chapter as these are the governing principles 

for this body of research. 

2.1 Non-optical gas sensors 

Non-optical detectors still dominate the market due to their, in general, ease of use and 

cost effectiveness[27]. This section discusses electrochemical, metal oxide and flame 

ionisation detection as these are employed across a wide range of industries and for 

methane detection. 

2.1.1 Electrochemical sensors (EC) 

Electrochemical sensors are commonly deployed for detection of toxic gases as they 

display excellent linearity and sensitivity to the gas down to part per million (ppm) 

levels, have very low power consumption and can be manufactured at low cost. The 

2 
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typical configuration[28], as seen in Figure 2.1, includes a working (or sensing) 

electrode, a counter electrode and often a reference electrode (to keep the potential of 

the sensing electrode constant) all of which are in contact with a conducting electrolyte.  

 

Figure 2.1: Example of a typical carbon monoxide (CO) electrochemical cell. The 

oxidation or reduction of the target species at the working electrode generates a 

current that is proportional to the concentration of the species. Adapted from [29] 

The sample of interest is passed through a gas membrane to the sensing electrode, 

where it will either be reduced or oxidised, creating charged species. As these species 

pass from the sensing electrode to the counter electrode, a current is generated which is 

proportional to the concentration of gas present. Advantages of this technique include 

the ability to measure over a large concentration range, which is achieved by controlling 

the gas diffusion through the gas membrane. However, though sensitive to the target 

gas, these sensors can also exhibit cross-sensitivity to other gases. For example carbon 

monoxide sensors can suffer interference from hydrogen[30]. Furthermore EC sensors 

have a very limited temperature range over which they operate and in general have a 

short shelf life (≈6 months) and so may not be suitable for applications where long-term 

monitoring is required. A typical detection limit for methane using this technology tends 

to be in the 1000s of ppm[31] however this technology is not well suited for methane. 

Parts per billion (ppb) detection limits have been achieved for other gases, such as 

NOx[32]. 
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2.1.2 Flame ionisation detector (FID) 

Flame ionisation detection is a useful technique for measuring organic species, and has 

been employed to monitor fugitive emissions from hazardous waste [33], as well as 

being used in the automotive industry to measure emissions from engines[34]. The 

system works by applying an electric potential across a hydrogen-air flame jet and 

collector plate[35]. Combustion of the gas sample occurs in the flame jet causing 

ejection of electrons which are collected under the influence of the electrical field, as 

seen in Figure 2.2. 

 

Figure 2.2: Typical setup of flame ionisation detector. The gas sample is combusted 

in a hydrogen flame causing ejection of electrons which are collected at a collector 

plate. This generates a current that is proportional to the concentration of ionised 

sample. Taken from [36] 

The resultant current is proportional to the concentration of ionised sample. This 

technique is more suitable for hydrocarbons, tending to be more sensitive to long carbon 

chains with detector response decreasing in the presence of heteroatoms, such as 

oxygenated species. Some of the advantages of FIDs include the ability to measure over 

a large dynamic range (1-50,000ppm[37]), low maintenance once it is set up and 

robustness in the field; for example the FID is almost unaffected by ambient levels of 

CO, CO2 or water vapour. However the presence of a hydrogen flame makes it an 

unsuitable technique for applications such as on-board aircraft or in flammable hazard 

zones in petrochemical works where equipment must be intrinsically safe. Furthermore 

as it is a destructive technique it is not ideal for applications where further analysis of 

the sample may be required. 
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2.1.3 Metal oxide semiconductor (MOS) 

Metal oxide semiconductor sensors are low cost, rugged and can be configured to detect 

a wide range of gases, making them one of the most popular detection technologies 

worldwide. MOS sensors contain a metal oxide-based surface which is sensitive to 

specific gases (dependent on what metal oxide is used) when heated to high 

temperatures, usually 200–400°C. When exposed to the target gas, the electrical 

resistance across the surface changes as a consequence of adsorption/desorption of 

oxygen. 

 

Figure 2.3: Typical setup of a metal oxide semiconductor. Oxygen is absorbed to the 

metal oxide layer. The oxygen reacts with the target species which allows for electron 

flow. This causes a change in conductivity that is proportional to the concentration of 

the target species. 

For example  n-type sensors (e.g., tin oxide or zinc oxide) react with reducing gases CO 

to release electrons while p-type sensors (e.g., nickel oxide or cobalt oxide) react with 

oxidizing gases like O2, NO2 or O3 to consume electrons, producing holes (i.e., charge 

carriers)[38]. Both of these actions increase the conductivity of the oxide. However 

though being able to detect a variety of gases, MOS sensors do not have very good gas 

selectivity and can cross respond to other gases. Furthermore the sensitivity and 

selectivity is determined by the operating temperature and so can be affected by ambient 

temperature changes, as well as humidity effects. Detection limits in the ppm region 

have been reported for methane detection in laboratory settings[39]–[41]. 

To summarise, these non-optical techniques, despite limitations such as sensitivity to 

humidity or cross-interference from other gases, meet a demand for low cost detection 

options that offer sufficient sensitivity for the specific applications they are being used 

in. For example electrochemical sensors can be used for indoor air quality monitoring in 
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the workplace, where the sensor is in a stable fixed location and is accessible if 

calibration or replacement is needed. For more specialist applications, e.g. measuring 

atmospheric gas distributions in the presence of varying ambient conditions or for trace 

gas detection over a large area, such as identifying the location of fugitive emissions 

from natural gas networks, optical gas sensors have a number of advantages over their 

non-optical counterparts. Some of the technologies that are used to make these types of 

measurements are discussed in Section 2.3. 

2.2 Optical absorption spectroscopy 

2.2.1 Principle of optical absorption spectroscopy 

The principle of operation of optical sensors is based on the interaction of 

electromagnetic radiation with matter; whether by emission, scattering or most 

commonly for gas detection, absorption of radiant energy. Optical absorption 

spectroscopy uses the fact that for each molecule, there are a number of frequencies at 

which molecular transitions occur. These transitions can be rotational, vibrational or 

electronic depending on the frequency and thus amount of energy that has been 

absorbed, as seen in Figure 2.4. 

 

Figure 2.4: Dominant molecular energy states at various wavelengths, adapted from 

Banwell et. al[42]. 
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molecular bonds occurs. In the higher energy UV, visible (vis) and x-ray regions, the 

main energy states manifest as electronic transitions, i.e. promotion of inner electrons 

with X-rays and outer electrons in the UV-vis region. This type of spectroscopy can be 

used for identification of gases such as hydrogen sulphide and formaldehyde[43]. Each 

molecule will have a different and unique set of molecular transitions depending on its 

structure, which presents as absorption bands at various regions in the electromagnetic 

spectrum. Optical gas detectors tend to use only one absorption region to quantitatively 

determine the gas concentration. The chosen region ideally contains a large absorption 

feature of the target gas and no absorption features of background gases that could 

potentially obscure the signal. 

2.2.2 How selectivity is achieved - Gas absorption lines 

Selectivity for the species of interest is achieved by using a light source that emits at a 

wavelength where absorption lines characteristic of, and unique to, that species occur. 

Most gas molecules have fundamental bands in the mid-infrared (3-14µm) region, 

whereas overtone and combination bands lie in the near infra-red (0.75-3µm) region. In 

the case of methane, there is a strong fundamental absorption at 3.3μm[44] due to the 

stretching vibration of the C-H bonds. At 1.65μm[45] the first harmonic of this 

fundamental absorption occurs, due to population of a higher energy vibration level. 

This occurs at approximately twice the frequency of the fundamental and has an 

absorption line two orders of magnitude weaker. Another major greenhouse gas, carbon 

dioxide, exhibits fundamental absorption lines[46] at 14.88μm, due to symmetric 

stretching vibrations, symmetric bending at 7.2µm, and 4.25μm due to asymmetric 

vibrations. It has an overtone band at 1.57μm[47], again two orders of magnitude 

weaker than the fundamental, corresponding to the rotation-vibrational states of the 

molecule, i.e. the “finer structure” vibrational states due to concurrent changes in the 

rotation of the molecular bonds. 

Ideally, detection of fundamental absorption lines would be preferable as they are 

stronger features, however in practise producing light sources that excite in the mid IR 

region are more expensive[48], [49] and in general more difficult to fabricate[50]. 

Furthermore, as will be discussed in Chapter 4, in this body of research the wavelength 

region over which reflectivity of the integrating sphere wall is highest is also a factor for 
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consideration. Thus only the overtone bands for methane (at 1.65µm), as seen in Figure 

2.5. The experimental work that will be outlined in the experimental Chapters 

demonstrated gas detection for methane gas however the techniques can be easily 

translated to other wavelengths and gases. 

 

Figure 2.5: Theoretical methane (100% volume) transmittance spectrum with, in 

particular, 1.65µm absorption due to C-H bond stretching. Calculated using data 

from Hitran database[51]. The pathlength is 1m. 

The resultant spectral line will not be infinitely “sharp”; the continuous motion of atoms 

and molecules means that there will always be some broadening of the absorption line. 

The type of broadening can be classed into three regimes, natural, Doppler (thermal) or 

collision (pressure) broadening. Natural broadening is related to the quantum 

mechanical uncertainty in energy levels, inherent in all atoms. The uncertainty in energy 

ΔE and lifetime Δt of the excited state can be described by the uncertainty principle[52]. 

 
∆𝐸∆𝑡 ≈

ħ

2
 

2.1 

where ħ is the reduced Planck constant (h/2π). It can be seen from this equation that for 

example short lived states would have larger uncertainties in energy. Natural broadening 

is unaffected by temperature and pressure and represents the minimum line width of the 

spectral line (on the order of 10
-11

cm
-1

). This type of broadening is not often directly 

observed, except potentially at the edges of the line profile at low pressure and has a 

Lorentzian profile as seen in Figure 2.6.  
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Another type of broadening, termed collision (or pressure) broadening also has a 

Lorentzian profile, but with a much larger line width of the order of 0.1cm
-1

 at 

atmospheric pressure[53]. In this case the molecular collisions in air reduce the lifetime 

of the upper state, thus increasing the energy uncertainty and resulting in a broadened 

linewidth. The extent of broadening is affected by both pressure and temperature, which 

affects the rate of collisions. This type of broadening dominates at higher pressures, e.g. 

>100 torr. Due to smaller peak absorption coefficients and more broadening and 

overlapping of lines in larger molecules, this regime tends to be more applicable to 

lighter molecules, such as methane. 

At lower pressures, e.g. below 10 torr, Doppler (or thermal) broadening often 

dominates[53]. Here, due to the thermal motion of the atoms, those travelling towards 

the detector at a certain velocity will have a distribution of frequencies due to Doppler 

shift, which differ from atoms at rest. For non-relativistic molecular velocities the 

Doppler shift is given by 

 𝜔 = 𝜔0 (1 ±
𝜐

𝑐
) 2.2 

where ω0 is the angular frequency for an atom at rest, υ is the velocity of the atom and c 

is the speed of light. The average speed of the molecules will be proportional to the 

temperature. The molecular velocities are described by a Maxwell-Boltzmann 

distribution resulting in a line shape that follows a Gaussian function[53]. The 

linewidths due to Doppler broadening tend to be 1-2 orders of magnitude smaller than 

pressure broadened lines. 

The resultant line shape for a sample is usually a combination of all of these 

phenomena. The contribution of each will be dependent on the temperature and pressure 

mainly, the result of which will be a convolution of a Lorentzian with a Gaussian 

profile, as seen in Figure 2.6, known as a Voigt profile[54]. 
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Figure 2.6: Comparison of Doppler, Lorentz and Voigt profile. The Doppler profile 

and Lorentz profile have the same line half width i.e. αL = αD. The Voigt profile 

corresponds to the convolution of Doppler and pressure broadening. Taken from [55] 

Typical linewidths for atmospheric species are in the range of 5x10
-3

-2x10
-2

cm
-1

 in this 

region which affords increased resolution as these widths are smaller than the spacing of 

the rotational lines of many of the molecules of interest[53]. However vacuum pumping 

is required to achieve these linewidths and so measurements are limited to point 

sampling. The gas measurements in this work fall under the atmospheric pressure 

broadened regime. 

2.2.3 Quantitative measurements - Beer Lambert law 

Quantitative measurements of absorption are governed by the Beer Lambert law[56] 

which states that the absorbance of a beam of collimated monochromatic radiation in a 

homogeneous isotropic medium is proportional to the absorption path length, l, and to 

the concentration, C, or in the gas phase, to the partial pressure of the absorbing species. 

The law can be expressed as[56]: 

 
𝐴 = 𝑙𝑜𝑔10 (

𝛷𝑖

𝛷𝑒(𝛼)
) = 𝜀𝐶𝐿 

2.3 
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where Φe(α) is the radiant flux transmitted through the cell in the presence of an 

absorbing medium (W), Φi is the radiant flux incident on the gas cell (W), and L is the 

optical path length of the cavity (m). The other two variables, the gas concentration, C 

(in ppm for example) and ε, the specific absorptivity of the gas, (ppm m
-1

) are often 

quoted as their product, which is termed α, the absorption coefficient (m
-1

).  

The conditions under which the Beer Lambert law is valid include[57] 

 That the incident radiation is nearly monochromatic i.e. has a narrow bandwidth. 

 That the absorbers act independently of each other. At high concentrations some 

ions at close proximity to each other can electrostatically interact, changing the 

absorption coefficient of the molecule. A change of refractive index can also 

occur at high concentrations or molecules can form dimers. 

 That the absorbing medium is homogeneous and does not scatter the radiation. 

Scattered light may not reach the detector and so may result in an overestimated 

concentration measurement for the species of interest. 

 That the incident flux is not large enough to cause saturation of the transition. 

Optical saturation may lead to stimulated emission and/or non-linear optical 

effects.  

In-situ, quantitative gas measurements can be compromised by factors, illustrated in 

Figure 2.7, such as turbid samples causing scattering effects, optical components 

causing back reflections or interference due to creation of standing waves between 

surfaces. Furthermore, other species which also absorb light at that wavelength may be 

present and can obscure absorption bands of the species of interest especially if it is 

present in lower concentrations. 
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Figure 2.7: Typical light interactions when passing through a cell; incident light 

intensity is reduced due to absorption, reflection, interference and scattering effects. 

It is some of these scattering and interference factors that the use of an integrating 

sphere aims to alleviate, while still providing a sensitive detection technique. The 

advantages and limitations of using an integrating sphere will be discussed in more 

detail in Chapter 4. The following sections describe some optical technologies, from the 

widely commercially available non-dispersive infrared (NDIR) sensor to the more 

specialist technologies such as cavity ringdown spectroscopy (CRDS) and off-axis 

integrated cavity optical spectroscopy (OA-ICOS). 

2.3 Optical gas sensors 

Optical gas sensors, though in general more expensive than their non-optical 

counterparts, are increasingly becoming the technology of choice due to their superior 

sensing capabilities for certain applications, such as remote sensing. One of the major 

advantages of optical gas sensing is that the detector does not directly interact with the 

gas, unlike for example a MOS or EC sensor where exposure to high concentrations of 

gas can have a detrimental effect on the reactive area of the sensor. As a result optical 

gas sensors tend to have a longer lifetime (e.g. >10years for some IR sensors as opposed 

to 6-24 months for an EC sensor). 

2.3.1 Non dispersive infrared (NDIR) 

NDIR sensors are termed “non-dispersive” as only transmission of the required 

wavelength is allowed (due to the use of broadband lights sources and filters) and so the 
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whole spectrum is not resolved. It is one of the most widely used optical techniques 

commercially, such as for indoor air quality analysis and industrial process control. 

NDIR sensors are commonly used as methane sensors, demonstrating detection 

capability down to low ppm levels[58], [59]. Detection limits tends to be in the low 

100s of ppm for commercial sensors. The general setup comprises an infrared source, a 

gas cell, and a detector with integrated optical bandpass filters, as seen in Figure 2.8. 

The optical filter is chosen to filter out the wavelengths at which the target gas does not 

absorb, thus providing a sensor that is specific to that gas.  

 

Figure 2.8: Typical setup of NDIR sensor. Detection is achieved by applying an 

optical filter that only permits transmission of the wavelength of interest, i.e. the 

absorbing region for the target species. A reference cell with an optical filter at a 

nearby wavelength is used to correct for intensity. Adapted from [60]. 

Quantification of the gas is governed by the Beer Lambert law[56] as seen in Section 

2.2.3. These sensors offer one of the most cost effective optical solutions, with 

relatively few components, allowing compact designs[61]. As the technique involves 

measuring a gas density, the measurement can be affected by ambient temperature and 

pressure changes. Temperature and pressure sensors are often included to correct for 

these effects. To correct for potential fluctuations in source intensity, another filter will 

be used at a nearby wavelength, i.e. one that the gas does not absorb light at. 

For NDIR sensors, a limiting factor for sensitivity to the gas is the pathlength of the gas 

cell. One way to improve this is to reflect the light multiple times within the gas cell, 

thus achieving greater gas-light interaction within the same volume. The optical 

techniques described in the following sections are able to apply this approach because 

the lasers have a collimated beam. 
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2.3.2 Tunable diode laser spectroscopy (TDLS) 

TDLS has been employed in this body of research for the ratiometric scheme as 

described in Chapter 5. The term typically refers to techniques where absorption 

measurements are made using a tunable diode laser. The characteristics of this type of 

laser include a narrow linewidth (tens of megahertz) as well as being tunable over a 

small wavelength region (up to tens of GHz)[23]. The tunability is achieved by 

controlling the temperature and electrical current of the laser. As a result, measurements 

can be made with very high resolution and specificity to the gas of interest. Other 

benefits include fast response times, portability, and non-destructive sampling[62]. The 

TDLS techniques that will be described in the following sections have achieved greater 

sensitivity through the use of specialist gas cells, namely multipass, resonant and non-

resonant cavities. 

2.3.3 Direct absorption spectroscopy (DAS) 

Direct absorption spectroscopy (DAS) is probably the most straight forward TDLS 

technique. In DAS, the fast tuning capability of the diode laser is exploited by ramping 

the injection current which scans the wavelength across the gas absorption line. The 

resultant signal is a rising baseline with a dip corresponding to the gas absorption line. 

The measurement is effectively self-referenced by comparing the higher off gas line 

intensity with the attenuated on-gas line intensity. The off-gas line portion of the 

baseline can be used to normalize for any changes in the laser intensity e.g. due to 

window contamination or loss of laser power. 

The biggest disadvantage of DAS is that, especially for low concentrations, it relies on 

measuring a very small signal against a large background[63]. As a result, a potentially 

small absorption signal can become obscured by the baseline noise which thus becomes 

the limiting factor in the sensor performance. 

One strategy that is employed to achieve greater sensitivity is the use of a multipass gas 

cell, such as a Herriott cell[64]. This cell consists of two spherical mirrors with holes for 

entering and exiting beams in the mirrors. The beam traverses an adjustable number of 

times depending on the separation and curvature of the mirrors giving an effectively 

long pathlength (up to 10s of metres[65]), corresponding to the length of the cell 

multiplied by the number of passes made. However, these cells are susceptible to 
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formation of standing waves between reflective surfaces which can result in optical 

interference effects if beams overlap with each other. A detection limit of 20ppb has 

been reported for methane detection (at 1650nm), where a multipass cell (length 252m) 

has been used to achieve enhanced sensitivity[66]. 

2.3.4 Cavity ringdown spectroscopy (CRDS) 

CRDS has been successfully deployed on research aircraft as well as in ground based 

settings, providing a highly sensitive technique for measuring greenhouse gas 

emissions. The typical setup[67], as seen in Figure 2.9, comprises a coherent light 

source, usually pulsed, a high finesse resonant optical cavity formed by two or more 

mirrors and a fast photodetector.  

 

 

Figure 2.9: CRDS setup with typical signal output. In the presence of an absorbing 

species, the rate of decay of light i.e. the ringdown time, will be proportional to the 

concentration of the species. Adapted from[68]. 

Light is injected into the resonant cavity and allowed to build-up, reflecting back and 

forth thousands of times, dependent on the finesse of the cavity, which typically have 

reflectivity of >99.99%. After sufficient light has been injected, the light source is 

interrupted or switched off, and as the mirrors are not 100% reflective, some light can 

escape through the mirrors causing the overall transmitted light intensity to decay 

exponentially over time. This rate of decay is measured using a fast detector behind one 

of the mirrors, where, in the absence of an absorbing species, the rate of decay is a 
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function of the reflectivity of the cavity mirrors, scattering, as well as the alignment. 

The effective pathlength is thus given by 

 𝐿 = 𝑐𝜏0 2.4 

where c is the speed of light and τ0 is the decay constant, i.e. time taken for the intensity 

of light to fall to 1/e of the initial intensity and is dependent on the mirror reflectivity 

and other loss factors such as scattering or refraction. 

When an absorbing species is introduced, the rate of decay will also be dependent on the 

magnitude of the absorption. And so this technique works by measuring the change in 

the rate of decay, the “ring-down time” of the light when in the presence of an 

absorbing species. This has the advantage of immunity to intensity fluctuations as 

measurements are made relative to the initial intensity[69]. Furthermore the thousands 

of reflections can provide a pathlength on the order of kilometres, making this an 

extremely sensitive technique, allowing measurements of concentrations down to ppt 

levels. Limits of detection for methane have been reported at 0.5ppb for the overtone 

band at 1.654µm and 0.16ppb when using the fundamental band in the mid-IR region. 

A resonant cavity differs from a multipass cell in that rather than having a folded setup, 

the arrangement of the mirrors facilitates the creation of standing waves which can lead 

to increased intensity due to constructive interference. In this case the laser must be in 

resonance with the narrow cavity mode; which can lead to difficult alignment. The use 

of a short pulsed light source in CRDS eases the stringent mode-matching condition. 

However a lack of customer qualified performance as well as costly components (pulsed 

sources, fast detectors and highly reflective mirrors) has prevented the use of this 

technology on a large scale. Compared to these resonant cavities, the mean reflectivity 

of the integrating sphere wall is lower (e.g. 99.2% at 532nm) giving an achievable 

pathlength of up to 10m rather than kms. A pathlength of this magnitude would not 

facilitate the resolution that is typically achieved by the high finesse resonant cavities 

used in CRDS. 

To overcome this particular issue, Fry et. al. developed a high reflectivity diffusive 

material (with measured reflectivity values as high as 0.99919 at 532 nm)[70]. When 

compared with a commercially available material (often used in integrating cavities), 
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which has a wall reflectivity of 0.992 at that wavelength, they calculated that for a 

sample with an absorption coefficient of 5×10
-5

 cm
-1

, the resultant decrease in decay 

constant would be 23.4ns for their high reflectivity materials and 0.3ns for the 

commercial material. They concluded that with this increased sensitivity an integrating 

cavity could be implemented in combination with CRDS to provide a powerful 

technique for making absorption measurements, termed integrating cavity ring down 

spectroscopy (ICRDS)[71]. This will be discussed in more detail in Chapter 4. 

2.3.5 Off axis integrating cavity output spectroscopy (OA-ICOS) 

OA-ICOS is also a cavity enhanced technique but differs from CRDS in that an 

intensity based measurement is made rather than time based. The measurement is 

integrated over a time period that is much longer than the cavity “ringdown”, allowing 

for the use of simpler electronics, e.g. the detector bandwidth can be in the region of 

kHz as opposed to MHz. The setup is similar to CRDS, i.e. a high finesse resonant 

cavity is used, however in OA-ICOS, a continuous wave laser beam is directed off axis 

with respect to the cavity. 

 

Figure 2.10: Mode spectra of on-axis vs off-axis mode structure. In the case of off-

axis alignment, there are many cavity modes for each molecular transition, the laser 

line width is broader than the free spectral range of the cavity but narrower than the 

molecular line. Taken from [72] 



2.Gas detection technologies 

27 

 

This off axis alignment removes the need to lock the cavity to the laser wavelength. The 

cavity transmission is monitored while averaging the cavity mode structure, either by 

oscillating the cavity length or the wavelength such that the laser couples to a large 

number of transverse cavity modes. By exciting a number of modes and integrating in 

this way, better noise characteristics are achieved while also easing alignment 

tolerances. The off-axis path is aligned so that the multiple reflections are spatially 

separated in an elliptical pattern within the cavity until the light retraces its path through 

the cavity. As with CRDS the achievable pathlength with OA-ICOS is a function of the 

mirror reflectivity. The pathlength value can be quantified by inputting an absorbing 

sample with known absorbance and using the lineshape peak to infer the pathlength. 

Achieving more robust alignment in this way does have some trade-offs. These include 

a reduction in throughput power due to longer integration times, as well as potential 

additional noise due to laser fluctuations when dithering. Nevertheless the technique has 

been used commercially, such as for airborne mapping of atmospheric ammonia[73]. 

For methane, a detection limit of 0.3ppb has been reported in an academic research 

laboratory using a wavelength of 1.65µm and with a pathlength of several 

kilometres[22]. 

One technique of note that can be applied to both CRDS and ICOS is phase shift 

detection. In both cases, a modulated light source is inputted to the resonant cavity and 

an incident phase angle is measured. The optical loss can then be extracted from the 

measured phase shift relative to the initial measured phase e.g. to determine the 

reflectance of the optical resonator[74], or in spectroscopic applications for making 

sensitive absorption measurements of gas species[72], [75]. This method has the 

potential to simplify pathlength calibration whilst simultaneously allowing other 

measurements to be made[76]. One challenge for this technique is that of amplified 

spontaneous emission (ASE) from the laser which can cause large errors in the 

measured phase shift, particularly in the case of PS-ICOS where the intensity is low. 

Kasyutich et. al. [77] corrected for this by measuring the amplitude and phase of the 

light when the rear mirror of the cavity was tilted as it was found that this related to the 

ASE contribution. It was additionally shown that for a cavity base length 43cm with an 

enhancement factor of 1122, and using an interference filter to suppress the ASE, a 
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noise equivalent detection limit (S/N ≤ 1) of 0.24 ppbv was achieved for NO2 over an 

integration time of 80s[75]. 

2.4 Summary 

As detailed in section 2.2.2, absorption spectroscopy can offer high selectivity to the gas 

of interest if an appropriate wavelength region is chosen. This region should contain an 

appreciable absorption line for the species of interest but no absorption features of 

potential interfering gases. For this research the overtone band of methane at 1.65µm 

satisfies these requirements, also corresponding to a wavelength region where the 

integrating sphere wall reflectivity is high. In general, academic literature, as well as the 

commercial market lauds the benefits of optical detectors for their high sensitivity and 

specificity with powerful capability for remote detection. However the hurdles over 

which some non-optical counterparts triumph include cost, ease of use and ruggedness. 

It was with these challenges in mind that this research approached implementation of an 

integrating sphere into an optical gas detection system. 

The techniques, as discussed in section 2.1 and section 2.3 are summarised below in 

Table 2.1 in terms of their advantages (+) and limitations (-). 

Table 2.1: Commercially available optical and non-optical technologies. Advantages 

(+) and limitations(-) of each. 

Technique Notes 

Optical 
 

Non-dispersive 

infrared 

(NDIR) 

Measures change in intensity due to gas absorption with continuous 

laser source in the infrared. 

(+) Selective, sensitive, does not suffer from drift, low maintenance. 

( ̶ ) Limited to one species, can be affected by scattering particles in 

the optical beam path.  

*Typical specifications: £200-250, cylinder 20mm diameter x 

16.5mm high, 10g weight, up to 10yr lifetime, 6 month calibration 

interval, operated by non-technical user  
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Direct 

absorption 

spectroscopy 

(DAS) 

Measures change in intensity due to gas absorption using a tunable 

laser. 

(+) Selective, easy to use. 

( ̶ ) Sensitivity often limited by baseline noise as SNR ratio is low. 

*Typical specifications: £10-30k (depending on required sensitivity 

i.e. multigas, ppm detection limits), 439-1500 mm H x 475-900 mm 

W x 146 - 450mm D, 20kg weight. Non-contact sensing. Enclosed 

non-contact sensor, can be remotely accessed by manufacturer to 

allow troubleshooting  

Cavity 

ringdown 

spectroscopy 

(CRDS) 

Measures rate of decay of light intensity in a resonant cavity. 

(+) Very low detection limit (ppt), immune to intensity fluctuations. 

( ̶ ) Can be relatively high cost as high reflectivity mirrors required, 

complex alignment. 

*Typical specifications: £30-100k, 450mm x 200mm x 450mm, 30 

kg weight, fully enclosed system to facilitate minimal technical input, 

3-6 month calibration intervals    

Off-axis 

integrated 

cavity output 

spectroscopy 

(OA-ICOS) 

Measures intensity decay in a resonant cavity. 

(+) Very sensitive due to long integration times, can use simpler 

electronics in kHz region  (as opposed to MHz in CRDS)  

( ̶ ) Low throughput due to long integration times, can suffer from 

laser noise. 

*Typical specifications: £8-80k (depending on required sensitivity), 

220mm x 480mm x 600mm, less specialist input required than 

CRDS, user can remove and clean mirrors, 6 month calibration 

interval 

  



2.Gas detection technologies 

30 

 

Non-Optical  

Electrochemical 

(EC) 

Uses an electrochemical reaction to generate a current which is 

proportional to the gas concentration. 

(+) High sensitivity, linear output, easy operation. 

( ̶ ) Limited shelf-life, sensor lifetime degraded by ambient 

temperature and humidity, suffers cross-interference. 

*Typical specifications: £35, 10mm x 6mm x 0.75 mm, 5-10g 

weight, 1-2yr lifetime, can be irreversibly damaged by over 

concentration, or dust or changing ambient conditions, e,g. temp, 

humidity, non-technical operator, tend to replace rather than repair  

Flame 

ionisation 

detector     

(FID) 

Measures the current generated by flame ionised gas particles 

contacting with a collector plate 

(+) Large measurement range, rugged, easy to use, low maintenance 

( ̶ ) Requires a hydrogen flame, destroys the sample. 

*Typical specifications: £10k, 343mm × 262mm × 81mm, 8kg 

weight, up to 10yr lifetime, fully enclosed system, easy to operate 

and calibrate by non-technical user.  

Metal oxide 

sensor     

(MOS) 

Metal oxide layer changes resistance in response to gas adsorption 

(+) Long lifetime, short response time, wide range of target gases 

( ̶ ) Low selectivity, high energy consumption, sensitive to 

environmental factors, non-linear output 

*Typical specifications: £2-10, 5.5mm x 7.5mm x 2.55 mm, requires 

heating, easy to operate, active surface can become contaminated and 

cross responds to other species, better for identifying presence of 

sample rather than quantifying, tend to replace rather than repair. 
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* Specifications have been obtained from datasheets provided by commercial 

manufacturers including SGX Sensortech (NDIR), Servomex (DAS), Picarro (CRDS), 

Los Gatos Research (OA-ICOS), Figaro (EC), Thermo Fisher scientfic (FID), 

Alphasense (MOS) 

 

In this research, a TDLS approach is taken for detection of methane at 1651nm. This 

wavelength region is commonly used in the telecommunications industry and so 

components are available at low cost. A direct absorption spectroscopy approach has 

been taken for simplicity to investigate the application of an integrating sphere in this 

field. A temporal based approach, such as cavity ring down spectroscopy, CRDS, offers 

the advantage of a pathlength on the order of kms due to the high finesse cavity 

(>0.9999 reflectivity). By comparison, due to the comparatively low sphere wall 

reflectivity i.e. ≈0.9999 for CRDS vs. ≈0.987 for a Spectralon
TM

 integrating sphere at 

1651nm, the achievable pathlength of an integrating sphere based gas cell would more 

likely be <10m. The aim is not to compete with highly sensitive trace gas detection 

systems such as CRDS or OA-ICOS. Rather the focus is on creating a detection system 

that achieves adequate sensitivity whilst being cost-effective and robust. 

A pathlength of this magnitude is still capable of achieving detection limits down to low 

ppm levels[78], and potentially lower with further modulation techniques[79]. 

.
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3 TDLS system performance 

“Although IR spectroscopy has long been a workhorse technique in analytical 

laboratories, many improvements have been made in the past few years. Anything that 

can be done to improve the signal-to-noise ratio in IR-based measurement techniques 

will help drive the use of IR into new areas of application, detectors with lower noise 

would support higher sample throughput by requiring fewer scans per sample”- 

Spectroscopy[80] 

When designing a gas detection system there are numerous factors to consider in terms 

of performance, such as how to achieve the required sensitivity and selectivity towards 

the species of interest, and then how to preserve that performance once introduced to a 

potentially less stable in-field application. This chapter aims to provide an insight into 

some of the common challenges for optical TDLS sensor design in particular. The 

chapter begins by discussing strategies that are typically employed to enhance sensor 

performance, namely the use of multipass cells, or modulation techniques. Some of the 

issues that can ultimately become the limiting factor in sensor performance are then 

discussed, such as sources of noise, cross sensitivity to other species and optical 

interference from system components. The summary section discusses these enhancing 

and limiting factors in terms of this body of research, and the most pertinent challenges 

faced when considering implementation of an integrating sphere in a gas detection 

system. 

3.1 Performance enhancement strategies 

Many of the performance enhancement strategies discussed here have been employed 

for this research. As well as the advantages of implementation of these strategies, the 

challenges that they introduce are considered. 

3 
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3.1.1 Multipass cell 

The invention of the multipass cell, which essentially comprises mirrors of various 

sizes, curvature and distance to produce multiple reflections of the incoming beam, 

facilitated greater sensitivity by giving a much longer effective pathlength in a relatively 

small volume of space. Conventional multipass cells are mainly based on either the 

White cell or the Herriott cell design. The White cell, first described in 1942 by John 

White[81], consists of three spherical concave mirrors with the same radius of 

curvature, as seen in Figure 3.1. 

 

Figure 3.1: White’s cell multi-pass diagram. The blue lines correspond to the chief 

rays whilst the red lines represent the marginal rays. The light beam bounces 

repeatedly between the field mirror and two objective mirrors until it is finally 

projected onto a detector Taken from.[82] 

This cell allows for high numerical aperture beams, which was typical of the broadband 

sources used at the time, as the light is refocussed on the opposite mirror during each 

pass. The number of achievable passes is determined by the separation of the centre of 

curvature of the mirrors and the number of passes occurs in multiples of 4. However the 

mirror assembly blocks[83] do not remain very stable e.g. can suffer mirror 

misalignment, and thus beam displacement due to thermomechanical instability, and as 

a result this cell is not often used in commercial applications. 

Conversely the Herriott cell, detailed in 1965 by D. Herriott[64], offers a more stable 

cell (as there are two rather than three mirrors to be aligned) and, as mentioned in 

section 2.3.3, consists of two spherical mirrors with holes for entering and exiting 

beams in either one or both mirrors depending on the required design. The successive 
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passes follow an ellipse and the overall pathlength is determined by the distance 

between the mirrors. 

 

Figure 3.2: Herriott cell multipass diagram. Successive passes follow an ellipse and 

the overall pathlength is determined by the distance between the mirrors. 

In today’s commercial applications[84], [85] Herriott cells employ either the standard 

configuration or an astigmatic variant. Astigmatic mirrors offer a greater distribution of 

the beam spot pattern, giving better separation between beam passes and in general, 

longer pathlengths. These mirrors can be expensive though as they require precision 

manufacturing[86]. A consequence of the parallel setup is the potential for formation of 

etalons both between the cell itself and from the windows. Minimising these effects, as 

well as avoiding beam overlap whilst achieving a long pathlength can make the 

alignment of the cell difficult, with tight tolerances towards misalignment[87]. In 

general though astigmatic Herriott cells are thought to be relatively stable whilst 

providing an impressive pathlength:volume ratio[88]. To avoid potential issues with 

absorption line overlap due to broadening, these cells are sometimes operated at low 

pressure where the absorption line will be Doppler limited[89]. 

Another cell of interest where cell dimensions are further reduced is that of the circular 

multireflection cell[90]. In this case the beam encounters the walls of a polished 

aluminium cylinder (with height of 3cm and diameter of 8cm) producing multiple 

reflections concentrated in the centre of the circle. This is particularly advantageous for 

applications such as process monitoring in aerosol flow reactors where the gas flow is 

also concentrated in the centre of the flow path. Additionally the number of reflections 

is adjusted only by adjusting the angle of the entering beam. This means that the 

alignment of the cell is completely external to the cell. This is useful for applications 

where the region in which to interrogate may be very narrow, e.g. temperature 
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controlled chambers for accelerated aging tests[91]. Pathlengths of up to 1.05m have 

been achieved but further optimisation of beam size and focus is needed it has been 

concluded. 

Hollow waveguide fibres have also been used as a means of increasing the gas-light 

interaction. Here the light is confined in a narrow hollow capillary where only certain 

modes are propagated. This is achieved by using a photonic bandgap guiding 

mechanism rather than a core region with a high refractive index i.e. the guiding 

principle for typical optical fibre. Gas is introduced into these hollow regions, which 

facilitates an impressive pathlength:volume ratio (>1m interaction length with µL of 

sample[92]). Other advantages include simplicity, lack of optical misalignment and 

ruggedness. However the propagation losses can be large which can represent a limiting 

factor. There is also the possibility for sample adhesion to the walls due to the large 

surface area of the fibre[93]. 

The integrating sphere by contrast has an optically rough surface resulting in diffuse 

reflections. Unlike for example the Herriott cell where a beam is folded multiple times 

producing passes of fixed length, the integrating sphere has multiple overlapping passes 

with different lengths. There is a limit to the achievable pathlength for any given 

multipass cell. This is the case as the enhanced sensitivity gained by the increasing 

number of passes will be offset by an increasing attenuation in output power due to 

imperfect reflectivity of the mirrors[94].  

Table 3.1 provides a summary of these cells and some of their characteristics. 
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Table 3.1: Comparison of different embodiments of multipass cell that could be used 

in TDLS applications, adapted from [62] 

Approach Advantage Path -

Length 

(m) 

Number 

of passes 

Volume 

(L) 

Length/ 

Volume 

(10
3
m

-2
) 

Ref 

Herriott 

cell 

Optomechanically 

stable, pathlength 

variability 

30 74 1 30 [25] 

Astigmatic 

Herriott 

cell 

Very long pathlengths 36 182 0.3 120 [86] 

White cell Accepts high NA 

beams 

7.5 12 10 0.75 [81] 

Circular 

multi-

reflection 

cell 

Pathlength alignment 

outside cell, simple 

cylindrical optic 

1.04 17.5 0.085 12 [90] 

Hollow 

core fibre 

Small sample volume 

requirement, simple 

alignment 

27 1 3x10
-6

 8x10
6
 [92] 

Integrating 

sphere 

Simple alignment, no 

etalon formation 

4.4 65 0.5 9 [24] 

Though it cannot offer the optical pathlength of, for example, the Herriott cell (e.g. 74m 

vs 9m) the integrating sphere does have a significant advantage in its tolerance to 

misalignment as well as removing the periodicity between beams which often results in 

formation of etalons. The advantages and limitations of the integrating sphere will be 

discussed in more detail in Chapter 4. 
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3.1.2 Modulation 

In situations where systems are noise-limited, one of the strategies for improving 

sensitivity is to move the detection region to a higher frequency, and thus away from 

common low noise sources such as laser intensity noise, intensity changes from 

mechanical instabilities and other external fluctuations. This is achieved by sinusoidally 

modulating the laser injection current whilst the laser wavelength is tuning over a gas 

absorption line. The modulated light interacts with the species of interest, producing a 

difference signal which is proportional to the species concentration. The signal can then 

be detected and demodulated at that frequency, where the laser noise is greatly 

reduced[95]. 

Two modulation techniques that are commonly implemented with TDLS modulation 

are frequency modulation spectroscopy (FMS) and wavelength modulation 

spectroscopy (WMS). Both techniques involve sinusoidally modulating the laser current 

however the modulation frequency differs for the two techniques. For WMS the 

modulating frequency is in the kHz to low MHz range whilst for FMS the modulating 

frequency is in the MHz-GHz range. Figure 3.3 illustrates how the signal interacts with 

the gas absorption line. 

 

Figure 3.3: Modulation spectroscopy - Interaction of the higher and lower modulated 

signals with a gas absorption line, adapted from [95]. 

Wavelength modulation spectroscopy (WMS) 

Frequency modulation spectroscopy (FMS) 
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For WMS, the drive current of the laser is varied at a modulation frequency ωc, of 

several kilohertz, which is considerably less than the half width of the gas absorption 

line (typically several GHz). The resultant signal, in the absence of the absorbing line, 

will yield a number of sidebands at higher and lower frequencies than the centre 

modulation frequency. The frequencies at which the sidebands occur will depend on the 

set amplitude of the modulating signal, with greater amplitudes causing greater 

frequency deviation from the centre modulation frequency. A value called the 

modulation index, M, can be used to characterise the modulation and is given by the 

ratio of the modulation amplitude to the gas linewidth[96]. For WMS this value is 

typically large, i.e. M>1. The interaction of the modulated signal with the absorption 

feature gives harmonic components of the modulation signal which can be detected 

using phase sensitive electronics. A schematic of typical WMS detection signals is 

shown in Figure 3.4, where an additional low frequency ramped waveform allows for 

the full spectral line shape to be measured.  

 

Figure 3.4: WMS harmonic components obtained when laser wavelength is scanned 

across the gas absorption line. The 1f signal crosses the baseline at the absorption 

line centre (b) and contains a DC offset due to the sloping background. The 2f signal 

peaks at the absorption line centre and is dependent on the gas properties. The 3f is 

much weaker than the 1f signal, also having a zero value at the absorption line 

centre. When using the 2f signal to make gas measurements the 1f and 3f signal can 

be used to correct for any deviations from the line centre i.e. at (a) as the resultant 

value will be non-zero. Taken from [97] 
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For gas detection, the 2f signal is often the most commonly used as it reduces the DC 

offset in the baseline and due to its strong dependence on the gas properties, is 

indicative of the lineshape of the absorption feature[98]. The 1f signal is heavily 

dependent on the intensity modulation[99] and carries a DC offset due to the sloping 

background. It can be used as a normalization tool to correct for any intensity changes, 

such as due to laser drift or window fouling[100], [101]. 

The WMS technique is popular as it is easier to implement than FMS and does not 

require such high speed detection electronics. Though it was originally intended to 

employ WMS in the system described in Chapter 5, it was later decided, for ease of 

signal processing, to apply a more straight forward direct spectroscopy approach while 

testing the ratiometric principle. 

For FMS on the other hand, the drive current of the laser is varied at a modulation 

frequency ωc, of several gigahertz, typically of the order of the half width of the gas 

absorption line[95]. The resultant signal, in the absence of the absorbing line has a set of 

sidebands of equal magnitude but opposite signs, as seen in Figure 3.3, which cancel 

each other out. In the presence of an absorption feature, one sideband interacts with the 

absorption feature the result being that the sidebands cancel imperfectly giving a 

difference signal that is proportional to the magnitude of the absorption. FMS is 

typically characterised by a low modulation index i.e M<1, where the modulation depth 

is small and the modulation frequency is high. The technique provides very high 

sensitivity as it is so far removed from the common low frequency noise sources 

however it is more difficult to implement and requires high speed detection. 

Additionally it was found that when combined with multipass cells, the optimal number 

of passes was lower for FMS than for WMS due to the power attenuation of the 

multipass cell[102]. The implication of this is that though higher sensitivity was 

achieved with the FMS technique, when combined with the requirement for a lower 

number of passes in the multipass cell, only one order of magnitude (rather than 

two[103]) greater sensitivity was achieved than for the WMS system with a longer 

pathlength. 
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3.2 Performance limiting factors 

In order to provide quantitative gas measurements in the field, TDLS systems are 

calibrated in-house using known concentrations of gas to provide a calibration. As well 

as considering strategies for enhancing sensitivity it is also necessary to consider 

mitigation of the factors that limit the sensor performance. Some of the main factors 

include noise, drift, frequency jitter and interference fringes. 

3.2.1 Noise  

Noise is generally considered as random undesirable fluctuations in a signal at the 

output of a detection system that obscures or reduces clarity of the true signal of 

interest. Random error (noise) is inherent in any instrument, usually a constant value 

independent of the signal strength and is often the limiting factor in instrument 

sensitivity. As the signal strength itself can vary from strong to weak, the relative 

magnitude of the noise signal can become appreciable. The signal-to-noise ratio 

provides a useful indicator as to how much noise there is on the signal and is calculated 

by dividing the signal voltage or power by the rms noise voltage (or power). Examples 

of high and low SNR signals are shown in Figure 3.5[104] 

 

Figure 3.5: Examples of different SNR signals. (a) A signal-to-noise ratio (SNR) of 

100 corresponds to a clean signal, (b) a SNR of 10 requires further signal averaging 

and (c) a SNR of 1 is noisy and it may not be possible to extract the signal of interest. 

Taken from [104] 

As seen in Figure 3.5(c), with a SNR of 1 the signal is almost lost. Noise can result from 

frequency independent “white noise”, such as thermal or shot noise or frequency 

dependent 1/f “flicker” noise. Noise contributions often originate from the electronics in 

the systems. 
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 Thermal (Johnson) noise (thermal agitation of electrons) 

 Shot noise (rate of arrival of electrons or photons) 

 Flicker noise (related to frequency of signal, often obeying a 1/f frequency 

dependence) 

The latter noise corresponds to very low frequencies and can often contribute to drift at 

very low frequencies (<<1Hz). 

Thermal (Johnson) noise 

Thermal noise is a form of white noise and occurs due to random thermal fluctuations in 

stationary charge carriers, which cause a small, yet detectable, current to flow. It is 

present in all resistive components in the system and is independent of the quality of the 

material or the electrical circuit configuration. Expressing the thermal noise in terms of 

voltage, the root mean square (rms) voltage, V
2
 for a given measurement bandwidth, Δf 

(Hz) is given by 

 𝑉2 = √4𝑘𝐵𝑇𝑅∆𝑓                                       3.1 

where kB is Boltzmann's constant in joules per Kelvin, T is the resistor's absolute 

temperature in Kelvin, and R is the resistor value in ohms (Ω). As seen in equation 3.1 

the magnitude of the noise is dependent on the temperature, resistance and bandwidth. 

In theory white noise is infinite in bandwidth, having an even distribution from DC to 

infinity. However in practise, electronic systems are bandwidth-limited and so thermal 

noise energy can be reduced by reducing the bandwidth. This can be achieved by using 

bandpass filters, which has been done for the experimental work discussed in Chapter 6. 

Other ways to reduce the noise include lowering the electrical resistance or the 

temperature of instrument components. 

Shot noise 

The flow of current is not continuous in a circuit, rather is made up of the movement of 

discrete charges. Shot noise, on an electrical current is also a type of white noise and is 

caused by the statistical variability in the arrival time of charge carriers. The root mean 

square current fluctuations can be described as 

 𝜎𝑖 = √2𝑞𝐼𝐶∆𝜔                                       3.2 
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Where q is the elementary charge of an electron, IC is the DC current and Δω is the 

bandwidth. As seen in equation 3.2, the magnitude of the fluctuation increases with 

increasing current. This, as with thermal noise, is independent of frequency but for the 

same reasons as thermal noise can be minimised by reducing the bandwidth of the 

component. Due to the charge of an electron being so small and the number of electrons 

being so large, the shot noise is often insignificant with thermal and flicker noise being 

the dominant sources. 

Flicker noise (1/f noise) 

Flicker noise is often termed 1/f noise as it exhibits an inverse frequency power density 

curve. Unlike shot noise, which is attributed to the random motion of the charge over a 

barrier, flicker noise often occurs when the current is controlled at a localised barrier 

e.g. a resistance fluctuation. It depends greatly on materials used and device shape e.g. 

metallic resistors have 10-fold less flicker noise than carbon-based resistors. 

3.2.2 Frequency jitter 

Fluctuations in the laser current translate in frequency jitter, which can cause sampling 

errors, as well as spectrum broadening due to averaging. A fluctuation in the laser 

current of only a few mA can cause laser wavelength fluctuations of MHz[105]. 

Fluctuations can occur as a result of internal effects within the laser, such as mode-hop 

or spontaneous emission, particularly in the case of pulse build-up in pulsed lasers. In 

this case, the introduction of a substantial time delay i.e. placing a length of optical fibre 

between the source and detector can reduce the magnitude of the laser noise by moving 

the desired signal to a region where the laser pulse build-up effects are negligible. The 

laser noise could also be reduced by implementing a phase locked loop system, which 

suppresses the jitter for the measured signal by comparison to a reference clock[106], 

[107]. An alternative method is to apply digital random dithering, which breaks up the 

unwanted pattern and spreads the fluctuation across a number of frequencies. This does 

have the drawback of increasing the noise floor; incorporating noise shaping into the 

system can help to alleviate this effect[108], [109] 

Other external influences include thermal changes, mechanical vibrations, pick-up from 

external sources, such as electric power lines transmission (e.g. 50Hz typically) or 

cross-talk from another part of the circuit. Providing sufficient shielding as well as 
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grounding the device can reduce interference effects resulting from electromagnetic 

fields, common impedance, or other forms of interference coupling[110]. In the case 

where electronic interference persists it may be possible to apply a band pass filter if the 

desired signal does not occur in the same frequency region. 

Assuming that optical interference fringes (see Section 3.2.4) have been reduced to a 

negligible level it is expected that the system will be limited by a combination of the 

noise sources as described in Section 3.2.1, with the contribution of each dependent on 

the frequency region in which the measurement is made. 

 

Figure 3.6: Noise power spectrum(NPS). A plot of the mean-square noise per unit 

frequency interval, P(e) in V
2
Hz

-1
, vs. the frequency in Hz. As seen, for 1/f noise, 

P(e)decreases with increasing frequency, thermal/Johnson noise is independent of 

frequency and interference is finite and dependent on specific frequencies  

3.2.3 Drift 

As seen in the previous section, faster processes like laser current noise and vibrations 

tend to contribute jitter and add to the linewidth, while slower timescale processes such 

as temperature and air pressure changes cause drifts. This slow drift can cause the centre 

emission wavelength to change relative to its calibration. 

The solution to overcome frequency instability is to lock the laser to a frequency 

reference. This could be a resonant cavity where a feedback system provides adjustment 

if the laser deviates from resonance[111]. Alternatively the laser centre frequency could 

be locked to the gas line where a reference cell with a high concentration of the gas of 

interest is used with a feedback system to adjust the frequency accordingly[112]. 
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3.2.4 Optical interference fringes 

Though the use of narrow line width lasers in TDLS applications provides very good 

selectivity to the gas by interrogating single absorption lines, their long coherence 

lengths can result in a system that is more susceptible to optical interference. Optical 

interference fringes occur as a result of Fabry-Perot etalons being created between 

reflecting surfaces such as mirrors, detector windows or components in the gas cell. In 

multipass cells for example, a specular beam is being folded multiple times between 

two mirrors with the requirement that there is no beam overlap. Depending on the 

number of passes that are present (often >100), this makes the alignment of the cell 

difficult and also results in tight tolerance towards misalignment. The fringe spacing, F, 

is related to the distance, LSP, between these reflecting surfaces by 

 
𝐹 =

1

2𝑛𝐿𝑆𝑃
 

                                     3.3 

where n is the refractive index of the medium, usually air. If the fringe spacing is of the 

order of the molecular line width of the target gas, it could be mistaken for a gas 

absorption line giving a false positive for the gas. Alternatively the fringing could 

distort or obscure the gas absorption line, and if appreciable enough, could become the 

limiting factor in the sensitivity of the system. As the spacing of the fringes can change 

with mechanical and thermal instability it is not possible to simply subtract a reference 

signal i.e. taken with no gas present, as a means of removing any etalons. Strategies for 

reducing optical interference effects include the use of anti-reflection coatings on the 

reflective surfaces or deliberate steering off of the beam to reduce the parallel 

configuration. This does however reduce the power output. Another approach, similar to 

that in Section 3.2.2, is to apply a dither to the laser diode[113], which causes the laser 

to tune over a number of fringe periods. When the sweep of the wavelength tuning 

matches an integer multiple of the fringe spacing, the integrated signal goes to zero, 

thus removing the fringe signal. This will also reduce the magnitude of the absorption 

signal. Another option is to remove the interference using post-detection filtering[114]. 

For example, the use of high pass filters can be used where the modulation frequency is 

high to remove the lower frequency noise and interference fringes. Both techniques will 

not work if the fringe spacing is on the same frequency order as the target gas 

absorption line. 
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In this body of research the periodicity associated with specular beam folding is 

eliminated through the use of an integrating sphere which provides diffuse reflections. 

This will be discussed in more detail in Chapter 4.  

Another source of error can arise due to polarisation mismatches, e.g. polarisation states 

may not be the same between components or a wavelength dependency may affect the 

system performance if outwith desired wavelength range. For example, polarisation 

maintaining fibre is a speciality fibre with a strong built-in birefringence i.e. creates a 

double refraction, which results in two principal transmission axes, the fast and slow 

axes. This can be induced in a material by applying mechanical stress, which forces the 

lightwave to follow a linearily polarized path. If two polarisation maintaining 

components are connected such that their transmission axes are not aligned, different 

proportions of light will couple into each axes, the extent of which will depend on the 

angle of the rotation of the two components relative to each other. This will reduce the 

intensity output along the desired polarisation state[115]. If the light is being modulated 

different polarisation states will have different bias points (phase difference applied by a 

DC bias voltage) and so the output modulation signal may become distorted with 

additional waveform structures[116]. Ways to reduce these effects include precise 

alignment of the polarisation axes and use of fibre with small polarisation mode 

dispersion[115]. 

3.2.5 Cross interference 

It is important to be aware of potential interfering gases when targeting a specific gas 

absorption line. One molecule in particular that consistently proves problematic is 

water. Water has a number of broad absorption bands across the IR spectrum. The 

wavelength regions that have been targeted for CH4 and CO2 for this research are shown 

in Figure 3.7. 
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Figure 3.7: Wavelength regions targeted for CH4 and CO2 that avoid water 

absorption line overlap. Taken from Hitran[51] 

If it is not possible to select a wavelength region with no interferents, strategies to 

minimise the effects of interferents include for example, in the case of potential water 

cross-interference, heating certain optical parts of the system to reduce condensation 

and thus presence of water absorption bands [117]. Another option is to include a fitting 

algorithm for the interfering species, e.g. H2O and O2 also and then apply a subtraction 

to the overall measurement[118] 

3.3 Summary 

As seen in this chapter, the factors that can affect sensor performance are varied and 

dependent on the particular situation of the sensor. For example the use of a sensitivity 

enhancement strategy such as implementation of a multipass cells can bring with it 

problems of its own, such as performance limiting etalon interference. A number of 

solutions, both in terms of hardware and software have been developed to overcome 

these factors. This includes antireflective coated windows in multipass cells to 

overcome fringing, or post-detection subtraction if the fringe spacing is known and 

stable. A number of these strategies have been implemented in this body of research as 

will be outlined in Chapters 5 and 6. 
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For this body of research, when considering implementation as a gas sensor, some of 

the specific performance targets include: 

 Limit of detection down to low ppm i.e. 1-10s of ppm: It was found that with a 

sphere of 5cm diameter and port fraction of 0.0077, an effective pathlength of 

1m was achieved. With this, detection of methane was achievable down to 

approximately 60ppm. The technique employed in this case was direct 

absorption spectroscopy and so it is expected that much lower concentrations 

could be achieved by applying modulation techniques, see section 3.1.2, and 

minimising the port fraction further to increase the effective pathlength.  

It is thought that contamination would represent the greatest limiting factor as a 

small amount could reduce the detection limit greatly. In the case where 

contamination does not occur, it is thought that electronic interference may 

represent the limiting factor ultimately. This can be alleviated somewhat using 

bandpass filters, as discussed in section 3.2.2.  

 Selectivity: At the wavelength region of 1650nm, absorption lines of typical 

cross-interferents, such as water, are not present and so this technique is very 

selective to methane. If the technique was to be used for other gases, e.g. HF 

around 1200nm, it would be necessary to consider the potential interferents in 

that wavelength region and their contribution to the measurement, 

 Response time of no longer than 30/40 sec: Active pumping rather than passive 

diffusion is required when using the integrating sphere to ensure homogeneous 

diffusion of gas. It was found that with a flow rate of 1 litre per minute, a 

homogenous sample was achieved after approximately 20 seconds. However 

one of the drawbacks of using a multipass cell is that, though sensitivity is 

increased through increased pathlength, the overall throughput is lower due to 

the less than 100% reflectivity of the cell. Additionally the diffuse reflections 

generated in the sphere result in a signal with a noisier baseline than typical 

multipass cells and so it may be necessary to increase the averaging time 

(particularly in the case of lower gas concentrations). This will increase the 

response time.  

 Accuracy of ±5%: As this setup utilises a tunable diode laser, it is envisaged that 

this system should aim to achieve industry standards for TDL systems of ±5%. 
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The potential for slow drift, i.e. due to ambient conditions such as temperature 

or pressure has not been tested for the setups described in this research. It is 

proposed that wavelength drift in the laser could be corrected for by locking to 

the gas line using an in-built miniature reference gas cell with a high 

concentration of the sample. 

 Easy to operate: One of the advantages of the sphere is that as it generates 

diffuse reflections regardless of angle of incidence, alignment tolerances are 

eased. Additionally the overlapping of beams eliminates generation of periodic 

standing waves, a phenomenon that can occur in typical multipass cells. This 

confers a robustness to the integrating sphere, for example in scenarios where 

vibrations may be an issue e.g. on aircraft. The material itself, a PTFE based 

material, can be cleaned with water or even light sanding and so do not require 

technical operators to clean and realign the cell.                 
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4 Integrating sphere theory and applications 

“Little information appears to have been published about the diffusing power of 

unpolished surfaces. Its ability to increase the illumination of rooms and open spaces, 

although well known, does not appear to be appreciated to the extent that its 

importance deserves; and a few numerical determinations of the coefficients of 

reflexion, absorption, and transmission of diffusing surfaces may prove of interest” – 

W.E. Sumpner[119] (1892) 

W.E. Sumpner, in 1892, first described integrating sphere theory[119] when he began to 

derive quantitative measurements for the coefficients mentioned in the quote above. 

Though the motivation for his work was to increase illumination in rooms through the 

diffusion of light, it formed the foundation of integrating sphere theory in the field of 

photometry. This chapter aims to provide the reader with a good grasp of the theory 

surrounding the development of the integrating sphere, both in its traditional capacity as 

a tool for light flux calibration and in later years, as an optical cell for making 

quantitative gas measurements. The chapter begins with a general history of how the 

integrating sphere became the commercial component that it is today. The mathematical 

theory pertaining to integrating spheres, due to the many applications, is extensive and 

so this chapter introduces only the general equations that are pertinent to this research. 

Following this, the motivations for use of this cavity as a gas cell are introduced, in the 

form of a review of the literature, including the potential challenges for this application. 

4.1 The development of the integrating sphere 

At the turn of the 20
th

 century, R. Ulbricht[120], after whom integrating spheres are 

often called “Ulbricht spheres”, built the first integrating sphere. The working principle 

of an integrating sphere is that light incident on the sphere is scattered by the inner wall 

giving multiple diffuse reflections, which provides a uniform power distribution at 

4 
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every point in the sphere. By exploiting this principle, Ulbricht had created a device 

capable of measuring accurately the total luminous flux of different light sources. This 

is achieved by placing the light source to be calibrated in the centre of the integrating 

sphere and measuring the total spectral output from the source. This reading is then 

compared to a similar reading obtained from a calibrated light source of known 

luminous flux. This, as noted in “Popular Science Monthly” in 1916[121], see Figure 

4.1, allowed flux measurements to be made in under five minutes as opposed to half an 

hour with previous methods, and in fact is still widely used for manufacturing quality 

control in the light industry today[122], [123].  

 

Figure 4.1: A 100 inch sphere photometer, "suggestive of the rind of some 

Brobdingnagian watermelon"; the Ulbricht sphere as introduced in 1916 to the 

readers of "Popular Science Monthly"[121] 

In addition to this application, in 1916 A.H. Taylor (National Bureau of Standards), 

following from W.E. Sumpner, developed methods for measuring diffuse reflectance 

factors for reflective surfaces[124]. Integrating sphere technology took a leap forward in 

1931 when A. Hardy at Massachusetts Institute of Technology (MIT) developed the 

first commercial spectrophotometer[125]. In this particular application, diffusion of 

light was achieved by coating the sphere wall with a magnesium oxide (MgO) based 

coating, created by “smoking” MgO shavings on a white paint layer. Indeed prior to the 

1960s, most designs utilised this coating. However it was difficult to achieve layers that 

were reproducible to greater than ±1% accuracy in thickness[126], [127] and so the 

International Commission of Light (CIE), in 1969, recommended moving away from 

this as the primary reflectance standard. The more highly reflective barium sulfate 
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(BaSO4) coating, “Eastman 6080” was created by F. Grum and T.E. Wightman[128] of 

Eastman Kodak Company in the late 1960s and has become the basis for most 

commercial barium sulphate coatings. BaSO4 coatings, are highly reflective (>98% 

reflective from 250-1300nm), diffuse and non-toxic[129]. They are relatively easy to 

apply and adhere well to most metal and plastic surfaces as well as being effective over 

a relatively large wavelength range (250-1800nm). However the coating is fragile and 

easily damaged by water due to the use of a water soluble binder during manufacture. 

Furthermore it can become discoloured and less reflective when exposed to humidity. 

One solution to overcome some of these issues is the use of a highly reflective material 

as opposed to a coating, namely a polytetrafluoroethylene (PTFE) based material[130]. 

Manufacture of this material utilises a sintering process where PFTE powder is packed 

against silicon vacuum grease to a constant density of approximately 1g cm
-1

. This 

material is highly reflective (>98%) over a large wavelength range (250-2500nm), 

stable in temperatures up to 250°C and in humid conditions[131]. However it is difficult 

to machine, and can be quite heavy. For this project two PTFE based integrating spheres 

have been used, with trade names Spectralon
TM

 and Zenith
TM

. Two scanning electron 

micrograph (SEM) images in Figure 4.2 show the surface topography of barium 

sulphate power and Spectralon
TM

, highlighting the difference between the powder and 

solid material. 

 

Figure 4.2: A scanning electron micrograph of (a) barium sulfate powder(x 10k mag) 

and (b) spectralon(x5k mag). Taken from [132] and [133] 

Typical multipass mirrors often contain highly reflective coatings that can become 

degraded quickly by water absorptions, contamination and abrasion and so cleaning of 

these mirrors requires extra care, not to mention realignment when replaced in the cell. 
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PTFE based cells on the other hand can be rinsed with water, wiped and in some cases, 

higher reflectivity is restored by sanding with an appropriate grit paper[134]. 

The advantages and limitations of the two different materials are summarised in Table 

4.1 below.  

Table 4.1: Summary of advantages(+) and disadvantages (-) of reflective materials for 

integrating spheres. 

Type  Notes 

Spray-on coating Often BaSO4 based. (100°C thermal limit) 

 (+) Easy to apply, highly reflective and diffuse over a large 

wavelength range 

 (  ̵) Fragile, can be degraded by water and humidity.  

Sintered coating Usually PTFE based (350°C thermal limit) 

 (+) Highly reflective and diffuse over a large wavelength range, 

very stable in humidity and temperatures up to 250°C 

 ( ̵ ) Tedious to machine, heavy, more expensive than spray-on 

coatings. 

4.2 Integrating sphere mathematical theory 

As illustrated in Figure 1.4 in Chapter 1, the distribution of light in the integrating 

sphere comprises multiple diffuse reflections due to its optically rough inner surface. 

This surface is an ideal diffuse reflector, according to Lamberts cosine law. Lamberts 

cosine law states that the radiant intensity observed from a small surface area in a 

particular direction is proportional to the cosine of the angle between that direction and 

the surface normal, as seen in Figure 4.3 
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Figure 4.3: A Lambertian surface where the observed radiant intensity is directly 

proportional to the cosine of the angle between the direction of the incident light and 

the surface normal. 

The radiance from a portion of the surface is the same when viewed from any angle due 

to the correlation between emitted power and apparent area observed. This property 

facilitates uniform diffusion of light in an integrating sphere. 

As described in general integrating sphere theory, the light emanating from a diffuse 

surface can be written in terms of radiance, Bs[135], (flux density per unit solid angle) 
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 4.1 

where Φi is the input flux, ρ is the reflectance, As is the total area of the sphere inner 

wall and Ω is the total projected solid angle from the surface. 

When considering the diffuse surface of an integrating sphere, the radiance equation 

must account for the losses due to presence of port openings, i.e. source input and 

detector output ports. The losses are accounted for by calculating the fractional area of 

surface that is lost to port openings, relative to the total area As, and is termed the port 

fraction, f 
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where Ai is the area of the input port, Ae is the area of the exit port. If there are 

additional ports, such as gas ports, the port fraction, f, is calculated from the sum of 
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these port areas. Combining the reflectance, ρ, and port fraction, f, gives a unitless 

quantity termed the sphere multiplier, M which accounts for the increase in radiance due 

to multiple reflections 

 

1 (1 )
M

f






 
 

4.3 

The radiance of an integrating sphere can then be expressed as a function of sphere 

diameter, reflectance, and port fraction 
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It can be seen from Equation 4.4 that the radiance decreases as sphere diameter 

increases and so it could be assumed that smaller spheres are preferable as they will 

produce higher radiance. For application to gas sensing where higher sensitivity is 

gained through increased interaction of light with the gas sample, a larger sphere is in 

fact preferable to facilitate longer path lengths. When optimising the sphere design, the 

number and size of port openings required as well as which coating/material gives the 

required reflectivity must also be considered. Port opening sizes are designed such that 

the area consumed by openings is minimised to maintain diffusion performance whilst 

still facilitating use of the desired sources, detectors etc.  

For a detector with active area, Ad, the total flux incident on the detector is  

 
d s dB A    4.5 

where Bs is the radiance as described in equation 4.1 and Ω is the projected solid angle, 

generally approximated as  

 2sin    4.6 

where θ is the angle subtended from the exit pupil of the system as seen in Figure 4.4 
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Figure 4.4: The projected solid angle Ω is derived from the angle θ i.e. the angle 

subtended from the detector active area. The point at which the focused incident 

beam first encounters the sphere wall is termed the first strike spot 

The portion of the sphere surface directly irradiated by the incident flux is termed the 

first strike spot, as seen in Figure 4.4.  It is important that the detector field of view does 

not encounter the first reflections from this first strike spot or else the measurement will 

include a portion of direct irradiation which will dominate the measured radiance. This 

can be achieved by using a baffle coated with the same material as the wall or else 

recessing the detector position from the sphere. 

The equations so far have assumed steady state conditions, where the light levels in the 

sphere are constant so that transient effects are negligible. For rapidly varying light 

signals, i.e. due to rapid modulation or use of a pulsed light source the output signal has 

an impulse response of the form[135] 
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Where t is the time elapsed, τ is the decay constant calculated as[135] 
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where 𝜌̅ is the average wall reflectance, c is the free space velocity of light, and Ds is the 

diameter of the sphere. As seen in equation 4.7, the integrating sphere exhibits an 

exponential decay, in a similar manner to cavity ring down spectroscopy as described in 

section 2.3.4. 

The theory described so far comes from the widely accepted integrating sphere theory 

derived from extensive experimental work and manufacturer tests. The equations 

account for factors affecting the light distribution such as the sphere wall reflectivity 

and port openings however the presence of an absorbing species is not considered. In 

order to adapt integrating spheres for gas sensing applications, it was necessary to 

derive new mathematical equations that allowed for quantification of an absorbing 

species. The measured gas absorption is proportional to the pathlength and so an 

expression for the effective pathlength was also considered. The research to date by a 

number of groups is discussed in more detail in the next section but some equations of 

note have been included here as they were used for this research. 

For steady state conditions, Tranchart et. al.[24] expressed the fractional absorption of a 

substance in an integrating sphere as 
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4.9 

where, as before, ρ is the sphere wall reflectance, f is the port fraction and α is the gas 

absorption. Lsp corresponds to the average distance travelled between successive 

reflections at the cavity wall i.e. for a single pass. For an integrating sphere this has 

been shown to be 2D/3[136]. Thus the effective pathlength Leff can be calculated using a 

multiplication as follows 

 2

3
effL DM  4.10 

where M is the sphere multiplier as defined before and D is the diameter of the sphere. 

For low or zero absorbance α and where the apertures are very small (f<<1), the 

effective pathlength Leff, is of the order  
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4.3 Integrating sphere based gas cell: Motivations 

An observation put forward by Elterman[26], in 1967, highlighted a significant 

advantage of using an integrating sphere as a tool for absorption measurements. He 

stated that if the sample to be measured is in an isotropic homogenous field, that the 

absorbed radiant power should be independent of scattering effects. This, as well the 

potential for greater sensitivity through increased sample – light interaction in a small 

volume, provided the main motivations for the research that has been carried out over 

the last forty years. The following section introduces some of the ideas of this research, 

categorised by the two advantages just mentioned and in terms of their theoretical and 

experimental approaches, as both have progressed at different rates and with different 

outcomes. All bodies of research are then summarised chronologically in a table format 

in Section 4.4 to demonstrate how the research has developed over the years. 

4.3.1 Immunity to scattering effects 

As mentioned in the previous section, Elterman[26] highlighted the use of an integrating 

cavity as a tool to alleviate scattering effects, often caused by components within the 

sample itself or reflections at the sample surface. Here the absorption coefficient of the 

sample α was determined from the ratio of the irradiances at the surface of the 

integrating cavity with and without the sample present, as in Equation 4.12 
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where As is the surface area of the sphere, ρ is the sphere wall reflectance, H0 is the 

irradiance of the empty sphere, Hα is the irradiance with absorbing species present, n is 

the refractive index of the species and VC is the volume of the sphere. The only 

requirement was that the index of refraction of the sample must be known. The cited 

advantages of this approach were that the measurement would be independent of the 

scattering within the material sample, the reflectivity of the material surface, and the 

geometry of the sample. To confirm this experimentally a glass sample was placed in an 

integrating cube followed by an integrating sphere and the absorption coefficient was 
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determined using Equation 4.12 for both cases. The results were also compared with a 

direct path transmittance measurement and found to agree to within ±10% of each other. 

In subsequent years there has been much interest in integrating sphere application to the 

water industry, where turbidity in samples often proves challenging for typical 

transmission type measurements. Fecht and Johnson[137] presented a setup where 

absorption measurements were made by having an unconstrained falling stream of the 

water sample flow through the centre of the integrating sphere. This served two 

purposes, reducing the scattering effects of particulates within the water sample as 

expected, but also facilitated measurements that did not require contact with the sample 

cell itself, which eliminated the potential for chemical or biological deposit build-up on 

the windows. An expression for the voltage output, V was derived that accounted for 

the light which encountered the sample, Gαe
-αL

 and that which did not (1-Gα). 

 (1 )LV K G G e 

 

    4.13 

where K is the detector sensitivity, Gα is a splitting fraction (due to particulates), α is the 

absorption coefficient and L is the pathlength. The system was tested experimentally by 

introducing varying concentrations of a cobalt chloride solution of known absorbance 

with scattering silica particles into the falling stream and measuring the resultant 

absorbance for each when in the presence of a scattering medium. The measurement 

tolerated well the presence of scattering particles (14% error with 15ml of scattering 

particle addition vs. 450% using a commercial spectrometer). Instead the challenges to 

be overcome in this setup included ensuring a regular water flow in the stream and 

maintaining temperature control of the LED source used. 

Other approaches looked at completely filling the integrating cavity with the sample. 

One embodiment of note is that of the integrating cavity absorption meter (ICAM), 

created by Fry et. al.[138], [139] as seen in Figure 4.5  
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Figure 4.5: Integrating cavity absorption meter (ICAM); the "sphere-within-a-

sphere" setup achieves isotropic illumination of the incoming light source for 

absorption measurements. The irradiances are measured for the air filled cavity 

(detector 1), the Spectralon
TM

 inner sphere (detector 2) and the sample filled inner 

cavity (detector 3), adapted from [139]  

Here, rather than having a single anisotropic point source inputted into a sphere, a 

“sphere within a sphere” configuration was created, with the outer sphere providing 

diffusion of the input beam. As a result the light that entered the inner sphere, i.e. the 

sample cell, was isotropically illuminated and thus did not suffer any geometrically 

related scattering. The setup was described mathematically by taking an energy 

conservation approach and forming irradiance relationships between the inner cavity 

and inner sphere wall. An expression for the absorption measurement α was derived as 

follows. 
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where Vc is the volume of the inner sphere, As is the area of the inner sphere and C1 is a 

proportionality constant derived from comparison of the radiance of the inner and outer 

spheres. Hw corresponds to the irradiance within the integrating cavity wall, Hα is the 

irradiance of the inner sphere with the absorbing species present, AF is the area of the 

aperture of the fibre optic output to the detector and ρ is the sphere wall reflectance. The 

setup was tested experimentally where a 8.7cm diameter Spectralon
TM

 sphere was used 

giving an effective pathlength of, it was predicted, up to 10m. Absorption measurements 
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of water at 0.63µm made in the presence of a high concentration of scattering material, 

i.e. 2.3g/L of quartz powder, were found to have an error of only ±8% in absorption.  

Other turbid samples that have been measured include lubricant oil[140], olive oil[141] 

and whisky[142]; for example degradation of the lubricant oil could be determined 

based on the absorption changes due to increased acidification with degradation. In 

these cases the sample was contained within a vial so as not to contaminate the sphere 

surface. 

Another interesting exploitation of the cavity’s uniform scattering property was to 

improve the performance of another component. Venkatesh et. al[143] aimed to achieve 

well characterised spatial intensity distribution for a tunable diode laser source, 

providing an alternative to blackbody sources used for calibration of IR sensor systems. 

A light source at 5µm was coupled into a 3.8cm diameter gold coated integrating sphere 

and the intensity profile for a range of detector translations was recorded. The result was 

a smooth intensity profile with a Gaussian distribution. The output intensity I of the 

sphere was found to obey the relation 
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where Φi is the radiant flux incident on the cell, fexit is the port fraction related to the exit 

port only, Ω is the solid angle and ρ is the sphere wall reflectance. An effective 

pathlength, Lsphere of 62.2cm was determined for the sphere by comparison of 

absorbance measurements of carbon monoxide with a cell of known length, Lcell 
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where Asphere and Acell correspond to the absorbance measurements for the sphere and 

cell respectively. A few years later Berger et. al.[144] found another application that 

exploited the diffusive nature of the integrating sphere, namely in matrix isolation 

spectroscopy, a technique in which the species of interest is embedded in an unreactive 

matrix for long enough to facilitate a spectroscopic measurement to be made. Here the 

integrating sphere wall, diameter 1.3cm, was coated with a thin film of a substrate 
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which facilitated the formation of a gas matrix between the “host” gas, CO2 and the 

sample of interest (N2O), using a NdYag laser at 8.57µm. The sensitivity towards 

weakly absorbing samples was enhanced as the sample was exposed to more light due 

to the multiple reflections. They found however that the presence of the matrix caused 

the measurements to deviate from the standard Beer Lambert relations and so derived an 

expression for the output flux in the presence of the matrix, Φe(m) that corrected for this 

deviation by introduction of a transmittance factor T 
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where Φi is the radiant flux incident on the cell, ρ is the sphere wall reflectance, Ad is 

the detector active area and f is the port fraction. More recently Lassen et. al. [145] have 

used the multipass nature of the integrating sphere to enhance the photoacoustic (PA) 

signal and thus sensitivity of a PA spectrometer. Here a 5.08cm diameter PTFE sphere 

was coupled with a 90mm organ tube pipe which further enhanced the signal through 

acoustic resonance. 

Building on the idea of an ICAM, a number of groups proposed a point source ICAM, 

(PSICAM)[146], [147] as it was felt that the sphere within a sphere construction of the 

ICAM added an additional layer of complexity. Here the point source was placed in the 

centre of the sphere. One investigation[147] into the PSICAM took the Monte Carlo 

approach of repeat sampling to model the light field for cavities filled with a sample that 

both scatters and absorbs. The aim was to investigate to what extent an integrating 

cavity could maintain performance in terms of presence of scattering particles, varying 

concentrations of sample and sphere size. It was found that scattering effects were 

largely insignificant when making oceanic water measurements i.e. a scattering 

coefficient of 100m
-1

 gave a 0.35% error on the measurement. It should be noted that 

thecattering coefficient corresponds to the fractional decrease in intensity of the beam 

per unit distance traversed as result of from scattering (rather than absorption). It was 

suggested that uncertainties from factors such as varying absorbance and scattering 

could be reduced by deriving the sphere wall reflectivity using two non-scattering 

samples of known absorption coefficient and creating an expression as follows. 
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where TAB is the ratio of the irradiance of the sphere when filled with two non scattering 

samples, A and B, with known absorption coefficients respectively. r is the radius of the 

sphere (m) and PS is the probablility that a photon will return to the wall. One potential 

drawback of the scattering nature of the sphere was that the detection could become 

limited by optical interference as a result of laser feedback due to the diffusive nature of 

the light[148]. 

On the note of industrial application, the research into the use of an ICAM demonstrated 

the viability of using an integrating sphere for this purpose. Motivated by this work, as 

well as a patent[149], a version of the ICAM has been commercialised by Hobi 

labs[150] and deployed as a means of providing further understanding of the 

characteristics of sea water. 

4.3.2 Enhanced sensitivity through increased sample-light interaction 

Achieving increased sample-light interaction, potentially without the stringent 

alignment and unwanted etalons so often associated with the multipass cell is an 

inviting prospect for absorption spectroscopy applications. When first proposed, there 

was no existing integrating sphere theory to account for an additional absorbing 

component in the sphere. The absorption theory itself did not consider a multiple beam 

path approach; for example, the Beer Lambert law, as introduced in Section 2.2.3 

assumes a single path. A major focus of the research was to derive an equivalent 

pathlength that correctly accounted for the propagation of light in the cavity both in the 

presence and absence of the absorbing sample. 

Abdullin and Lebedev[151] stated that for low concentrations of the sample, the 

pathlength could be derived from the integrating cavity parameters, namely the cavity 

wall reflectivity, port fraction and cavity dimensions. They concluded that this was so, 

as the sphere surface would contribute much greater losses in radiant flux (from the 

input flux) than absorption by the sample. Thus an expression for the flux, Φe (α), in the 

presence of an absorbing sample could be formed as 
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where Φe(0) is the radiant flux transmitted through the sphere in the absence of an 

absorbing species, C is the concentration of the sample, and ε is the specific absorptivity 

of the sample. L= r/3Absw. Absw is a value that relates to the fraction of absorptance of 

radiation by the wall and the fraction of radiation flux at each given unit area of the 

sphere wall. In this way the derivation of L relied only on the intrinsic parameters of the 

sphere itself. A practical experiment using NH3 to calibrate, gave an effective pathlength 

of 430±25cm for a 10cm diameter copper sphere. 

Tranchart et. al.[24] it is thought were the first to employ an integrating sphere for gas 

absorption measurements. Here they provided a derivation relating the Beer Lambert 

law to the diffusion properties of the integrating sphere. The fractional absorption was 

shown to be  
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where Φe(0) is the radiant flux transmitted through the sphere in the absence of an 

absorbing species, transmitted radiant flux Φe (α), in the presence of an absorbing 

sample, f is the port fraction, and α is the absorption coefficient. L in this case was 

arrived at as follows. In the case of weak absorptions, where it was assumed that 

absorption of radiation by the sample would be negligible, it was found that the average 

single pass, LSP through the sphere was equal to 2D/3. The effective pathlength was 

then a multiple of this; in the case of weakly absorbing samples and small port fraction 

the multiple corresponded to 1/(1-ρ) as listed in section 4.2. This conclusion did prompt 

comment from Fry et. al.[152] as to its accuracy as they stated that this pathlength 

expression did not include a parameter to account for the effect of gas concentration on 

the effective pathlength, i.e. that the optical pathlength decreases with increasing 

concentration of gas. 

Javorfi et. al.[153] attempted to reconcile the measured “apparent absorbance” to that of 

the actual absorbance measurement. They did this experimentally by measuring the 

absorbance for varying concentrations of the dye, rose Bengal, using both the ICAM 

and a commercial spectrometer. The measurements from the ICAM i.e. the “apparent 
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absorbance”, A’, were superposed onto the commercial spectrophotometric 

measurements providing a fitting function so that for future measurements the actual 

absorbance, A could be calculated 
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4.22 

where q1 and q0 were fitting parameters and appeared to correspond to the effective 

pathlength and sphere wall reflectivity respectively. To confirm that this function was 

standard to this integrating sphere-detector pairing, the fitting function was applied to a 

repeat experiment where malachite green dye at similar varying concentrations was 

used. The result was that, with normalisation, the spectrum fitted well with the 

measurements obtained from the commercial spectrometer. However, this approach it 

was noted only corrected for differences due to the intrinsic nature of how the sphere 

operates (and not the effect of absorbing samples on pathlength) and so it was 

recommended that it should only be used for weakly absorbing samples.  

In an effort to build further on the understanding of how the intrinsic integrating sphere 

properties shape the pathlength Hodgkinson et. al.[154] took a more theoretical 

approach and modelled the complete pathlength distribution. This included accounting 

for the launch/delaunch conditions i.e. where the initial incoming beam makes a pass 

across the sphere with no dependence on sphere reflectivity, and where the final 

(unreflected) pass to the detector is affected by the detector viewing angle. An 

expression for the fractional absorption was derived thus 
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where α is the absorption coefficient, r is the radius of the sphere, Lsp is the average 

distance for a single pass across the sphere, and ρ is the reflectance. 

The theory was tested experimentally using a 50.8cm Spectralon
TM

 sphere and detecting 

methane at 1651nm. The theory agreed well with the experimental data, with errors 

(totalling 0.5%) attributed to the absorbing effect of the gas as well as transmission 
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reading errors. Using the same components, predicted and experimental responses for 

direct transmission and 2f-WMS modulation techniques were compared for varying 

concentrations of methane[155]. These were compared with a predicted response for a 

single path equivalent to the calculated sphere effective pathlength. It was seen that the 

sphere results deviated from the single pass, with the non-linearity at higher 

concentration becoming more pronounced for the integrating sphere measurements. 

This more pronounced non-linearity was attributed to distortion of the resultant 

lineshape as a result of the exponentially decaying transfer function of the sphere. It is 

worth noting that this could introduce considerable errors if pathlength calculations 

using a reference single pass cell were derived from concentrations in the non-linear 

regime of the Beer Lambert law. 

As well as pathlength derivations during steady state conditions, it was thought that by 

using a temporally short illuminating pulse the temporal decay of radiation in the 

integrating sphere could provide a sensitive means of calculating a pathlength. Fry et. 

al.[136] compared a derivation of the temporal response with that of a Monte Carlo 

simulation. Two derivations were considered, firstly where the zero of time was taken at 

the instant of the first reflection, i.e. the first strike spot, and secondly where the first 

reflection occurred at tsp, the average time between reflections i.e allowing for the time 

it takes photons to be incident on the sphere wall. 
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for first scenario, i.e. zero of time at first reflection, and 
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for second scenario, i.e. first reflection occurs at time tSP  

where ρ is the sphere wall reflectance. tSP can be expressed in terms of distance as dSP/c, 

where dSP is the average distance between reflections and c is the speed of light. The 

Monte Carlo simulation likewise considered these two scenarios where the photons 

were first started at random positions throughout the sphere and secondly where a point 

source on the sphere wall was chosen as the start position for the photons. In the 
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simulated cases it was found that the decay constants were almost identical for the two 

scenarios. For the analytical derivation, it was found that the results for the two 

scenarios lay either side of the Monte Carlo simulated decay constants, with scenario 1 

i.e. zero of time at first reflection giving lesser errors. e.g. at reflectivity ρ=0.90, 

scenario 1 error was -0.67% vs. 9.8% for scenario 2. At high reflectivities the analytical 

values tended to converge e.g. at reflectivity ρ=0.99, scenario 1 error was -0.06% vs. 

0.94% for scenario 2. In addition, building on Elterman’s assertion that absorption 

measurements would be independent of the cavity geometry an expression for the LSP, 

average distance between reflections for any arbitrary geometry was derived 
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where Vc is the volume of the cavity, and As is the area of the sphere. 

A practical example of an alternative geometry was demonstrated by Zhang et. 

al.[156]–[158] in their work, considering cubic cavities and their pathlength calibration. 

Here a reflective coating, Avian-D, was used to achieve an effective pathlength of 

243±2cm for a 12cm length cube where measurements at 764nm of oxygen 

concentration in air provided a reference gas to make the pathlength measurement. 

Additionally an expression for the effective pathlength, Leff was formulated by making 

measurements for varying port fractions. Note: varying port fractions were achieved by 

moving one side of the cavity by varying amounts. 
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where α is the absorption coefficient, ρ is the sphere wall reflectance and f is the port 

fraction. 

An alternative approach towards describing the temporal decay was demonstrated by 

Manojlovic et. al.[159], where the method was based on energy conservation rather than 

beam reflection analysis, in this case photon number conservation. By assuming that the 

initial number of photons in the cavity was much greater than unity and that during a 

time interval dt there were a large number of photon collisions with the cavity wall, the 
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number of photon collisions with the walls during that time interval could be quantified 

as 
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where N(t) corresponds to the number of photons overall and τ is the decay constant of 

the sphere. 

The probability of a photon being absorbed during a collision was given as (1-ρ) and 

thus the decrease in the overall number of photon i.e. due to absorption, during the time 

interval dt was equal to 
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where ρ is the sphere wall reflectance. By combining equations 4.27 and 4.28 an 

expression for the decay time was found to be 
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The experimental work carried out in recent years by Hawe et. al.[78], [160], [161] 

using a 5cm diameter Spectralon sphere highlighted the range of gases, as listed in 

Table 4.2, that could be detected using Spectralon material. Another experimental body 

of research carried out by Chambers et. al.[162] likewise used a 5cm spectralon sphere 

for detection of CO2, but in addition, an equation was derived to account for the 

transmitted flux when an absorbing species is present Φe(α) and with a fibre coupled 

entry port 
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where rf is the radius of the fibre input, r is the radius of the sphere and NA is the 

numerical aperture of the fibre. 

It was quickly realised that an integrating sphere multipass cell brought some of its own 

uncertainties. Indeed for this research, when initial derivations began for the ratiometric 

scheme as described in Chapter 5, the resultant discrepancies between the theory and 
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experiment could be corrected for by realising both a “gas pathlength” and a slightly 

longer “light pathlength” due to its additional propagation through the wall, termed by 

Fry et. al.[70] recently as the “wall time”. In that body of research, a newly developed 

reflective material was described which, it was cited has a reflectivity of >99% at the 

desired wavelength e.g. 532nm. The wall time was calculated to be on the order of 

several nanoseconds, and though it was noted as important the conclusion was that, 

compared to the overall time that light spends in the cavity, the fraction of wall time 

would be minimal. 

Indeed much of the work that has been described here and is summarised in Table 4.2 in 

Section 4.4 found that the change of sphere wall reflectance had contributed a much 

greater error to the predicted pathlength than factors such as changes in optical 

pathlength due to high concentrations of the species. To demonstrate just how heavily 

dependent the pathlength is on sphere wall reflectivity, the resultant theoretical 

pathlength vs sphere wall reflectance is plotted below in Figure 4.6 for a 5cm diameter 

integrating sphere, with port fraction 0.04 using Equation 4.3 and 4.10. 

  

Figure 4.6: Dependence of pathlength on sphere wall reflectance, for a 5cm diameter 

sphere with a port fraction, f of 0.04 

These parameters have been chosen as they are similar to those of the parameters in this 

body of research. It is evident from Figure 4.6 that a large reduction in pathlength can 
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occur with a small change in reflectance, for example a 1% reduction in reflectance 

from 0.99 to 0.98 reduced the pathlength by 21cm i.e. 23%. 

4.4 Summary 

Integrating spheres, as seen in the first section, have been well researched, from their 

earliest application making light flux measurements to their present day and largest 

application measuring reflectance and transmittance of diffuse or scattering materials. A 

wealth of mathematical relations exists to describe the diffusion of the light for these 

applications in terms of the sphere parameters, e.g. port fraction, reflectance.  

When integrating spheres were proposed as a potential tool for absorption 

measurements, this prompted much research into the area, where different approaches 

and mathematical theories were developed to account for this new parameter, i.e. the 

absorbing species and its interaction with the sphere. 

The research, as discussed in the previous section, is listed in table format below, 

highlighting some of the main ideas and theoretical derivations as well as the practical 

considerations in terms of components that were used and samples that were 

interrogated. The table has been divided into experimental (shaded sections) and 

theoretical work (clear sections). The terms in the equations have been standardised for 

the purposes of this thesis to be more comprehensible for the reader and are detailed in a 

key below the table. 
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Table 4.2: Summary of the development of the integrating sphere as a cell for 

absorption measurements 

 Theoretical 

Main idea Equation 

Experimental 

Cavity properties Absorption variables 

Author Material D Light source Spec-

imen 

Wave-

length 

Path-

length 

Limit of 

detection 

Elterman[2

6] 

1970 

Integrating cavity to measure 

absorption coefficient of glass, while 

alleviating scattering related errors.  

Refractive index of sample must be 

known 

0

2

(1 )( 1)

4

s

c

H
A

H

n V







 

  

BaSO4 3.2 

cm 

Mercury 

lamp 

Glass 0.55 

µm 

    -       - 

Venkatesh[

143] 

1980 

IS to improve spatial intensity 

distribution for tunable lasers. Uses 

gas to calculate an effective 

pathlength for single and tandem 

sphere setup comparison  

For single sphere 
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Gold&180 grit 

SiC 

3.8 

cm 
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laser 

CO 5.00 

µm 

62.2 

cm 

    -    

Abdullin[1

51] 

1988 

IS as a multipass cell, pathlength 

determined by IS parameters not gas 

absorbance, as radiant losses are 

much greater from sphere surface. 

Thus pathlength related to sphere 

properties 
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Berger[144

] 

1989 

Coats IS wall with thin film to 

enhance sensitivity for matrix 

isolation spectroscopy. Weakly 

absorbing samples measurement 

enhanced as they experience more 

reflections. Does not obey Beer’s 

law due to matrix effects 

Corrects Beer’s law deviation by 

including a transmittance factor 
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Gold 1.3 

cm 

NdYAG 

laser 

N2O 

in CO2 

film 

8.57 

µm 

NA 0.001 

Absorba

nce units 

Fry[138], 

[139], [163] 

1990-1992 

Integrating cavity absorption meter 

(ICAM). Sphere in a sphere setup 

which achieves isotropic illumination 

as incident light is diffused into inner 

cavity as opposed to typically from a 

single direction. Sphere is 

completely filled with sample. 

For inner cavity containing sample 
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Spectralon 

cylinder 

8.7 

cm 

Xenon arc 

lamp 

H2O 0.63 

µm 

Up to 

10m 

     -  

Kirk[146] 

1995 

Follows from Fry’s ICAM, 

mathematically shows setup is 

unaffected by scattering. Models 

pathlength in terms of photons 

trajectories. Introduces a point source 

version, a PSICAM (central light 

source)  
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Tranchart[2

4] 

1996 

First use of IS for gas absorption. 

One drawback is non-linear 

relationship of absorbed power vs 

gas concentration 
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Spectralon 10 

cm 

Multimode 

laser 

C4H10 1.20 

µm 

203 

cm 

3x10
-3 
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-1

 

Spectralon 10 

cm 

Single 

mode laser 

H2O 0.83 

µm 

442 

cm 

2x10
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Fecht & 

Johnson[13

7] 

1999 

Falling stream in an IS. To alleviate 

scattering errors due to particles in 

water 
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PTFE  10 

cm 

Blue LED CoCl2 0.43 

µm 

NA 0.005 

AU 

Davis[147] 

2000-2003 

Development of a PSICAM as 

introduced by Kirk, quantifying 

potential scattering errors. Also 

measures the absorption coefficient, 

using a transmittance ratio with a 

reference of known absorption 
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Fry et. 

al[136] 

2006 

Using temporal response in an IS to 

derive average distance between 

successive reflections. Also derives 

an average distance for varying 

cavity shapes 
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Javorfi[153

] 

2006 

Accounting for attenuating effect of 

sample absorption on pathlength. 

Applies a correction to measured 

absorbance using experimentally 

derived fitting function. Correction 

function unique to each IS/detector 
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Hawe et. 

al.[78], 

[160], [161] 

2006-2008 

Spectralon 5 

cm 

Deuterium/ 

Halogen 

O3 0.63 

µm 

70cm <500 

ppm 

Deuterium/

Halogen 

NO2 0.37 

µm 

55cm <5ppm 

LED CO2 2µm 36cm 10
-4

 

Broadband SO2 1.57 

µm 

40.9cm <15 

ppm 

Hodgkinso

n   et. 

al.[154], 

[155], [164] 

2009-2012 

Modelled the pathlength distribution, 

accounting for launch/delaunch 

conditions. 

Demonstrated greater dynamic range 

due to its pronounced nonlinearity 

but potential for limiting effects due 

to speckle  
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Equation to described a fibre coupled 

IS 
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Manojlovic 

et. al.[159] 

2011 

Applies a photon energy 

conservation approach to measuring 

decay time in a sphere as opposed to 

beam reflection analysis. Agrees 

with other literature for high sphere 

wall reflectivities 
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Lassen et. 

al.[145] 

2014 

Combination of an IS with organ 

tube for photoacoustic measurement. 

Tube present to further enhance 

signal through creation of resonance 

modes 

 

Zhang [129

,130] 

2014 

Pathlength calibration of a diffuse 

cubic cavity, by using a variable port 

fraction and measuring oxygen line 

at 763nm 

Also used to estimate error as result 

of reflectivity change 
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Mason et. 

al. [70], 

[71], [165] 

2015-2016 

Studied water properties in 300-

800nm region using ICAM. 

Using integrating cavity ring down 

spectroscopy (ICRDS), quantifies 

“wall time” of photon Applies 

ICRDS for absorption spectroscopy  

Low cost IS 
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Notation list for Table  

α Absorption coefficient (m
-1

) L Pathlength (m) 

A Absorbance (unitless) = 

log10(φi/φe) 

Leff Pathlength (m) 

A’ Apparent absorbance (unitless)  n Refractive index 

Ad Area of detector (m
2
) N(t) Number of photons overall 

AF Area of fibre optic output (m
2
) dNA(t) Number of photons absorbed by 

wall during time interval t 

AS Area of sphere (m
2
) dNC(t) Number of photon collisions 

during a time interval t 

Absw Proportionality constant  Π Solid angle (sr) 

c Speed of light (m/s) Φe(0) Radiant transmitted flux, no 

absorbing species (W) 

C Concentration (ppm for 

example) 

Φe(α) Radiant transmitted flux, 

absorbing species (W) 

C1 Proportionality constant 

(between radiance of inner & 

outer sphere)  

Φe(m) Radiant flux in presence of thin 

film matrix (W) 

ε Specific absorptivity (ppm/m) Φi Radiant flux incident on cell 

(W) 

f Port fraction ρ Reflectance 

fexit Port fraction relative to exit port 

only 

r Radius (m) 

Gα Splitting fraction (i.e. due to 

particulates) 

rf Fibre radius (m) 

H0 Irradiance of empty sphere  τ 
Decay constant (-

2 1

3 ln

D

c 
 )(s-

1) 

Hα Irradiance with absorbing 

species present 

t Time (s) 

Hw Irradiance within the integrating 

sphere wall  

T Transmittance factor 

I Radiant intensity (Wsr
-1

) V Voltage (V) 

j1, j0 Fitting parameters, 

experimentally determined 

Vc Volume of cavity (m
3
) 

K Detector sensitivity (V)   

 

The research that has been carried out to date has highlighted the challenges of adapting 

an integrating sphere for absorption measurements. These included discrepancies 

between predicted and measured pathlengths due to, for example geometry dependence 
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of beam passes assumed to be isotropic. Some of these challenges as well as proposed 

solutions are listed in Table 4.3. 

Table 4.3: Some challenges and proposed solutions for adaptation of integrating 

spheres for absorption measurements 

Challenge  Proposed solutions 

Deviation in absorbance 

measurements due to intrinsic 

sphere parameters 

 A fitting function was defined 

experimentally which was limited to that 

particular sphere-detector pairing but usable 

for different absorbers [153] 

Light backscattered to the laser 

create detection limiting 

interference fringes  

 Suggestions included an optical fibre 

delivery and / or a glancing-angle incidence 

beams to reduce the backscattered 

contribution[148]  

Geometry dependence of beam 

passes assumed to be isotropic 

 A sphere-within-a-sphere setup created a 

completely isotropic input [139] 

A mathematical derivation was created to 

accommodate additional geometries within 

the pathlength distribution[154]  

Multiple optical paths cause 

non-linearity in response. 

 An analytical equation that described the 

non-linearity was derived and validated 

experimentally[155] 

The effective pathlength is a 

sensitive function of the sphere 

wall reflectivity, requiring a 

calibration check when in use. 

 The absorption of a selected line of oxygen 

in air was measured periodically; the O2 

concentration was assumed constant [158], 

[166] 

A correction factor was created by 

comparison of the calibrated empty sphere 

response with post-use empty sphere 

response[150] 
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The final challenge in Table 4.3 formed the main motivation for this thesis, namely 

optimizing the sensitivity of pathlength to sphere wall reflectivity. Two proposed 

solutions are listed in the Table: however these solutions in themselves have their limits. 

The first suggestion i.e. to measure the absorption of a selected line of oxygen in air, 

whilst having the advantage of not requiring a reference sample in situ, restricts the 

operating wavelength region to that of the oxygen absorption line, 764nm in this case. 

The other suggestion, where an in-situ dry sphere response was compared with a 

previously calibrated dry sphere response to normalise the absorption measurements, 

negated the requirement for a pure reference sample. This however is not done in real 

time and so does not account for potential contamination at the point of measurement. 

Furthermore to carry out inspection for potential pathlength changes, the sensor has to 

be removed from its location. 

This body of research aimed to provide pathlength calibration even in the presence of 

sphere wall contamination. It was felt that though some preliminary academic based 

research has been carried out to demonstrate how an integrating sphere functions as a 

multipass cell, there had been no investigation into how the sphere would function if its 

performance worsened, e.g. if the sphere wall became contaminated. Two different 

strategies for calibrating the sphere pathlength were investigated and are described in 

Chapters 5 and 6. 
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5 A ratiometric technique for pathlength calibration 

“The reflectance of an integrating sphere is a decisive factor for the attainable 

measuring accuracy. A maximally high reflectance close to 100 % is desirable in order 

to achieve optimum mixing of the light. However, the sensitivity to dirt and ageing of the 

coating goes up as the reflectance increases. The variations in the spectral throughput 

of the sphere also increase as a result” – Instrument Systems[167] 

A review of the work to date, as discussed in Section 4.3, has shown that the achievable 

effective pathlength is highly dependent on the sphere wall reflectivity which is in itself 

very sensitive to particulate deposits and ageing. Much “proof of principle” type 

research has been carried out employing different strategies for initial pathlength 

calibration of an integrating sphere, including temporal based[136] or intensity based 

approaches [157], [168]. However, there has been little investigation into potential 

subsequent errors in these calibrated pathlength values if the system is subjected to an 

environment where conditions may degrade the reflectivity of the sphere wall, such as 

contamination. The technique detailed in this Chapter aims to provide real time 

pathlength adjustment in the event of sphere wall contamination using a low frequency 

ratiometric configuration. In this way gas absorption measurements can continue to be 

made accurately, as long as the contamination does not reduce the sensitivity to below 

an acceptable detection limit. 

The first section describes the original application on which this technique is based, 

which is widely used in the water industry for measuring the turbidity of water samples. 

The main advantage that motivated the use of this configuration was that, as a result of 

the manner in which the measurements are processed, changes in intensity due to cell 

wall or window contamination can be factored out, allowing for ongoing accurate 

turbidity measurements to be made. The second section describes how the configuration 

is adapted for use in an integrating sphere. This includes a mathematical derivation, 

which combines the integrating sphere theory with the Beer Lambert law so that both 

5 
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pathlength and gas measurements can be made. The experimental design is discussed, 

highlighting important considerations in terms of the alignment and data processing. 

The third section introduces the experimental results where the compensation and 

pathlength calibration capability of the scheme are tested for a number of scenarios 

where contamination or variation has occurred. The final section contains a discussion 

about the benefits of this type of configuration as well as the limitations, especially in 

terms of extensive contamination. 

5.1 The original four beam ratiometric technique 

The four beam ratiometric technique is so called because of both its configuration, i.e. 

there are four beam paths in the setup, and its principle of operation, i.e. that the final 

desired measurement e.g. turbidity or in this case, absorption, is calculated using a 

ratiometric algorithm constructed from these four flux measurements. 

5.1.1 Working principle 

As mentioned in the introduction, the proposed technique incorporates an adaptation of 

a four beam configuration that is extensively used in the water industry to provide an 

accurate measurement of fluid turbidity[169], [170]. An optical sensor of this design 

can be used to detect bacterial growth, cleanliness of water, or liquid levels in a 

fermentation tank. As cited in the original patent[171], the advantages of this four-beam 

technique are minimization of errors due to signal offset and gain, and accommodating 

fluids over a wide range of turbidity levels by adjusting the gain controls. The method 

can also compensate for component variation such as ambient temperature, ageing and 

degradation of component, voltage variations, and sample chamber contamination due 

to scratching or fouling (either biological or chemical) on the sample chamber body. 

The typical configuration comprises two light sources and two detectors, spaced at 90° 

intervals around the sample chamber, as in Figure 5.1. The two light sources are 

alternately switched on and off, as seen in Figure 5.1(a) and Figure 5.1(b), while both 

detectors make a separate flux measurement for each light source, giving four 

independent measurements. The straight pass, e.g. from source 1 to detector 1 measures 

the transmitted light while the diagonal pass, e.g. from source 1 to detector 2 measures 

the scattered light, the magnitude of which is determined by the composition of the 

sample of interest present. 
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Figure 5.1: Typical four beam setup for turbidity measurement, comprising two light 

sources and two detectors spaced at 90 degree intervals. The two light sources are 

alternately switched on and off, (a) and (b), making four independent flux 

measurements. Adapted from Hydrolab[172]. 

Relating the transmitted light flux to the scattered light for each source provides a 

means of ascertaining the level of turbidity. In the four beam configuration, a 

ratiometric algorithm is constructed from these values giving an expression of the form: 

 
12 21

11 22

Q
 


 

 

5.1  

where 12 and 21 correspond to the scattered flux from source 1 to detector 2, and 

source 2 to detector 1 respectively. 11 and 22 correspond to the directly transmitted 

flux from source 1 to detector 1, and source 2 to detector 2 respectively. By using this 

ratiometric form, rather than the direct output from each detector, the overall light input 

and output remains directly proportional and errors due to cell contamination and/or 

component variation are thus eliminated. For example, if light source 1 experiences a 

reduction in light output, this will affect the measured flux at detector 2, i.e. 12 and 

detector 1, i.e. 11 equally and so the ratio between them will remain constant. As a 

result the overall ratiometric algorithm, as detailed in Equation 5.1, is unaffected by 

changes in sources or detectors powers, whether caused by component fluctuations or 

cell/window contamination The technology has been used in a number of industries, 

including milk fat monitoring in the food industry [22]. In this case the fat concentration 

is determined, using appropriate signal processing where the light absorption in the 
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direct path and the scattered light in the diagonal path allows for quantitative 

measurements of milk fat while compensating for scattering effects. 

Where an absorption measurement is being made, the expressions for the transmitted 

fluxes take the following form[173] 

    

   

11 11 1 1 11 12 12 1 2 12
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exp exp
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5.2  

The values of Lab are the optical pathlengths from source a to detector b. S1 and S2 are 

factors that scale with the fluxes from sources 1 and 2 respectively, and K1 and K2 

represent the sensitivity of detector 1 and 2 respectively. Φiab and Φiab represent the 

incident flux for the direct and indirect/diffuse measurement respectively. 

These quantities take account of the (fixed) proportions of light entering the respective 

straight and diagonal paths, plus potential reductions in flux resulting from transmission 

through the cell windows. Forming the Q ratio then allows these factors, which can 

potentially change as a result of window fouling for example, to cancel, thus: 
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5.3  

5.1.2 Practical considerations 

For practical implementation of this system, there are a number of design considerations 

that can influence achievable sensitivity, and accuracy of the system. For example the 

resolution of this configuration can be improved by increasing the difference between 

the length of the transmitted and scattered paths[173]. However this has consequences 

for alignment as wider source dispersion and detector acceptance angle is required. 

Furthermore the compensation scheme works on the assumption that the transmitted 

flux of the straight-through and diagonal paths for each light source remains 

proportional. In practice this is not completely preserved as, depending on the sampling 

environment, the system may be subjected to contamination which will not be 

identically distributed for each path, whether as a result of geometrical effects or 

structure of the fouling particle[173]. From a geometrical point of view, especially when 

using planar windows, the level of attenuation for each path differs as they are subject to 
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different layer thicknesses dependent on the angles of the beams passing through, as in 

Figure 5.2. This divergence from proportionality will increase with increased fouling. 

 

Figure 5.2: Scheme showing variation in attenuation by fouling layer due to angle of 

the beams. Adapted from Johnson[173]. 

From a structural point of the view, the uniformity of the contamination layer as well as 

its particulate nature will affect the proportionality between the transmitted intensities. 

If the layer is not uniform or the particulates are of similar size as the source/detector 

the two paths can experience very different levels of attenuation. However this has not 

prevented the technique from being used successfully, where the application can tolerate 

sizeable errors e.g. up to 15%[173]. With these considerations in mind, an adaptation of 

this technique was implemented for an integrating sphere. 

5.2 The adapted four beam ratiometric technique 

5.2.1 Working principle - theoretical 

It is proposed that the cited advantages of the four beam configuration can be exploited 

for an integrating cavity using an adaptation of this arrangement. For adaptation of this 

technique to an integrating sphere, four beam paths must be created, as shown in Figure 

5.3. Port openings for the detectors are introduced in the sphere directly opposite the 

light sources openings, i.e. detector 1 sits at the first strike spot for source 1 and 

likewise for detector 2 and source 2. A portion of the light makes a single pass through 

the sphere, of length roughly equal to the sphere diameter, providing the direct (short) 

path. The remaining portion of the light encounters the sphere wall, and is diffusely 

scattered around the sphere. After multiple random passes, of different lengths, a 
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proportion of the light is detected by the detector perpendicular to the source and this, 

corresponding to the diffuse (long) path, or mean effective pathlength.  

 

Figure 5.3: Adapted four beam ratiometric scheme; where for example, with source 1, 

a single path through the sphere provides a direct (short) path with flux 11. The 

diffusely reflected light measured from each detector orthogonal to the light source 

provides the diffuse (long) path, with flux 12. The same principle applies to source 2. 

In terms of the design, it is necessary to control the divergence of the source beam so 

that the short and long paths operate as independently of each other as possible. This is 

achieved by using a narrowly diverging beam such that a considerable proportion of the 

light (30-40%) is directed to the short path detector. As a result, changes to the sphere 

wall that reduce the diffuse long path flux will have a negligible effect on the detected 

short path flux. Simultaneously, a sufficient proportion of the light encounters the 

sphere wall so that the radiant flux in the diffuse path is detectable, i.e. above the noise 

level of the corresponding detector. This should be true for both combinations of 

sources and detectors. In addition it is important that the two source/detector 

combinations are symmetrically aligned for accurate compensation as the mathematical 

derivation assumes equivalent mean effective pathlengths. 

To account for the pathlength change due to cavity wall contamination, two Q 

expressions of the form as seen in Equation 5.1 are formed simultaneously, one 
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accounting for the presence of the sample of interest, Q(α) and the other with zero 

analyte present, Q(0). In this way the changes in throughput (for the diffuse (long) paths 

in particular) due to absorption by the sample of interest can be differentiated from other 

causes of throughput changes, i.e. cavity wall contamination. This allows for the 

pathlength to be adjusted accordingly and thus the gas absorption coefficient can be 

determined continuously without needing to recalibrate the sphere in situ. 

One point to note is that the use of this configuration does potentially introduce a 

disadvantage in that the port fraction is increased as a result of the requirement for two 

additional port openings i.e. to accommodate a source and detector. The consequence of 

this in terms of achievable pathlength for this particular setup, i.e. for an integrating 

sphere with diameter of 5.08cm, experimentally determined reflectivity of 0.975 at 

1650nm is listed in Table 5.1. Here the current setup with 6 ports is compared with the 

same setup if one source and one detector port opening were omitted. The theoretical 

achievable pathlength is calculated using Equations 4.3 and 4.10. 

Table 5.1: Effect of port fraction on effective pathlength. Data shows the theoretically 

achievable pathlength when additional ports are introduced i.e. 4 ports vs. 6 ports. 

For a sphere with diameter = 5.08cm and reflectivity = 0.975 

 Port fraction, f Theoretical pathlength 

Four beam setup (6 ports) 0.0077 99.8cm 

Conventional setup (4 ports) 0.004 112.2cm 

 

In this case, though it is conceded that both factors i.e. reflectivity and port fraction have 

a large effect on the resultant pathlength, the focus of this body of research is on 

changes in reflectivity specifically rather than port fraction optimisation. It is felt that, 

unlike the port fraction, this value can deviate from the calibration when placed in the 

field e.g. due to sample containing particulates or even aging of the sphere material 

causing deviations from the quoted value as given by the manufacturer. In this body of 

research the pathlength has been calculated experimentally without assuming a constant 

reflectivity of 98.7% as given by the manufacturer. It is worth mentioning that one must 

be careful when using the quoted reflectivity as stated by the manufacturer as these 
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values assume optimum conditions, e.g.. ideal material thickness, no degradation of 

reflectivity. In reality, and indeed in the case of this research, machining may result in 

tapering at the port openings. In the case of the 5cm sphere that was used in this 

research, the material on the ports is only a few mm thick and thus it is not expected that 

the reflectivity at these ports will be as high as the bulk material. Additionally the 

sphere was purchased in 2006 and was stored with openings exposed and so it could be 

suggested that there may be some degradation/contamination of the sphere surface that 

may lower the overall reflectivity.  

5.2.2 Working principle - mathematical 

The mathematical description of this configuration can be derived from combination of 

integrating sphere theory as detailed in Section 4.2, with the relations governing 

absorption spectroscopy, namely the Beer Lambert law, i.e. Equation. 2.3 

Considering the Beer Lambert law in the absence of gas, assuming that the beam is 

collimated and there are no other components in the beam path that absorb or scatter the 

light, the transmitted flux is equal to the incident flux and the Beer Lambert law reduces 

to 

 (0) exp(0)e i i    5.4  

For the four beam configuration, this can be applied to the direct, short paths where the 

light does not contact with the sphere walls. For each diffuse long path on the other 

hand, the transmitted flux has an additional dependence on the reflectivity of the sphere 

wall and detector field of view. And so for the diffuse long paths, the incident flux term 

i can be replaced by another term namely the expected transmitted flux, d. The 

expected transmitted flux is described by the flux incident on the detector i, as detailed 

in equation 4.5. Relating this to the Beer Lambert law, in the absence of the analyte, the 

equation becomes  

 (0) exp(0)e d d    5.5  

Equations 5.4 and 5.5 describe the expected flux for the direct short paths and diffuse 

long paths respectively. Following from the four beam explanation as described in 
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section 5.1.1 a ratiometric expression for Q(0) i.e. no analyte present, can be created, 

using equations 5.4 and 5.5, to become 
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5.6 

Forming the Q ratio in this manner has the advantage of removing sensitivity to source 

power fluctuation, average window degradation and/or detector responsivity, as cited in 

section 5.1.1. The zero measurement for each path can be obtained by measuring the 

radiant flux at one or a number of wavelengths where the analyte does not absorb light 

(a baseline measurement) and inferring the value of the measurement in the absence of 

the analyte at the absorbing wavelength(s). To correct for changes to the integrating 

sphere pathlength, we proceed as follows. 

Pathlength correction When contamination of the sphere wall occurs, it is 

assumed that the transmitted flux of both diffuse long paths will drop equally. Because 

the optical beams in the direct paths do not encounter the sidewalls, it is reasonably 

assumed that changes to the direct short paths L11 and L22 as a result of sphere wall 

contamination are negligible. Changes to the diffuse long pathlength can be recognised, 

and adjusted for by relating changes to the Q(0) expression from its in-house, calibrated 

state, designated as Q(0)cal, to the in-field, potentially contaminated situation, 

designated as Q(0)foul. This is done by forming an expression for the fractional change 

in the two values 
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5.7 

Substituting the values for the diffuse long path transmitted fluxes from equation 4.5, 

the expression becomes 

 
12 12 21 21 11 22
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5.8 

As it is assumed that changes to the direct short paths are negligible, the flux values 

cancel for all short paths. The k constants likewise cancel leaving an expression in terms 

of the multiplier only 
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5.9 

By rearranging equation 4.10, the multipliers can be expressed in terms of their mean 

effective pathlengths [97]  

 2

3
M DL  

5.10 

where D is the diameter of the sphere, and L is the mean effective pathlength. 

Substituting this into equation 5.9 for each value of M, the constants cancel and the 

expression becomes 
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5.11 

It is assumed that, due to the sphere’s property of uniform light diffusion, the paths have 

been set up symmetrically, i.e. L12=L21, and so the expression becomes 

 2

2

(0) (L(0) )

(0) ( (0) )

foul foul

cal cal

Q

Q L
  

5.12 

Thus the L(0)foul can be calculated by rearranging this equation to become 

 (0)
(0) (0)

(0)

foul

foul cal
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Q
L L

Q
  

5.13 

Once the pathlength has been adjusted as detailed above, the gas absorption can be 

made as follows. 

Making the gas measurement Utilising the four beam ratiometric principle two 

Q expressions are formed and combined with equation 2.3 to give a general expression 

for gas absorption measurement as   

 * (0)( ) (0)exp LQ Q    5.14 

where Q(0) is the expression as detailed in equation 5.6. L*(0) is the pathlength sum 

equal to (L12+L21)-(L11+L22). Q(α) corresponds to the ratiometric expression of the 
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transmitted fluxes, measured in the presence of the analyte of interest, and is formed in 

the same manner as equation 5.6  
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5.15 

Initially the sensor is characterised and calibrated, inputting methane at varying but 

known concentrations so that an effective absorption coefficient, α, is assigned for that 

particular setup and is given by  

 *( ) (0) exp( (0) )cal cal calQ Q L    5.16 

which corresponds to the clean, as per calibration state that measurements will be 

related back to. If the system deviates from its calibrated state the expression is termed 

 *( ) (0) exp( (0) )foul foul foulQ Q L    5.17 

where the Q expressions correspond to the flux measurements in a potentially 

contaminated state, with analyte, Q(α)foul, and without analyte, Q(0)foul. L*(0)foul 

corresponds to the adjusted pathlength sum as calculated from equation 5.13. Thus, the 

gas concentration may be accurately determined in conditions where the sphere 

pathlength may have degraded. In this way, the integrating sphere relations are used to 

make measurements of sphere transmitted flux, which relates to the mean effective 

pathlength. The four beam configuration allows for measurement of that flux in a 

manner that is insensitive to changes in source intensity, average window degradation or 

detector responsivity. 

5.3 Experimental implementation of four beam technique 

5.3.1 General setup 

Absorption measurement setup  A schematic of the setup is shown below in 

Figure 5.4(b). Two 1651nm distributed feedback single mode fibre pigtailed (DFB) 

lasers (NTT Electronics corp. NLK 1U5EAAA) with a typical output power of 20mW 

at 100mA were used, with the beam divergence for both controlled using aspheric 

lenses (Thorlabs C280TM-C). The interrogation system used was a simple form of 

direct absorption spectroscopy, in which the emitted wavelength from each tunable 
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diode laser was scanned across a methane line at 1651nm. This was achieved by 

applying a 1kHz sawtooth waveform produced by a function generator (Hewlett 

Packard HP33120A) to a driver (Laser 2000 LDC202), which resulted in the current 

varying between a minimum of 90mA and a maximum of 130mA (corresponding to a 

wavelength range of 0.28nm (31 GHz)). 

 

Figure 5.4: Experimental setup of ratiometric four beam technique. S1 and S2 are 

light sources, D1 and D2 are amplified detectors. (a) is the initial pathlength 

calculation stage using a reference cell of known length, and (b) is the subsequent in-

situ measurement 

The integrating sphere was composed of Zenith
TM

 material (Thorlabs IS200-4, 

manufactured by Sphere Optics), with an internal diameter of 5.08cm and an 

experimentally determined reflectivity of 97.5%. The sphere was modified to contain 

six ports; two facilitated light entry for the sources, two facilitated light exit at the 

detectors, and two provided gas entry and exit points. These were spaced around the 

sphere so that each detector was positioned opposite one source and at 90° to the other 

source. The detectors were recessed from the sphere ports so that baffles were not 

required. Orientation of the final two ports, i.e. for gas entry and exit, was not important 

as long as they avoided first strike spots and areas opposite each detector. Two variable 

gain amplified detectors were used (Thorlabs PDA10CS) at different gain settings. This 

was necessary as the exit flux of each direct short path was three orders of magnitude 

greater than that of the long path. Triggering from the falling edge of the sawtooth 
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waveform, transmitted flux measurements for direct short paths, i.e. S1 to D1, and S2 to 

D2 were made at 0dB gain and diffuse long path measurements i.e. S1 to D2 and S2 to 

D1 were made at 50dB gain. 

Test gases were fed to the gas cell from three certified cylinders (Scott Specialty Gases), 

one containing hydrocarbon (HC) free air and the other two containing methane 

(1010ppm and 2.5% volume in hydrocarbon free air). The gas flow rate was maintained 

at 1000 standard cubic centimetres per minute (sccm) for all measurements using a bank 

of thermal mass flow controllers, MFCs, (Brooks 0254 controller and GF40 series 

MFCs). Different gas concentrations from 0 to 6250ppm were achieved by controlled 

downstream mixing of air and methane from the relevant cylinder. 

Initial pathlength calculation setup  The initial pathlength of the sphere was 

determined experimentally using a second setup as shown in Figure 5.4(a). Each laser 

was first coupled into a 114.5cm gas cell with AR coated wedged windows, and then 

coupled into the integrating sphere at the respective port, as in Figure 5.4(a). The gas 

inlet and outlet pipes were connected so that the reference cell and integrating sphere 

were filled with the same concentration of gas, in series. 

The transmitted signal was recorded with methane present (1010ppm concentration), 

corresponding to e(α), and with hydrocarbon free air, corresponding to e(0). This 

was recorded for the reference cell and sphere for both lasers. The pathlength was 

calculated as detailed using the following equation 

 
sphere

sphere cell

cell

A
L L

A
  

5.18 

where Asphere is the measured absorbance in the sphere and Acell is the absorbance in the 

reference cell. The pathlength of the reference cell, Lcell, was measured as 114.5±0.1cm 

The resultant mean effective sphere path lengths, Lsphere were thus calculated to be 

99.2±0.4cm for source 1 to detector 2 (L12) and 100.4±0.4cm for source 2 to detector 1 

(L21). These pathlength values are then included in the initial, calibrated Q expressions, 

to which all subsequent in-situ Q expressions are compared. 
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5.3.2 General data processing 

Figure 5.5 shows an example of raw data collected directly from the detector, for 

hydrocarbon free air and a methane concentration of 1010ppm. The data for each beam 

path measurement was collected in this way.  

 

Figure 5.5: Example of raw data obtained for each path. In the presence of methane, 

a dip corresponding to a gas line is observed. 

In the absence of gas, a rising output intensity with current was seen, as expected. In the 

presence of methane, a dip corresponding to a gas line was observed. The e(α) 

“absorbing” value for each beam path was calculated by averaging over 30 data points 

(i.e. 1% of the total scan) closest to the line centre, corresponding to a wavelength range 

of 0.67pm around the gas line centre. The e(0) “zero-gas” value for each beam path 

was derived by using the measured radiant flux values at each wavelength along the 

ramped waveform where the analyte does not absorb light (a baseline measurement) and 

inferring “zero-gas” values at the absorbing wavelength(s). As with the e(α) value, the 

e(0) was calculated by averaging over 30 of these inferred data points corresponding 

to the portion of the scan where the gas absorption measurements were taken. The 

measurements for all short and long paths are treated in this way for all conditions, i.e. 

whether with induced errors or not, and form the Q expressions. 
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To summarise how the four beam setup is implemented, Figure 5.6 contains a chart of 

the main equations relating to the setup. See explanation overleaf. 

 In-house, calibrated setup  In-situ, contaminated setup  

 Flux measurements - dependent on 

sphere reflectivity 

 Flux measurements - dependent on 

sphere reflectivity and contamination 

 

 
𝑄(0)𝑐𝑎𝑙 =

Φ𝑑12(0)Φ𝑑21(0)

Φ𝑖11(0)Φ𝑖22(0)
 

 
𝑸(𝟎)𝑓𝑜𝑢𝑙 =

Φ𝑑12(0)Φ𝑑21(0)

Φ𝑖11(0)Φ𝑖22(0)
 

 

 Flux measurements – dependent on 

sphere reflectivity and gas 

concentration 

 Flux measurements – dependent on 

sphere reflectivity and gas 

concentration and contamination 

 

 
𝑄(𝛼)𝑐𝑎𝑙 =

Φ𝑒12(𝛼)Φ𝑒21(𝛼)

Φ𝑒11(𝛼)Φ𝑒22(𝛼)
 

 
𝑄(𝛼)𝑓𝑜𝑢𝑙 =

Φ𝑒12(𝛼)Φ𝑒21(𝛼)

Φ𝑒11(𝛼)Φ𝑒22(𝛼)
 

 

 Pathlength calculation – dependent on 

sphere reflectivity 

 Pathlength calculation – adjusted 

using fractional change in Q(0)  

 

 𝐿(0)𝑐𝑎𝑙 = (𝐿12 + 𝐿21) − (𝐿11 + 𝐿22)  

𝑳(𝟎)𝒇𝒐𝒖𝒍 = L(0)cal√
𝑸(𝟎)𝒇𝒐𝒖𝒍

Q(0)cal
 

 

 Gas absorption measurement – 

corresponding to concentration of gas 

present  

 Gas absorption measurement – 

corresponding to concentration of gas 

present 

 

 𝑄(𝛼)𝑐𝑎𝑙 = 𝑄(0)𝑐𝑎𝑙𝑒
−𝛼𝐿(0)𝑐𝑎𝑙   Q(α)foul = Q(0)foule

−α𝑳(𝟎)𝒇𝒐𝒖𝒍   

     

   - Values used for adjustment are in red 

italics and bold  

 

     

Figure 5.6: Comparison of the equations pertaining to the in-house calibrated vs in-

field potentially contaminated setup. Correction factors for contamination are applied 

by adjusting the values in red 
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The left hand side in blue, relates to the setup when it is first calibrated i.e. there is not 

expected to be any contamination and so changes in output flux are attributed to the 

presence of the absorbing gas. The right hand side in red relates to the in-situ setup 

where, as well as an absorbing gas, there is also the potential for contamination which 

will introduce errors into the absorption measurement. To compensate for this, 

correction factors for contamination are applied by adjusting the values highlighted in 

red and bold italics. 

To aid understanding, the chart for the contaminated setup (on the right hand side) will 

be included in the experimental section for each source of error induced with the 

corresponding value that has been affected by the error source, highlighted in red. 

5.3.3 Induced errors 

It is claimed[171] that the four beam method, as configured for turbidity measurement 

can compensate for component variation, and sample chamber contamination, and so it 

was decided to test whether these advantages held in an integrating sphere setup. Unlike 

for the traditional four beam configuration, any sphere wall contamination will 

contribute to pathlength changes in the diffuse long path, introducing a further error into 

the calculations, as described in section 5.2. Thus three different degradation scenarios 

were considered in the setup, Figure 5.7. 

 component variation 

 sphere wall contamination 

 sphere window contamination 
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Figure 5.7: Illustration of error sources tested, change in flux due to component 

variation or fluctuation, contamination on the input or output windows, or change in 

pathlength due to sphere wall contamination. (not actual sphere used) 

 

5.4 Experimental results 

5.4.1 Component variation 

Absorption measurements using TDLS are self-referenced and therefore not expected to 

be affected by changes in source power or detector responsivity. However it was 

considered important to confirm that such advantages would be maintained for the four 

beam technique without introducing additional errors. To test the effect of component 

variation on the compensation scheme, a reduction in the output power of source 1 was 

simulated by reducing the laser current from 110mA to 105mA. Simultaneously the 

laser temperature was adjusted from 14.53 to 14.58°C to ensure that the methane gas 

line at 1651nm remained centred as the wavelengths were scanned. The chart in Figure 

5.8 shows that mathematically, the source 1 long and short path flux values are affected 

by the component variation, however, due to their ratiometric configuration, the overall 

Q expressions are unaffected by the changes. 

 

2mm 

Window 

contamination 

Sphere wall 

contamination 

Component 

variation or 

fluctuation 
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  In-situ, contaminated setup  

  Flux measurements – reduction in 

both source 1 long and short path so 

overall Q(0)foul expression unaffected 

 

  
𝑄(0)𝑓𝑜𝑢𝑙 =

𝚽𝒅𝟏𝟐(𝟎)Φ𝑑21(0)

𝚽𝒊𝟏𝟏(𝟎)Φ𝑖22(0)
 

 

  Flux measurements – unaffected by 

source variation so dependent on gas 

concentration only 

 

  
𝑄(𝛼)𝑓𝑜𝑢𝑙 =

Φ𝑒12(𝛼)Φ𝑒21(𝛼)

Φ𝑒11(𝛼)Φ𝑒22(𝛼)
 

 

  Pathlength calculation – unaffected by 

component fluctuation  

 

  𝐿(0)𝑐𝑎𝑙 = (𝐿12 + 𝐿21) − (𝐿11 + 𝐿22)  

  Gas absorption measurement – 

corresponding to concentration of gas 

present 

 

  𝑄(𝛼)𝑓𝑜𝑢𝑙 = 𝑄(0)𝑓𝑜𝑢𝑙𝑒
−𝛼𝐿(0)𝑐𝑎𝑙  

Figure 5.8: Component variation, reduction in source 1 power gives equal reduction 

in the respective long and short path powers thus leaving Q expressions unaffected 

overall. 

To investigate the effect of a reduction in source intensity, the Q(α) expressions for a 

number of concentrations were compared with the calibrated Q(α) expressions, where 

there was no reduction in intensity. With a reduction in laser current from 110mA to 

105mA, a percentage reduction of approximately 4.5% in source output power would be 

expected 

Experimentally, as seen in Table 5.2, the errors as a result of component variation 

amount to less than 0.5% when the four beam compensation scheme is applied. In 

contrast, the single long path values have an average error of 4.4%, which is close to the 

predicted error of 4.5%. There is some deviation from the predicted error but this is 

attributed to the effects of the temperature also being tuned to ensure the gas line is 

centred in the wavelength range being scanned. 
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Table 5.2: Effect of component variation on measured flux when using the four beam 

ratiometric compensated vs. a single uncompensated diffuse path. The values 

correspond to the changes in output flux and associated measured absorption 

following a reduction in the emitted power of the laser diode 

 Uncompensated                                

(diffuse long path L12) 

Compensated                                     

(four beam configuration) 

Methane conc. 

(ppm) 

Output flux, 

(% change) 
Absorption(α), 

(% change) 

Q(α) flux, 

(% change) 

Absorption(α),   

(% change) 

0 -4.1 N/A -0.2 N/A 

1500 -4.5 1.4 0.0 1.0 

3125 -3.4 -1.9 -0.1 -0.9 

6250 -4.1 -1.3 0.4 -0.6 

The effective absorption coefficient was then calculated for the compensated scheme 

and uncompensated single diffuse path measurement. As detailed in Section 5.3.2, the 

absorption coefficient is calculated by comparison of the peak absorption to an inferred 

zero level measurement from the same data sample, and so the measurement is 

effectively self-referencing. The result of this, as seen in Table 5.2, is for an 

uncompensated single diffuse path, component variation did not contribute an 

appreciable error to the resultant absorption coefficient. It can be seen likewise that, 

despite a potential for increased error due to four beam paths being considered, the 

errors in Q(α) flux and absorption measurements due to source variation are similar to 

those in the single path. With errors of less than 1% in the flux measurements, the four 

beam configuration compensates well for source variation and using this type of 

configuration does not contribute a further error to the absorption measurement. 

5.4.2 Sphere wall contamination 

To test the effect of contamination onto the sphere wall it was necessary to come up 

with a method for inducing contamination that would be repeatable and wouldn’t 

irreversibly damage the sphere. It was decided to use something adhesive so that 

contamination could be implemented at various locations around the sphere wall rather 

than just settling at the bottom. Black adhesive insulating tape was used as it was 

suitably non-reflective so as to cause an appreciable reduction in the overall reflectivity. 
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It was cut into approximately 7x5mm black tabs, as seen in Figure 5.9(a). In order to 

prevent disruption of the alignment, the induced contamination could only be inserted 

through one port opening at the top i.e. by removing the gas input port giving an 

opening of approximately 1cm diameter. This made insertion of the tabs more 

challenging and so small loops, using the same adhesive insulating tape, were added to 

aid placement and subsequent removal of the tabs without damaging the sphere wall. 

 

 

Figure 5.9: (a) black adhesive fouling tabs used to simulate contamination of the 

sphere wall, and (b) placement of tabs in integrating sphere (not actual sphere used) 

During the experimental design it was considered that the addition of loops to the tabs, 

as well as the fact that the reflectivity of the tape is not known adds a level of 

uncertainty to the measurements in terms of actual pathlength contamination. But 

actually, as the technique is relating changes (that in practise would not be known) back 

to a calibrated setup it is not necessary to know the reflectivity of the contamination or 

indeed the exact coverage of the sphere wall contamination. Knowing that all areas of 

absorption have not been accounted for in these values, i.e. the tab loops, the 

experimental results for sphere wall contamination have nevertheless been quoted in 

terms of % sphere wall coverage based on the dimensions of the tabs to facilitate logical 

presentation of the data. 

Using Equation 5.16, effective absorption coefficients for a number of methane 

concentrations were calculated with no induced contamination on the sphere wall. These 

were taken to be the calibrated values for this sphere setup. Fouling tabs, as seen in 

Figure 5.9, were placed into the sphere, one at a time, taking flux measurements of the 

four paths each time a new tab was placed inside the sphere. The Q(α) and Q(0) 

expression were formed as described in Section 5.3.2. The Q(0)foul expression for each 

(a) (b) 
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contaminated setup was related back to the uncontaminated Q(0)cal expression, so that 

the L*(0) pathlength sum could be adjusted to reflect the change in mean effective 

pathlength due to contamination, as illustrated in the chart in Figure 5.10. For each level 

of induced contamination an effective absorption coefficient was calculated, substituting 

in the adjusted L*foul as calculated for each level of contamination. These were 

compared with the original calibrated absorption values to ascertain the level of 

compensation achieved. 

  In-situ, contaminated setup  

  Flux measurements - dependent on 

sphere reflectivity and contamination. 

Short paths unaffected 

 

  𝑸(𝟎)𝒇𝒐𝒖𝒍 =
𝚽𝒅𝟏𝟐(𝟎)𝚽𝒅𝟐𝟏(𝟎)

Φi11(0)Φi22(0)
  

  Flux measurements – dependent on 

wall reflectivity, gas concentration and 

contamination. Short paths unaffected 

 

  𝑸(𝜶)𝒇𝒐𝒖𝒍 =
𝚽𝒆𝟏𝟐(𝜶)𝚽𝒆𝟐𝟏(𝜶)

Φ𝑒11(𝛼)Φ𝑒22(𝛼)
  

  Pathlength calculation – adjusted 

using fractional change in Q(0) 

 

  
𝑳(𝟎)𝒇𝒐𝒖𝒍 = 𝐿(0)𝑐𝑎𝑙√

𝑸(𝟎)𝒇𝒐𝒖𝒍

𝑄(0)𝑐𝑎𝑙
 

 

  Gas absorption measurement – 

corresponding to concentration of gas 

present 

 

  𝑄(𝛼)𝑓𝑜𝑢𝑙 = 𝑄(0)𝑓𝑜𝑢𝑙𝑒
−𝛼𝑳(𝟎)𝒇𝒐𝒖𝒍   

Figure 5.10: Sphere wall contamination, contamination of the sphere wall causes a 

reduction in the long (diffuse) paths and as a result the pathlength sum. The 

pathlength sum can be adjusted using the fractional change in Q(0), thus allowing 

for accurate gas concentration measurement 
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As a comparison, for each concentration, the effective absorption coefficient was 

calculated using the Beer Lambert law for one set of long path measurements; a single 

diffuse path but without applying a pathlength adjustment. To demonstrate the extent of 

the difference between the uncontaminated calibrated system and the subsequently 

fouled situations for both the compensated ratiometric scheme and the unadjusted single 

diffuse path, the absorption coefficient values were expressed in terms of their 

percentage errors (from calibration), as shown in Figure 5.11. The random error was 

calculated by repeating the experiment three times (removing all tabs and replacing at 

different positions each time) for a single concentration and looking at the standard 

deviation for each level of sphere wall coverage. The quoted random error value is then 

an average of these standard deviations.  

 

 

Figure 5.11: Percentage error as a function of both sphere wall contamination for 

different methane gas concentrations for compensated ratiometric scheme vs. a single 

uncompensated path (i.e. L12) 

As seen in Figure 5.11, the percentage error in measured absorption coefficient was 

much greater for the unadjusted single diffuse path. For example, at 1500ppm, with no 

pathlength adjustment, contamination representing 1.2% sphere wall coverage gave a 

reduced absorption coefficient which had a percentage error of 41±1.5% from the 

calibrated value (which had no fouling). With the ratiometric scheme, this error was 

reduced to 1±1.5%. At the highest concentration of 6250ppm, with the most severe level 
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of contamination tested, 2.87% sphere wall coverage, the resultant errors amounted to 

less than 9% for the four beam compensation scheme, with the average error being 6%.  

The errors in the compensated scheme increase both with increased levels of 

contamination and increasing concentration of gas. Addressing the increasing error with 

increasing sphere wall contamination first, it is proposed that this is due to a breakdown 

of symmetry between the two diffuse long pathlengths i.e. at high levels of light 

absorption by the fouling tabs they no longer have the same mean effective pathlength. 

This is discussed further in Section 5.4.4. Regarding the errors relating to concentration, 

it is proposed that the introduction of higher concentration samples into the sphere, 

whilst absorbing a proportional quantity of the radiation, additionally has an attenuating 

effect on the beams traversing the cavity, thus reducing the effective pathlength [20]. 

This is not accounted for in the current derivation however it is a predictable error and 

so it is envisaged that a further correction factor could be included to account for this. 

5.4.3 Sphere window contamination 

As mentioned in section 5.2.1, unevenly distributed contamination, or deposits with 

particle sizes of the order of the source or detector can introduce errors into the assumed 

proportionality between the direct and diffuse paths. With this consideration in mind, a 

preliminary experiment attempted to represent two particle sizes; millimetres e.g. 1-

6mm, which would be equivalent to particles such as sand, metallurgical dust, fly ash or 

textile fibres, and much finer particles e.g. 0.1-50 µm, which would aim to represent a 

typical size for atmospheric dust, combustion related burning or saw dust. A 

supplementary experiment was performed at a later date than the previous error 

experiments to look at how each path (long and short) would be affected by particle 

build-up on the window. The setup was as in Figure 5.4, using two Hammamatsu 

InGaAs detectors (G11777-003P with cut-off frequency 600MHz) and amplifiers 

(Femto DHPCA-100 with potential cut-off frequency of 175MHz). These detectors and 

amplifiers had a higher bandwidth and gain than the Thorlabs detectors. The affected 

flux values are highlighted in Figure 5.12. 
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  In-situ, contaminated setup  

  Flux measurements - dependent on 

sphere reflectivity and contamination. 

Short and long paths affected unequally 

so Q(0) value not preserved 

 

  𝑸(𝟎)𝑓𝑜𝑢𝑙 =
𝚽𝒅𝟏𝟐(𝟎)Φ𝑑21(0)

𝚽𝒊𝟏𝟏(𝟎)Φ𝑖22(0)
  

  Flux measurements – dependent on 

sphere reflectivity and gas concentration 

and contamination. Short and long paths 

affected unequally. 

 

  
𝑸(𝜶)𝒇𝒐𝒖𝒍 =

𝚽𝒆𝟏𝟐(𝜶)Φ𝑒21(𝛼)

𝚽𝒆𝟏𝟏(𝜶)Φ𝑒22(𝛼)
 

 

  Pathlength calculation – cannot provide 

as accurate adjustment as sizeable short 

path scattering results in assumptions for 

calculation to be incorrect 

 

  
𝑳(𝟎)𝒇𝒐𝒖𝒍 = 𝐿(0)𝑐𝑎𝑙√

𝑸(𝟎)𝒇𝒐𝒖𝒍

𝑄(0)𝑐𝑎𝑙
 

 

  Gas absorption measurement – potential 

for inaccuracy in gas measurement due to 

incorrect pathlength adjustment 

 

  𝑸(𝜶)𝒇𝒐𝒖𝒍 = 𝑸(𝟎)𝒇𝒐𝒖𝒍𝑒
−𝛼𝑳(𝟎)𝒇𝒐𝒖𝒍   

Figure 5.12: Sphere window contamination, contamination of the window causes a 

proportionally unequal reduction in the affected long (diffuse) and short (direct) 

path. As a result the Q(0) value is not preserved and is dependent on window 

contamination, and so the pathlength sum can’t be as accurately adjusted.  

The theoretical analysis shows that average window contamination may be 

compensated, i.e. contamination that is homogeneous across the full incoming laser 

beam. For the four beam implementation, there is also an implicit assumption that light 

striking the window will not be deviated from its initial direct path towards the opposite 

detector and into the diffuse path, or vice versa. To investigate these assumptions, 

contamination on the window was simulated using two microscope cover slips as seen 

in Figure 5.13. One was covered with a layer of crumpled plastic film, Figure 5.13(a), to 
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represent particulate contamination on the order of much less than the source or detector 

size which would provide low levels of light scattering. The other cover slide, as in 

Figure 5.13(b), was sprayed with grey paint to give a speckled effect on the millimetre 

scale, simulating heterogeneous particulate contamination on a scale similar to that of 

the beam diameter, i.e. 1s of mm. Each cover slide was placed at the S1 input port 

position and the resultant transmitted flux for the pathlengths, S1 to D1 and S1 to D2 

were measured, looking at the change in transmission for each path.  

 

Figure 5.13: Particulate contamination on sphere window; To investigate low levels 

of scattering contamination, a plastic film was used as seen in (a), whilst a speckled 

cover slide was used to simulate heterogeneous particulate contamination of the order 

of the beam diameter as seen in (b) 

The change in transmitted flux with window contamination was noted for the short and 

long path of S1, and the results were expressed in terms of percentage change in 

transmission, as seen in Table 5.3. The experiment was repeated three times and the 

errors represent the standard deviation. It might be expected that the transmission of 

both paths would decrease with contamination build-up on the window. As seen in 

Table 5.3, for the speckled paint, there was a large reduction in transmission for the 

direct (short) path however the diffuse (long) path experienced an increase in 

transmission. This occurred because, as well as a large proportion of the light being 

absorbed by the particles, some light was also scattered out of the direct (short) path 

onto the sphere wall and so actually contributed to an increased flux measurement of the 

diffuse (long) path. 
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Table 5.3: Effect of sphere window contamination on the light transmission for both 

short and long paths in terms of percentage change in transmission 

 Plastic film Speckled paint 

 500ppm 1000ppm 484ppm 1010ppm 

Direct (short) 

path L11 (%T) 

-29% ± 10 -28% ±11 -93% ± 1 -93% ± 1 

Diffuse (long) 

path L12 (%T) 

-5% ±2 -4% ± 2 10% ± 0.4 10% ± 1 

 

In terms of the compensated setup for an integrating sphere, i.e. Figure 5.3, the 

mathematical derivation for pathlength adjustment assumes that changes in the short 

path fluxes are negligible. However as seen from the results in Table 5.3 this is not the 

case; the effect of window contamination is not predictable and heavily dependent on 

the particle size. In the case of the plastic film, a reduction in transmission was seen for 

both the direct (short) and diffuse (long) path, but it had a less severe effect on the short 

path than the speckled paint. As is evident from these results, when window 

contamination occurs, it disproportionately affects the direct (short) and diffuse (long) 

paths. This violates the assumption that the short and long path flux path measurements 

vary proportionality as stated for the traditional four beam case in Section 5.1.1.  

To test the extent to which this type of contamination may affect the four beam 

compensation scheme, these percentage changes in transmission were applied to the 

source 1 long, Φ12 and short Φ11 paths of the previously measured data as detailed in the 

preceding section and reworked into the calculations as discussed in Section 5.4.2. The 

results are displayed in Table 5.3. It was found that for the smaller particulate 

contamination, i.e. using the plastic film, for a 1500ppm concentration of methane, the 

calculated effective absorption coefficient had an error of approximately 13%. In 

concentration terms, the concentration was underestimated to be approximately 

1300ppm. For the larger particulate contamination, i.e. using the speckled paint, for a 

1500ppm concentration of methane, the calculated effective absorption coefficient had 

an error of approximately 70%, severely underestimating the concentration to be 

approximately 430ppm. 
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5.4.4 Additional error sources 

During the initial stages of implementation it was found that when trying to reconcile 

the theoretical assumptions with the experimental implementation there were some 

discrepancies between the two. A major challenge for this four beam setup was trying to 

account for how the light propagated once introduced into the sphere for both the short 

and long paths.  

Expected transmitted flux d when using a recessed detector An experiment was 

carried out to confirm that, in the absence of gas, the expected transmitted flux d could 

indeed be calculated from knowledge of the sphere wall reflectivity and the incident 

flux, using equations 4.4 and 4.5. The experiment, using the setup as in Figure 5.4, 

compared the theoretical calculation of the expected exit flux for source 1 long Φ12 

(diffuse) path, with an actual exit flux measurement for that path. The flux 

measurements were made using both the variable gain detector (Thorlabs PDA10CS) 

and the surface mount detectors (Hamamatsu G11777-003P).  

 

Figure 5.14: Recessed detector vs. surface mount detector. In the case of the recessed 

detector (a), there is the possibility for some exiting beams to re-enter the wall at the 

port opening whereas with the surface mount detector (b) more of the exiting beams 

are sampled with less potential for re-entry to the wall. 

It was found that when the recessed variable gain detectors were placed at a port 

opening with a surface area of 0.79mm
2
, the theoretically calculated exit flux appeared 
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to be overestimated, as seen in Table 5.4. The deep port adaptor meant that the detector 

was recessed from the surface of the inner wall by over a centimetre. The surface mount 

detectors had an active detector area of 0.3mm
2
 but as the detector was embedded into 

the port adaptor, an area of the sphere wall was lost to the non-active area of the 

detector, approx. 1mm
2
. When the surface mount detectors were used, the exit flux 

values were much closer to the expected theoretically calculated flux, and in fact 

underestimated in the theoretical calculation. It is proposed that this discrepancy occurs 

because for the theoretical calculation, it is assumed that the non-active surface area of 

the detector, i.e. ≈1mm
2
, has 0% reflectivity when in reality the area would have some 

specular reflections of incoming beams. 

Table 5.4: Effect of detector position on long path output flux value. There is a larger 

difference between the theoretical and experimental measurement for a more 

recessed detector 

 Theoretical Measured 

Narrow port opening – 0.8 mm
2
 active area, 

0.79mm
2
 port opening area  (Incident flux 5.07mW) 

25.4μW 0.07 μW 

Surface mount detector – 0.3mm
2
 active area, 

1.28mm
2
 non active area (Incident flux 3.52mW),  

6.7 μW 17.3μW 

It is concluded that in the case of the recessed detectors, as the output light passes 

through the 1 cm deep port opening, a portion of the light re-enters the wall of the 

opening, causing a reduction in the detected transmitted flux. In the case of the surface 

mount detectors, this does not happen as the detector is almost in line with the sphere 

inner wall. The word “almost” is used as the port containing the surface mount detector 

was recessed slightly so that the detector did not have a direct line of sight with the 

source. In the case of the four beam implementation where the variable gain detectors 

were used, this underestimated expected flux (due to light re-entering the wall) was 

taken as the expected flux measurement. 

Theoretical pathlength vs experimental pathlength  It was found that the 

theoretically calculated pathlength, using Equation 4.10, was consistently longer than 

the experimentally determined pathlength, using the method as described in section 

5.3.1. For example, for the setup as in Figure 5.4, with a port fraction of 0.0077 and 
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quoted reflectivity of 0.987, the theoretical optical pathlength was calculated to be 

≈1.62m whereas the experimental gas pathlength was measured as ≈1m. It was 

concluded that this could be due to a number of factors, such as the quoted sphere wall 

reflectivity value no longer corresponding to the actual reflectivity due to aging of the 

sphere wall, or in this case, tapering of the material to a depth of 2-3mm as it 

approached the port openings. Indeed the experimental data suggests an overall 

reflectivity of 97.5%, not 98.7% as quoted by the manufacturer. Additionally, as 

mentioned in Section 5.4.2, the presence of the gas itself has an attenuating effect on the 

light when in the non-linear regime of the Beer Lambert law. As a result of all of these 

effects, the pathlength calculation using the gas method will underestimate the optical 

pathlength value. The experimentally determined gas pathlength values for each long 

path were used for the four beam calculations as the end goal was to measure the gas 

concentration which would be related to the gas pathlength. Additionally the 

contamination that was introduced did not penetrate the sphere wall and so 

contamination could be accounted for through the gas pathlength. 

Breakdown of symmetry with increased contamination   As seen in Section 5.4.2, 

increased sphere wall contamination increases the resultant error. It was suspected that 

the assumptions of uniform and homogenous diffusion of the light were no longer 

holding at higher levels of contamination. To investigate whether the two pathlengths 

were equivalent at each stage of contamination, a mean effective pathlength for each 

diffuse path at each level of contamination was calculated, using the method for 

pathlength calculation as described in Section 5.3.1 and displayed in Figure 5.4(a). The 

results are plotted below in Figure 5.15, along with the percentage errors incurred in 

each corresponding gas absorption measurement. The error bars correspond to the 

standard deviation values of three repeat measurements. 
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Figure 5.15: Effect of contamination on pathlength symmetry. At higher levels of 

contamination, the two long pathlengths diverge relative to one another (in blue) 

which causes a resultant increased error on the effective absorption measurements 

(in red) 

As seen in Figure 5.15, for increasing levels of contamination the two pathlengths 

diverge relative to each other. For example, for 2.87% sphere wall coverage the diffuse 

long paths deviated from each other by approximately 6cm, whereas for lower levels, 

such as 1.2% the diffuse long paths deviated by approximately 1.5cm. This could 

suggest that at these levels the light may not be uniformly diffused and the integrating 

sphere relations break down. 

First strike spot cannot be compensated   The four beam compensation scheme has 

shown improved accuracy of gas absorption measurements in the event of sphere wall 

contamination. However it was supposed that the scheme may not be able to 

compensate for contamination on the area of the sphere wall where the incoming 

specular beam contacts i.e. at the first strike spot, in this case an annulus around the 

detector opposite each entrance aperture. To test this, an experiment, as in Figure 5.4 

was used where a fouling tab (≈10x4mm) was placed at the first strike spot of laser 

source 2, i.e. at the detector 2 position. The effective gas absorption was calculated for a 

gas concentration of approximately 1000ppm. It was found that when the compensation 

scheme was applied as for the other sphere wall contamination in Section 5.4.2, the 
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resultant gas absorption measured was overestimated by approximately 40%. The long 

path measurements were looked at in isolation and compared with the results from 

earlier where the sphere wall contamination was introduced into the bottom of the 

sphere.  

Table 5.5: Comparison of effects of two sphere wall contamination locations, firstly at 

a first strike spot and secondly on the bottom of the sphere.  

Location of 

contamination 

% drop in long path 

flux measurement 

(12) from 

calibrated 

% drop in long path 

flux measurement 

(21) from 

calibrated 

% error in 

absorption 

coefficient from 

calibrated α 

At source 2 first 

strike spot.  

12 63 40 

At bottom of 

sphere wall 

26 25 1.32 

As seen in Table 5.5, the long path flux measurements reduced disproportionately for 

the incident where the first strike spot for source 2 has been contaminated. When 

compared with the sphere wall contamination where there is no interruption of the first 

strike spot the long path from source 2 to detector 1, i.e. 21 has reduced by over twice 

as much for the first strike spot contamination. This is probably due to the fact that at 

this location the incoming beam is a specular beam with a greater incoming power than 

for a diffuse reflection. However, the level of error is likely to be lower than the error 

that would result from similar levels of contamination present on the rest of the sphere 

sidewall, because after the first strike spot photons encounter the sidewall an average of 

M times before striking the detector. Thus, if contamination within the sphere is well 

distributed and not confined to the first strike spot, errors will still be reduced by use of 

the compensation scheme. 

5.5  Discussion and future work 

The research in this Chapter aimed to investigate a method that could account for 

potential deviations from calibration for an integrating sphere based gas sensor, for 

example as a result of sphere wall contamination. The approach taken is a new 

modification of the so-called four beam ratiometric compensation scheme, as used in 

water analysis, combined with use of the integrating sphere relations. The following 
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sections discuss both the achievements that were made, including a mathematical 

derivation that can adjust for pathlength change, as well as the limitations, such as 

sphere window contamination. 

5.5.1 Benefits of and improvements to work to date 

Compensation for component variation   One of the cited advantages of the original 

four beam technique was compensation for component variation and it was hoped to 

maintain this for a sphere adaptation. As seen in Section 5.4.1, for the integrating sphere 

adaptation, a reduction in intensity of source 1 was compensated for to within a 1% 

error. This showed that this configuration did not contribute a further error to the 

absorption measurement, even for high concentrations of gas. The construction of the Q 

expression dictates that four beam passes are needed so that all potential component 

variation can be compensated for i.e. whether at source or detector position. However 

this does introduce a requirement for two sources and two detectors which increases 

complexity as well as the port fraction due to the additional port openings. For future 

embodiments, it is intended to construct a two beam setup where a single source and 

two detectors are used so that only one short(direct) path and one long (diffuse) path are 

considered. This is possible as the pathlength adjustment calculation for sphere wall 

contamination can be done without the requirement for four beams. This would of 

course mean that some component variation is not accounted for, i.e. detector 

fluctuations, however given that other sources of variation, such as sphere wall or 

window contamination contribute a much greater error, the advantages of reducing the 

number of components, i.e. reduced cost, or ease of manufacturing, may outweigh this 

loss. 

Compensation for sphere wall contamination  The initial focus for the 

mathematical derivation was to be able to differentiate whether changes in the 

transmitted flux occurred as a result of the presence of an absorbing gas or 

contamination of the system, or both. It was shown both theoretically and 

experimentally that the fractional change in the Q(0) expression could be used to adjust 

the pathlength sum, allowing for a gas absorption measurement to be made even in the 

presence of sphere wall contamination, with only a minor resultant error (an average of 

6% for the contamination levels tested) due to the presence of contamination. When it 
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came to experimentally implementing the mathematical derivation it was found that 

there were additional factors that could contribute further uncertainty to the 

measurement. These included an increase in errors for increasing contamination, as well 

as for increasing gas concentration. 

Regarding the increasing error with increasing contamination, it was concluded that the 

error occurred as a result of divergence of the two long pathlengths relative to each 

other. This suggests that at these levels of contamination the light may not be uniformly 

diffused and consequently this may have implications for alignment tolerances. On the 

note of the higher gas concentrations, the resultant errors increased relative to the 

concentration which suggests a predictable error. Future work would look to be able to 

factor this in, possibly through use of the short path as an indicator of the fact that there 

is a higher concentration present. 

The other sphere wall element that was not compensated for was the first strike area, an 

annulus around the detector opposite each entrance aperture, as demonstrated in Section 

5.4.4, when the first strike spot for source two was contaminated. Contamination at this 

point did not affect the direct flux but did reduce the diffuse long path flux of source 2, 

giving an error that could not be compensated for with pathlength adjustment. Further 

investigation showed that the long path flux measurements for source 1 and 2 reduced 

disproportionately for the incident where the first strike spot for source 2 has been 

contaminated. This disproportionality could, in practice serve as an indicator of first 

strike spot contamination specifically. The size of the fouling tab used meant that quite 

a substantial portion (approximately 40%) of the source 2 first strike spot was 

contaminated. It is unknown whether this scenario would be likely in-situ and so future 

work would aim to investigate this. 

On that note, the method of inducing contamination, i.e. using relatively large fouling 

tabs as seen in Figure 5.9, was quite a severe simulation of contamination, but was done 

in this way so that any observed effects could definitely be attributed to the 

contamination induced, as well as to allow for easy removal of induced contamination 

without disrupting the alignment. In reality it is expected that for any in-situ 

implementation of this technique, a particulate filter would be attached to the gas inlet 

so that if any particulates enter the sphere they would be on the order of microns. 
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Potential sources of contamination include airborne dust particles that have not been 

captured by sampling line filters, or condensation of water or oils present in sample gas 

streams. One aspect of this compensation scheme that has not been investigated is the 

long term accuracy and repeatability of this type of compensation scheme. Future work 

would aim to test this scheme in a more representative environment, i.e. use of smaller 

more dispersed particulates and over a longer period of time, e.g. a month. Some factors 

to consider would include what level of contamination is acceptable before the detection 

limit is compromised and how long does it take for the sphere to accrue this level of 

contamination. 

Sphere window contamination  The contamination source representing the greatest 

cause for concern, as was evident from the resultant errors, was the sphere window 

contamination. The magnitude of the error was very dependent on how much the short 

path flux deviated from the calibrated setup as it affected both the pathlength adjustment 

calculation and the gas measurement itself. In practice, as the direct (short) path flux is 

very sensitive to contamination build-up on the window, it is envisaged that monitoring 

of the direct (short) path flux change over time would provide a warning to alert the user 

to appreciable contamination on the windows. 

Furthermore, from an alignment point of view, though the beam divergence for each 

path needs to be controlled, the symmetrical setup means that the alignment of the 

system itself is not complex as long as the beam divergence is controlled. It is envisaged 

that the diverging lenses can be secured with custom adaptors and thus a “plug-and-

play” type system should be achievable. What this means is that, as the alignment 

would be fixed by the component adaptors, even if appreciable window contamination 

occurred, the windows could be removed, cleaned and replaced in-situ by the operator 

without the need to return the sensor to the manufacturer for recalibration. This would 

be preferable to the need to clean or recalibrate the sphere, which would be the 

alternative for the uncompensated scheme. Ideally to reduce the necessity for this, as 

mentioned before, a particulate filter would be included at the gas inlet. Further 

investigation needs to be carried out to look at how changes in transmission due to 

window contamination translate in terms of errors with absorption coefficient 

calculations for the four beam setup. For particles with dimensions of the order of the 

crumpled plastic film, depending on the application, the resultant error may be 
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acceptable. It is expected that larger particles on the order of millimetres would 

contribute an unacceptable error. Indeed a similar issue exists for more conventional 

four beam systems[173] which are nevertheless used successfully in industrial 

applications subject to fouling. 

Future work   On a general note about the four beam technique, as cited for the 

traditional four beam configuration[171], having the ability to measure a wide range of 

concentrations due to the option of variable gain would provide an advantage for 

absorption measurements. The availability of short path measurements could be useful 

for higher concentrations where otherwise, saturation of long path signal may occur. At 

the other end of the scale, application of modulation techniques, as described in Chapter 

3, is a possibility to achieve greater detection capability reaching low ppm and possibly 

even ppb levels. In terms of the ratiometric scheme, it may be possible to implement 

this in a cubic cavity. This would ease the complexity in cavity manufacture and 

possibly allow for easy construction and deconstruction of the cavity if contamination 

has occurred. From a calibration point of view it is envisaged that the pathlength 

calculation technique that will be described in Chapter 6 may be combined with this 

technique to allow for pathlength calculation without the requirement for a reference gas 

cell. This would also allow for an optical as well as gas pathlength to be calculated, 

which would aid with the intended long term measurement accuracy investigations, as 

mentioned in the sphere wall contamination section of this discussion. 

5.5.2 Summary 

In this chapter a four beam ratiometric scheme for an integrating sphere based gas cell 

was presented that, in the event of sphere wall contamination, could be used to adjust 

the pathlength. In this way gas absorption measurements can continuously be made 

without needing to calibrate or remove and clean the sphere.  

The chapter summarised the background to the original four beam compensation 

scheme on which this scheme is based and described the proposed adaptation to an 

integrating sphere setup. A mathematical derivation was provided showing how the 

scheme is intended to work. To demonstrate the technique, methane gas was detected at 

concentrations from 0 to 6250ppm using tunable diode laser spectroscopy at 1651nm, 

with increasing levels of sphere wall contamination from 0 to 2.87% sphere wall 
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coverage. For example, for a 5.08cm diameter sphere, a 1500ppm concentration of 

methane with fouling over an area representing 1.2% of the sphere wall, gave a reduced 

absorption coefficient which had an average percentage error of 46% compared with the 

calibrated value (which had no fouling). With the ratiometric scheme, this error was 

reduced to 1%. There were some factors that contributed further uncertainty, namely 

errors that increased with increasing levels of contamination, due to a loss of assumed 

symmetry between the long paths. Increasing concentrations of gas also produced an 

increase in error, attributed to the attenuating effect of the gas. Contamination of the 

first strike spot caused a substantial error in absorption measurements and thus 

represents the greatest concern for sphere wall contamination. It is the position where 

the incoming specular and thus relatively (to the diffuse reflections) intense, beam pass 

first contacts the wall. The disruption of the incoming beam greatly affected subsequent 

diffuse reflections and could not be compensated using the pathlength adjustment as this 

pass is not accounted for in the calculation. Further investigation is required to solve 

this issue; one possibility may be to monitor the difference between the two diffuse path 

fluxes, Φ12 and Φ21, as an indicator of failure. 

Additionally other cited advantages of the traditional four beam setup were tested, 

namely component variation and sphere window contamination. The scheme 

compensated well for component variation, i.e. a 0.38% error in Q(gas) expression 

resulted instead of a potential 4.5% error, when compared with the calibrated value. 

Preliminary experiments looked at sphere window contamination, using two particle 

sizes, i.e. millimetre on the order of the beam diameter and a much finer particle size, 

i.e. much less than the detector or source size. The results indicated that, depending on 

the particle size, this type of contamination may contribute a sizeable deviation from the 

originally calculated pathlength in the system. 

In the course of this study it was necessary to develop repeatable methods for 

simulating different types of contamination without causing permanent changes to the 

sphere. This was achieved using adhesive tabs as described in Section 5.4.2, allowing 

for different potential contamination locations to be tested. On a more general note this 

could potentially provide an experimental basis for comparison of different techniques. 

The contribution of the various contamination sources are summarised in Table 5.6.  
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Table 5.6: Summary of the various contamination scenarios tested, and their effect on 

the resultant absorption measurement when compensated for and uncompensated.  

Sphere characteristics 

Diameter  5cm 

Sphere reflectivity 97.5% experimentally (manufacturer quoted as 98.7%)  

Effective optical pathlength ≈100cm long path, 5cm short path 

    

Error 

sources 

Effect of error Compensated 

(%error) @1500ppm 

Uncompensated 

(%error) @1500ppm 

Sphere wall 

contamination 

Effective pathlength of 

long path reduced, output 

power is reduced. 

Mathematical derivation 

corrects pathlength to 

new “contaminated” 

scenario 

3% error in gas 

measurement with 

2.87% sphere wall 

contamination 

65% error in gas 

measurement with 

2.87% sphere wall 

contamination  

Sphere 

window 

contamination 

Output power tended to: 

Decrease in both short 

and long path for <<mm 

scale contamination 

Increase in long path and 

decrease in short path for 

mm scale contamination 

mm particulate 

contamination 70% 

error 

<<mm particulate 

contamination 13% 

error 

Not calculated as it 

could be determined 

qualitatively that the 

result would yield a 

large error.  

Component 

variation i.e. 

laser/ detector 

fluctuation 

Measured output power 

will differ. Four beam 

setup cancels this out  

ratiometrically 

1.4% 1% 

First strike 

spot 

Corresponding long path 

throughput reduced, and 

disproportionately to 

other long path 

throughput 

63% reduction in corresponding long path 

12% reduction in other long path 
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For future work, there are many further avenues to explore in terms of detection 

capability, e.g. modulation, and embodiments of the ratiometric scheme, e.g. a two 

beam setup or even a cubic structure. In summary, the adapted four beam configuration 

for an integrating sphere has the potential to provide a means of pathlength calibration 

for continuous, in-situ, operation. 
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6 Phase detection techniques for pathlength calibration 

“FPGAs meet critical timing and performance requirements with parallel processing 

and real-time industrial application performance, permitting greater system integration 

and lower development cost”- EE times[174] 

The motivation for this work stemmed from a desire to be able to measure the effective 

pathlength of the sphere in situ and without the requirement for using a reference gas 

cell for the initial calibration. The decision to use the techniques as described in the 

proceeding sections came about following a conversation with a fellow researcher, Dr. 

Thomas Kissinger, who has been researching range resolved interferometric signal 

processing based on code division multiplexing[175], [176]. Here, return signals from 

multiple interferometric signal sources can be separated based on their time of flight, 

through the encoding of the outgoing light with a pseudo-random digital code. It was 

hypothesised that some aspects of this signal processing scheme could be incorporated 

into an integrating sphere setup to achieve real-time measurement of the sphere 

effective pathlength. 

It was envisaged that the technique would work in a similar way to that of phase shift 

cavity integrating cavity output spectroscopy (PS-ICOS), as described in Section 2.3.5, 

where a measured phase shift could yield information about the reflectivity (and thus 

pathlength) of the sphere. To provide a pathlength calibration in distance units a 

comparison of the phase shift for the sphere output signal (with unknown pathlength) 

could be compared to that of the phase shift for a separate measured signal with a 

known length. Unlike some PS-CEAS applications, the motivation was to measure a 

pathlength rather than trace gas concentrations and so the same measurement precision 

would not be required. For example, it can be necessary to have longer integration times 

(on the order of a few minutes) when trying to achieve ppb detection limits[75], 

6 
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whereas measurements of pathlength do not demand the same sensitivity e.g. 

measurement uncertainties of ±1cm could be acceptable. 

An advantage of employing this scheme is the enhanced resolution achieved through 

implementation of high frequency modulation of the intensity. The achievable 

frequency range far exceeds the limits of standard laboratory lock in amplifiers (1mHz - 

102kHz) and is made possible due to the high clock frequency (150MHz) of the 

hardware used, i.e. a field programmable gate array (FPGA). An additional advantage of 

using this approach is that the signal generation and processing are carried out by the 

FPGA, and so the modulation and demodulation are synchronised. Thus, in effect, it 

works much like a lock in amplifier, facilitating measurement of weak signals in a 

potentially noisy environment. The use of this type of hardware gives a lot of flexibility 

in terms of the bandwidth selection i.e. harmonics of the modulation frequency can be 

measured. This provides an advantage over techniques like OA-ICOS (Section 2.3.5), 

where output power is sacrificed to allow for the use of lower bandwidth electronics, or 

the ICRDS (Section 2.3.4) where high reflectivity material and high bandwidth 

electronics have to be used to achieve sufficient resolution of the exponential decay. 

As an additional step, it was envisaged that by simultaneously applying a lower 

frequency ramp waveform, as utilised in Chapter 5, an off gas line, as well as on gas 

line measurement could be made, to record pathlength change due to contamination 

only, thus maintaining knowledge of the sphere pathlength. Due to time constraints, 

implementation of the lower frequency ramp waveform for spectroscopy was not tested 

and so pathlength calibration was investigated at the gas line wavelength only. 

To test the signal processing scheme in an integrating sphere setup, two different types 

of signal generation were used to interrogate the system where the intensity was 

modulated. The first signal used is a straightforward high frequency sinusoidal 

modulation of the incoming signal, and the second is a pulsed modulation, which is 

introduced through use of a digital code known as a maximum length sequence (MLS). 

The first section of this Chapter describes the signal processing scheme itself as 

designed and built by Dr. Kissinger, the hardware used, and the considerations for 

signal optimisation and data analysis. The second section describes the sinusoidal 
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modulation approach, including the considerations for design optimisation such as the 

compromises between sensitivity and gain. The experimental results for both a single 

pass setup and multiple pass sphere setup are shown, introducing some of the issues 

with throughput and interference that need to be addressed in the future. The third 

section describes the pulsed modulation approach, including the theory behind the code 

used and some experimental design strategies for signal optimisation. The results are 

presented in a similar format as for the sinusoidal modulation with a single pass setup 

and multiple pass setup considered. The fourth and final section describes the 

limitations of both techniques; the discussion for both has been combined as many 

issues, such as interference and throughput, are common to both techniques. 

Dr. Kissinger’s contribution to this work has been; 

 Configuration and assembly of the FPGA with appropriate signal converters to 

facilitate generation and processing of signals. 

 Creation of programming code to enable control of FPGA and processing of 

acquired data. 

 Collaborated on mathematical derivation, along with Dr. Hodgkinson as detailed 

in Section 6.1.2. 

The remaining aspects of the work, i.e. the experimental design and data analysis as 

described in this Chapter are the work of the author. 

6.1 The signal processing scheme 

As mentioned in the introduction, the signal generation was carried out by the same 

piece of hardware, a field programmable gate array (FPGA), which ran at a clock 

frequency of 150MHz. A more detailed overview of how the FPGA works is described 

in Appendix A. The signals were post-processed on a PC to facilitate greater flexibility 

with the experiment optimisation and measurement. Due to bandwidth limitations the 

frequencies that were processed on the PC were lower frequency integer factors of a 

higher modulation frequency i.e. 150MHz. The specific values for the sinusoidal and 

pulsed modulation techniques will be discussed later in the relevant sections 
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The general setup applied to both modulation techniques is shown in the schematic in 

Figure 6.1. The specific setups will be discussed in more detail when the experimental 

implementation for each technique is described in Sections 6.2.1 and 6.3.2. 

 

Figure 6.1: General setup: Light emitted from the laser diode is intensity modulated 

using an electro-optic modulator. The photodetector is initially placed at a known 

distance, Lcal from the fibre output and a measurement is made. Subsequently it is 

placed at the sphere output port while the fibre output is placed at the sphere input 

port and another measurement is made. The photodetector signals are acquired using 

the FPGA and a sphere pathlength is calculated by processing both signals on a PC. 

As seen in Figure 6.1, light emitted from the laser diode was intensity modulated using 

an electro-optic modulator (EOM), driven by the FPGA which was directed by the PC 

program. The single mode fibre output from the EOM was first placed at a position in 

free space a known distance from the photodetector and the resultant phase shifted 

signal (relative to the phase angle of the inputted signal) was acquired by the FPGA and 

processed by the PC. The fibre was then placed at the integrating sphere input port, 

whilst the photodetector was placed at an exit port orthogonal to the input port and that 

phase shifted signal was measured. Both signals were processed by the PC and a 

resultant sphere pathlength was calculated by comparison of the phase difference 

between the two signals. The following sub-sections provide a step by step description 

Integrating sphere

FPGA

Single mode fibre alternated between (a) known 

distance and (b) sphere input port 

Photodetector alternated between known 

distance and sphere output port 

PC

(b)

(a)
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of the role of each component in the signal processing scheme and how the phase 

signals were generated and processed. 

6.1.1 Signal generation and acquisition 

Signal generation was initiated by a PC program, allowing for parameters such as the 

digital code length (for pulsed modulation) or averaging time to be set. Depending on 

the programmed commands (in Python programming language), the FPGA generated 

either a pulse or sine waveform. An initial phase angle θi was recorded by the FPGA 

(derived from the FPGA internal counter) as a point of reference for subsequent 

measured signals. The waveform generated by the FPGA was outputted to the electro-

optic modulator (EOM) which produced intensity modulation of the incoming beam, as 

seen in Figure 6.2. 

 

Figure 6.2: The waveform generated by the FPGA is outputted to the electro-optic 

modulator producing intensity modulation of the incoming beam 

The fibre output of the modulated beam was then placed at the relevant locations to 

make pathlength measurements. For a single pass the fibre output was placed a certain 

distance (in free space) from the photodetector and a measurement was made as in 

Figure 6.3 (a). For an integrating sphere the fibre output was placed at an input port of 

the sphere and the photodetector was placed at a port orthogonal to the input, as in 

Figure 6.3 (b). 
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Figure 6.3: Measurement of the phase shifted output signal for (a) a known length 

and (b) the integrating sphere unknown pathlength. 

For the sinusoidal modulation the sine waveform will be shifted relative to the original 

input signal, the extent of which is related to the distance from the fibre output to the 

photodetector. The output signal from pulsed modulation has an impulse response that 

resembles a “stretched pulse”, the extent of which will again depend on the distance that 

the light has travelled before reaching the photodetector. The detected signals were 

transmitted to the FPGA where they were averaged and the phase angles φ1 and φ2 were 

recorded i.e. relative to the original input phase angle θi as logged by the FPGA. The 

data was transferred to the PC for further processing. 

6.1.2 Data analysis 

The raw data input from the FPGA comprised time varying signals and so the signals 

were converted to the frequency domain to extract the phase information at frequencies 

of interest i.e. harmonics of the modulation frequency. For the sinusoidal modulation 

technique, the waveform corresponded to a sine wave at a single frequency as seen in 

Figure 6.4 (a). The signal was Fourier transformed and the phase and amplitude at that 

frequency determined. Multiple frequencies were recorded consecutively so that results 
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could be compared to the pulsed modulation technique where a single measurement 

comprised a range of frequencies. The resultant phase shifts were plotted against 

frequency for both techniques, as seen in Figure 6.4(c) and (f)   

 

Figure 6.4: The raw data inputs for both techniques are time varying signals i.e. (a) 

and (d). To extract the phase information, the signals are Fourier transformed (FT) 

into the frequency domain i.e. a single frequency (b) and all frequencies (c) and (f). 

Note: figure (e) does not contain a single frequency plot as the impulse response 

contains all frequencies already. 

For a single pass at any given length, the phase varies linearly with frequency, with the 

phase shift increasing at higher modulation frequencies. For an integrating sphere the 

effective pathlength is derived from the integration of multiple beam passes of multiple 

lengths. These passes have varying phases and amplitudes which overlap extensively. 

As a result, the overall phase shift that is measured exhibits a different relationship to 

the frequency, dependent on the extent of interference amongst the beam passes, as seen 

in Figure 6.5. The effective pathlength of an integrated sphere unlike a typical single 

pass is arrived at by considering the statistical distribution of the light in terms of the 

number of successful beam passes and their propagation. With increasing interference 

and cancelling among these beam passes it could be expected that the achievable 

effective pathlength would reduce as a result. 
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Figure 6.5: Resultant signals for an integrating sphere: the raw data inputs are time 

varying signals i.e. (a) and (d). In the frequency domain i.e. (c) and (f), the phase 

shift and frequency of detection relationship varies depending on the extent of 

overlap of beams. It is thought that at higher frequencies the measured overall phase 

shift is less than for a single pass due to increased beam overlap resulting in 

indistinguishable phase shifts between beam passes. 

In order to understand the relationship between the overall phase shift in a sphere and 

modulation frequency for an integrating sphere, an analytical model was derived in 

collaboration with Dr. Kissinger and Dr. Hodgkinson as follows. 

For each beam pass the signal as a function of time y(t), will have the form. 

 0( ) (sin 2 )ty t I t     6.1 

where I is the intensity of the signal and Ω0 corresponds to the modulation frequency of 

detection. Δφt corresponds to the phase shift of the sinusoidal function from its origin 

i.e. t=0, to its position at some elapsed time t and can be expressed either in terms of 

time or distance as 
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
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      

6.2 

where Lt is the corresponding effective pathlength at that elapsed time t. This equation 

applies for a single path measurement where the optical pathlength difference varies 

linearly with the phase shift of a sinusoidal function. 
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As well as this fundamental relationship of phase shift and frequency, pathlength 

calculation for an integrating sphere has to take into the account how the light is 

distributed in the sphere. Thus the measured phase shift that is used to calculate the 

integrating sphere pathlength is an integration of multiple sinusoidal functions of 

varying phases and amplitudes, dependent on how long the photons have spent within 

the cavity before being measured. The photons that make more passes within the cavity, 

and which results in a longer pathlength interval, will have a large phase shift but 

reduced amplitude due to reflectivity losses with each subsequent pass. 

Thus to calculate the overall phase of all of these beam intervals, the integral of the 

function y(t), Equation 6.1, for the beam pass intervals can be denoted by 

  0( ) exp (2 )dLy t I i t dL     6.3 

Note Equation 6.1 is expressed as a complex exponential function here. 

As described in Section 4.2, the intensity of the measured signal, at time t, IdL, will 

decay exponentially, the rate of which will be proportional to the sphere wall reflectivity 

 

0 exp
t

dLI I 



  
6.4 

where I0 is the initial signal intensity at time 0, t is the elapsed time, and τ is the decay 

constant as described in Section 4.2. For small port fractions the decay constant can be 

expressed as 

 1

1

spL

c




 
   

 
 

6.5 

where ρ is the sphere wall reflectivity and c is the speed of light. Lsp corresponds to the 

average length of a single pass across the sphere and is given as 2D/3, where D is 

diameter of the sphere. It was seen in Section 4.2 that for low or zero absorbance α and 

where the apertures are very small (f<<1), the effective pathlength Leff, is of the order  
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6.6 

and thus the decay constant can be expressed as  



6 Phase detection techniques for pathlength calibration 

124 

 

 
effL

c
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6.7 

Substituting this back into equation 6.4 gives the expression for the intensity at elapsed 

time t (in terms of distance/pathlength) corresponding to a beam pass interval dL as 
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6.8 

Equation 6.8 and 6.2 are then are substituted into the integral function, equation 6.3 to 

give 
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which becomes 
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6.10 

The final signal, y(t) will have the form 

  0( ) exp (2 )exp( )y t I i t i     6.11 

Thus, considering all beam pass intervals, equation 6.11 can be equated to equation 6.10 

giving 
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6.12 

Looking at the magnitude and phase components individually and expressing them in 

terms of their real and imaginary parts gives 
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6.13 

and  
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Finally substituting equation 6.14 into the phase difference equation 6.2 the actual 

effective pathlength at time t, Lt becomes 
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6.15 

The first fraction of the equation accounts for the fundamental change in phase shift 

which varies linearly with frequency while the second fraction accounts for the overall 

phase shift of the effective pathlength of the sphere, which is an integral of multiple 

beam passes and varies as an arctangent function with increasing frequency. 

To demonstrate this graphically a typical output over a range of frequencies is shown in 

Figure 6.6 for both a single pass and multipass derived pathlength. The delta phase Δφ 

measurement varies with varying frequencies, i.e. linearly for a single pass and as an 

arctangent function for an integrating sphere. 

 

Figure 6.6: Pathlength calculation for a single pass and the multipass derived 

integrating sphere pathlength. For a single pass, the phase varies linearly with 

frequency whilst for multiple passes as in the integrating sphere, the phase varies as 

an arctangent function with frequency. 
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As seen in Figure 6.6, the phase varies with frequency as an arctangent function, giving 

a pathlength value that is constant at all frequencies. The data will be discussed in more 

detail in the relevant sections for each technique. 

6.2 Sinusoidal modulation 

High frequency modulation (MHz-GHz) has been applied to some gas sensing 

applications[177]–[179] however the requirement for fast detection components and 

more sophisticated demodulation and filtering means that often wavelength modulation 

spectroscopy at lower frequencies (kHz-MHz) is the preferred option. This technique 

hopes to alleviate some of these requirements through use of the signal processing 

scheme as detailed in the previous section. 

Due to bandwidth limitations the frequencies that were processed on the PC were 

integer multiples (i.e. harmonics) of a base frequency rather than at the clock frequency 

of 150MHz. The base frequency Fb, was calculated by dividing the clock rate of 

150MHz by the number of samples that were acquired per second during each cycle of 

the measured signal, e.g. 128 samples/s. So, for example with an acquisition rate 128 

samples per second the resultant base frequency would be 1.172MHz and thus 

frequencies of interest could include integer multiples such as 2.344MHz and 

3.516MHz. 

In order to quantify the pathlength in terms of distance an additional calibration step 

was undertaken to convert the phase shift to these units. The resultant phase shift φcal, 

for a known pathlength was measured, in the same way as seen in Figure 6.3. The phase 

shift was then measured for the unknown pathlength e.g. integrating sphere φ2 or single 

pass φ1. The unknown pathlength could then be quantified in length units using 

Equation 6.2 or 6.15 (for integrating sphere) for phase difference, where Δφ (in radians) 

corresponds to the phase difference between the known pathlength phase shift φcal and 

the unknown pathlength phase shift (i.e. (φcal-φn), where n=1 or 2). 

6.2.1 Experimental setup 

For this particular implementation of the technique, as illustrated in Figure 6.7, a 

1651nm distributed feedback (DFB) fibre pigtailed laser (NTT Electronics corp. NLK 

1U5EAAA) was used with a typical output power of 20mW at a bias current of 100mA. 
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Its temperature was controlled at 14.5°C so that the wavelength was tuned to the 

methane gas line at 1651nm. The single mode fibre pigtailed laser was connected to a 

polarisation maintaining optical fibre (Corning HB1500T aligned along the slow axis) 

which in turn was connected to an electro-optic intensity modulator, EOM, (Lucent 

Technologies 2623-NA). The modulator output fibre was connected to a 90:10 fibre 

coupler (Newport F-CPL-S22151) where 90% of the light was directed to the 

sphere/cell of interest and the remaining 10% was connected to an optical spectrum 

analyser, OSA, (Yokogawa AQ6370C) so that the wavelength and power output could 

be monitored. 

 

Figure 6.7: Setup for sinusoidal intensity modulation using signal processing as 

described in Section 6.1. An optical spectrum analyser is used to monitor the 

wavelength of the light. 

The modulation was generated as detailed in Section 6.1.1, where the signal from the 

FPGA (Altera Cyclone IV on Terasic DE2-115 board) was transmitted to the DAC 

(Altera data acquisition daughter board). An analogue low-pass reconstruction filter 

(Mini circuits BLP 90+ with 3dB cut off frequency 90MHz) was connected at this point 

to provide attenuation of any high frequency components present in the DAC output 

signal. The signal was amplified by a high-frequency amplifier (Mini-circuits ZFL-

1000VH2) to boost the drive voltage of the electro optic modulator to achieve greater 

modulation depth. 
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To test the accuracy of both techniques, the pathlength calculation was applied to a 

range of known single pass distances, as illustrated in Figure 6.8. The distances were 

measured using an engineering ruler with a measurement uncertainty of ±1mm. 

 

Figure 6.8: Single pass setup to test accuracy of signal processing; the light output is 

placed at various known distances (±1mm) from the calibration point using the setup 

as in Figure 6.1 with an open path in place of the integrating sphere. 

The pathlengths of two different spheres were measured, one with a diameter of 5.04cm 

(termed the 5cm sphere), made with Zenith
TM

 (Thorlabs IS-400) and the other with a 

diameter of 13.46cm (termed the 13cm sphere) and made with Spectralon
TM

 (Labsphere 

3P-GPS-053-SL). To ensure that specular reflections from the first strike spot did not 

influence the measurement signal, the photodetector was placed orthogonal to the input 

port. It was found that the measured output power from the laser was reduced by 95%, 

i.e. from approximately 20mW to 1mW after passage through the EOM, due to, it is 

thought, the wavelength being out-with the bandwidth range of the EOM resulting in 

reduced visibility. This greatly reduced the incoming power into the sphere and resulted 

in a noisy output signal at the detector i.e. output on the order of a few µW. 

After detection (Thorlabs PDA10CF fixed gain, 10kV/A, 150MHz BW, 0.2mm
2
 active 

area), to prevent aliasing, the signal was filtered with a low pass analogue filter (Mini-

Circuits BLP-50+ with 3dB cut off frequency 50MHz) digitized at sample frequency, fs 

= 150MHz by the ADC (Altera data acquisition daughter board), then transmitted to the 

same FPGA. The signals were processed as described in Section 6.1, i.e. the phase shift 

of a known distance was compared with the “unknown” distances i.e. D1-D7 to 

calculate the expected pathlength, according to the equation in Figure 6.6. For each 

frequency selection, the measurements were averaged over ten seconds to improve the 
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signal to noise ratio. The chosen frequencies of detection were integer multiples of the 

base frequency, which in this implementation corresponded to 1.172MHz i.e. 

150MHz/128samples. The measurable frequencies were limited by the analogue filter at 

the acquisition stage, which has a 3dB cut off of 50MHz, and so integer multiples 

greater than that were not considered. 

6.2.2 Experimental results 

Pathlengths were calculated for each measurement; the results for distances D3. D4 and 

D6 are plotted below in Figure 6.9. 

 

Figure 6.9: Single pass setup, showing variation in pathlength measurements over a 

range of frequencies using the sinusoidal modulation technique 
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Taking the average and standard deviation of the measurements over all frequencies for 

each distance, as in Table 6.1, gave distance measurements that corresponded to their 

expected distances respectively. 

Table 6.1: Average and standard deviation of distance measurements made for three 

lengths over the frequency range 3-48MHz. 

 Measured distances 

Expected (±0.001m) Average (m) Stdev. (m) 

0.35m (D3) 0.35±0.005 0.03 

0.43m (D4) 0.43±0.005 0.03 

0.87m (D6) 0.87±0.008 0.05 

A standard deviation of up to 5cm occurs because of, it is thought, the additional 

structure as a result of a lack of polarisation control at the source fibre, which is single 

mode. This contributed to the systematic semi-periodic nature of the deviation from the 

true value, as seen in Figure 6.9. Additional investigation, which is discussed in section 

6.3.4, found that the source of this interference could be attributed to polarisation effects 

in the fibre lead connecting the laser (the fibre pigtailed to the laser was found to be 

single mode fibre) and the EOM. Due to time constraints it was not possible to repeat 

experiments using the sinusoidal modulation to confirm this but measurements shown in 

section 6.3.4 confirmed that the interference was reduced by use of a laser pigtailed with 

polarisation maintaining fibre. 

Following this, it was decided to test the technique using both the 5cm and 13cm 

diameter spheres. In the case of the 13cm sphere, with 1cm thick port adaptors, the 

detector was recessed by over 1cm and so the throughput was below the baseline 

detector noise. As a result one of the ports had to be replaced with a shallow port so that 

the detector was less recessed. This resulted in an area of 5cm
2
 where the surface was 

less than 3mm thick and thus the reflectivity at this point would not correspond to the 

manufacturer quoted 0.987. It would be expected that as a result the resultant pathlength 

would be reduced. Nevertheless, as a comparison, an effective pathlength was 

calculated for both spheres based on the analytical model as detailed in Section 6.1.2. 

The sphere wall reflectivity was chosen based on the best fit with the experimentally 
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determined data and a port fraction was calculated from measurement of the port areas. 

The results for the 5cm and 13cm sphere are plotted in Figure 6.10. 

 

Figure 6.10: (a) Measured effective pathlength for (a) 5cm sphere and (b) 13cm 

sphere over frequency range 3-48MHz. 

Due to the nature of how the light is diffused, i.e. a larger proportion of the light 

penetrates the wall up to 1cm, the sphere output signals are two orders of magnitude 

weaker than the input signal, unlike for a single pass. As a result the relative magnitude 

of the artefacts from the polarisation mismatch effects is considerable, especially for the 

13cm sphere. However it can be seen that the measured pathlength trends with the 

theoretical derived pathlength, i.e. the phase shift due to the light distribution within the 

sphere varies as an arctangent function with frequency. An average of the theoretically 

calculated pathlengths over all frequencies is compared with an average of the measured 

pathlengths in Table 6.2. 
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Table 6.2: Average and summed standard deviation of pathlength measurements 

made for the 5cm and 13cm spheres over all frequencies 

 Measured distances 

Derived average (m) (Eq. 6.15) Average (m) Stdev. (m) 

1.54 (5cm sphere) 1.54±0.02 0.13 

2.45 (13cm sphere) 2.23±0.02 0.12 

 

As seen in Table 6.2, the average measured pathlength closely matches the theoretically 

derived pathlength for the 5cm integrating sphere. The pathlength for the 13cm deviates 

considerably, the reason for which is possibly due to low signal to noise ratio or more 

appreciable polarisation related artefacts obscuring the desired signal. Additionally the 

actual sphere wall reflectivity for both spheres is not known, e.g. a shallow port was 

used in the 13cm sphere and so the estimated theoretical value may be inaccurate. 

The setup was then tested in the presence of both an absorbing gas and sphere wall 

contamination. It was expected that the presence of sphere wall contamination would 

have a much greater effect on the effective pathlength due to the heavy dependence of 

the achievable pathlength on sphere wall reflectivity. In terms of the absorbing gas, it 

was expected that the effective pathlength reduction would vary proportionally with gas 

concentration, e.g. the largest concentration would give the greatest effective pathlength 

reduction. The pathlength measurement was repeated with different concentrations of 

methane, both with and without contamination. Contamination was induced as in 

Chapter 5, by placing a fouling tab of low reflectivity insulating tape into the sphere. 

Only one level of contamination was tested, using one tab of size 12x5.3mm approx., 

corresponding to 0.81% coverage of the sphere wall for the 5cm sphere and 0.11% for 

the 13cm sphere. The emitted wavelength was monitored using the optical spectrum 

analyser (OSA) to ensure that the laser remained at the gas absorption peak line centre. 

Different methane gas concentrations, namely 493ppm, 1235ppm and 2475ppm, were 

achieved by controlled downstream mixing of air and methane using a bank of mass 

flow controllers. For practical application of this technique, the intended conditions for 

initial pathlength calculation, i.e. the calibrated setup, would be the sphere without any 
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contamination or absorbing sample so that the pathlength is derived from the sphere 

parameters only, i.e. sphere wall reflectivity, port fraction and sphere dimensions. For 

these experiments, the measured changes in effective pathlength due to sphere wall 

contamination and/or presence of an absorbing gas were expressed in terms of their 

percentage difference from the empty uncontaminated sphere at each frequency. The 

results for the 5cm sphere are plotted below in Figure 6.11. 

 

Figure 6.11: The percentage change in effective pathlength due to sphere wall 

contamination (using a fouling tab of ≈12x5.3mm) and/or varying gas concentrations 

for the 5cm sphere 

As seen in Figure 6.11, contamination of the sphere wall has the largest effect on the 

effective pathlength as expected, differing by an average of 50% at lower frequencies. 

The presence of an absorbing gas as expected caused an effective pathlength reduction, 

with the percentage difference increasing for higher concentration. Using 

experimentally determined data from Chapter 5, i.e. measured absorbance when in the 

presence of known levels of contamination, an extrapolation could be used to make an 

estimate as to what the expected % difference in pathlength due to contamination would 

be in this case. For contamination covering 0.81% of the sphere wall surface, and 

neglecting the additional effect of the presence of gas, it is expected that the percentage 

difference in pathlength would be approximately 30%. 

In terms of each set of measurements, i.e. the frequency range for each induced change, 

the percentage difference decreases with increasing frequency of detection. It is 
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supposed that this comes about due to a reduction in sensitivity caused by a reducing 

overall phase shift at higher frequency. 

With the 13cm sphere, as the throughput was so low already, the additional loss of 

throughput caused by the contamination reduced the signal to below the baseline noise 

and so it was not possible to observe a trend, as shown in Figure 6.12. In terms of the 

gas input, concentrations of 475ppm and 2475ppm were used. Though there did appear 

to be some pathlength changes due to gas absorption, the measurements were obscured 

by the polarisation related artefacts. 

 

Figure 6.12: The percentage change in pathlength due to sphere wall contamination 

(using a fouling tab of ≈12x5.3mm) and/or varying gas concentrations for the 13cm 

sphere 

It was not possible to draw any strong conclusions from the measurements with the 

13cm sphere, as seen in Figure 6.12, however it is expected that with increased light 

throughput the output values will be above the detector baseline noise and the results 

will trend in the same way as the 5cm sphere. Furthermore the removal of the additional 

artefacts will provide a more accurate measurement. One strategy to achieve a greater 

signal to noise ratio is to directly modulate the laser thus removing the effect of the 

electro-optic modulator. This and other conclusions are discussed further in the final 

section of this Chapter. 

6.3 Pulsed modulation 

As mentioned in Section 4.4, Cone et. al.[70] introduced a cavity ring down based 

approach using an integrating cavity, termed integrating cavity ringdown spectroscopy 
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(ICRDS). Here a longer pathlength or “rate of decay” was quoted, as a result of using a 

material that exhibits higher reflectivity (0.99919 at 532nm) than the commercial 

spectralon material. This body of research aimed to showcase a coating that would 

allow for a more sensitive ringdown system in a sphere setup. My own research differs 

in that the aim was to create a more effective ringdown system technique using a type of 

signal processing which aims to improves the signal to noise ratio, rather than 

enhancing the performance of the cell itself. The improvement is achieved by 

employing a pulse repetition approach through use of a digital code called a maximum 

length sequence, MLS.  

6.3.1 Maximum length sequence (MLS) theory 

A narrow pulse with a delta function, i.e. an impulse signal, is an attractive 

measurement stimulus for a number of reasons. It contains a wide frequency spectrum, 

where the phase and magnitude is flat across all frequencies, as illustrated in Figure 

6.13. 

 

Figure 6.13: (a) Single pulse vs (b) Maximum length sequence (MLS): The phase and 

magnitude are flat over all frequencies for both, but the MLS, due to interrogating 

the system with a series of pulses, gives a greater signal to noise ratio. 

Applying an impulse to a system and measuring the impulse response provides 

simultaneous measurement of the characteristics of the system over the whole range. 

This information can be Fourier transformed into the frequency domain thus allowing 

phase and magnitude information to be extracted both for the input signal and the time 
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delayed output signal. However a big disadvantage of using the narrow pulse is the 

signal to noise ratio, SNR. The signal duration is very short, while the data response 

time must be long so that all frequency components down to the low frequencies are 

captured. Averaging over a number of impulse responses can reduce the effect of 

background noise however this can slow down the overall data acquisition time as each 

pulse has to decay completely before the next measurement can be made. 

Application of a maximum length sequence, MLS[180], [181], can alleviate some of 

these disadvantages. An MLS is a pseudo-random sequence, in which, like a single 

pulse, the magnitude is flat but unlike single pulses, the phases are coded. Though 

seemingly random, the phases of the spectral component are in fact deterministic and 

repeatable and so an MLS can be used in the same way as a single pulse. Because the 

signal is repeatable, measurements can be made without the need for a second reference 

channel, which would be the case if the sequence was truly random. 

The excitation signal for an MLS is a series of pulses that repeats itself, thus producing 

a higher average signal level as well as a greater signal to noise ratio. One of the 

properties of an MLS is that, when the binary sequence is generated, there is an almost 

equal number of 1s and 0s which gives a duty cycle of 50%. The length of the sequence 

has a periodicity, P, of the form.  

 2 1NP    6.16 

Where the N is an integer and corresponds to the number of simple logic circuits, 

known as shift registers, used. So for example a sequence generated using a shift 

register of length 7 would be 2
7
-1 samples long i.e. the sequence will repeat every 127 

clock cycles. The use of shift registers ensures that the MLS can be generated rapidly, 

without additional computing time on each clock cycle. 

In practical application, the FPGA produces a series of pulses by varying the signal 

voltage based on the binary sequence that has been input. The use of a series of pulses 

improves the signal to noise ratio without sacrificing acquisition time as, due to the 

deterministic nature of the sequence, a pulse does not have to fully decay before the 

next pulse can be introduced. For accuracy, it is important that the entire sequence 
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length is longer than the impulse response of the system or else the impulse responses 

will overlap (leading to time aliasing). 

6.3.2 Implementation 

For this particular implementation, as the FPGA had been previously configured thus, a 

sequence length of 127 was used, which gives a sequence length in time of 0.85μs 

(1/Base frequency). Despite averaging over 10 seconds, the low throughput of the 

sphere still proved challenging and it was found that the signal was somewhat obscured 

by electronic noise, created due to the “start-up” effects when generating the pulse. The 

electronic noise decayed rapidly with time and so a reel of single mode fibre could be 

inset into the measurement arm as seen in Figure 6.15, which introduced a physical 

delay and thus moved the measured signal to a region where this electronic noise would 

be considerably less. The measured impulse response could then be cut off before the 

main rise period of the impulse response of interest. A typical signal is illustrated in 

Figure 6.14. 

 

Figure 6.14: A typical impulse response for (a) a strong reference signal and (b) a 

weaker sphere signal, where the electronic noise due to "start-up" effects can obscure 

the signal if not removed. Note: different scales on y-axis. 
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For a strong signal the electronic noise is not an issue as seen in Figure 6.14(a) for the 

reference signal, or a single pass setup. In the case of the integrating sphere, the signal is 

so weak that it can become obscured by the electronic noise if not removed, as seen in 

Figure 6.14(b), the impulse response for a 5cm integrating sphere. The magnitude of 

electronic noise (in green) as a result of the initial pulse generation is reduced by taking 

a baseline average of the samples before the noise, e.g. from 0-15 then substituting this 

baseline average value for the region where the electronic noise is largest. Once the 

signal has been recorded, the amplitude and phase information can then be obtained and 

the pathlength calculated as described in Section 6.1.2. 

In the case of the pulsed technique, the pulsed modulation is achieved by directly 

outputting a digital code from the FPGA. An amplifier was not required for the pulsed 

modulating signal. 

A schematic of the experimental setup is shown below in Figure 6.15. It can be seen 

that the setup is almost identical as for the modulation technique described in section 

6.2.1, with the exception of addition of a reel of single mode fibre of length 43m, and 

direct output from the FPGA to the EOM. The same components as listed in Section 

6.2.1 were used.  

 

Figure 6.15: Setup for pulsed modulation; Signal processing as described earlier, 

wavelength monitoring with optical spectrum analyser (OSA). A physical delay was 

added using a reel of single mode fibre (SMF) to move the desired impulse response 

signal away from the electronic noise created during laser pulse “build-up”. 
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6.3.3 Experimental results 

As before the scheme was tested using the linear setup as described in Figure 6.8. Phase 

shift measurements were made three times at each distance to check the repeatability. 

These single pass measurements would not be subject to the same throughput penalty as 

that of the multiple pass effective pathlength of the integrating sphere. And so to 

simulate a weaker signal, imitative of that in an integrating sphere, all measurements 

were repeated with a number of bends introduced into the fibre measurement arm to 

attenuate the light by approximately 75%. This, as for the modulation technique 

described previously, was repeated for a number of harmonic frequencies. Results for 

seven measured distances vs. expected distances are plotted below in Figure 6.16, 

showing the effect of a weakened signal on the pathlength measurement. 

 

Figure 6.16: Linear setup; measurement at seven distances, both with a strong and 

weak signal. The error bars correspond to the maximum deviation that was measured 

at a given frequency and was found to be greater for the weaker signals. The error 

bars for the strong signal are not visible. 

As seen in Figure 6.16, with a weakened signal, the distance values deviate from the 

true values by more than those for the stronger signal in terms of repeatability of the 

same measurement, i.e. the standard deviations. The standard deviations do not fully 

account for divergences from accuracy as there may be some systematic error from the 

electronics that has not been thoroughly investigated. The magnitude of the weakened 

signal is similar in strength to that after passing through the integrating sphere i.e. on the 
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order of a few µW, which could suggest that the low flux throughput experienced in 

integrating spheres setup may also reduce the repeatability of the measurement even if 

the signal is above the baseline noise. It is possible to observe the same artefacts here as 

when using the sinusoidal modulation technique however it is unknown what 

contribution this additional structure made to the measurement variation in the weaker 

signals. The experiment was repeated with the 5cm sphere, as seen in Figure 6.17. 

 

Figure 6.17: Sphere setup: Measured effective pathlengths for (a)5cm sphere and (b) 

13cm sphere when MLS code is implemented. The standard deviation for each comes 

from the variation between three repeat measurements. 

As with the sinusoidal modulation technique, the phase shift varied as an arctangent 

function with increasing frequency for this technique. Though still subjected to some 

interference, the MLS technique appears to preferentially enhance the signal of interest 
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may be due to the nature of how the MLS output signal is correlated with the input 

signal. 

The system was then tested using the same gas concentrations and fouling tab as 

described in Section 6.2.2. The results using this technique are plotted, as for the 

sinusoidal modulation, in terms of the percentage difference from the empty, 

uncontaminated sphere, as seen in Figure 6.18. 

 

Figure 6.18: The percentage change in pathlength due to sphere wall contamination 

(using a fouling tab of ≈12x5.3mm) and/or varying gas concentrations for (a) 5cm 

and (b) 13cm sphere. 

As with the sinusoidal modulation technique the resultant pathlength percentage 

difference decreases due to the arctangent phase relationship to frequency. 
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6.3.4 Interference fringing investigation 

It can be seen that in both techniques, structural artefacts persist throughout all 

measurements, which can be observed as an approximately periodic variation on the 

signal magnitude as a function of frequency. After various potential electrical sources of 

interference were ruled out it was concluded that the effect was optical. By measuring 

the output at each optical component, e.g. coupler output, fibre connection points etc., 

the source of the interference was narrowed to the fibre coupled to the DFB laser. It is 

proposed that as the fibre coupled to the laser is standard single mode fibre rather than 

polarisation maintaining, an undefined polarisation state is input to the intensity 

modulator. The lithium niobate modulator has an inherent polarisation sensitivity, 

leading to different modulation depths for the different principal polarisation axes. The 

intensity modulator has an inbuilt polariser to force the use of one axis, however, this 

only offers an isolation level of 19 dB (see appendix B). The presence of the light from 

these different modulation depths states could lead to unforeseen effects in the 

measurements. As a result polarisation control is required to stabilise the intensity 

modulator output, which was seen to fluctuate with movement of the non-polarisation 

maintaining fibre. To further confirm if indeed the fringing came from the fibre coupled 

laser, the setup was tested with a similar butterfly packaged DFB laser fibre coupled 

with polarisation maintaining fibre (Agere M-D2547 PG54). Unfortunately this laser is 

tuned to 1540nm and so could not be used for methane detection. 

The pathlength measurement was tested first with a single pass at a distance of 0.44m as 

seen in Figure 6.19(a). The average distance measured using the polarisation 

maintaining (PM) fibre coupled laser was 0.442±0.003m. As seen in Figure 6.19(a), 

there is no obvious structure throughout the measurements and as a result the standard 

deviation over all frequencies is much smaller than if PM fibre is not used. 
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Figure 6.19: Distance and pathlength measurement for single pass and 5cm sphere 

when 1540nm polarisation maintaining (PM) fibre coupled DFB laser is used (black 

crosses) and when 1651nm single mode fibre coupled DFB laser is used (red 

squares).The extent of the artefact type structure is greatly reduced when PM fibre is 

used. 

In the case of the 5cm integrating sphere, as seen in Figure 6.19(b), there did appear to 

be some additional structure persisting, however to a much lesser extent than the 

previous measurement for the 5cm sphere, i.e. Figure 6.17(a). Ultimately though the 

aim is to return to using the 1650nm DFB laser and so the setup would be optimised for 

this, as discussed in the next section. Overall this supports the hypothesis that the source 

of the periodic variation in the original results was the use of non-polarisation 

maintaining fibre for the laser pigtail. 

6.4 Discussion and future work 

As stated in the introduction the motivation for pursuing this technique was to be able to 

measure the pathlength of an integrating sphere without the requirement for a reference 

gas cell at the calibration stage. 
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In fact, using this type of processing has a number of advantages, including improved 

signal to noise ratio, ease of use, compactness and of course cost-effectiveness. The 

major challenges encountered when implementing this processing scheme were low 

sphere throughput and polarisation related interference fringes. These advantages and 

challenges are discussed in the following section in terms of what has been achieved so 

far and aims for improvement in the future. 

6.4.1 Benefits of and improvements to work to date 

Improved signal to noise ratio: With the FPGA based signal generation it is 

possible to employ high modulation frequencies which, with less background noise to 

contend with,  allows for improved signal to noise ratio than if a lower frequency range 

was used. This is particularly useful for an integrating sphere setup where the 

throughput is reduced (e.g. considering the power output for one source in the four 

beam setup, where approximately 0.7mW input flux encountered the sphere walls to 

form the diffuse long path; the measured output flux for this path was approximately 

1.3µW) and the sphere wall reflectivity is low relative to other techniques that measure 

rate of decay, such as cavity ring down. 

In this body of research, due to the availability of analogue filters, measurements were 

limited to frequencies below 50MHz; and so if higher bandwidth filters were obtained 

there may be potential for detection of higher frequency harmonics. A major cause of 

low power output, as mentioned in section 6.2.1, was through use of the electro-optic 

modulator (EOM) which reduced the output power from the laser by nearly 95%, from 

20mW to just over 1mW. Furthermore the EOM imposed a polarisation state 

dependence which resulted in the polarisation related artefacts that have persisted 

through the experiments. Despite this the EOM was used because the electronic 

configuration of the laser meant that it was unsuitable for direct modulation with the 

bias-T adaptors that were available for the butterfly package mounts used. It is intended 

in the future to custom build an adaptor to allow for direct modulation thus avoiding the 

use of an EOM. Furthermore the generated signal will not be limited to a specific 

operating wavelength range as with the EOM (see Appendix B for datasheet) which 

could cause the non-linear phase modulation effects that were discussed in Chapter 

3.2.4 if operating outside the correct range. To facilitate easier detection it is also 
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intended to use surface mount detectors so that the detector is not as far recessed as it 

was, particularly in the case of the 13cm sphere where the port adaptors were over a 

centimetre thick. This would both improve the detector’s numerical aperture and reduce 

the port fraction. 

In the case of the pulsed modulation, the use of the maximum length sequence, as seen 

in Section 6.3.1, should provide an improved signal to noise ratio due to the increased 

amplitude provided by the series of pulses as opposed to a single pulse. A sequence 

length of 127 was used as dictated by the sample window of the FPGA configuration. 

An even longer sequence could be implemented easily enough by reconfiguring the 

FPGA. This would allow for use of a longer reel of fibre, which would result in the 

impulse response coming at a later sampling time, and thus further from the noise 

effects that occur at the pulse initiation stage. 

As stated in Section 6.3.4, it was found that the polarisation related structure observed 

on the experimental results originated from the fibre coupled to the laser source. It is 

intended to use polarisation controllers so that the light can be aligned to a preferential 

polarisation axis to ensure maximum and more stable power output.  

Ease of use: Because both techniques employ a time based approach, fluctuations in 

output flux from the laser are not an issue as they would have been with the four beam 

technique described in Chapter 5. There is no specific optical alignment requirement, 

only that, as recommended in all sphere based literature, there is not a direct line of 

sight between the laser source, first strike spot, and the detector. We would expect the 

system to work well in the event of window (Section 5.4.3) or first strike spot (Section 

5.4.4) contamination. In terms of the electronics, once the FPGA has been configured, 

the required functions, i.e. signal generation and processing, can run concurrently and as 

a result without loss of processing efficiency. The combined use of FPGA and PC 

processing allows considerable flexibility in selecting measurement parameters 

required, i.e. frequency of detection, sampling time etc. However one consideration that 

has not yet been investigated is the system’s long term performance, whether the system 

drifts in terms of amplitude and phase measurements relative to the calibration. It was 

also found during initial implementation designs that the measurement could be subject 

to crosstalk if another channel on the FPGA was being used simultaneously, and the 
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magnitude of this crosstalk was proportional to the magnitude of the signal causing it. 

So for example, one idea of using a second channel on the FPGA for a simultaneous 

reference phase measurement may itself introduce an error that becomes appreciable 

when the magnitude of the desired signal is low due to the crosstalk caused by the 

reference channel.  

Compactness and cost efficiency: As seen in Figure 6.1, the setup does not have 

many components, with the laser and the integrating sphere accounting for the biggest 

components. Future implementations could include the direct modulation of the laser, 

thus removing the requirement for an EOM and potential undesirable effects that 

accompany it. The required waveforms can be generated by the electronics, the optical 

paths are in fibre and so can be coiled without any need for a particular configuration. 

The consequence of having no tight tolerances on alignment allows for a very compact 

setup that is easily transportable. The system can accommodate changes in alignment 

that might alter the pathlength, unlike the four beam setup. The system has minimal 

additional requirements over a standard TDLS system. In terms of cost, the optical and 

electronic components amount to less than £5000 in total and are commercially 

available, providing the potential for a cost effective gas detection system.  

Future work: As well as implementing the systematic changes as discussed in the 

previous section, the next consideration for this technique is how to interpret and use the 

data. As seen in the experimental results in both Section 6.2.2 and 6.3.3, the 

measurements decreased over a range of frequencies with what was modelled as an 

arctangent function and were unique to each condition, i.e. contamination and/or vary 

gas concentrations. It is possible therefore that the gradient of this change with 

frequency could itself provide information concerning the pathlength and/or pathlength 

distribution. 

Further investigation is needed to ascertain if/how these functions could be used to 

identify pathlength deviations due to contamination or presence of an absorbing gas. As 

mentioned in the introduction to this chapter, it was also envisaged that a lower 

frequency current ramp could be applied simultaneously so as to sweep the laser 

wavelength. This would allow an off and on gas line measurement to be made so that 
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phase shift due to contamination could be isolated from the phase shift due to absorbing 

gas.  

As a complementary technique it would be useful to apply this pathlength measurement 

to the four beam technique as described in Chapter 5, where the calibration 

measurement could be made at the relevant short path, i.e. first strike spot position. This 

would allow for the light pathlength, i.e. including the multiple reflections in the wall 

material, and the gas pathlength to be measured, something that hasn’t been calculated 

at this time. It is important to measure this as it would ascertain whether the gas 

pathlength varies proportionally with the light pathlength. The implication if this is the 

case is that the light pathlength can be used as a means of pathlength calibration for the 

gas pathlength. 

6.4.2 Summary 

In this chapter, two intensity modulation techniques have been implemented for 

pathlength calibration of an integrating sphere. The first technique used a high 

frequency sinusoidal modulation, while the second employed a pulsed modulation, 

created by superimposition of a digital code sequence. A field programmable gate array 

(FPGA) processor was used in both techniques to simultaneously generate the 

modulation signal and process the resultant measurement. 

The theory of operation was described for both techniques, with particular emphasis on 

the strategies employed to improve the signal to noise ratio. Experimental pathlength 

measurements have been shown for a linear single pass configuration and two 

integrating sphere multiple pass configurations. The single pass results showed that the 

pathlength could be determined to, at worst, an accuracy of ±9% for the sinusoidal 

modulation technique and ±11% for the pulsed modulation technique using this type of 

signal processing. It was shown through use of an alternative laser that these large 

deviations occurred because of polarisation related structural artefacts, attributed to an 

induced sensitivity to polarisation state by the EOM. In the case of the integrating 

sphere setups, introduction of one level of contamination both in the presence and 

absence of an absorbing gas measurement showed that the pathlength measurement 

changed as expected i.e. contamination caused the greatest reduction in pathlength and 
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the presence of an absorbing gas caused pathlength reductions relative to the 

concentration present. 

It was affirmed that the structural artefacts represented a major limitation for accurate 

pathlength measurements (e.g. the 5cm sphere pathlength deviated from the expected by 

up to 20cm) and so future work would first seek to control the polarisation of the source 

at the input to the EOM or employ direct modulation. Future work has been proposed 

for system improvement, both in terms of the setup optimisation i.e. improving signal to 

noise ratio and throughput, and data processing i.e. measurements to discriminate 

between pathlength reduction due to gas absorption and/or sphere wall contamination. 

The benefits of the scheme have been summarised in terms of measurement and cost 

efficiency. To conclude, though at an initial stage, the use of an FPGA based signal 

processing scheme has the potential to provide in-situ pathlength calculation of an 

integrating sphere without the need for a reference cell. 
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7 Conclusions and outlook 

 

7.1 Conclusions 

During the course of this PhD project, two different approaches to pathlength 

calculation of an integrating sphere based multipass cell were proposed and 

experimentally tested. Integrating spheres differ from typical multipass cells in that the 

optically rough surface of the inner wall produces multiple diffuse reflections 

simultaneously rather than consecutive specular reflections. The effective pathlength is 

thus an integration of beam passes of differing lengths and phases. This eliminates the 

periodicity of beams, a common reason for formation of performance limiting optical 

interference fringes in typical multipass cells. Additionally the diffusive light 

distribution eases alignment tolerance and renders the effect of scattering samples 

negligible. However, as the effective pathlength is dependent on the sphere wall 

reflectivity, surface contamination can affect the calibration, leading to erroneous gas 

absorption measurements when in the field. The two techniques proposed in this thesis 

aimed to provide ongoing pathlength calibration even in the event of surface 

contamination. Both were tested using methane gas at various concentrations to 

demonstrate the efficacy of the integrating sphere as a multipass gas cell, as well as the 

whole setup as an optical gas sensor. 

The first approach comprised a four beam setup where two sources and two detectors 

were positioned orthogonally to each other at sphere port openings and four 

independent flux measurements were made by alternately turning on the sources. Two 

of these flux measurements corresponded to direct single passes across the sphere 

whereas the other two measured the multiple diffusive passes, the effective pathlength 

as described in the previous paragraph. By using this configuration, it was possible to 

formulate a ratiometric algorithm of these four paths, which allowed for component 

7 
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variation e.g. laser fluctuations, to be factored out. This was demonstrated by varying a 

source output power by 5% which resulted in an error of <1%. An achievement of this 

work was thought to be the creation of a mathematical derivation that accounted for 

certain levels of contamination on the inner cavity wall. In this way, if contamination on 

the wall caused a reduction in the overall pathlength, this effect could be corrected for, 

allowing gas measurements to continue to be made. A number of different locations, in 

the sphere i.e. the sphere wall and port windows, were deliberately contaminated and 

tested, and resultant absorption measurements were compared to results from an 

uncontaminated setup to ascertain the percentage error in the gas absorption 

measurement as a result of the contamination. It could be seen in section 5.4.2 that the 

mathematical correction greatly reduced errors due to sphere wall contamination e.g. at 

a gas concentration of 1500ppm, with no pathlength adjustment, contamination 

representing 1.2% sphere wall coverage gave a reduced absorption coefficient which 

had a percentage error of 41% compared with the calibrated value. With the ratiometric 

scheme, this error was reduced to 1%. 

With increased sphere wall contamination e.g. >3% sphere wall coverage, it was 

suspected that the sphere property of uniform diffusion began to break down thus 

violating the assumption of pathlength symmetry when using the mathematical 

derivation. However even with this violation, a <10% error was achieved. 

Contamination at the other locations resulted in much more unpredictable and severe 

errors, in particular heterogeneous particulate contamination on the port windows. For 

this, it was found that the size of the particulate contamination dictated the extent of the 

error, with larger particulate sizes giving severe errors in measurement. It was not 

possible to correct for this using the mathematical derivation as the assumption that the 

direct, single pass would be unaffected by contamination was violated. It was thought 

however that by monitoring the flux of this beam pass, it could in itself serve as a 

warning that a window had been contaminated. As the alignment of the system is not 

complex it was thus felt that, in the event of this type of contamination, that the window 

could be removed, cleaned and replaced by the operator in situ without needing to be 

realigned at the laboratory. 

An advantage of this type of setup is that it allows for a large dynamic measurement 

range as the direct single pass could be used in isolation for measuring high 
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concentrations of gas which ordinarily would saturate the diffusive long pathlength. In 

terms of system design, if component variation is not thought of as a major source of 

error, it is possible to remove one of the sources or detectors from the setup whilst still 

applying the mathematical derivation for pathlength correction. To conclude, as the 

overall reflectivity (and thus effective pathlength) of the sphere is heavily affected by 

contamination, being able to correct for this is a major advantage for realising an 

integrating sphere as a feasible option. 

Changes to the optical pathlength of the instrument would affect both its calibration 

accuracy, as investigated here, and its sensitivity. We would expect that 50% reduction 

in instrument pathlength would result in a two-fold worsening of instrument sensitivity. 

Clearly, having a correction for pathlength changes provides information about both 

calibration accuracy and the instrument’s limit of detection, and it is for instrument 

designers to decide how to use this information in different applications, which may 

impose different demands on these two aspects of instrument performance. The 

advantages and disadvantages of different aspects of this technique, as well as the 

experimental justification that motivated these comments are listed below in Table 7.1. 

Table 7.1: Advantages and disadvantages of different aspects of the four beam 

technique, including experimental justification 

Advantages (+) and disadvantages ( - ) Experimental justification 

Four beam configuration  

(+) Compensation for component variation, 

such as source fluctuation due to use of four 

beam passes 

 

 

( - ) Decreased sensitivity due to requirement 

for extra port openings 

<1% error in absorption measurement 

at various gas concentrations when 

source output power was reduced by 

≈5% 

 

For a sphere diameter 5.08cm and 

reflectivity ≈ 0.975 the addition of two 

extra ports had the effect of reducing 

the pathlength by 12.4cm 
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Mathematical derivation  

(+) Ability to adjust pathlength in the event of 

sphere wall contamination, thus allowing for 

gas absorption measurements to continue to 

be made 

 

( - ) Introduced some alignment stringency in 

terms of beam divergence and position as 

pathlength adjustment relies on relating back 

to original calibration 

At 1500ppm, and contamination of 

1.2% sphere wall coverage  

Absorption error Uncompensated ≈41% 

                            Compensated ≈1% 

 

30-40% of input beam directed into 

short path so long and short paths 

operated independently 

Presence of a direct short path  

(+) Allows for high concentration 

measurements to be made without saturation 

of detector signal 

 

( - ) High concentrations introduce 

proportional errors in pathlength correction 

 

 

 

 

For contamination of 0.61% sphere 

wall coverage  

Compensated error 1500ppm ≈0.16% 

                                3125ppm ≈ 2.63% 

                                6250 ppm ≈ 3.09% 

 

The second approach employed phase shift detection to calculate the pathlength of the 

integrating sphere. Two different experiments were investigated where two types of 

modulation were implemented, a high frequency sinusoidal modulation and a special 

digital code, an m-sequence, that resulted in pulsed modulation. A further innovation of 

these techniques was the use of an integrated circuit board, which allowed for 

generation of high modulation frequencies, as well as synchronised modulation and 

demodulation of the signals. The use of high modulation frequencies is desirable as it 

makes the system more sensitive to phases changes due to for example a reduction of 

pathlength caused by contamination or absorption by the sample. Interrogation using a 

pulsed modulation is similar to cavity ring-down techniques in that the phase shift being 

measured corresponds to a temporal decay. However unlike cavity ring-down, the 
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reflectivity of the sphere is lower e.g. 98.9% vs. 99.999%, and so the resultant “ring-

down” is much shorter for an integrating sphere i.e. a few metres (on the nanosecond 

scale) as opposed to a few kms (on the micron scale). Thus having synchronised 

modulation and demodulation was invaluable to facilitate resolution of changes in phase 

and thus temporal response. The technique was applied to a single pass setup with 

known pathlength so that its accuracy could be tested. 

A number of modulation frequencies were used to investigate how the sensitivity 

changed with modulation frequency. In this way it was discovered that the resultant 

measured phase shift for the integrating sphere had a non-linear dependency on the 

modulation frequency and in fact varied as an arctangent function. This function did 

continue to trend as would be expected with changing gas concentration and sphere wall 

contamination i.e. the pathlengths reduced with increasing gas concentration and/or 

sphere wall contamination. In a similar manner as the four beam technique the sphere 

wall contamination had a much greater effect on the resultant pathlength as opposed to 

the absorbing gas e.g. as seen in Figure 6.18, at approximately 8MHz and with a gas 

concentration of 1235ppm, sphere wall contamination and presence of absorbing gas 

gave a ≈35% deviation from the calibrated pathlength whereas with absorbing gas only 

the resultant deviation corresponded to ≈5% 

Further investigation is required as the results from this body of research were 

somewhat limited by the components used. For example a major limiting factor was the 

creation of polarisation related structure due to the use of a laser diode pigtailed with 

single mode fibre. Polarisation states could not be maintained or aligned to the axes of 

the electro-optic modulator and so optical artefacts resulted that caused deviations in the 

measured pathlength. Furthermore the low power throughput meant that it was not 

possible to test the effect of contamination and gas absorption to the same extent as for 

the four beam approach. However, the results carried out so far have demonstrated a 

system that has real potential to offer a sensitive and easy to use technique for 

pathlength calibration. The advantages and disadvantages of different aspects of this 

technique, as well as the experimental justification that motivated these comments are 

listed below in Table 7.2. 
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Table 7.2: Advantages and disadvantages of different aspects of the phase detection 

technique, including experimental justification 

Advantages (+) and disadvantages ( - ) Experimental justification 

High frequency modulation  

(+) Phase shift is larger at higher 

frequencies, thus giving greater sensitivity 

towards pathlength changes. 

 

( - ) Requires high bandwidth detection 

components and filters for electronics. 

Even with weak output flux (Figure 6.9) it 

was possible to discern changes due to an 

absorbing gas or contamination. 

 

There was less opportunity for 

amplification due to the requirement for 

high bandwidth. e.g. a fixed gain Thorlabs 

detector was used as it had 150MHz 

bandwidth. 

The frequencies of detection were limited 

by the availability (in the lab) of electronic 

filters which was 50MHz. 

(+) Easy alignment through use of optical 

fibre components such as couplers and 

electro optic modulator (EOM). 

 

( - ) EOM greatly reduced output power 

and use of fibre introduced polarisation 

considerations. 

Configurations were easily interchanged. 

 

 

 

After passage through the EOM the output 

power was reduced by 95% from 

approximately 20mW to 1mW. 

The lack of polarisation maintaining (PM) 

fibre pigtailed to the laser (as evidenced 

from tests in section 6.3.4) resulted in 

performance limiting artefacts in 

pathlength measurements. 

 

(+) More efficient data acquisition through 

the use of synchronous signal generation 

and detection, i.e. using an FPGA which is 

 

Even though the output signals were weak, 

referencing to the FPGA internal clock 

meant that phase shifts could still be 
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capable of performing multiple tasks 

simultaneously. 

( - ) Potential for crosstalk between FPGA 

channels, low throughput may deviate 

further. 

identified. 

 

Initial conceptual experiments (not 

detailed in this thesis) suggested that the 

use of an adjacent logic block on the 

FPGA for a reference channel may 

introduce cross talk between the channels.  

 

(+) No reference gas cell needed to 

quantify the pathlength 

( -) Need a calibration distance and so 

source and detector have to be removed 

from the sphere each time a calibration is 

made. 

 

As the techniques are temporal based can 

reference to some known distance. 

This introduces design considerations; it 

may be possible to have an alternative 

reference channel but cross-talk (as 

mentioned in the previous comment) may 

be an issue. 

 

For testing the effect of contamination, creation of the tabs in the way that they were 

was useful as it was a methodology that could be applied to both techniques. The tabs 

were easily created using tweezers to affix the loop to tab. Placement of the tabs was 

somewhat more challenging as the opening through which the tabs were to be inserted 

was not very large, as seen in Figure 7.1. 

 

Figure 7.1: (a) Example of how contamination tabs were placed into the sphere (Not 

actual sphere used). (b) Suggested preparatory training for use of this technique. 

(a)  (b)  



7. Conclusions and outlook 

156 

 

On a more general note inducing contamination in this way, due to its ease of creation 

i.e. no specialist equipment it provides a useful tool for comparison of techniques within 

different sensors systems or across different research groups. 

In terms of the usefulness of these two pathlength calibration techniques, it is the 

opinion of the author that if only one technique were to be pursued, the phase detection 

technique in Chapter 6 has more promise commercially. From a design point of view, 

all of the complexity is in the electronics that are used and so this allows for more 

flexibility at the detection end of the system, unlike the ratiometric technique where 

alignment must be maintained in a certain configuration to work. From a measurement 

point of view, a longer pathlength is achievable due to the presence of less port 

openings, coupled with increased sensitivity due to the use of high frequency 

modulation. Table 7.3 revisits the specific performance targets that were mentioned in 

section 3.3 and provides a summary of how these targets have been/could be achieved 

for both techniques. In some cases, the performances are common to both techniques 

and so the comments are merged.  

Table 7.3: Summary of performance targets, as outlined in Chapter 3 and how they 

translated for the two techniques i.e. ratiometric and phase detection.  

Ratiometric technique  Phase detection technique 

Achievable pathlength (1-2m with a 5cm sphere) 

6 port openings – ≈1m effective 

pathlength. The necessity for two 

additional ports for this scheme 

reduces the effective pathlength 

 4 port openings – ≈1.5m effective 

pathlength. Effective pathlength has a 

dependency on modulation frequency  

Limit of detection (ideally low ppm 1-10ppm) 

≈60ppm. It is expected that the low ppm level could be achieved with the additional use 

of wavelength modulation  

Selectivity  

In the lab environment, no cross-interferents were present at 1650nm wavelength.  

Response time (ideally 30-40sec max) 

This was achievable using active pumping. However at lower concentrations it may be 

necessary to introduce more averaging to increase the SNR 
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Accuracy and precision – (Ideally ±5%).  Long term repeatability was not tested. 

It is expected that there is potential for 

greater error in this technique as the 

algorithm incorporates four beam path 

measurements. That being said, for 

minimal contamination, an accuracy 

of ±5% should be achievable.   

 It is envisaged that once the 

polarisation interference has been 

solved that the main source of error 

will come from electronic pick-up 

e.g. from the mains or cross talk 

within the FPGA itself.   

Pathlength calculation   

Initial pathlength was calculated in the 

lab using a reference gas cell 

 All pathlength measurements could 

be made in real time and 

independent of a reference gas cell.  

Cost (currently both techniques are comparable ≈£3-4k) 

Two laser sources and two detectors 

are the major cost, could be replaced 

by one laser and a circulator 

 Electronics are very cost effective, 

the modulator contributes the largest 

cost but could be removed by using 

direct modulation  

Maintenance - alignment and cleaning.  

Once beam divergence is set, the 

alignment is trivial, However the 

alignment needs to be maintained 

throughout use, as results are related 

to initial calibration. As port openings 

are threaded it is envisaged that, in the 

event of cleaning, a non-technical 

operator would be acceptable.  

 As all light propagation is through 

fibre and source is attached using a 

port adaptor, alignment is trivial, and 

any deviation in beam alignment is 

not an issue as a corresponding 

pathlength measurement can be 

made for each gas measurement. 

Material is PTFE based and can be cleaned with water and sanding. 

Ease of use – calibration and operation 

Once acceptable contamination limits are established it is intended that, in the event of 

excessive contamination, the system would alarm to notify the user. For the ratiometric 

scheme the contamination location e.g. window or sphere wall could also be identified. 

Both systems can be controlled and activated by computer and so technical expertise 

would not be required. 
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7.2 Outlook 

The aim of this thesis was to investigate possible methods for pathlength calibration of 

an integrating sphere. Though the principles of the two techniques have been 

demonstrated here there has been limited work into how this translates in practise i.e. 

what contamination would the system actually be subjected to and for how long the 

systems would operate accurately. 

Both techniques have a number of challenges that need to be overcome before testing a 

prototype in a more representative and challenging environment. For the four beam 

technique, it was found that there were a number of locations where contamination 

seriously degrades the problem. However the dataset for each of these contamination 

tests was quite small with severe contamination implemented and so the tested scenarios 

may be exaggerated. Further testing is needed to gain an idea of the extent of the 

potential error contribution at these locations in terms of factors such as magnitude of 

particulate contamination that could be tolerated. The contribution made here allows for 

those locations to be targeted in testing. From a detection capability point of view, it 

would be useful to employ modulation techniques to enhance the sensitivity of the 

system. Additionally the use of fibre input/outputs would allow for smaller port 

openings thus somewhat compensating for the loss of pathlength that has been seen as a 

result of 6 port openings. These challenges and potential test strategies are listed below 

in Table 7.4 

Table 7.4: A list of some of the challenges for the four beam technique for the future 

and potential strategies to address these 

Future challenges Suggested experimental tests 

 

Sphere window contamination cannot be 

corrected for (Table 5.3 highlights the 

severity of errors due to particulate 

contamination.  

Absorption error 

Smaller particles ≈13% error 

Larger particles (mm) ≈70% error 

 

Introduce a number of varying size 

particulate contamination to sphere 

window(s) to ascertain to what extent 

contamination can be tolerated 

For field test: Introduce a particulate filter 

to the gas line, monitor short paths as 

indicators of contamination 
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First strike spot (FSS) contamination 

cannot be corrected for (Table 5.5 

highlights how FSS contamination affects 

each diffuse path) 

% drop in output power due to FSS 2 

contamination 

Long path 1 ≈12% 

Long path 2 ≈63% 

 

Ascertain to what extent FSS 

contamination can be tolerated. 

In field test: monitor comparative change 

in long paths as means of ascertaining 

whether FSS contamination specifically 

has occurred. 

 

Enhancing sensitivity for lower 

concentration measurements 

 

Employment of modulation techniques 

e.g. in combination with phase detection 

system in Chapter 6 

Reduction of port sizes (using fibre input 

and outputs)  

Reduction of ports (use a two beam setup 

if component variation is not an issue) 

 

Regarding the phase detection techniques, the immediate considerations relate to the 

systematic errors. These include polarisation related artefacts and low power throughput 

and so initial work would aim to alleviate these through use of polarisation maintaining 

fibre and direct modulation respectively. In terms of its application as a method for 

calculating the pathlength a next step would look at how to utilise the modulation 

frequency dependency of the phase shift to calibrate the sphere e.g. potentially a unique 

calibration curve may result for each gas concentration. Regarding sensitivity 

enhancement there are a number of modulation strategies that could be implemented. 

Whilst the high frequency modulation can provide a quantitative measure of the 

pathlength, a lower frequency modulation could allow for wavelength modulation 

spectroscopy to be implemented providing quantitative measurement of the gas 

absorption concentration. The combination of this with an even lower frequency ramp 

waveform would facilitate scanning over the whole gas absorption line (as was done in 
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Chapter 5) thus achieving a reference off gas line measurement. Some of the challenges 

for the future as well as potential experimental strategies are listed below in Table 7.5. 

 

Table 7.5: A list of some of the challenges for the phase detection technique for the 

future and potential strategies to address these 

Future challenges Suggested experimental tests 

 

Performance limiting polarisation related 

artefacts due to the use of a laser with 

pigtailed single mode fibre 

 

Replace the single mode fibre with 

polarisation maintaining fibre and align to 

EOM eigen-axes 

 

Severe reduction in output power due to 

the use of the EOM 

 

Directly modulate the laser, this would 

also eliminate any polarisation 

dependency 

 

Potential cross talk from other FPGA 

channels 

 

Investigate the relationship between two 

signals acquired on the same FPGA, such 

as at what power output additional 

channels become an issue 

 

Enhancing sensitivity for lower 

concentration measurements 

 

Use of other filters would allow for higher 

frequencies of detection. 

Addition of other modulation at lower 

frequencies simultaneously could facilitate 

independent measurement strategies for 

each aspect of the system i.e. off-gas line 

measurement accounting for external 

ambient effects, lower frequency 2f-WMS 

to measure gas line properties including 

broadening etc  
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In summary, the ultimate objective would be to realise two techniques for pathlength 

calibration that culminate in an optical gas sensor that meets some of the criteria 

mentioned in Chapter 1; selectivity to the gas of interest, achieving desired sensitivity 

for the application, ease of operation, relatively low cost and robustness. The work to 

date has made progress in achieving enhanced sensitivity and investigating steps to 

make the optical system more reliable and robust. Future work would focus on 

overcoming the systematic limitations that have been encountered and then validating 

the principles of the techniques in a more representative environment.    
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Conference papers 

 S. Bergin, J. Hodgkinson, D. Francis, R. P. Tatam, “A method for continuous in-

situ pathlength calibration of integrating sphere based gas cells,” . Proc. SPIE 

9486, Advanced Environmental, Chemical, and Biological Sensing 

Technologies XII, 94860G (May 13, 2015); doi:10.1117/12.2176225. 
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 S. Bergin, J. Hodgkinson, D. Francis, R. P. Tatam, “Integrating spheres as gas 

cells: continuous in-situ pathlength calibration for methane monitoring”. Poster 

presentation at Photon14, London, UK, 2014 

 S. Bergin, J. Hodgkinson, D. Francis, R. P. Tatam, “In-situ pathlength 

calibration of integrating sphere based gas cells in industrial environments”. 

Poster presentation at Female Researcher Network (FeRN) Annual Lecture at 

Cranfield, UK, 2015 (received highly recommended award) 



 

163 

 

 S. Bergin, T Kissinger, J. Hodgkinson, R. P. Tatam, “High frequency 

modulation techniques for pathlength calibration of an integrating sphere used in 

TDLS”, Presentation accepted for Flair16, Aix les Bains, France, 2016 

 S. Bergin, T Kissinger, J. Hodgkinson, R. P. Tatam “Integrating cavity 

absorption spectroscopy system using FPGA based detection”, Presentation 

accepted for Photon16, Leeds, UK, 2016 

Patent application 

 S. Bergin, J. Hodgkinson, D. Francis, R. P. Tatam, “In-situ pathlength 

calibration for integrating cavities”, Patent application, GB1506609.5, 2015 

Research Grants 

 J. Hodgkinson, S. Bergin, R.P. Tatam, “Novel approaches to optical gas 

detection for environmental measurements in challenging locations”, Impact 

Acceleration Account Early Stage Support Funding, 6 months, 2016. 

Further Achievements 

 Awarded 1
st
 place for for a Dragons’ Den style pitch at an entrepreneur Startup 

weekend at the Bettany Centre, Cranfield University, 2015 

 



 

164 

 

 

9 Appendix A: FPGA based processing 

An FPGA is a silicon chip that has reprogrammable circuitry, giving the user the ability 

to reconfigure functionality in the field after manufacture. The device contains a number 

of configurable logic blocks, with electrically programmable interconnects between 

these blocks. This allows the logic blocks to be programmed in any configuration to 

achieve the desired functionality. Dedicated hardware logic will be assigned to each 

task and so multiple tasks can be performed in parallel by assigning different parts of 

the chip to different tasks. This differs from a central processor unit (CPU) based 

system, such as those in a regular computer, where the operating system instructs the 

processor to execute the functions sequentially. Due to this sequential method, 

increasing the number of functions can decrease their respective performance speed due 

to the increased number of operations to be processed by the CPU. By contrast, 

concurrently running functions in an FPGA operate independently of each other and so 

do not share processing resources. In FPGA the circuitry is synchronous and so all tasks 

occur at the same time, dependent on the chosen clock frequency. 

Figure A.1: Picture of the FPGA system used in this work. Picture from [182] 
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10 Appendix B: Electro optic modulator datasheet 
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