THE COLLEGE OF AERONAUTICS

CRANFIELD

MINIMUM PROPULSION FOR SOFT MOON LANDING OF INSTRUMENTS

> by
D. S. CARTON

CRANTIRLD

Minimum Propulsion

for
Soft Moon Landing of
Instruments

- by -
D. S. Carton, A.F.R.Ae.S. F.B.I.S., M.ARS.
List of Symbols

1. Introduction 1
2. Trajectories 1
2.1. Collision Course 2
2.2. Hyperbolic - elliptic course 2
2.3. Trajectory analysis 2
3. Specification and analysis 3
3.1. Specification 3
3.2. Specification analysis 3
3.3. Propulsion aspects 3
4. Extermal Ballistios 3
5. Ideal Rocket Engine Performance 6
6. Propellant Selection 7
6.1. Liquid propellants 7
6.2. Solid propellants 7
7. Liquid Fropellant System Masses and Scaling Laws 7
7.1. Combustion chamber and nozzle 8
7.2. Nozzle 8
7.3. Valves and Pipelines 8
7.4. Turbo pump and gas generator 8
7.5. Tanks 9
8. Solid Propellant Engine Masses and Scaling Laws 9
8.1. Engine case 9
8.2. Nozzle 10
9. Analysis - Scaling Constants and Complete Vehicle 10
10. Discussion 10
10.1. Scaling constants 10
10.2. Results obtained-Vehicle mass and performance 11
10.3. Deficiencies in the present results 12
11. Conclusions 14
12. Acknowledgements 14
Appenaix 1. 15
Appendix 2. 17
Appendix 3. 19
Contents (Continued.) Page
Appendix 4 22
Appendix 5. 24
Appendix 6 26
References 27
Table 1. 28
Table 2. 29
Table 3. 30
Table 4. 31
Table 5. 32
Table 6 33
Table 7. 34Figures.

IIST OR SMBOLS

Iist of Symbols (Continued)

ϵ	area ratio $\quad A_{e} / A_{t}$
ϵ_{p}	solid propellant loading fraction $\frac{\text { propellant volume }}{\text { case volume }}$
$\alpha \quad$ nozzle divergence half angle	
Suffixes	

0	refers to state before firing
1	refers to state after firing
c	combustion chamber t - throat. e-exit.
p	propellant ox - oxidant m - material

The equations formed in the analysis, and the values of the scaling constants are all based on the poundal, pound mass, second unitary system. In the text an engineering system of units is used based on the standard pound. force (Ib) and pound mass (Ib)

$$
1 \text { Lib. } \quad=\quad 32.174 \mathrm{pdl} .
$$

1. Introduction

This paper examines some of the problems that are posed in landing an instrunented package on the moon. The basic requirement is to put down this payload, in one piece, using a minimum of initial vehicle mass in the process. Very approximately, a thousand pounds of earth launching vehicle mass are meeded for each pound required by the moon landing vehicie. Because of its importence in this application a considerable part of the paper is devoted to outlining an optimisation procedure that will ensure that thrust levels, and other propulsion parameters do in fact result in a minimum vehicle.

As there are no other papers specifically on the problem of soft moon landings, a certain amount of space has been devoted to earth/moon trajectories, and also various approach and landing techniques. Nevertheless, the main intention has been to look at this problem from the propulsion aspect. To this end much has had to be omitted, and many problems simplified or ignored. In particular no examination has been made of either the earth launching vehicle, or the earth-moon carrier. Very little thought has been given to the problem of guidance and control. The author has not philosophised upon the possible contents of the instrumented package.

The optimisation procedure presented has been formed to permit the assessment of both solid and liquid propellant units in order to determine their efficiency in meeting the specification. Six liquid propellant combinations have been considered. Scaling rules have been derived. in order to permit assessment of the relative merits of pressurisation and turbo pumps, the selection of optimum tank, and combustion chamber pressures, expansion ratios, etc. In some instances engineering detail has been considered to clarify particular points, but this paper is not intended as a design study. At a number of points, where insufficient data has been found, or where a problem has been intransigent, "bulldozer" methods have been applied.

2. Trajectories

The minimurn energy manoeuvre converting a circular orbit at 500 miles above the earth into an ellipse with an apogee just at moon radius is extremely susceptible to errors of velocity and direction. Following the work carried out at Douglas (Ref. 1) a trajectory has been seleoted using about 1% excess energy which is much less touchy on errors. Figure 1 gives the basic details of such a trajectory.

Such a trajectory and velocity will result in the landing vehicle possessing an energy height very close to infinity with respect to the moon. It is now proposed to examine some possible moon approach and landing techniques. Broadiy speaking, the moon may be approached in two manners hit on miss.

Ia Energy height is the sum of potential and kinetic energies expressed in terms of height units. Energy height equals real height at any instant when a body is at rest with respect to the gravitational centre.

2.1. Collision Course

With such a course, without propulsion, the landing vehicle would impact with very nearly escape velocity. Propulsion is therefore required in a vertical descent bringing the velocity to zero at the instant of contact.

2.2. Hyperbolic - elliptic course (Fig. 2)

The landing vehicle approaches the moon on a prederemined hyperbola. At closest approach a thrust impulse parailel to the moon's surface can convert the hyperbola into a grazing ellipse. Through a nuxiber of circuits fine thrust control could bring the grazing approach dow to a mile or even less. Final landing could then be achieved with reverse thrust reducing the elliptic velocity down to cir ular and on down to zero (Fig. 3). A second rocket directed downards takes most of the weight once the radial velocity has been reduced below cirroular.

2.3. Trajectory analysis

From the purely propulsion point of view, the hyperbolic-elliptic course demands a somewhat smaller total velocity increment. At the same time it requires a number of periods of thrust. Either thrust level or burning time would have to be flexible to allow for inaccuracies during manoeuvres. This approach would require accurate attitude control with respect to spherical coordinates based on the centre of the moon (because of possible three dicuensional errors). Up until the moment when thrust is applied the vehicle's energy height is constant. Its value can be predetermined, and will be true regardless of all trajectory errors. Therefore, information on the height at closest approach defines the hyperbola and the negative velocity increment required to convert hyperbola to surface grazing eliipse. Further height data would be adequate for corrections and lending.

The collision course approach requires accurate delivery by the carrier vehicle. The landing vehicle requires accurate location of two dimensions normal to a moon radius and a coarse control on the other axis to prevent spinning. (A very crude self-energising sun seeker would be suitable). If the thrust level and burning time are both prefixed, extremely accuxate determination of firing height is needed. Decreased demand on accurate ignition height can be achieved by use of a very small supplemental rocket fired low down when height estimation errors are of small real magnitude.

Difference in height at two preset instants towards the end or firing, would define trajectory and the firing height for the supplemental rocket. (See Fig. 4).

3. Specification and analysis

The collision course approach is selected. This is because it requires less rigorous attitude control and is less demanding on propulsion. In fact it requires less operating parts.

Table 1 lists the pertinent moon data required from this work.

3.1. Specifioation

For a payload of 100 lb . it is required to design a landing vehicle of mininum mass. No "in flight" acceleration limit is imposed on the payload. The landing vehicle guidance has an acceleration limit of $400 \mathrm{ft} . / \mathrm{sec}^{2}$. A single stage main propulsion system is required. No thrust control of magnitude or direction is required from the main propulsion system. No arrangements are required for thrust outmoff, other than the normal end of burning.

3.2. Specification Analysis

With the intention of ersuring that the vehicle will, if anything, have something in hand, final performance estimation is based on meeting the full moon escape velocity of $7693 \mathrm{ft} . / \mathrm{sec}$, assuming that the surface gravitational acceleration of $5.91 \mathrm{ft} . / \mathrm{sec}^{2}$ is constant at all heights.

3.3. Propulsion Aspects

It is required to examine in detail the main propulsion system componerts, masses and performance, in order to determine the method which cen meet the specirication in terms of velocity increment and minimum vehicle mass. The study is to include the use of both presently available, and higher performance propellants.

4. External Ballistios

In order to ascertain the approximate mass of the vehicle, and its sensitivity both to exhoust velocity and component masses, the concept of an ideal vehicle is introduced. (See Appendix 1).

This vehicle has a constant ejection rate of propellant in terms of mass flow rate and exhaust velocity resulting in a constant thrust throughout the firing period. For such a vehicle in vertical descent (without atmosphere) the velocity relationship :-

$$
\Delta_{V}=c \log _{e} \frac{M_{0}}{M_{1}}-\overline{E_{I}} \quad t_{b} \quad f t_{0} / \mathrm{sec}_{0} \quad \ldots \ldots 1.5
$$

can be used. In order to relate the buming time (t_{b}) with the initial to finel mass ratio $\frac{M_{0}}{M}$, and to permit assessment of component mass
effects, the ideal vehicle definition is extended. The all burnt mass of the vehicle (M_{c}) is taken as the sum of the payload, a mass scaling in direct proportion to propellant mass flow rate, and a mass scaling in direct proportion to the total mass of propellant carried.

$$
\begin{array}{ll}
M_{1}=M_{L}+K_{1} \dot{m}_{p}+K_{2} \stackrel{m}{p}_{p} t_{b} & \ldots \ldots 1.1 \\
M_{0}=M_{1}+\dot{m}_{p} t_{b} & \ldots \ldots 1.2
\end{array}
$$

The K_{2} value will relate to tank mass in the liquid propellant engine or to the engine case moss in a solid. K_{1} relates to pipelines, valves, and combustion chamber for liquids.

In terms of the payload to initial mass ratio $\frac{M_{I_{1}}}{M_{0}}$ these equations
be brought together :may be brought together :-

$$
\frac{M_{L}}{M_{0}}=1-\left(1-\frac{1}{M_{0} / M_{1}}\right)\left(\frac{K_{1}}{t_{b}}+K_{2}+1\right)
$$

....... 1.6
where $\frac{M_{0}}{M_{1}}$ and t_{b} are related as in equation 1.5 .
It is now possible to determine the payload to initial mass ratio for any values of the effective exhaust velocity (e), and the scaling constants K_{1} and K_{2}. A number of these 'ideal vehicle' curves are presented. In Figure $5 \frac{M_{0}}{M_{L}}$ has been plotted against final vehicle acceleration for the following values :-

$$
\begin{aligned}
c & =10,000 \text { and } 8,000 \mathrm{ft} . / \mathrm{sec} \\
\mathrm{~K}_{1} & =0 \\
\mathrm{~K}_{2} & =0.08 \text { and } 0.16
\end{aligned}
$$

It is assumed that this is representative of a solid propellant landing vehicle both with respect to exhaust velocity and K values. The curves 011 show the same trend - that minimum initial mass is attained with very high final acceleration conditions obtained with comparatively high thrust and short burning time. This is due to $K_{1}=0$, there being no mass on the vehicle proportional to flow rate, hence the velocity loss due to gravity ($\mathrm{E}_{\mathrm{I}} \mathrm{t}_{\mathrm{b}}$) can be minimised. The other point to be noted is the susceptibility of the M_{c} / M_{L} ratio to change of exhaust velocity and its comparative insensibility to change of $K_{1}: m$

$$
\begin{array}{ll}
1 \% \text { change in } c & 1.25 \% \text { change in } M_{0} / M_{L} \\
1 \% \text { change in } K_{1} & 0.3 \% \text { change in } M_{0} / M_{L}
\end{array}
$$

Figure 6 represents the equivalent liquid propellant curves for the following :

$$
\begin{aligned}
c & =10,000 \text { and } 8,000 \mathrm{ft} . / \mathrm{sec} . \\
\mathrm{K}_{1} & =5 \text { and } 10 \\
\mathrm{~K}_{2} & =0.02 \text { and } 0.04
\end{aligned}
$$

An imncaiate difference is apparent. $M_{L / M}$ is no longer minimum at very high thrust level and final acceleration. This is due to K_{1}, there being a mass on the vehicle proportional to propellant mass flow rate and thrust. Hence a minimum value of M_{0} / M_{L} is achieved at a point intermediate to a low thrust, high g loss and a high thrust, and a large mass proportional to fllow rate. It is worthy of note that at the higher values of K_{1} an optinisation procedure is most important, a minimum ${ }^{M} / N_{L}$ is most sensitive to vehicle final acceleration and thrust level. Once again the large sensitivity to exhaust velocity should be observed plus the comparative insensitivity to changes in either K_{1} or $K_{2}:=$

$$
\begin{array}{ll}
1 \% \text { change in } c & 1.25 \% \text { change in } M_{N} / \mathbb{N}_{L} \\
1 \% \text { change in } K_{1} & 0.105 \% \text { change in } M_{0} / M_{L} \\
1 \% \text { change in } K_{2} & 0.06 \% \text { change in } M_{0} M_{L}
\end{array}
$$

Using these graphs permits the approximate thrust sizes at which scaling rules and real constants can be determined. Values selected are:-

$$
\begin{aligned}
\text { Solid } F & =1429 \mathrm{Ib} \\
& =46,000 \mathrm{pdI} . \\
\text { Liquid } F & =2671 \mathrm{lb} \\
& =86,000 \mathrm{pal.}
\end{aligned}
$$

5. Ideal Rocket Engine Performance

The definition of the ideal vehicle is extended to include the fact that it is powered by an ideal rocket engine. Such an engine is defined as follows :- it operates with perfect gases which are in equilibrium in the combustion chamber, and whose composition does not alter through the expansion. The cycle is isentropic, and the gases leave the nozzle without divergence loss. There is no external pressure. (See Appendix 2).

The thrust of such a rocket operating in space is given by :-

$$
F=\dot{m}_{p} v_{e}+P_{e} A_{e}\left(p d l_{0}\right) \quad \ldots \ldots .2 .5
$$

It is now required to relate equation 2.5 to the propellant performance parameter - the characteristic velocity $\left(c^{*}\right)$, the engine geometry parameters, throat area $\left(A_{t}\right)$ and exit/throat area ratio.

The relevant parameters based on the ideal rocket definition are :-

$$
\begin{array}{ll}
c^{x}=\frac{P_{c} A_{t}}{m_{p}} & \ldots . t_{0} / \mathrm{sec}, \\
c_{F}=\frac{v_{e}}{c^{x}} & \ldots \ldots .1 \\
\frac{A_{e}}{A_{t}}=\varepsilon=\left(\frac{P_{c}}{P_{e}}\right)^{\frac{1}{y}} \frac{y}{c_{F}}\left(\frac{2}{y_{i-1}}\right)^{\frac{y+1}{y-1}} \ldots \ldots .2
\end{array}
$$

These combine and simplify to give the effective exhaust velocity :-

$$
c=\frac{F}{\dot{m}_{p}}=c^{X}\left(C_{F}+\frac{P_{e}}{P_{c}} \quad \varepsilon\right) f t_{0} / \text { sec. } \ldots \ldots 2.8
$$

from which may be derived directiy the thrust and propellant mass flow rate relationships.

Also may be derived the expression for throat area :-

$$
A_{t}=\frac{F}{P_{c} C_{F}+P_{e} \varepsilon} \quad f t^{2} \quad \ldots \ldots 2.9
$$

Once a propellant has been selected these paramcters may be used to determine nozzle geometry and performance for the required value of thrust.

6. Propellant Selection

6.1. Liguid propellants

It is reguired to examine the landing vehicle performance for a number of propellants including both presently available and possible future combinations, The fundomental need is that the combination should be storable from the monent of loading on earth, through the launching phase, and then from 2 to 5 days thereafter Nevertheless, it is folt that this should not override consideration of any attractive propellants as storage means may be pound. In consequence six propellant combinations have been considered. :-
39.6% hydrogen poroxide with kerosine and also hydrazine.
Eiquid oxygen with kerosine, unsymmetrical dimethyl hydrazine and lidquid hydrogen.
Liquid fluorine with Iiquid hydrogen.
Eydrogen peroxide/hyurazine has buen chosen as an excellent example di a nomaily storable propellant combination 99.6% peroxide has a somewhat better performanoe with rydrazine than the other storable oxidants - dinitrogen tetra oxide and nitric acid - and is thought to be available and in use. Peroxide/hydrazine are a selfmigniting pair.

The other selections are a fairly obvious choice from the field of interest. Pluorine/hydrogen are the only other combination which are self-igniting.

Takle 2 lists the relevant data for these combinations.

6.2. Solid Propellants

Insufficient unolassified data are available to extend this study into the real ficid of sclid propellants. In consequence it has been found necescary to define a non-existent propellant having a performance thought to be within reach of the best propellants existing today. This is the oniy solid propellant studied in this paper. Table 3 lists the relevant data.

No suggestion is made as to its possible composition.

7. Liguid Pronellant System Masses and Scaling Laws

Scaling lams have been derived for the major components of the complete liquid propellant system. These are needed so that a better apreciation can be made of a number of problems which arise. The laws then permit a more accurate determination of the vehicle constanis.

7.1. Combustion chamber and nozzle (Sce Appendix 3)

Some consideration of a number of different conbustion chamber shapes was made. Mainly, from the vierpoint of simplifying the analysis a spherical shape was decided upon. A very interesting alternative, the diverging reactor (Ref, 2) was scriously considered (Fig. 7). Unfortunately the scaling rules for such a systen did not appear reliable. In consequence it is not considered further.

A volume scaling lav is required for the spherical chambers. The combustion chamber volume/throat area ratio L^{x} (the combustion ohamber characteristic length) is used in this paper. This parameter has not been selected because of its reliability, but in the absence of any alternative. An I^{x} of 5 ft . (60 inches) is used throughout this paper.

The basic design assumed is that the chamber is cooled by the usual double wall arrangement. It is assumed that the outer wall carries the entire pressure load. The inner wall takes the bursting load due to excess coolant pressure. On the inside wall of the chamber is an unstressed, flame sprayed heat barrier of zirconia. All chembers are made of stainless steel, and a safe working stress of $75 \%\left(150,000 \mathrm{Lb} / \mathrm{in}^{2}\right)$ of normal has been used because of possible outside wall heating. In addition, a safety factor of 1.5 has been used. This uncertainty factor has been used to make allowance for the nozzle cut out.

7.2. Nozzle (See Appendix 3)

The ideal rocket definition includes the assumption of no thrust loss due to divergence. It is therefore assumed that a "tulip" nozzle is used. As the profile of such a nozzle is complex, no attempt has been made to estimate its scaling laws. Instead a "similer nozzle" has been defined whose mass, throat, and exit areas are identical to the tulip type. The "similar nozzle" is straight sided with an expansion half angle of 15°. The nozzle is continuous with the combustion chamber, has the same materials, total thickness and safety factors.

7.3. Valves and Pipelines (See Appendix 4)

Precise scaling laws would require a number of separate system detail designs. In order to circumvent this it has been vaguely assumed. that all systens are similar and that the mass or valves and pipelines is proportional to the propellant volume flow rate.

7.4. Turbo pump and gas generator (See Appendix 4)

Again, it has been necessary to generalise. It is assumed that the masses of gas generator, turbine, case and shaft are proportional to the total propellent pumping work rate. Pump masses are assumed proportional to propellant volume flow rate.

7.5. Tanks (See Appendin 4)

A simple soaling law has been derived for tanks stressed as thin spheres. Where the same material is used for both tanks, and no problems arise from 'storability" aspects, this is directly applicable.

Consideration has been given to the spccial problem of storing the liquids - oxygen, fluorine, and hydrogen. Attention has been given to the problem of tank volume requirements at the end of the voyage when the propellant temperature will be different from the loading temperature.

This problem is extremely serious with the chree propellants mentioned due to their low eritical pressures and temperatures. Very large changes of vepour pressure and density with temperature occur at certain points. The main question to be answered is to what extent heat baxriers should be used to keep propellant temperature down and hence keep down propellant density and required tank wolume. The importance of this gan be underlined by mentioning that for a temperature rise from $90^{\circ} \mathrm{K}$ to $153^{\circ} \mathrm{K}$ the volume requirement for ziquid oxygen doubles !

Examination of this problem has not yet been taken further. In this paper, scaling rules have been developed for the three propellants, based on a crude assumption: for liquid oxygen, and fluorine, the tank mass is double the mass required for storage when the vapour pressure is equal to one atmosphere. This is perfectly reasonable for the pressurised tank requircment since vapour pressure can be used for motivation. For hydrogen, because of its very low critical temperature and pressure, a value of 4 has been taken. It is roughly assumed that this value accounts for both extra tank volume required due to temperature rise of the liquid, plus a tonk insulation. In order that comparison can be made, scaling rules have also been derived for the three propellants, assuming storage at one atmosphere vapour pressure without excess volume or heat barrier.
8. Solid Propellant Encine Masses and Scaling Laws (See Appendix 5)

Scaling laws have been derived for both engine case and nozzle.

8.1. Engine case

The engine case is a cylinder, and in the scaling, allowance has been made for both cigarette burning and case bonded internal burning arrangements. Both have been stressed as thin cylinders.

With the case bonded arrangement it is assumed that very littile case heating occurs, and a value of $\mathrm{S}=75 \%=150,000 \mathrm{mb}$ 。/in has been used. The propellant utilisation ratio $(R)=0.9$, the loading fraction 0.8 and the safety factor at 2 .

In comparison the wall heating effects in the cigarette burning axrangement are severe. No precise data has been derived for the zirconia
heat barrier, but it should be appreciated that the heat ejection rate of the outer case is due entirely to radiation in this particular application. A value for S of $54 \%=108,000 \mathrm{Lb} . /$ in 2 has been taken. Coupled with $\eta=2$, this results in a case mass for the cigarette burning application twice that of the case bonded one.

8.2. NozzIe

An alternative model has been used to derive the scaling relation ship. As the nozzle is uncooled, allowance has been made for a zirconia heat berrier. Phaterial strength is assumed to be down to 54% of maximum working stress. This is the same figure that was used in a similar situation for the cigarette burning arrangement of case.

9. Analysis - Scaling Constants and Complote Vohicle

The analysis of the scaling rules of the various engine components has revealed that in both liquid and solid propellant systems, nozzle mass is a function of the propellant mass flow rate to the $\frac{4}{3} \mathrm{rd}$ power. This means that the simplified analysis of Appendix 1 has to be extended to include this factor. It is important to note that in space operation the nozzle mass is several orders of magnitude greater than the combustion chamber alone. Considerable errors can, therefore, arise from the assumption that the complete thrust chamber scales in proportion to propellant mass flow rate.

The complete vehicle analysis is treated in Appendix 6. A simple graphical method of determining vehicle characteristics for a given propellant combination is described.

10. Discussion

10,1. Scaling constants

The scaling laws discussed in sections 7 and 8 have been used to derive the scaling constants $\mathrm{K}_{1}, \mathrm{~K}_{2}$, and K_{3} for the solid propellants and all the liquid propellant combinations for boch pressurised and turbo/pumped systems. These are all listed in Table 7. These tables are enlightening in that they give immediate information on component sizes. The K_{1} values detail component mass per unit mass flow rate, the K_{2} values the tank (or solid propellant case) mass per unit mass of propellant carried. The K_{3} values give the nozzle mass for unit mass flow rate (but scales away from this proportional to $\mathrm{mp} \frac{4}{3}$).

Whilst it is interesting to note these values, particularly the effects of using low density propellants, they cannot be used for direct comparison in that they do not take into account either propellant performance, or the optimisation procedure.

10.2. Results obtained - Vehicle mass and performance

At the moment of completion of this note, it has been found possible to complete the analysis on six sets of 'vehicle system/propellant combination' scaling constants. These are for the propellant combinations of hydrogen peroxide and hydrazine, and also liquid oxygen and kerosine. Each is considered for both pressurised, and turbo pumped systems. In addition, with the liquid oxygen cornbination, both systers have been calculated for the two storage methods used for cryogenic liquids in this paper one is based on storage at a maintained temperature of $90^{\circ} \mathrm{K}$ throughout the journey, without any mass allowance for preventing heating, the second, and more realistic case, assumes that the oxygen temperature rises through the journey to 153 K and has in consequence a density one half of that taken in the previous case.

The results are plotted on an initial to payload mass ratio $\frac{M_{0}}{M_{L}}$ against vehicle final acceleration (a_{1}) in Fig. 8. The most remarkable point about the results so far obtained is the narrow range of minimurn $\frac{M_{0}}{M_{L}}$ covered by all the groups, there being less than $0.1 \frac{M_{0}}{M_{L}}$ between them. The actual minimum values are as follows :-

Oxygen and kerosine. Pressurised (at $153^{\circ} \frac{M_{0}}{M_{0}} \frac{M_{L}}{M_{L}}=2.396$
Oxygen and kerosine. Pressurised (at 90 K) $=2.316$
Hydrogen peroxide and hydrazine. Pressurised $=2.320$
Oxygen and kerosine. Pumped (at $153^{\circ} \mathrm{W}$) $=2.310$
Oxygen and kerosine. Pumped (at $90^{\circ} \mathrm{K}$) $=2.305$
Hydrogen peroxide and hydrazine. Pumped $=2.302$
Consider first the pressurised systerns, and accept the scaling procedure as correct. The storable propellant combination shows the expected advantage over the other when allowance is made for extra oxygen tankage. When no allowance is made for the extra tank volume (again, is a most unlikely possibility) the oxygen combination shows an extremely small advantage. With the turbo pumped systems, tank mass is a very small part of the complete system mass. Because of this the differences between the three systems are insignificant.

In conclusion it is felt that considerable caution should be exercised in using these results to make comparison between pressurised and turbo pumped systems. The small apparent improvement obtained using turbo pumps is entirely dependent on the precise values given to the scaling constants, and could be upset by very small changes in their magnitude.

The solid propellant analysis has not been proceeded with at the present moment, as a spot check revealed that it was considerably outside the range of interest. The value derived is :-

Solid propellant (Case bonded)

$$
\frac{M_{1}}{M_{L}}=2.70
$$

10.3. Deficiencies in the present results

Each of the 22 sets of constants given in Table 7 represents a different 'vehicle system/propellant combination' group. Each group may be analysed in order to determine the engine operating values of thrust and buming time that together meet the specification, and result in a minimum vehicle mass for a given payload. Such an appreach will only result in an absolute minimum mass vehicle for a given group when all the possible changes in operating parameters have been considered. The more important of these operating parameters are now discussed.

10.3.1. Combustion Pressure.

With the scaling rules it is possible to derive further sets of constants for a number of combustion pressures. It is then possible to ascertain the optimum pressure for each 'vehicle system/propellant combination' group. Because the data relating to the combustion pressure, propellant characteristic velocity available to the author at the present moment is inadequate it has not been possible to proceed further. Whilst inter-related data is required over a wide pressure range, particular interest contres on the possibility of operation at very low pressure values. In this paper liquid propellant systems are given a value of $500 \mathrm{Lb} / \mathrm{in}^{2}$. ana the solid propellants at $1000 \mathrm{Lb} / \mathrm{in}^{2}$. There is no reason for assuming that these represent optimum for the conditions considered.

10.3.2. Expansion Ratio

Again the scaling rules permit the examination of the relative effects of changes in nozzle mass and effective exhaust velocity. Ignoring problems of nozzle rigidity there will exist an optimum expansion ratio which will be different for each set of scaling constants and propellant parameters. Data is available to do this, but it has not been found possible to include the problem within the investigations so far undertaken.

Throughout this paper an expansion ratio of 10,000 has been used. Tables 5 and 6 indicate chances of nozzle parometers and effective exhoust velocity for a constant thrust nozzle based on the propellants used in this paper.

10.3.3. Mixture ratio - Iiquid propellants

Examination in this paper has been limited to a single mixture ratio for each propellant combination. The ratio used is the one producing maximum
effective exhaust velocity in an earth surface enviroment with expansion to one atmosphere. Fitgher effective exhaust velocities may be attainable with slightly different mixtures due to the larger expansion ratios being used. Nore important then this is the effect of mixture ratio on component mass. For example, with the use of liquid hydrogen it appears obvious that a mixture ratio deficient in hydrogen would result in an optimum combination of tank mass and effective exhaust velocity. To a lesser extent this will be truefor all propellant combinations.

The three effects, of combustion pressure, expansion ratio and mixture ratio, require integrated consideration with the system in order to determine their combined effects on vehicle mass.

10.3.4. Solid propellant buming rate

The question of whether to use the cigarette burning arrangement, or the less massive case bonded internal burning conduit system cannot be decided without adequate data on the surface buming rates of real propellants. As these are not ayailable in the open literature (for the high performance propellents demanded by the moon landing application) the problem has had to be left unanalysed.

There is, however, one aspect worthy of attention, and that arises from the possible need for physical methods of controlling burning rate. The discussion here is based on the assumption that high performance propellants tend to have very fast burning rates, and the fact that in this application, with burning times of 30 seconds or so, slow burning rates are needed to utilise the case bonded layout. It is required to examine the situation in order to deterinine the possibility of decreasing burning rate by environmental control.

Tro parameters are available which appecr worthy of consideration. Since burning rate is a function of combustion pressure, low pressure operation should help towards a solution. In itself the low combustion pressure need not affect performance since a potentially infinite expansion ratio is available. It also appears possible to achieve low burning rates by use of propellant grain at low temperature at the moment of firing. It might in consequence be worth while storing the grain in a refrigerated state during the intervening journey.

11. Conclusions

The main aim of this paper has been to investigate the approximate size scale for a moon landing vehicle and its propulsion system. The work so far completed, based on a 100 lb . payload, indicates that some $230-240 \mathrm{Ib}$. of landing vehicleare required. Such a project would need an earth launching vehicle in the $250,000-350,000 \mathrm{lb}$. mass range. Although these figures are based on a 100 lb . payload the proportions are scalable over quite a vide range, and can in consequence be applied to other proposals made in the light of more detailed study on actual payload requirements, for example Gatlend's 'Migrant' study vehicle.

In order to meet the needs of this paper it was found necessary to develop a vehicle and propulsion system scaling procedure. A great deal of work is still required to be carried out ir order to fully utilise the method derived. At present, 22 sets of scaling constants have been obtained for six liquids, and one hypothetical solid propellant. The full procedure for detemining the minimum vehicle mass has only been applied to six sets of these scaling constants. In addition to the completion of the study discussed in this paper more work is required on the combined effects of combustion pressure, expansion ratio and mixture ratio. It is hoped that computer time may be made available in order to continue and widen the various aspects still requiring consideration.

The work so far completed shows that there is a considerable mass advantage obtained by using liquid propellants. In spite of this the possible reliability advantages of the solid unit cannot be ignored. From the liquid propellant aspect, therefore, studies are needed in the field of ultra simple systems, probably based on single explosive valve operation.

Because of the inadequate datacvailable on the subject of high performance solid propellants existing today, and their possible improvements in the future, it has been found impossible to do justice to this side of the study. In consequence the intermrelated problems met in trying to obtain the optimum balance between performance requirements, and component masses has had to be ignored.

12. Acknoriledgements

The author wishes to express his thenks to Professor A. G. Smith for permission to initiate the moon landing studies, and to Mr. T. G. Andrews for his very considerable help in the calculations involved.

SIMPITFTED ANALYSIS. DDAL VGHTCTE VBRICAT DESCIENY

The ideal vehicle is defined as having constant mass flow rate of propellant, effective exheust velocity and thrust. The all burnt mass of the vehicle is expressed as the sum of the payload, a mass scaling in airect proportion to propellant mass flow rate ($\mathrm{e}_{\mathrm{o}} \mathrm{g}$. analogous to a. liquid propellant thrust chamber, pipe lines and valves) and a mass scaling in direct proportion to the total mass of propellant carried (e.g. liquid propellant system tanks or a solid propellent combustion chamber case).

Then

$$
\begin{array}{ll}
M_{1}=M_{L}+K_{1} \dot{m}_{p}+K_{2} \dot{m}_{p} t_{b}\left(I b_{0}\right) & \ldots \ldots 1.1 \\
M_{0}=M_{1}+\dot{m}_{p} t_{b}\left(I b_{0}\right) & \ldots \ldots 1.2
\end{array}
$$

Since engine thrust $F=\dot{m}_{p} c$ (pal) the final or maximum acceleration of the vehicle is

$$
\begin{aligned}
a_{i}=\frac{F}{M_{1}} & =\frac{\frac{m}{p} c}{M_{1}} \quad\left(f t_{0} / \sec ^{2}\right) & \ldots . .1 .3 \\
& =\frac{\dot{m}_{p} c}{M_{0}-\dot{m}_{p} t_{b}}\left(f t_{0} / \sec ^{2}\right) & \ldots \ldots 1.4
\end{aligned}
$$

For a vertical descent the vehicle velocity increment may be written

$$
\Delta v=c \log _{e} \frac{M_{0}}{M_{1}}-\bar{S}_{I} t_{b} \quad\left(f t_{0} / \text { sec. }_{0}\right) \quad \ldots \ldots .1 .5
$$

It is required to determine the variation or the intial/payload mass ratio for various values of the constants c, K_{1} and K_{2}. This may be done at a number of a_{1} values. (Alternatively values of F, or $\frac{m}{p}$ could be specified). The initial/payload mass ratio may be expressed in terms of the constants and a_{1} using equations 1.2 and 1.4 .

$$
\frac{I_{1}}{W_{0}}=1-\frac{a_{1}}{c+a_{1} t_{b}}\left[K_{1}+t_{b}\left(K_{2}+1\right)\right] \quad \ldots .1 .6
$$

The initial/final mass ratio may be treated in the same manner using equations 1.1, 1.3 and 1.6

$$
\frac{M_{0}}{H_{1}}=\left[1-\frac{a_{1}}{c}\left(K_{1}+K_{2} t_{b}\right)\right] \frac{M_{0}}{M_{L}}
$$

For each selected value of a_{1} the burning time $\left(t_{b}\right)$ value must satisfy equation 1.5 for the velocity increment (Δv) and mean local gravitational acceleration ($\overline{g_{\mathrm{L}}}$) involved. This step may be carried out graphically or otherwise.

Plots ©f $\frac{M_{0}}{M_{I}}$ (and M_{0} for a payload of 100 Ib .) vs, a_{1} for the following values of the constants

$$
\begin{aligned}
\Delta \mathrm{v} & =7600 \mathrm{ft} . / \mathrm{sec} \\
\mathrm{c} & =8000 \text { and } 10,000 \mathrm{ft} . / \mathrm{sec} \\
\mathrm{~K}_{1} & =0,5 \text { and } 10 \mathrm{sec}^{-1} \\
\mathrm{~K}_{2} & =0.02,0.04,0.08 \text { and } 0.16
\end{aligned}
$$

are given in figures 6 and 7.

APPEMIX 2.

IDEAS ROCKY EMCTNE

In this paper an ideal rocket engine is defined as operating with a perfect gas. The gas is in equilibrium in the combustion chamber. Its composition does not alter through the expansion process. The usual ideal cycle assumptions of zero friction and heat loss are made. Also the gas leaves the exit without divergence loss and enters an environment of zero pressure.

It is required to determine the mass 1 low rate of propellant, the effective exhaust velocity, throat ara and exit/throat area ratio for engines of specified thrust. A number of operating conditions in terms of combustion pressure (P_{0}) and expansion pressure ratio P_{c} / P_{e} are to be investigated. The characteristic velocity c^{x} and y have been used as basic parameters, as a number of different propellant combinations are to be considered.

The following equations are derived from nozzle flow and the ideal engine definition:-

$$
\begin{array}{lll}
c^{x} & =\frac{P_{o} A_{t}}{h_{p}}
\end{array}\left[\begin{array}{ll}
\frac{p d l_{0}}{f t^{2}} & \frac{f t^{2} s e c_{c}}{1 b_{0}}
\end{array}\right] \quad \text { ft./sec. } \quad \ldots .1
$$

which expounds to

$$
C_{D}=y \sqrt{\frac{2}{y-1}}\left(\frac{2}{y+1}\right)^{\frac{y+1}{y-1}}\left[1-\left(\frac{P_{e}}{P_{c}}\right)^{y}\right]
$$

$$
\ldots \quad 2.3
$$

Also

$$
\frac{A_{c}}{A_{t}}=\varepsilon=\left(\frac{P_{c}}{P_{e}}\right)^{\frac{1}{y}} \frac{y}{C_{p}}\left(\frac{2}{y+1}\right)^{\frac{y+1}{y+1}} \quad \ldots \ldots 2.4
$$

The total thrust of an ideal engine operating in space is given by :-

$$
P=\dot{m}_{p} v_{e}+P_{e} A_{e} \quad p d 1 . \quad \ldots \ldots 2.5
$$

Which, expanding and substituting from 2,1, 2,2, and 2.4 gives :-

$$
\begin{aligned}
& F=\dot{m}_{p} c^{x}\left(C_{F}+\frac{P_{e}}{P_{c}} \varepsilon\right) \quad \mathrm{pdr} . \\
& 2.6 \\
& \therefore \quad \dot{m}_{p}=\frac{F}{c^{x}\left(C_{F}+\frac{P_{e}}{P_{c}} \varepsilon\right)} \quad 1 b_{0} / \mathrm{sec} . \quad \ldots . .2 .7 \\
& \text { and } \quad c=\frac{F}{m_{p}}=c^{x}\left(G_{F}+\frac{P_{e}}{P_{c}} \varepsilon\right) \quad f t_{0} / \mathrm{sec}_{0} \quad \ldots . .2 .8
\end{aligned}
$$

Also from 2.1 and 2.6

APPERIXI 3.

MASS OF TFRUST CHABBR - IIGUTD PROPETLAMT GNGTNES

The term thrust chamber is taken to include combustion chamber, nozzle and injector.

1. Combustion Chamber Shape

All chambers arc spherical with smoothed entry into the nozzle.

2. Combustion Chamber Volune

At the present moment adequate scaling methods are not available. Since all chanbers are the same shape I^{α} is assumed a valid scaling concept. In the absence of adequate data a velue

$$
I^{x}=\frac{V_{c}}{A_{t}}=60 \mathrm{in} \quad \ldots \ldots 3.1
$$

is used throughout the calculations.
3. Chamber Construction

A11 chambers are cooled. Construction is assumed to be of conventional double wall with coolant enclosed. Both walls are taken as of equal thiciness. Beceuse wells are very thin, nucleate boiling might occur. All chambers are therefore assumed to have an inner heat barrier coating of zirconia having a mass par unit arca equal to the single woll onto which it is attached (by ilame spraying).
4. Stressing

It is assumed that the chamber outer wall carries the entire pressure load and is everywhere below 550 K . The inside will takes the inward bursting load due to the excess pressure of tho coolant. The heat barrier is unstressed.

5. Injector

No specific allowance has been made for the injector Rather hopetully it has been assumed that the absent mass at the throat could be accounted to this. This is not serious since both injector and combustion chamber scale approximately on propellant mass flow rate. It is assumed that adequate allownce has been made.

6. Combustion Chamber Mass

It is required to relate combustion chamber mass with the performance parameters, thrust, nozzle thrust coefficient, combustion pressure, area and pressure expansion ratios and the propellant characteristic velocity. Ercm geometry of a sphere :-

$$
\begin{align*}
& d_{c}=\left(\frac{6 \mathrm{~V}_{c}}{\pi}\right)^{\frac{1}{3}} \\
& \therefore \text { surface }=\pi\left(\frac{6 \mathrm{~V}_{\mathrm{c}}}{\pi}\right)^{\frac{2}{3}} \\
& 3.3 \\
& \therefore \text { mass } \quad=\pi\left(\frac{6 v_{c}}{\pi}\right)^{\frac{2}{3}} \quad \rho_{m} t_{m} \\
& 3.4 \\
& \text { for a single thickness. } \\
& \text { Stressing as thin sphere } \\
& S=\frac{P_{c} \eta d_{c}}{4 t_{m}}
\end{align*}
$$

Substituting 3.1, 3.2 and 3.5 in 3.4

$$
\text { mass }=1.5 A_{t} L^{x} P_{c} \eta \frac{P_{m}}{S}
$$

for a single thickness.
Since in the combustion chamber there will be two sheets of metal and one of zirconia, each of equal mass per unit area

$$
M_{c}=4.5 A_{t} L^{x} P_{c} \eta \frac{\rho_{m}}{S}
$$

which, using equation 2.7 to eliminate A_{t} gives

$$
M_{c}=\frac{4.5 L^{\mathrm{X}} \eta F}{C_{F}+\frac{P_{e}}{P_{c}} \varepsilon} \quad \frac{\rho_{\mathrm{m}}}{S}
$$

It should be noted that the value of S should be an available maximum working stress for a temperature of $550^{\circ} \mathrm{K}$. The value of η was chosen after some thought as 2.5. It was intended with this rather high value to make allowance for the fact that the effects of stressing the injector and nozzle had not been teken into account.

7. Nozzle Fass

In order to eliminate thrust losses due to divergence a "tulip" nozzle profile has been assumed in the performance calculations. At a given combustion pressure the profile will change in a complex manner with different gas temperatures and composition. It is not possible
therefore to make a reasonable assessment of nozzle mass for the actual profile. It has therefore been assuned that the real nozzle mass is equal to a "similar nozzle" hoving the same throat and exit areas, but With a complete divcrgence angle of $30^{\circ}(2 \alpha)$.

From geometry it can be shown that the surface area of such a shape is

$$
\text { surface }=\frac{A_{t}}{\sin \alpha}(\varepsilon-1)
$$

The mass of the nozzle has been based on the assumption that the equivalent thickness is the same as the combustion chamber, i.e. three times the calculated "cold stress" thickness. No allowance has been made for the possibility of decreasing thickness towards the exit. Nor has any allowance been made for the fact that cooling may not be required noer the exit. Equation 3.9 may be rewritten using equations 2.7, 3.2 and 3.5:-

$$
\mathbb{I}_{\mathrm{n}}=\left(\frac{\mathrm{P}}{\mathrm{C}_{F}+\frac{P_{e}}{P_{c}}}\right)^{\frac{4}{3}} \quad \frac{0.75 \eta(\epsilon-1)}{\sin \alpha} \frac{\rho_{m}}{S}\left(\frac{6 I^{x}}{\pi P_{c}}\right)^{\frac{1}{3}} \ldots 3.10
$$

8. Thrust Chambor Mass

The mass of the complete thrust chambor is the sum of equations 3.8 and 3.10. Throughout this paper steinless steel, with a working stress of $150,000 \mathrm{Ib}$ 。/in ${ }^{2}$ at $550^{\circ} \mathrm{K}$, has been used. Combustion chambers for pressurised and turbompurped systems have been token as identical.

All chambers have been based on a dimensiona design thrust of 267 Ib . for $P_{0}=500 \mathrm{Lb} . / \mathrm{in}^{2}$.

APPTEDTX 4

COMPONENT MASSES - IICUTD PROPETTAMP SYSTEPIS

It is required to celculate the masses of the verious components which may occur in a liquid propellant system. A method is required which will permit an assessment of the performance of vehicles operating with various propellents at selected combustion pressures, using either pressurised tanks or turbo pumps for propellant motivation.

1. Tank Mass

Tanks are sphericel. Using an identical method to that outlined in Appendix 3, equations 3.2 to 3.5.

$$
M_{T}=\stackrel{m}{p}^{t_{b}} \frac{1.5 P_{T} \eta}{\rho_{P}} \frac{\rho_{m}}{S} \quad \cdots \cdots 4.1
$$

Equation 4.1 can be used directly for the mass of both tanks if they are of the same material.

Equation 4.1 is used as it stands for propellants which present no thermal insulation problems, and uso the same material for each propellant. (o.g. Hydrogen peroxide and hydrazine both use stainless steel).

Where different materials are required tho equation is modified to $M_{T}=1.5 \stackrel{m}{p}^{p} t_{b} P_{T} \eta\left[\frac{r}{r-1}\left(\frac{1}{\rho} \frac{\rho_{m}}{S}\right)_{0 X}+\frac{1}{r-1}\left(\frac{1}{\rho} \frac{\rho_{m}}{S}\right)_{\text {Fuel }}\right] \ldots 4.2$

Throughout this paper tank pressures have been taken as

$$
\begin{aligned}
P_{T} & =\left(200+P_{c}\right) \mathrm{Lb} \cdot / \mathrm{in}^{2} \\
& =700 \mathrm{Lb}_{\mathrm{c}} / \mathrm{in}^{2}
\end{aligned}
$$

for pressurised systems and $50 \mathrm{Lb} . /$ in 2 for pumped systems. η has been taken as 1.5 in all cases.

Equation 4.2 may also be used in the calculation of tank mass for the propellants, oxygen, fluorine, and hydrogen, wore either considereble density change or heat barrier is required. In this peper it is assumed that for oxygen and fluorine, the density at the end of the voyage will be half the loading density, without any heat barrier. for hydrogen, a figure of $1 / 4$ loading density has been used, of which half the extra tank mass is considered due to real density change, the remainder due to some unspecified. heat barrier.

2. Valve and Pioeline Mass

It is assumed that this is directly proportional to propellant volume flort, then:-

$$
\mathrm{M}_{\mathrm{v}}=90 \frac{\frac{m}{\mathrm{p}}^{\rho_{\mathrm{p}}}}{\rho_{\mathrm{p}}} \quad 2 b_{0} \quad \ldots \ldots .4 .3
$$

The value of this constant and that in 4.4 have been based on figures given by Baxtcr (Ref. 3).

3. Turbo/pump and Gas Gencrator Lass

It is assumed that the gas generator, turbine, shaft and casing have a mass directly proportional to the rate at which pumping work is being done on the propellants

$$
I_{g}=1.83 \dot{m}_{p} \Delta p \times 10^{-6} \quad \text { lb. } \quad \ldots . .4 .4
$$

The pumps and their cases are assumed to have a mass proportional to propellant volume flow rate

$$
M_{p u}=10 \frac{m_{p}}{p_{p}} \quad 1 b_{0} \quad \ldots \ldots 4.5
$$

The value of ΔP in equation 404 has been taken as $\left(P_{C}+200-P_{T}\right) L b / i^{2}$ which, for the cases considered has a value of $650 \mathrm{Ib} / \mathrm{in}^{2}$.

APEMDIX 5.

MASS OR THRUST CHASBER - SOITD PROPETTANT UNIT

1. Case Mass

Neither shape, nor length/diameter ratio are defined. It is therefore assumed that the real case mass, excluding the nozzle divergent section, is equal to the mass of a cylinder containing the same volume, stressed to the same pressure, of the same material and temperature as the real case.

Then case volume may be expressed as :-

$$
V_{c}=\frac{\hat{m}_{p} t_{p}}{\rho_{p} \epsilon_{p} R_{p}}
$$

where ϵ_{p} is the propellant loading fraction and R_{p} the propellant utilisation ratio and both equal one in the cigarette burning arrangement.

From geometry of cylinder :-

$$
V_{c}=\frac{\pi}{4} D_{c}^{2} L
$$

Then based on surface

$$
\text { Mass }=\pi D_{\mathrm{c}} L t_{\mathrm{m}} \rho_{\mathrm{m}}
$$

Substituting 5.1 and 5.2 into 5.3:-

$$
\text { Mass }=\frac{\stackrel{m}{p}_{p}^{t_{p}}}{\rho_{p} \varepsilon_{p} R_{p}} \frac{4}{D_{c}} \quad t_{m} \rho_{m} \quad \ldots \ldots .5 .4
$$

Stressing as thin cylinder

$$
S=\frac{P_{c} \eta D_{c}}{2 t_{m}}
$$

$$
\therefore \quad M_{c}=\stackrel{\circ}{m}_{p} t_{b} \frac{2 \eta P_{c}}{\rho_{p} e_{p} R_{p}} \frac{\rho_{m}}{S} \quad \ldots \ldots 5.6
$$

Rquation 5.6 is directly valid for a case bonded internal burning grain. A value $\eta=2$ has been used. Stainiess stecl case with $S=75 \%$ of normal maximum working stress.

For a cigarette burning charge with an internally sprayed zirconia heat barrier of mass per unit area equal to case material :-

$$
M_{c}=m_{p} t_{b} 4 \eta \frac{P_{c}}{\rho_{p}} \cdot \frac{\rho_{m}}{S}
$$

Again $\eta=2$. A value of $S=54 \%$ hes been used in this application.
2. Nozzle Mass

Nozzle in uncooled andhas a heat barrier of zirconia. As in Appendix 3, the nozzle is tulip shaped to eliminate divergence losses. The estimation of mass is based on the some "similar nozzle" with an expansion half angle of 15°.

From $3.9:-$

$$
\operatorname{Mass}=\frac{A_{t}}{\sin \alpha}(\epsilon-1) \quad \rho_{m} t_{m}
$$

$\ldots 5.8$

In this application nozzle thickness is based on a thin cylinder
where $\quad D_{n}=\left(\frac{A_{t}+A_{e}}{2}\right)^{\frac{1}{2}}$

$$
t_{m}=\frac{P_{C} n D_{n}}{2 S}
$$

Introducing a factor of 2 to take into account the zirconia

$$
M_{n}=\left(c_{m_{p}}\right)^{\frac{4}{3}} \quad \frac{(\epsilon-1) n}{P_{c} \sin \alpha}\left(\frac{\epsilon+1}{2}\right)^{\frac{1}{2}} \cdot \frac{p_{m}}{S} \quad \ldots .
$$

Which may be written in terms of thrust and the nozzle coefficients

$$
M_{n}=\left(\frac{F}{C_{F}+\frac{P_{e}}{P_{c}}}\right)^{\frac{4}{3}} \frac{(\varepsilon-1) \eta}{P_{c} \sin \alpha}\left(\frac{\varepsilon+1}{2}\right)^{\frac{1}{2}} \frac{\rho_{m}}{S} \ldots 5.12
$$

This method of estimation of nozzle mass gives values within a few per cent of the alternative method, the result of which is derived in equation 3.10.

APFENDIX 6.

COMPLETE IDEAL VEHICIE ANATMSIS

The propulsion system scaling rules indicate that the full definition of the ideal vehicle must include a mass scaling in proportion to
m_{p}. From this the all burnt mass of the vehicle is expressed as

$$
M_{1}=M_{L}+K_{1} \dot{m}_{p}+K_{2} \dot{m}_{p} t_{b}+K_{3} \frac{m_{p}^{4}}{m_{p}}
$$

Velocity increment and burning time are given by

$$
\begin{array}{llll}
\Delta_{v} & =0 \log _{e} \frac{M_{0}}{M_{1}}-\overline{g_{I}} t_{b} & \ldots \ldots & 1.5 \\
t_{b} & =\frac{M_{0}-M_{1}}{m_{p}} & \ldots . & 6.2
\end{array}
$$

Rewriting 6.1 and 6.2 in terms of $\frac{M_{0}}{M_{1}}$, and eliminating M_{0} and M_{1}

$$
t_{b}\left[\frac{1}{\frac{M_{0}}{M_{L}}-1}-K_{2}\right]=\frac{M_{L}}{\hat{m}_{p}}+K_{1}+K_{3} \frac{n_{p}^{\frac{1}{3}}}{p} \ldots 6.3
$$

A graphical method permitting the determination of $\frac{M_{0}}{M_{1}}$, $t_{b}, \frac{M_{L}}{M_{c}}$, etc : for a given 'propellant combination/vehicle system' group (for known values of $\Delta v, c, K_{1}, K_{2}$ and K_{3}) at various \dot{m}_{p} (or thrust) levels is as follows:

Graph 1. Plot equation 1.5 as $\frac{\mathrm{M}_{0}}{\mathrm{M}_{1}}$ vs. t_{b}.
Graph 2. Plot left hand side of equation 6.3 vs . t_{b} (using the relationship between t_{b} and $\frac{M_{0}}{M_{1}}$ given in equation 1.5 , and plotted in graph 1). Values of the right hand side of equation 6.3 are then determined for various m_{p} values. Then from graph $2 t_{b}$ can be obtained. Graph 2 can then be used to give $\frac{M_{0}}{M_{1}}, ~ M_{1}$ and M_{0} are then determined separately from equations 6.1 and 6.2.

1. Hunter, I. W., Klemperer, W.B., and Gunkel, $\mathrm{R}_{\mathrm{p}} \mathrm{J}_{\text {. }}$
2. Gill, G., Eckell, E.F., Williams, $F_{0} A_{0}$, and Penner, $S_{c} S_{0}$
3. Baxter, A.D.

Impulsive Midcourse Correction of a Lunar Shot.
9th International Astronautical Congress 1958.
Determination of Rocket Motor Parameters by Means of a Diverging Reactor. 7th Intermational Symposium on Combustion 1958.

Some Propulsion Problems of High Altitude Rockets. High Altitude and Satellite Rockets. (The proceedings of a Symposium held at Cranfield, England, July 1957). Published jointly by the Royal Aeronautical Society and the British Interplanetary Society.
4. Theoretical Performance of Several Rocket Propellant Combinations.

Chart prepared by Rocketdyne, a
Division of North Americen Aviation Inc. 1958.
5. Pocket Data for Rocket Designers. Published by Rockets Division, Bell Aircraft Corporation, June 1958.

TABLE 1

RETEVANTP RARTH AND MOON DATA

	Moon	Earth
Diameter (miles)	2159	7926
Surface gravity (ft/sec ${ }^{2}$)	5.19	32.17
Escape velocity (ft/sec)	7693	36,677

Minimum velocity (at earth surface) to reach moon	$34,800(\mathrm{ft} / \mathrm{sec})$
Circular velocity at 500 miles above earth surface	$24,800(\mathrm{ft} / \mathrm{sec})$
IInimum velocity increment (500 circular to moon)	$10,000\left(\mathrm{f}^{\prime} \mathrm{t} / \mathrm{sec}\right)$

TABLE 2

LIOUID PROPMTLANT DATA

Combination 1	99.6% Hydrogen Perozide and Korosine $\left(\frac{C}{H}=6\right)$	
$"$	2^{x}	99.6% Hydrogen Peroxide and 100\% Hydrazine
$"$	3	Liquid Oxygen and Kerosine ($\left.\frac{C}{F}=6\right)$
$"$	4	Liquid Oxygen and Unsymmetricel Dinethyl Hydrazine
$"$	5	Liquid Oxygen and Liquid Hydrogen
$"$	6^{x}	Liquid Fluorine and Liquid Hydrogen

x Self-igniting combination

Performance data based on $\mathrm{P}_{\mathrm{c}}=500 \mathrm{Ib} / \mathrm{in}^{2}$

Propellant Combination	+ 1	2	3	4	5	6	
c^{x}	5320	5660	5740	5975	7950	8275	$\mathrm{ft} / \mathrm{sec}$
γ	1.2	1.22	1.24	1.24	1.26	1.33	
T_{c}	2939	2861	3461	3394	2790	3033	${ }^{\text {a }}$
m	22	19	22	20	9	8.9	$\frac{1 \mathrm{~b}}{1 \mathrm{~b} \cdot \mathrm{MOI}}$
$=\left(\frac{0 x}{\text { Fue1 }}\right)$	6.5	1.7	2.3	1.4	3.5	4.5	
$\rho_{0 x}$	87.0	87.0	71.3	71.3	71.3	94.3	$\frac{1 b}{a^{3}}$
$\rho_{\text {Fuel }}$	49.8	62.4	49.8	48.9	4.41	4.41	$\frac{3 b}{\mathrm{ft}^{3}}$
Prop	79.9	77.4	61.2	59.9	16.23	19.98	$\frac{1 b}{f t^{3}}$

References 4 and 5

- 30 .

TABIE 3.

SOLTD PROPEITANT DATA

Values are assumed typical or best available at present time. They are not representative of any specific type of propellant.

Performance data based on $P_{c}=1000 \mathrm{Lb} / \mathrm{in}^{2}$

c^{x}	$=4920 \mathrm{ft} / \mathrm{sec}$	
y	$=1.26$	
$\mathrm{~T}_{\mathrm{c}}$	$=2750$	ρ_{K}
ρ_{p}	$=100$	$\mathrm{Ib} / \mathrm{ft}^{3}$

TABLE 4.

MATERIILS DATA USBD IN PAPER

1. Stainless steel (Armco PH $15 \mathrm{~m} 7 \mathrm{M}_{0}$)

Maximum working stress at $20^{\circ} \mathrm{C}$
Maximun working stress at $300^{\circ} \mathrm{C}$
Density
Strength/-Mass at $20^{\circ} \mathrm{C}$
Iuminium Alloy
3. Titanirm A110y (6A1-4V)

Maximum working stress at $20^{\circ} \mathrm{C} \quad 160,000 \mathrm{Lb} / \mathrm{in}^{2}$
Density
$0.16 \quad \mathrm{Ib} / \mathrm{in}^{3}$
Strength/Tass at $20^{\circ} \mathrm{C}$ $10^{6} \quad \mathrm{Ib} . \mathrm{in} / \mathrm{lb}$ 。

Reference 5 and Manufacturers data.

TABTE 5。

NOZZIE FEXTE PRESSURE ~SIZ: RELATIONSHIP

FOR CONSTANT THRUST AND COMBUSTION PRESSURE

$$
\text { Data based on } \quad \begin{aligned}
P_{c} & =1000 \mathrm{Lb} / \mathrm{in}^{2} \\
F & =1429 \mathrm{Ib} \\
C^{X} & =4920 \mathrm{ft} / \mathrm{sec} \\
Y & =1.26
\end{aligned}
$$

$P_{e} \mathrm{Li} / \mathrm{in}^{2}$	14.7	10	2	1	0.1
$\frac{P_{c}}{P_{e}}$	68	100	500	1000	10000
${ }_{\text {c }}$	1.575	1.61	1.75	1.79	1.9
$\mathrm{v}_{\mathrm{e}} \mathrm{ft} / \mathrm{sec}$	7750	7930	8620	8820	9350
$\varepsilon=\frac{A_{e}}{A_{t}}=$	7.8	10.5	36	60	200
$\mathrm{A}_{t} \mathrm{in}^{2}$	0.845	0.833	0.784	0.772	0.745
$\mathrm{A}_{\mathrm{e}} \mathrm{in}^{2}$	6.59	8.75	28.2	46.4	149.0
D_{t} in	1.036	1.029	0.998	0.991	0.973
D_{e} in	2.90	3.28	6.00	7.68	13.76
Surface area in ${ }^{2}$	22.2	30.5	105.7	176	571
$\stackrel{\mathrm{m}}{\mathrm{p}}^{\mathrm{p}} \mathrm{lb} / \mathrm{sec}$	5.53	5.44	5.11	5.05	4.86
c $\mathrm{ft} / \mathrm{sec}$	8300	8450	9000	9120	9460

TABIT 6.

PMRFORMAME AMD NOZZIS PAPMETYRS FOR VARIOUS LTQUTD PROFETAAMS

FOR CONSTANT THEUST AND COMBUSTION PRESSURE

$$
\begin{aligned}
\text { Data based on } & =500 \mathrm{Lb} / \mathrm{in}^{2} \\
& =0.05 \mathrm{Lb} / \mathrm{in}^{2} \\
& P_{e} \\
& =267 \mathrm{Lb}
\end{aligned}
$$

Propellant combination .	1	2	2^{x}	3	4	5	6
C_{F}	1.98	1.95	1.84	1.92	1.92	1.885	1.8
$\mathrm{ve}_{\text {e }} \mathrm{ft} / \mathrm{sec}$	10530	11040	10420	11010	11480	14990	14900
$\varepsilon=\frac{A_{e}}{A_{t}}$	459	416	67.1	383	383	344	251
$A_{t} \quad i n^{2}$	0.263	0.268	0.28	0.273	0.273	0.278	0.293
$A_{e} \quad i n^{2}$	120.8	111.6	18.8	105	105	103	73.5
D_{t} in	0.578	0.584	0.597	0.589	0,593	0.595	0.61
D_{e} in	12.4	11.9	4.89	11.53	11.53	11.44	9.67
$\begin{gathered} \text { Surface area } \\ \text { in }^{2} \\ \hline \end{gathered}$	466	4.30	71.5	403	403	369	283
$\mathrm{m}_{\mathrm{p}} \mathrm{Im} / \mathrm{sec}$	0.797	0.76	0.795	0.765	0.734	0.563	0.569
c $\mathrm{f} \% / \mathrm{sec}$	10780	11,300	10,800	11,220	11,710	15,260	15,100

${ }^{X}$ Data based on $P_{e}=0.5 \mathrm{ID} / \mathrm{in}^{2}$

TABIX 7.

SCATING CONSTANIS FOR ITOUID FROPELTANTT SYSTHIS

Propellant Combination \rightarrow	1	2	3	4	5	6
K_{1} (chamber)	0.206	0.215	0.222	0.231	0.308	0.320
K_{1} (valves	1.126	1.162	1.471	1.502	5.560	4.510
K_{1} (Pressurised system)	1.332	1.381	1.693	1.733	5.868	4.830
K_{1} (gas generator)	5.525	5.525	5.525	5.525	5.525	5.525
K_{1} (pumps)	0.125	0.129	0.163	0.167	0.616	0.501
K_{1} (Turbo/pumped system)	6.982	7.035	7.381	7.425	12.009	10.856
$\mathrm{K}_{2}\left(\mathrm{at} 700 \mathrm{Lb} / \mathrm{in}^{2}\right)^{1}$	-	-	0.0773	0.0914	0.674	0.563
$\mathrm{K}_{2}\left(\text { at } 700 \mathrm{Lb} / \mathrm{in}^{2}\right)^{2}$	0.0456	0,0496	0.0478	0.0618	0.185	0.157
$\mathrm{K}_{2}\left(\mathrm{at} 50 \mathrm{Lb} / \mathrm{in}^{2}\right)^{1}$	-	-	0,00553	0,00654	0.0481	0.0483
$\mathrm{K}_{2}\left(\mathrm{at} 50 \mathrm{Lb} / \mathrm{in}^{2}\right)^{2}$	0.00326	0.00354	0.00342	0.00442	0.0132	0.0112
$\left.K_{3} \frac{P_{c}}{\frac{P_{e}}{}}=10,000\right)$	3.425	3.350	3.15	3.32	4.23	3.36

${ }^{1}$ Allowance made for temperature rise, and/or heat barrier
Based on density at $273^{\circ} \mathrm{K}$ or boiling point at 1 atmosphere (lowest value). No allowance made for heat barrier mass.

SCATING CONSTANIS - THE SOLID PROENLIANT SYSTLET
$K_{1}=0 \quad K_{2}=0.36^{1}, 0.18^{2} \quad K_{3}=0.48$
${ }^{1}$ Cigarette burning arrangement
${ }^{2}$ Case bonded, internal burning conduit.

TOTAL VELOCITY INCREMENT EARTH SURFACE TO MOON $35,250 \mathrm{fL} / \mathrm{sec}$. VELOCITY INCREMENT 500 MILE CIRCULAR ORBIT TO MOON $10,500 \mathrm{ft} . / \mathrm{sec}$.

FIG. 1. TYPICAL EARTH-MOON TRAJECTORY. BASED ON REF:.

FIG. 2. MOON LANDING. HYPERBOLIC ELLIPTIC APPROACH.

FIG. 3. GRAZING ELLIPSE LANDING TECHNIQUE.

FIG. 4. VERTICAL DESCENT LANDING TECHNIQUE.

fig. 5. IDEAL VEHICLE: MASS/ACCELERATION $K_{1}=0$

FIG. 6. IDEAL VEHICLE: MASS/ACCELERATION $K_{1} \& K_{2} \neq 0$

FIG. 7. LIQUID PROPELLANT COMBUSTION CHAMBERS.

FIG. 8. REAL VEHICLE MASS/ACCELERATION.

