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Abstract

This paper presents an extension of a Weighted Essentially Non-Oscillatory (WENO) type schemes for the com-

pressible Euler equations on unstructured meshes for stratified atmospheric flows. The schemes could be ex-

tended for regional and global climate models dynamical cores. Their potential lies in their simplicity; accuracy;

robustness; non-oscillatory properties; versatility in handling any type of grid topology; computational and par-

allel efficiency. Their defining characteristic is a non-linear combination of a series of high-order reconstruction

polynomials arising from a series of reconstruction stencils. In the present study an explicit Strong Stability

Preserving (SSP) Runge-Kutta 3rd-order method is employed for time advancement. The WENO schemes (up

to 5th-order) are applied to the two dimensional and three dimensional test cases: a 2D rising thermal bubble;

the 2D density current and the 3D Robert smooth bubble. The parallel performance of the schemes in terms of

scalability and efficiency is also assessed.
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1. INTRODUCTION

Understanding the atmospheric processes both qualitatively and quantitatively on regional and

global scales is of great value for scientists and policy decision makers. Tools utilised by the scien-

tific community to gain insight into the complex atmosphere-climate system, include the numerical

weather prediction (NWP) and climate models. The main objective is to accurately simulate weather

and climate variations, trends, patterns etc. All the models utilised for this purpose have a distinctive

component in common, the dynamical core, which solves the fluid dynamics equations. In other words

it is the model component that drives atmospheric motions; hence with a profound impact on the accu-

racy of the predictions. The leap occurring in computing processing power the last decade, provides a

motivation to resolve atmospheric processes on finer scales and higher resolution than happened before.

There is currently a trend of either enhancing the majority of the dynamical cores of established models

or develop new dynamical cores that employ highly sophisticated algorithms or set of equations needed

for the next generation of high performance computing facilities. A number of initiatives have been

taken to address this bottleneck and develop the next generation of dynamical cores. Such initiatives

include the UK Met Office and European Centre for Medium-Range Weather Forecasts Even Newer

Dynamics for General Atmospheric Modelling of the Environment (ENDGame) [55]; the National Cen-

ter for Atmospheric Research High-Order Methods Modelling Environment [36]; the National Oceanic

and Atmospheric Administration AM3 model [37] and the Nonhydrostatic Icosahedral Model (NIM)

[38]; the Frontier Research Center for Global Change Nonhydrostatic Icosahedral Atmospheric Model,

(NICAM) [43]; the Non-hydrostatic Unified Model of the Atmosphere (NUMA) [18]; and the Max

Planck Institute for Meteorology and Deutscher Wetterdienst ICOsahedral Non-hydrostatic general cir-

culation models, (ICON) [33].

This paper focuses on the numerical methods component of the dynamical core aspect of atmo-

spheric flows. Since high performance computing systems enable the analysis on finer scales and

higher resolution, the topography should be efficiently and accurately represented, a property typical

for unstructured grids. In the past, finite volume numerical methods have been introduced in the struc-

tured grid context resulting in robust schemes that enjoyed a wide recognition in various disciplines,

including the weather and climate prediction community, e.g. [28, 29, 47].

The first generation numerical methods for unstructured grids also suffered from low accuracy com-

pared to structured grids and their requirements in terms of computing power and resources were
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higher. However, the numerical methods for unstructured grids have matured, and numerous ele-

gant approaches [10, 13, 19, 22, 30, 39, 41, 50, 52, 54, 60–62] and algorithms have been developed

in the finite volume framework for a wide range of applications for Computational Fluid Dynam-

ics(CFD). Other state-of-the-art approaches are also available, such as the Discontinuous Galerkin

(DG) [7, 8, 10, 56, 61, 68], and Spectral Finite-Volume (SFV) methods [6, 57–59, 62, 67] that have

been successfully applied for CFD applications. For the finite volume framework the first class of

high-resolution methods developed for unstructured grids included the ENO type schemes [1, 48], fol-

lowed by the WENO type schemes [14, 24, 44, 45]. In the WENO case, the high-order accuracy was

achieved by non-linearly combining a series of high-order reconstruction polynomials arising from a

series of reconstruction stencils. Recently, a class of WENO type methods [50, 54] has been success-

fully extended to hybrid unstructured meshes with various geometrical shapes such as tetrahedrals,

hexahedrals, prisms, and pyramids . It has been demonstrated that they can achieve the very high order

of spatial accuracy across interfaces between cells of different types, and at the same time essentially

non-oscillatory profiles are produced for discontinuous solutions. This gives greater flexibility to han-

dle complex geometrical shapes in an efficient and accurate manner. The approximations used in the

subject schemes that dictate their performance apart from the governing equations employed are related

to the order of approximation of the surface, and volume integrals by a Gaussian quadrature rule of suit-

able order for the order of polynomials utilised. Additionally the initial condition for any flow problem

with space dependent solution vary with various orders of accuracy, since the Gaussian quadrature

points and weights used are also dependent on the spatial scheme chosen. It has beed demonstrated

in a previous study [53] that the chosen variables used for reconstruction have a profound impact on

the performance of the subject schemes at low-Mach number flow problems, where the characteristic

variable based reconstructions do not exhibit the same accuracy problem as conserved variables for

low-Mach number flows using the compressible flow equations.

For the atmospheric dynamics there is also an overwhelming number of recent state-of-the-art ap-

proaches that utilise high-order schemes for either structured grid or unstructured dynamical cores

[5, 8, 15, 16, 25, 31, 34, 46, 63–65]. Regarding the high-order schemes (higher than 3rd order of spa-

tial accuracy) for unstructured dynamical cores all of the approaches are based on the Discontinuous

Galerkin framework and the Spectral Elements Method (SE) [8, 16, 27, 34, 64]. One of the primary

aims of the next generation of NWP and climate prediction dynamical cores is to resolve phenomena of

finer scales, by taking into account non-hydrostatic processes. Therefore there is a need for adopting or
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developing better-suited formulations of the governing equations, and matching them with the appro-

priate numerical methods. To the best of our knowledge there are no approaches that use WENO-class

of higher-order schemes for unstructured meshes in the finite volume framework for atmospheric flows.

The fact that WENO schemes have been successfully applied previously for flow problems including

smooth and discontinuous flow regions[3, 4, 9, 10, 13, 52], motivates their extension for atmospheric

dynamics problems.

The aim of this paper is to apply and assess the performance and suitability of WENO-class of

higher-order finite volume schemes for unstructured meshes for well established test cases for atmo-

spheric dynamics. It must be stressed that these schemes are independent of element shapes, and are

generic in the sense that they can be employed for any type of meshes.

The paper is organised as follows. In Section 2 the governing equations of a dry stratified atmosphere

are outlined. Section 3 presents a detailed explanation of the spatial discretisation techniques in terms

of stencil construction algorithms, WENO reconstruction, numerical fluxes, source terms and temporal

discretisation. The results obtained with various schemes for different test cases, including the parallel

performance are presented in Section 4 . Section 5 summarises the conclusions drawn from the present

study.

2. GOVERNING EQUATIONS

The compressible Euler equations employed in the CFD community where mass, momentum and

total energy are the conserved quantities are rarely used for atmospheric studies, with a few notable

exceptions [17]. The primary reason for not being that common in atmospheric studies is the additional

computational step required to compute potential temperature from total energy. However the benefits

of using these set of equations are their formally conservative nature as reported in [17], and the fact

that existing state-of-the-art methods and techniques already developed in the CFD community can be

readily applied with minor modifications if required to model atmospheric processes. The compressible

non-hydrostatic Euler equations without moisture effects are considered in the following form:

∂

∂t
U+

∂

∂x
F(U) +

∂

∂y
G(U) +

∂

∂z
H(U) = S , (1)

where U is the vector of the conserved variables, F, G, H are the flux vectors in x, y and z directions

of Cartesian coordinates and S is a gravity source function given by
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where ρ is density; u, v, w are the velocity components in the x, y and z directions of Cartesian

coordinates, respectively; p is pressure; E = ρcvT + (1/2)ρ(u2 + v2 + w2) + ρgy is the total energy

per unit mass; γ is the ratio of specific heats; g the gravitational constant; gy is the geopotential height;

T is the temperature; R = cp − cv is the gas constant, where cp is the specific heat at constant pressure

and cv is the specific heat at constant volume. The ideal gas law is used with γ = 1.4 throughout this

work, with the pressure p given by

p = ps

(

ρRθ

ps

)γ

, (2)

where ps is the atmospheric pressure at sea level, and θ is the potential temperature

θ =
T

π
, (3)

with π being the Exner pressure provided by the following expression

π =

(

p

ps

)
R
cp

. (4)
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The following equations relate the Exner pressure π to the density ρ, and the potential temperature θ to

the total energy per unit mass E:

ρ =
ps
Rθ

π
cv
R , (5)

and

E = ρcvθπ + (1/2)ρ(u2 + v2 + w2) + ρgy. (6)

The Exner pressure and potential temperature can be split in their mean and perturbed parts as

follows

θ (x, y, z, t) = θ̄ (y, t) + θ′ (x, y, z, t) , (7)

and

π (x, y, z, t) = π̄ (y, t) + π′ (x, y, z, t) , (8)

where the hydrostatic balance of their mean values is given by

cpθ̄
dπ̄

dy
= −g. (9)

Integrating in space over a mesh element Vi , we obtain the following semi-discrete finite-volume

method

∂Ui

∂t
+

1

|Vi|

∮

∂Vi

FndA = Si , (10)

and using the rotational invariance property of the Euler equations [51]

Fn (U) = F (U)nx +G (U)ny +H (U)nz

= T
−1

F (TU) ,
(11)

where n = (nx, ny, nz) is the outward unit normal vector; Ui(t) are the cell averages of the solution

at time t; Fn is the projection of the flux tensor on the normal direction; T is the rotation matrix; and

T
−1 its inverse [51] ; and the source term Si is given by
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Si =
1

|Vi|

∫

Vi

S(x, y, z, t)dxdydz, (12)

Assuming that the element’s surface consists of L faces, with the spatial index i being omitted for

simplicity,

∂Vi =

L
∑

j

Aj ,

(nj denoting the outward unit vector for face Aj), then the integral over the element boundary ∂Vi can

be split into the sum of integrals over each face, resulting in the following expression:

∂Ui

∂t
= Ri, (13)

where

Ri = −
1

|Vi|

L
∑

j=1

∫

Aj

Fn,jdA+ Si

= −
1

|Vi|

L
∑

j=1

Kij + Si.

(14)

The numerical flux Kij corresponding to face j of the cell Vi is the surface integral of the projection

of the tensor of fluxes onto nj . In a numerical method the exact integral expression for the numerical

flux Kij for the face j of a cell Vi is approximated by a suitable Gaussian numerical quadrature

Kij =

∫

Aj

Fn,jdA =
∑

β

Fn,j (U(xβ, t))ωβ|Aj |, (15)

where the subscript β corresponds to different Gaussian integration points xβ and weights ωβ over the

face Aj .

3. NUMERICAL FRAMEWORK

In this section the numerical framework for the solution of the compressible non-hydrostatic Euler

equations is presented with respect to spatial and temporal discretisation.
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(a) Hexahedral (b) Pyramid (c) Prism (d) Tetrahedral

FIG. 1: 3D Element shapes

3.1. Spatial discretisation

The spatial discretisation is based on the approach of [50, 54] which is suitable for unstructured

meshes with various types of element shapes in 2D and 3D, where it has been previously used success-

fully for laminar, transitional and turbulent flows [52], and only the key characteristics of this approach

are going to be described in this paper. The first step in the approximation of the governing equations

concerns the spatial discretisation of the domain Ω⊂R
3 into E number of conforming elements Vi,

with the index i ranging from 1 to E number of elements. The elements can be any combination of

hexahedrals, pyramids, prisms, and tetrahedrals as shown in Fig. 1 in 3D, and triangles or quadrilaterals

in 2D. It must be noted that the present WENO schemes are not limited by conforming meshes, since

they can be used with non-conforming meshes which brings additional benefits such as adaptive mesh

refinement [11].

The combination of all elements in the spatial domain is given by

Ω =

E
⋃

i=1

Vi. (16)

In the context of the finite volume framework that is employed in the present study, the data is

represented by cell averages of conserved variable U(x, y, z) in each element Vi

U i =
1

|Vi|

∫

Vi

U(x, y, z) dV, (17)

where |Vi|is the volume of the element. To achieve high-order, accurate spatial discretisation, high-

order accurate point-wise values of the solution need to be recovered from the cell averages. The
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reconstruction problem can thus be reformulated as follows: For a target cell V0 we build a high-order

polynomial pi(x, y, z) that has the same cell average as U on the target cell

U i =
1

|Vi|

∫

Vi

U(x, y, z) dV

=
1

|Vi|

∫

Vi

pi(x, y, z) dV.

(18)

The point-wise values of the conserved variable U in each cell are approximated with a polynomial

of a desired order of accuracy r. The polynomial uses the cell averages of U(x, y, z) on the target cell

Vi as well as averages Ūm from neighbouring cells, Vm.

3.1.1. Stencil selection algorithm

For high-order finite-volume methods the variation of information (data) in the close spatial proxim-

ity (neighbourhood) of each element in the mesh is required. Therefore, a high quality approximation

of how this information varies within each element must be obtained. Hence, it is required to construct

a region (neighbourhood) of elements surrounding each element in the mesh. This region is named

the stencil and is constructed by recursively adding the direct side neighbours of any considered ele-

ment until a desired number of elements has been reached. The basic steps of the stencil construction

procedure are as follows:

1. For cell i we want to construct a set of elements S (stencil) consisting of N(S)elements

2. With c = 1, 2, ....N being the index of the numbering of the elements in the stencil

3. S1 = i, the considered cell i is always the first element in the stencil c = 1

4. Assume that the element in the stencil Sc has M number of direct neighbours

(a) Check which of the M elements do not belong in the set (repetition condition)

(b) If WENO scheme is selected check which of the resulting M elements that do not belong

in the set satisfy the geometrical sector conditions (geometrical conditions)

5. Assign as the next elements in the stencil only the ones that do not belong in the set

6. Repeat steps 4 to 5 until N number of elements have been assigned

9
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(a) Hybrid stencil (b) Triangular stencil

FIG. 2: Central stencils with the considered cell in red colour (colour online).

Typical examples of central stencils in three-dimensions can be seen in Fig. 2, where the considered

cell i is illustrated in red colour. There is another category of stencils named the directional stencils

or WENO stencils subject to an additional condition. The additional condition that must be satisfied is

that the candidate element must lie within a specified geometrical sector. Specifically for the subject

study the cell centers of the candidate elements must lie within the geometrical sectors defined by the

cell centre of the considered cell and the vertices of each of the faces/edges. Therefore the number

of directional stencils is equal to the number of faces/edges as seen in Fig. 4. The same approach as

[50, 54] is utilised for the definition of geometrical sectors. Typical examples of directional stencils in

three-dimensions can be seen in Fig. 3, where the considered cell i is illustrated in red colour.

3.1.2. Reconstruction algorithm

One crucial requirement for the reconstruction process for unstructured meshes is that the algo-

rithm should be as mesh independent as possible, since bad-quality elements should not contaminate

the solution, and therefore the basis functions used should not be restricted to one ideal element type.

Since relying on the transformation from physical to computational space and vice-versa may not be

achievable for highly distorted hexahedral,prismatic and pyramidal elements. This requirement poses

10
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(a) Hexahedral directional stencils (b) triangular directional stencils

FIG. 3: Directional stencils depicted by different colours (colour online).

(a) Example 1 (b) Example 2

FIG. 4: Schematic representation of the directional stencils sectors for a WENO 3rd-order scheme on

a 2D mesh, with the considered cell in green colour, the geometrical sectors defined by dotted lines,

and the cell centres in red colour (colour online).
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a lot of challenges since it is quite common to encounter distorted elements in unstructured meshes

for complicated geometries, which can contain non-planar faces. Therefore the reconstruction algo-

rithm should be able to handle these types of elements, by decomposing them in tetrahedral elements

where the transformation from physical to reference space is always achieved. The main steps for the

reconstruction process are the following:

1. If the considered cell i is not a tetrahedral and contains non-planar quadrilateral faces (such as

hexahedral, prisms and pyramids) then decompose it into tetrahedral elements. It must be stressed

that the decomposition to tetrahedral cells, is done only for the transformation purposes to the

reference space in order to remove any scaling effect of the least square system to be solved.

2. Choose one of the resulting decomposed elements.

3. Transform the chosen decomposed element from the physical space described by the Cartesian

coordinates x, y, z into a reference space described by ξ, η, ζ .

4. Based on the Jacobian matrix of the transformation of the chosen decomposed element, map the

coordinates of the entire element into the reference space described by coordinates ξ, η, ζ .

5. Based on the same Jacobian, all the elements in the stencil are transformed to the reference space

and their volumes, and barycentres positions are recomputed in the new reference space.

Let vij , j = 1, 2, . . . Ji be the vertices of the considered (general) element, which can be either tetrahe-

dral, hexahedral, prismatic or pyramidal. By decomposing the element into tetrahedrals and choosing

one of them with w1 = (x1, y1, z1), w2 = (x2, y2, z2), w3 = (x3, y3, z3), w4 = (x4, y4, z4) being it’s

four vertices. Obviously, these vertices are between the vij ones. The transformation from the Cartesian

coordinates x, y, z into a reference space ξ, η, ζ is given by the following equations











x

y

z











=











x1

y1

z1











+ J ·











ξ

η

ζ











, (19)

with the Jacobian matrix given by

J =











x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1











. (20)
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Using an inverse mapping the element Vi can be transformed to the element V ′
i in the reference

co-ordinate system

v
′
ij = J−1 · (vij −w1) , j = 1, 2, . . . Ji. (21)

The spatial average of U(x, y, z) does not change during transformation

Ūi =
1

|Vi|

∫

Vi

U(x, y, z) dV ≡

1

|V ′
i |

∫

V ′

i

U(ξ, η, ζ) dξdηdζ.
(22)

To perform the reconstruction on the target element Vi, we form the central reconstruction stencil S

as described previously, consisting of M + 1 elements, including the target element Vi

S =

M
⋃

m=0

Vm, (23)

where the index m refers to the local numbering of the elements in the stencil, with the element with

index 0 being the considered cell i. The rth order reconstruction polynomial at the transformed cell V ′
0

is sought as an expansion over local polynomial basis functions φk(ξ, η, ζ) :

p(ξ, η, ζ) =
K
∑

k=0

akφk(ξ, η, ζ)

= Ū0 +

K
∑

k=1

akφk(ξ, η, ζ),

(24)

where ak are degrees of freedom and the upper index in the summation of expansion K is related

to the order of the polynomial r by the expression K = 1
6
(r + 1)(r + 2)(r + 3) − 1 for 3D and

K = 1
2
(r + 1)(r + 2) − 1 for 2D . The conservation condition (17) imposes an important constraint

on the basis functions: they must have zero mean value over the cell V ′
0 . On purely tetrahedral meshes

hierarchical orthogonal reconstruction basis functions [13, 61], defined on the reference element, satisfy

this requirement automatically. Since our general cells are not necessarily transformed onto a unit

tetrahedron or cube, we need to construct basis functions φk in such a way that the condition is satisfied

identically, irrespective of the degrees of freedom. The basis functions are defined as follows:

13
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φk(ξ, η, ζ) ≡ ψk(ξ, η, ζ)−
1

|V ′
0 |

∫

V ′

0

ψk dξdηdζ,

k = 1, 2, . . .

(25)

Any type of orthogonal polynomial basis function can be utilised, while in the present study generic

polynomial basis functions are used

{ψk} = ξ, η, ζ, ξ2, η2, ζ2, ξ · η, ξ · ζ, ζ · η, ξ · η · ζ . . .

To find the unknown degrees of freedom ak for each cell V ′
m from the stencil the cell average of the

reconstruction polynomial p(ξ, η, ζ) must be equal to the cell average of the solution Ūm:

∫

E′

m

p(ξ, η, ζ) dξdηdζ = |V ′
m|Ū0 +

K
∑

k=1

∫

V ′

m

akφk dξdηdζ

= |V ′
m|Um, m = 1, . . .

(26)

Denoting the integrals of the basis function k over the cell m in the stencil, the vector of right-hand

side by Amk and b are given by

Amk =

∫

V ′

m

φk dξdηdζ, bm = |V ′
m|(Ūm − Ū0) (27)

We can rewrite the equations for degrees of freedom ak in a matrix form as

K
∑

k=1

Amkak = bm, m = 1, 2, . . .M. (28)

The three-dimensional integrals on the left-hand side of (28) are calculated using Gaussian quadra-

tures of appropriate order. In general, to compute the degrees of freedom ak we need at least K cells

in the stencil, different from the target cell E0 . However, the use of the minimum possible number

of cells in the stencil M ≡ K results in a scheme which may become unstable on general meshes

[12, 22, 23, 54]. It is, therefore, recommended to use more cells in the stencil than the minimum re-

quired number. Although it is usually sufficient to use 50% more cells, for mixed-element meshes it is

safer to increase the stencil further. We typically select M = 2 ·K .

Since the resulting system becomes over-determined, the least-square procedure is invoked to solve

it. The least-square reconstruction is obtained by seeking the minimum of the following functional

14
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F =

M
∑

m=1

wm ·

(

K
∑

k=1

Amkak − bm

)2

, (29)

where the weights wm are squared reciprocals of the distance between cellsE ′
0 andEm. The advantage

of the weighted least square reconstruction is that the influence of the data farther from the considered

E ′
0 is reduced, although a central least square reconstruction is materialised with the weights ωm being

equal to unity. Minimisation of F gives a linear system for finding ak :

K
∑

k=1

Ckak =

M
∑

m=1

Amp wmbm,

Ck =

(

M
∑

m=1

wmAmkAmp

)

, p = 1, . . .K

(30)

A QR decomposition method is employed to solve this system of equations. The coefficients of

the resulting linear symmetric matrix A are pre-computed and stored for each element during the pre-

processing stage of the calculation, thus increasing the computational efficiency of the method. If the

mesh was to be refined these would automatically require the need to recompute and store this matrix.

Having solved numerically the linear system, we can form the reconstruction polynomial (24), where

by inserting the coordinates of the Gaussian quadrature points of the surface/edges the extrapolated

reconstructed solutions are obtained.

3.1.3. WENO reconstruction

The main characteristic of the WENO reconstructions is the usage of reconstruction polynomials

from several different stencils and their combination in a non-linear manner. In WENO schemes the

actual reconstructed value is a convex combination of reconstructed values from stencils, with nonlin-

ear (solution-adaptive) WENO weights [24, 44, 66]. These nonlinear weights are constructed from the

linear (constant) weights by taking into account the smoothness of the solution in each of the recon-

struction stencils. The resulting methods are uniformly high-order accurate, while maintaining non-

oscillatory behaviour in regions with sharp gradients. The WENO reconstruction used in the present

study is based on the implementation of [54], where the maximum number of directional stencils is

usually equal to the number of faces of each cell. The number of admissible stencils gets smaller in

the presence of solid boundaries, as shown in Fig. 4. By solid boundaries for the present study and
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encountered test cases a slip-wall treatment is used where all the variables are set equal to the left-state

(considered cell reconstructed extrapolated variables at the faces/edges), apart from the normal velocity

component where it’s sign is reversed.

The WENO reconstruction polynomial is now defined as a non-linear combination of reconstruction

polynomials pm(ξ, η, ζ), obtained by using individual stencils Sm

pweno =

ms
∑

m=0

ωmpm(ξ, η, ζ). (31)

Substituting the form of the individual polynomial (24) corresponding to the stencil Sm

pm(ξ, η, ζ) =
K
∑

k=0

a
(m)
k φk(ξ, η, ζ), (32)

and using the condition
∑

m

ωm ≡ 1, we obtain

pweno =
ms
∑

m=0

ωm

(

K
∑

k=0

a
(m)
k φk(ξ, η, ζ)

)

= Ū0 +

ms
∑

m=0

ωm

(

K
∑

k=1

a
(m)
k φk(ξ, η, ζ)

)

.

(33)

Re-arranging yields

pweno = Ū0 +

K
∑

k=1

(

ms
∑

m=0

ωma
(m)
k

)

φk(ξ, η, ζ)

≡ Ū0 +
K
∑

k=1

ãkφk(ξ, η, ζ),

(34)

where ωm are the non-linear weights and ãk are the reconstructed degrees of freedoms. The nonlinear

weights ωm following the approaches of [13, 54] are defined as

ωm =
γm

ms
∑

m=0

γm

, γm =
dm

(ε+ ISm)p
, (35)

where ISm indicates how smooth the solution is on the stencil; dm are the linear weights and ε is

a small number used to avoid division by zero. The central stencil is assigned a large linear weight

d0 = 102 . . . 105 and the sectorial stencils are assigned smaller weights dm = 1. The typical values

used for ε is 10−6 and p = 4; for details see [12].
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The smoothness indicators ISm can be computed in a mesh-independent manner as

ISm =
∑

1≤|β|≤r

∫

V ′

0

(

Dβpm(ξ, η, ζ)
)2
dξdηdζ, (36)

where β is a multi-index [19, 41], r is the order of the polynomial and D is the derivative operator.

The smoothness indicators are quadratic functions of the degrees of freedom a
(m)
k , hence they can

be expressed in terms of the universal oscillation indicator matrix [13] . For efficiency, it can be pre-

computed and stored at the beginning of the calculations for each element Vi . However it is important

to point that the WENO weights are constantly changing (i.e., they are different for every Gaussian

quadrature point at every time level).

For the non-hydrostatic equations considered in this study instead of performing the WENO recon-

struction for every component of the conserved vector U, the reconstruction is carried out in character-

istic variables since they are less prone to spurious oscillations in the proximity of sharp gradients as

[13, 54].

3.1.4. Numerical fluxes and Source term

Since for each computational cell the point-wise values of the conserved vector U are replaced by

high-order reconstruction polynomials the numerical flux for the face Aj of cell Vi is discontinuous at

each Gaussian point β. The values U−
β and U

+
β correspond to the reconstructed value of cell Vi and its

adjacent neighbour Vi′ . In upwind finite-volume methods the discontinuity is replaced at each Gaussian

integration point by using a monotone function of left and right boundary extrapolated values so that

(15) can be re-written as

Kij ≈
∑

β

Fn,j

(

U
−
β ,U

+
β

)

ωβ|Aj|. (37)

The function F̃n,j

(

U
−
β ,U

+
β

)

is the Riemann solver [51]. Employing the rotational invariance prop-

erty of the Euler equations [51], for each faceAj the normal projection of the flux tensor Fn,j is replaced

by

Fn,j = T
−1

F (TjU) , (38)

where Tj is the rotation matrix for face j. Re-writing (37) for Kij gives

17



Journal of Coupled Systems and Multiscale Dynamics • October 2016

Kij =
∑

β

Fn,j

(

U
−
β ,U

+
β

)

ωβ|Aj|

=
∑

β

T
−1

F

(

ÛL, ÛR

)

ωβ|Aj |,
(39)

where Ûj is the rotated conserved variable and

ÛL = TjU
−
β , ÛR = TjU

+
β .

The flux function for the Gaussian point β results in the one-dimensional Riemann initial value problem

∂

∂t
Û+

∂

∂s
F̂ = 0, F̂ = F(Û),

Û(s, 0) =











ÛL, s < 0,

ÛR, s > 0

(40)

In the present study the Harten-Lax-Van Leer-Contact (HLLC) Riemann solver of Toro [51] is em-

ployed. The numerical source term Si is approximated by using a Gaussian quadrature rule of the same

order of accuracy as the order of the polynomial of the reconstruction

Si ≈
1

|Vi|

∑

β

S(xβ, yβ, zβ, t)wβ, (41)

where xβ , yβ, zβ is the volumetric Gaussian quadrature points and wβ is the Gaussian weights of r-order

of accuracy.

3.2. Temporal discretisation

Having constructed the numerical fluxes Fn,j as expressed in the semi-discrete conservative formu-

lation, the next step involves the advancement of the solution in time. The explicit Strong Stability

Preserving (SSP) Runge-Kutta 3rd-order method [20] has been employed for the time integration

Ui
1 = Ui

n +∆t ·Ri (Ui
n)

Ui
2 = 3

4
Ui

n + 1
4
Ui

1 + ∆t
4
·Ri (U

1)

Ui
n+1 = 1

3
Ui

n + 2
3
Ui

2 + 2∆t
3

·Ri

(

Ui
2
)



















































(42)
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with Ri given by (13).

The time step ∆t is computed as follows

∆t = K min
i

hi
Si · Vi

, (43)

where hi is the radius of the inscribed sphere of each cell i and Vi its corresponding volume, K ≤ 1/3

is the CFL number for unsplit finite-volume schemes [51] , and Si is the maximum propagation speed

in each cell i given by

Si = spx · nx + spy · ny + spz · nz, (44)

where

spx = |u+ a| , , spy = |v + a| , spx = |w + a| ,

with n = (nx, ny, nz) being the outward unit normal vector and a is the speed of sound.

4. RESULTS

This section presents the results obtained with the WENO schemes for a series of 2D and 3D test

cases of a stratified atmosphere.

4.1. 2D Robert Smooth Bubble

After its introduction [42], the Robert smooth bubble problem is considered as a standard bench-

mark in NWP. The evolution of a warm bubble in a constant potential temperature environment is

investigated, and since the bubble is warmer than the ambient air, it rises and due to shearing motion

it forms a mushroom shaped structure as shown in Fig. 6. The two-dimensional, non-hydrostatic com-

pressible Euler equations (1) are numerically solved in the computational domain 1000m × 1500m

with t ∈ [0, 800] s with no flux boundary conditions. The initial condition [42] corresponds to a warm

bubble centered at (500, 260)m, which represents a perturbation of the potential temperature when the

rest of the domain is in hydrostatic balance, in order to trigger the movement of the warm bubble as

follows:
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θ′ =







0 for r < rc

0.25
(

1 + cos
(

πr
rc

))

for r ≥ rc
,

where r is the distance from the centre of the bubble

r =

√

(x− xc)
2 + (z − zc)

2,

where π is the trigonometric constant; rc = 250m is the radius of the bubble; and the potential tem-

perature ϑ̄ is constant at 300K. The unstructured meshes used consist of arbitrary triangular elements

as shown in Fig. 5 and have resolutions of a 25m, 6m and 3m. The WENO3 and WENO5 schemes

using characteristics based reconstructions are used, with a CFL number of 0.9.

From the obtained computational results as shown in Fig. 6 and Fig. 7 it can be noticed that long-

wave oscillations of the interface occur forming smaller vortices, the spatial symmetry of the solution

is completely lost and that higher-order WENO schemes resolve more of these small scale vortices.

Regarding the long-wave oscillations of the interface it can be attributed to the the shear flow in-

teraction between the interface and the surrounding unperturbed air, which in turn give rise to the

Kelvin-Helmholtz instabilities that lead to turbulent structures. There have been numerous extensive

numerical experiments [21, 35, 42, 64] to investigate this problem and to date the exact solution remains

unknown. The spatial symmetry of the solution is lost due to the fact that the mesh is not symmetric,

the initial profile is approximated by a Gaussian quadrature rule of the same order as the polynomial

order used for the reconstruction, and finally due to the multidimensional reconstruction of the present

algorithms. This behaviour was noticed in the application of WENO finite volume schemes for the dou-

ble vortex pairing problem, but the presence of viscosity resulted in less pronounced asymmetries [53].

The fact that each time the mesh is refined,or a higher-order scheme (due to the Gaussian quadrature)

is used the initial perturbations change slightly. In return these perturbations according to [21] grow

exponentially in time, hence the perturbations have larger spatial scales that the initial perturbations.

As the grid resolution is refined or as the spatial order of the WENO schemes is increased the

numerical dissipation is reduced hence more structures are resolved. What is of essence though is if

this structures are just artificial or if they are part of the correct solution. Along these lines it must

be stressed that the subject WENO schemes have demonstrated their robustness for treating strongly

discontinuous flow problems on arbitrary unstructured meshes [52], therefore it can not be attributed

to the WENO schemes discontinuous capturing capabilities. On the contrary WENO schemes for this
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FIG. 5: Unstructured mesh used for the rising thermal bubble case.

discontinuous problem remain stable as witnessed by [40]. However for other approaches that do not

possess discontinuity capturing capabilities a form of artificial viscosity would be required firstly to

stabilise the solution and secondly for obtaining a converged solution [35]. At the same time it can be

realised that some of these perturbations are actually the correct solution [35, 64] hence controlling the
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(a) t = 172s (b) t = 271s

(c) t = 400s (d) t = 480s

(e) t = 600s (f) t = 800s

FIG. 6: Potential temperature perturbation θ′(K) at various instants for the 2D Robert smooth bubble

test on an unstructured mesh of 6m resolution using a WENO5 scheme. 22
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amount of artificial viscosity can be quite challenging. But atmospheric models should be used with

little to no artificial viscosity since most of the time they are used completely under-resolved.

4.2. Straka Density Current

The Straka [49] density current test problem is also considered to be a well established test for

NWP. This problem concerns the evolution of a cold bubble in a neutrally stratified atmosphere, where

the bubble descends to the ground due to negative buoyancy and when it hits the ground it is rolled

up and a front is created, as shown in Fig. 9. The two-dimensional, non-hydrostatic compressible

Euler equations (1) are numerically solved in the computational domain 25600m × 6400m and t ∈

[0, 900] s with no flux boundary conditions. The initial condition [42] corresponds to a cold bubble of

size (xr, zr) = (4000, 2000)m centred at (0, 3000)m, which represents a perturbation of the potential

temperature to trigger the movement of the cold bubble as follows:

θ′ =







0 for r < rc

−7.5
(

1 + cos
(

πr
2

))

for r ≥ rc
,

r =

√

(

x− xc
rc

)2

+

(

z − zc
rc

)2

.

The subject test problem is modified from its original form and has been simulated without the

explicit viscosity of 75m2

s
similarly to [2, 31, 40]. Since the problem is inviscid, nonlinear and unsteady,

without explicit viscosity the grid-convergence of the solution is not expected, but at the same time the

stabilising properties of upwind schemes is of importance, as it has been the motivation for numerous

studies [2, 31, 40]. The unstructured meshes used consist of both quadrilaterals near the ground and

arbitrary triangular elements as shown in Fig. 8 and have resolutions of a 100m, 50m and 25m. The

WENO3 and WENO5 schemes based on characteristics variables reconstructions are employed, with a

CFL number of 0.9.

From the obtained computational results as shown in Fig. 9, Fig. 10 and Fig. 11 it can be noticed that

the number of resolved Kelvin-Helmholtz rotors differs between different resolutions, schemes and that

the location of the front for all simulations is close to 15km. As in the 2D Robert smooth bubble test

case the initial profile changes when the mesh is refined or when the numerical scheme is changed due

to the inherent high-order Gaussian quadrature approximation of the volume, surface and line integrals
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(a) 25m WENO3 (b) 25m WENO5
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(c) 6m WENO3
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(d) 6m WENO5
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(e) 3m WENO3
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(f) 3m WENO5

FIG. 7: Potential temperature perturbation θ′(K) at t = 800sec 2D Robert smooth bubble test at

different grid resolutions with WENO3 and WENO5 schemes. 24
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FIG. 8: Unstructured hybrid mesh used for the density current test case.

associated with WENO Finite Volume schemes [52]; therefore without explicit viscosity it can not be

expected to reach to a grid-converged solution, but at the same time WENO schemes without explicit

viscosity will not eventually blow up as other approaches [16]. The results suggest that it is not due

to the discontinuity-capturing capabilities of the WENO schemes not working properly, but it is rather

because of the low dissipation of the present schemes that the number of the resolved features increase

since the numerical dissipation is greatly reduced. On the other hand the resolutions employed at this

study might be extreme (25m) to justify the use of high-order schemes when the original viscosity of

the test problem which is 75m2/s can be considered relatively large compared to the grid resolution.

What is important though is that the present numerical schemes remain stable at this CFL number,

which is not the case for other central-schemes without explicit viscosity as documented in [2].

The present shear triggered structures show great similarities to these witnessed in another recent

study [32], where the highest resolution to date to the best of our knowledge of 12.5m has been used.

Comparing quantitatively the performance of the subject WENO schemes with other schemes in the

literature in terms of θ′ extrema, and front position at t = 900s we notice firstly that the variational

multiscale stabilized finite element method (VMS) scheme [31], the f-wave[2] and the WENO schemes

are the only ones used without explicit diffusion. The WENO schemes have less oscillations in terms

of θ′
max

than the VMS (FE) that do not employ a discontinuity capturing method, but at the same time

the WENO schemes seem to be bounded in terms of the θ′
min

, which is expected due to the initial

profile corresponding to colder air by 15oC. In contrast the numerical frameworks that utilise explicit

viscosity, their θ′
max

are bounded at 0.

What is striking though is that the total variation in terms of front location between the 25m resolu-
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(b) t = 180s
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(c) t = 300s
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(d) t = 420s
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(e) t = 600s
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(f) t = 900s

FIG. 9: Potential temperature perturbation θ′(K) at various instants for the density current test on a

hybrid unstructured mesh of 100m resolution with WENO5 scheme.

tion simulations the WENO schemes have a spread of 170m and 250m across 3 different resolutions,

where three different approaches used by Straka [49] at the same resolution with explicit viscosity

have a spread of 590m and [16] approach being the only one that is converged across two different

numerical schemes (SE) and (DG). This leads us to conclude that for high-order schemes which their

numerical viscosity is considerably smaller than the explicit viscosity for the subject test problem one

should get converged solution with minimum variation across different resolutions as in [16]. On the

other hand if the numerical schemes need additional forms of artificial viscosity for stabilisation, ob-

taining the correct converged solution can be quite challenging, since the best artificial diffusion to

be used in atmospheric simulations remains a very open topic of study. The behaviour of the present

WENO schemes in terms of numerical dissipation, has been closely linked to the type of elements em-
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(a) 100m WENO3

X

Z

5000 10000 15000

2000

4000

θ’
­0.411765

­2.23529

­4.05882

­5.88235

­7.70588

­9.52941

­11.3529

­13.1765

­15

(b) 50m WENO3
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(c) 25m WENO3

FIG. 10: Potential temperature perturbation θ′(K) at t = 900s for the density current test on a hybrid

unstructured meshes of different resolution with WENO3 scheme.
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(a) 100m WENO5
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(b) 50m WENO5
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FIG. 11: Potential temperature perturbation θ′(K) at t = 900s for the density current test on a hybrid

unstructured meshes of different resolution with a WENO5 scheme.
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Method θ′
min

θ′max Front location (m)

WENO3 100m -9.535 0.308 14870

WENO5 100m -11.523 0.476 14910

WENO3 50m -13.022 0.506 14900

WENO5 50m -14.754 0.613 15030

WENO3 25m -13.427 0.537 14950

WENO5 25m -14.868 0.634 15120

f-wave TVD 50m [2] -9.82 0.0089 14975

VMS (FE) 25m [31] -13.98 7.81 14890

(SEM-4th) 12.5m [32] - - 15056

(SEM-4th) 25m [32] - - 14992

(SEM-4th) 50m [32] - - 14535

(SEM-4th) 100m [32] - - 14325

SE 25m [16] -8.90 1.2e-4 14767

DG 25m [16] -8.90 1.2e-4 14767

REFC 25m [49] -9.77 0.0 14437

REFQ 25m [49] -10.00 0.0 14409

PPM 25m [49] -8.31 0.022 15027

TABLE I: Comparison of results obtained with the present schemes at various grid resolutions in

terms of θ′ extrema, and front position at t = 900s with other schemes available in literature in the

framework of FE, SE and DG for the density current test case.

ployed in the grid as reported in previous studies [3, 4, 9, 52]. Since triangular and tetrahedral elements

have demonstrated sufficiently smaller dissipation errors as compared to quadrilateral and hexahedral

meshes. Therefore any artificial viscosity/diffusion stabilisation scheme should take into account apart

from the grid resolution the grid type employed, due to their inherently different dissipation properties.

balance between numerical dissipation and artificial viscosity/diffusion for stabilization in the con-

text of the developed schemes would be useful, in particular from the point of view of practical recom-

mendations
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4.3. 3D Robert Smooth Bubble

The three dimensional, non-hydrostatic compressible Euler equations (1) are numerically solved in

the computational domain 1000m×1000m×1500m and t ∈ [0, 450] s in conjunction with NFBC. The

initial condition [42] corresponds to a warm bubble centered at (500, 500, 260)m, which represents a

perturbation of the potential temperature to trigger the movement of the warm bubble as follows:

θ′ =







0 for r < rc

1.25
(

1 + cos
(

πr
rc

))

for r ≥ rc

where r is the distance from the centre of the bubble

r =

√

(x− xc)
2 + (y − yc)

2 + (z − zc)
2,

π is the trigonometric constant; rc = 250 is the radius of the bubble; and the potential temperature ϑ̄

is constant at 300K. Three unstructured meshes comprising of 19, 175 , 64, 000 , and 210, 212 elements

have been employed using tetrahedral elements Fig. 12

The main objective of extending this test problem in three dimensions is firstly to assess the per-

formance of the WENO schemes in terms of robustness and accuracy when running this problem at

extremely low spatial resolution 30 ∼ 100m. This is more realistic in terms of under resolved grid-

arrangements used in NWP. Secondly the structure of the solution of the same problem is of importance.

The WENO3 and WENO5 schemes using characteristics based reconstructions are used, with a CFL

number of 0.9.

From the obtained computational results as shown in Fig. 13 it can be noticed that the solution does

not exhibit the same instabilities of the 2D test case, although the spatial symmetry of the solution is

also lost, and that the higher-order WENO schemes provide sharper profile solutions.

Regarding the solution not exhibiting the smaller Kelvin-Helmholtz instabilities associated with the

2D case, this was expected since the dissipation of the numerical schemes in three dimensions and in

the much coarser grid resolution is much greater than in 2D. At the same time the under-resolved grid

arrangements pose severe challenges for the present WENO schemes. Firstly the multidimensional

character of the schemes when combined with arbitrary unstructured meshes for under resolved sim-

ulations, the non-oscillatory properties of the WENO schemes are stressed because due to the coarse

grid the gradients of the flow variable can become quite sharp, but for the present case they do not seem
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FIG. 12: Cutaway of Unstructured mesh used for the 3D Robert smooth bubble test.

to face any problem in terms or robustness. On the other hand the coarse resolution results in loss of

symmetry of the solution, due to the multidimensional character of the reconstruction in a very coarse

arbitrary non symmetric grid arrangement, but this loss of symmetry is actually a realistic feature of

a series of well established instabilities that get initiated by a perturbed initial profile. The higher-

order WENO schemes provide much sharper and accurate results, and when looking at the potential

temperature perturbation θ′(K) and vertical velocity W
′(m/s) profiles of 15, although the solution is

not expected to converge without any explicit viscosity due to the inviscid nature of the problem, as the
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(a) 90m WENO3 (b) 60m WENO3 (c) 30m WENO3

(d) 90m WENO5 (e) 60m WENO5 (f) 30m WENO5

FIG. 13: Potential temperature perturbation θ′(K) at t = 300sec and y = 500m for the 3D Robert

smooth bubble test.

mesh is refined a closer agreement is observed for the vertical velocity and for the potential temperature

perturbation. Once again the asymmetry of solution is more pronounced at the coarse grid resolutions.

4.4. Parallel Performance

The requirements for atmospheric modelling in a regional or global scale have significantly in-

creased in the last decade. Parallelisation of existing computational methods and software is an active
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(a) θ′(K) (b) W(m/s)

FIG. 14: Potential temperature perturbation θ′(K) and vertical velocity W(m/s) isosurfaces at

t = 300sec blanked for y > 500m for the 3D Robert smooth bubble test on the 30m resolution mesh.

area of research. Previous studies [52] shows that the ratio of computational time over communication

time is proportional to the order of the WENO finite volume-numerical methods. In other words, the

computational time is one order of magnitude greater than the communication time required for each

iteration, for WENO3 and higher order schemes. One of the advantages of explicit methods used here

is that they can be easily parallelised based on the domain decomposition. The software package used

for partitioning uniform unstructured meshes and even hybrid meshes is the METIS software package

[26]. The present numerical methods are employed in an unstructured flow solver (UCNS3D) capable

of handling hybrid meshes in three-dimensions.

The Robert smooth bubble using the finest resolution, unstructured mesh (210, 212 elements) was

utilised as a test problem to assess the scalability of the developed numerical schemes. Although this

grid resolution for this sample test case is relatively coarse when compared to the grid resolutions

employed nowadays for climate and numerical weather prediction, our primary aim is to demonstrate

the dependency of the parallel performance with respect to the numerical schemes implemented in
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(a) θ′(K) (b) W(m/s)

FIG. 15: Potential temperature perturbation θ′(K) and vertical velocity W(m/s) at t = 300sec

y = 500m and z = 964.5m for the Robert smooth bubble test with different schemes depicted

represented by different colours (colour online).

the same software framework. The performance tests were conducted at the ARCHER UK National

Supercomputing Service at EPCC. The results were obtained using the latest Intel FORTRAN compiler

and Intel MPI library.

The time required for each time-step for the WENO3 and WENO5 schemes with respect to the

number of processors is illustrated in Fig. 16. The time is normalised with the time required for the

WENO3 scheme.

The results obtained confirm that high order methods scale better than lower order methods due

to the fact that the ratio of computational time over communication time is greater in the latter case.

Using 6144 processors, the parallel efficiency for the different schemes is: WENO3 (67%) and WENO5

(87%). It is pointed out that for the WENO5 scheme 92% of the computational time is spent in the

reconstruction process. The exchange of the updated values of the stencil elements takes less than

3% of the total communication time since the largest communication requirement is the exchange of
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FIG. 16: Scalability and efficiency of WENO3 and WENO5 methods

the reconstructed values for each quadrature point of halo-cells. WENO high-order schemes have a

greater computational cost, but they are expected to be superior in accuracy when problems with large

time scales are involved such as numerical climate modelling. For numerical climate modelling where

projections of the climate for centuries are studied, WENO schemes are expected to have the strength

of sufficiently small dissipation errors that will not contaminate the projected solution as a lower-order

numerical scheme. Additionally, WENO methods offer better scalability when compared to lower-

order methods.

It has to be noted that when using 6144 processors, each processor holds approximately 35 ele-

ments and at 12288 processors, each processor has less than 18 elements which might seem extreme.

On the other hand though it might become quite common in the future where exaflop systems will

become available and these numbers of processors for such a coarse mesh might become common

practice. These results also illustrate that improving the scalability and efficiency of numerical weather

prediction models in order to take advantage of massive parallel systems, does not only require the

optimisation of the computational software (software engineering), but it also requires re-designing

numerical methods in such a way that will benefit from these systems.
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5. CONCLUSIONS

This paper presented the implementation of high-order finite-volume schemes for benchmark test

cases of stratified atmosphere using the compressible Euler equations on unstructured meshes. The

present study discussed the implementation of WENO numerical schemes in this context and assesses

their performance in terms of accuracy, robustness, efficiency and scalability. The results demonstrate

the aforementioned properties of the schemes in a series of two-dimensional and three-dimensional test

cases, and the associated challenges of multidimensional discretisations. What is important to note

is that the WENO reconstruction can be utilised as a building-block in a dynamical core that is not

limited by the type of meshes, or the formulation of the governing equations. Future work will concern

application of the schemes in regional and global atmospheric simulations.
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