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1. Introduction

R e L e

A basic problem in the design theory of semiconductor systems
such as p=-n Jjunction devices relates to the determination of the spatial
variation of electrostatic potential, ¥, of electric field intensity,
and of mobile carrier (hole, electron) concentrations, p and n.
These quantities are governed by the system geometry as specified by
the '"built-in' concentration profiles of donor and acceptor impurities
according to the Shockley~Poisson equation:’ :

v = -<—§><ND~NA+p-n> (1)

where the donor and acceptor concentrations, N, and NA, are given
functions of position. The mobile carrier densities are related to V¥,
and to 1., the concentration of carriers in intrinsic material, by the
Boltzmann relations which apply to non-degenerate materials:

]

D n, exp 5{¢p - )

(2)

L

n n, exp By - ¢n)

where B = q/KT while @p, ¢q denote the quasi-Fermi level potentials

for holes and electrons which coincide with the Fermi level potential

¢ for equilibrium conditions but differ by an amount equal to the
externally applied bias voltage in the gquasi-equilibrium case corresponding
to a system in the presence of such bias but with insignificant current
flow.

As no method for the analytic solution of equation (1) is available
problems of this type have Ufuﬁlly been treated in terms of a combination
of two approximate solutions 1 , appropriate to different regions within
the system, based, respectively, upon assumptions of (i) spacew-charge
neutrality, p = n = NA - ND, and (ii) complete depletion of mobile carriers,
p=n= 0.

The essential feature of such approximate solutions consists of the
sudden transition, at the edge of the depletion region, from mobile carrier
concentrations providing complete neutralisation of the fixed impurities
to zero concentration. Within the depletion layer the potential is thus
governed entirely by the Tixed impurities.

It has recently been demonstrated(e)that, in principle, any semi-
conductor system under equilibrium or quasi-equilibrium conditions in which

A complete list of symbols is given at the end of the paper.




the mobile carrier densities are given by eq. (2) can be represented

by means of a resistance network in which non-linear elements are
associated with each mesh point. Such a representation is Vexact!

in the sense that the difference equation which governs the potential
distribution in the network becomes identical, for the limit of vanishing
mesh interval with the Shockley-Poisson equation (1). In reference 2
preliminary results were reported, obtained on representations of two
simple p-n junction geometries, namely the abrupt junction and the linearly
graded one. A comparison between the analogue solution f?r the latter
case and a numerical solution obtained by Morgan and Smits P , indicated
good agreement between the two.

In the present paper, after a brief review of the analogue method,
some of the practical considerations entering into the design and
construction of this type of resistance network are discussed. These
are followed by results obtained for a system geometry representing a
diffused type p-n junction. Finally, the question of the feasibility
of an extension of the method to current-carrying systems is considered.

2. Analogue treatment of equilibrium and guasi=-equilibrium systems

As indicated above and discussed in detail in reference 2, the
general relationship for a resistance network of constant mesh resistance
R is given by (4,5,6,7,8)

vV (x*) = - B I(x") (3)
where V' (x ) denotes the potential of the M pode ana I(x") equals the current
entering this node. Equation (3) is transformed iuto a relationship

corresponding to equation (1) by letting I consist of the sum of two
components which are made to represent, respectively, the net mobile carrier
concentration, p=n, and the net fixed charge density ND - NA‘

The p-n term 1is a function of V" and of two Tixed potentials, ¢ 5
¢, which simulate the quasl Fermi levels ¢_, ®n. The fixed charge
term will depend only upon the system geomgtry and will represent the
jmpurity concentration at the point x in the physical system which
corresponds to x° in the analogue.

Thus,

I(x%) = T(VF(x), 01, 02) + Ia(x") (&)

Resistance network solutions for problems of this type involving
voltage dependent terms can be obtained by one of three methods: (i)
network elements with the required voltage-current characteristic can be
associated with each node so that the network potential will immediately



adjust itself to the required solution(9’lo), (ii) the current flow
into each node may be manually adjusted as part of a procedure of
successive approximations until the current value at each node bears
the required relation to the potential at that node, (iii) the current
adjustment may be carried out automatically, either simultaneously at
all nodes, or iteratively, by means of standard analogue computing
techniques 11,12

The work described in this paper is based upon the use of method (i),
semiconductor diode groups providing the required non-linear circult
elements. The arrengement is illustrated schematically in fig. 1.

Over the region in which the diode characteristic is adequately represented
by its ideal form

i = i (exp B YV - 1) (5)

8% : empirical paremeter ~ q/KT
+ reverse saturation current

I, will be given by
Iy = is{exp[ﬁ%(¢1 ~ V)] - explBH(VT - 02)]) (6)

as required by equation (2). The current flowing from the 4y line
through the diode into the node at x* will thus represent the hole
concentration p, while that flowing from the node Into the ¢5 line will
represent n, the electron concentration.

The current which constitutes the analogue to the fixed impurity
density, properly scaled, is given by

N Wn(x) = N, (x)
() = 1 S (7)

i

while the scale factor relating the distance co-ordinate x in the physical
system to x", the distance co-ordinate %n the anslogue (chosen so that
Ax® = 1 for neighbouring nodes) becomes 2)

1

% 198 P\
£oa-(Fef1 (8)

For an analogue system using germanium diodes (ig ® 10 SA) which
represents a germanium system (€ = 16€5, ng = 2.5 x 10 e ™), a is of
the order of 10%cm * for R ¥ 300 chm.




It is worth noting that an alternative method of simulating equation
(1) with the aid of diode groups is feasible. The essential feature of
this alternative consists of the use of diode groups in conjunction with
an operational smplifier in accordance with standard analogue computing
techniques (13), (14),  Compared with the resistance network, the analogue
computer would seem to suffer from the following disadvantages in this
particular application:

(1) Since the distance co~ordinate must be transformed to become the
time axis, the analogue computer technique 1s restricted to the
treatment of problems of one or at most two dimensions, the latter
at the cost of greatly increased complexity.

(ii) The system geometry, i.e. the donor and acceptor atom concentration
1Y
profiles, would have to be set up in terms of a time~programmed
function.

(iii) The facility for static measurements provided by the simultaneous
and continuous accessibility of the potential distribution at all
mesh points of a resistance network would be lost.

3. Practical considerations
The ucse of semiconductor diodes as non-linear elements in the manner
outlined above introduces a number of speclal requirements:

(1) Since it is an essential feature of the method that the actual diode
characteristic approximates closely to the ideal one (eg. (5)), the
range of impurity and carrier concentrations which can be represented
is limited by deviations from the ideal characteristic which are
found %o occur at high currents. This is illustrated, for the diodes
used in the present analogue, in fig. 2, which represents a typical
current ~=voltage plot. Deviations can be seen to occur at currents
exceeding 10mA, i.e. ® 10* i_.

As the region of primary interest in the type of problem under
discussion is the high field region near the centre of a p-n junction,
where impurity and carrier concenbrations are low, this shortcoming
of actual diodes does not represent a serious obstacle, although more
'ideal! diodes will extend the range of applicability of the network
method.

(2) As impurity concentration levels of practical interest may vary from
1 n, to, say, 10° ny, different choices of ig will be appropriate
to different situations in view of the devialions from the ideal diode
characteristics just mentioned.

(3) Since iy, the diode reverse saturation current, and B, the parameter
characterizing the forward characteristic, enter into the analogue



equations and determine the scale factors for currents and
distance, it is necessary, in principle, to use identical diodes.
This requirement is met in practice by the use of diode groups,
assembled from selected units, so that the characteristics of each
group (rather than of each diode) are identical.

(h) On account of the strong temperature dependence of ig it is
essential to place the diode groups within an environment which
provides close control of the ambient temperature.

These considerations have led to the adoption of a design for the
analogue system which combines the essential feature of diode temperature
control with the maximum versatility regarding the resistance network
layout. The diode groups are mounted upon plug-in printed-circuit type
cards in such a manner that the entire array, which can accommodate a
maximum of 312 diode groups, fits into a constant termperature enclosure.
Bach diode group is brought out to separate terminals on the front panel
and the resistance network is set up in patch board fashion on these
terminals. This type of construction permits the wiring-up of different
system geometries of one, two or three dimensions without any disturbance
of the diode groups. At the same time access to individual diode groups
is maintained for test purposes, and the formation of compound groups,
as required for use with graded mesh networks, is made easy.

k. Results: Diffused junction geomstry

Whereas the results reported previously(g)were obtained from analogue
representations of two idealised p-n Junction geometries, namely of the
abrupt and the linearly graded junction, the measurements presented now
relate to a junction structure formed by the superposition, upon a uniform
acceptor atom concentration, of a donor atom concentration which falls off
with distance according to a complementary error function law. This type
of impurity distribution is of practical interest since it arises as a
result of the diffusion method of p-n junction fabrication.

The complete system represents a combination of a highly doped
uniform n-type region, extending from x = 1, to x = 10 for which
Nb/ni = 1l.1 x 104, a moderately doped region of low uniform acceptor
density, Np/n; = 40, which extends from x” = 10 to x* = 60, and the non-
uniform donor profile characterised by the expression Np(x") = 10%cerf(x*/L")
with ¥ = 11. This combination of impurity profiles results in the
formation of a highly asymmetrical p-n junction near x° = 33. A graphical
representation of the net impurity concentration is contained in figs. 6
and 7.

The potential profiles obtained from this resistance network
representation are shown in fig. 3, for the case of zero bias, and for
two Teverse bias conditions over the region x = 20 to x = 60. (In the



region 1 € ¥° € 20 space charge neutrality prevails).

Numerical differentiation of the potential data yields the
distribution of the electric field intensity throughout the system
since

av” x"

E="djc.:e. . -

3

In fig. 4 graphs of E are shown for the zero blas case and for two
values of reverse bias. The dotted regions of the curves, in the interval
%% = 10 to x = 26 are based upon potential data from which fluctuations
due to non-uniformities of the high current portions of the diode
characteristics have been eliminated, the remaining parts were obtained
by direct differentistion of the experimental values. The figure
indicates clearly the increase, with increasing reverse blas, of the
maximum field and of the width of the high field region.

Figures 5 and 6 show, in addition to the impurity profile already
referred to, the concentration of mobile carriers for the zero bias case,
and for a reverse bias of 4.0 volts. The widening of the space charge
layer with reverse bias is clearly shown as is the fact that the space
charge layer extends predominantely into the region of low impurity
concentration. If the depletion region is defined, arbitrarily, as
the region within which the mobile carrier density amounts to less than
one Tifth of the fixed charge concentration, its width is seen to equal
approximately 2.5 % units at zero bias, 25 x* units for 4 volt reverse
bias.

5. Systems in presence of current Tlow

One limitation to the applicability of the analogue technique just
described arises from the restriction to quasi-equilibrium conditions.
This precludes the investigation of situations in which current flow
significantly alters the mobile carrier concentration pattern, such as
exist, for example, in strongly forward biased p-n junctions, in p=
intrinsic-n junctions, or in transistors operating at high levels of
injected carrier density. In this section the problems involved in an
extension of the basic analogue method to the treatment of such non-
equilibrium situations are considered and means for their solution proposed.

The current flowing within a semiconductor represents the sum of

electron and hole currents, each of which is comprised of a drift and a ( )
diffusion component. For a one-dimensional system this leads to equations
dp de
I = E - D == = - B
P QMPP a b ax QPPP ax
o (9)
- dn _ _n
In qpnn E+q Dn = = qpnn an



which indicate that the total hole current and the total electron current
are each proportional to the product of the local carrier concentration
and the gradient of the appropriate quasi-Fermi level.

The complication introduced into the analogue treatment of the
system by the presence of current flow can thus be seen to consist of
the necessity to accommodate quasi~Ferml levels which vary with position,
in place of the constant quasi-Fermi levels which characterized the
equilibrium and gquasi=-equilibrium cases. If ¢, and ¢, were known
functions of x, this change would introduce little difficulty; in place
of the two common reference potentials to which all diode groups are
connected in the equilibrium cases, distinct potentials ¢ (x%), ¢, (x")
would be applied to each diode group as indicated in Figure 7. As
before, the resistance network potential V(x*) would represent the solution
of the Poisson equation appropriate to this situation.

In practice, of course, ¢p and ¢, are not known as explicit functions
of x. The spatial variation of the quasi-Fermi levels is governed by
the requirement that the following conditions must be fulfilled:
(i) constancy of total current Ip + In
(ii) divergence of hole and electron current density vectors determined
by prescribed local electron-hole recombination rates.

As shown in Reference 1, the complete analysis of the problem, i.e.
the determination of ¢_(x), ¢n(x) and ¥(x), requires the solution of the
system of eguations

2
av _ 9, . N
SE = P -nt =T, (10)
o

I, = T-1 =-a 25 (11)
ar_ (12)
—P = -qU 12
= q

U, the net rate of electron-hole recombination, will itself depend upon
p, n, and the density and energy levels of the centres involved in the
recombination process.\15

Differentiation of (11) yields

ar ae 350
2 . oL (2, B
ax p\dx ax dxa



which, upon substitution in (12) and use of the Boltzmann relations for
carrier densities, p = n, exp[5(¢p -¥)], n= n, explB{¥ -~ ¢ﬂ)} leads to

a= U @ rab )

Era O 55{(@:@‘ - a) (13)
and

= i

a (bn = m{:r_. - ﬁ Ei!_l ..@h - _.C:.,.? (lh)

dx= T ax  \dx %

As stated above, if functions ¢p(x), ¢,(x) and ¥(x) obeying equations (10)
(13), (14) can be found for given impurity concentrations Np(x), Wp(x) and
for a prescribed recombination function U(x}, then the problem of the
current carrying semiconductor system is solved.

Now each of the three basic variables is governed by a differential
equation of the form

3 U’ ND - NA).

V2% = t(¥, ¢_, ¢
P
Since a resistance network provides analogue solutions to the
difference approximation of this type of differential equation, an
extension of the method used for the simulation of the quasi-equilibrium
case suggests itself. In place of a single resistance network, three
separate networks are set up, associated respectively with ¥, with ¢_,
and with ¢,. Interconnections between these networks are provided
in such a manner as to ensure that the current entering any ncde represents
the corresponding term of the appropriate equation.

Figure 8 indicates schematically how this requirement can be met.
Fach ¥ network is connected to diode groups which are returned to the
guasi-Fermi reference voltages ¢_, ¢ in the manner described previously.
In consequence, the potential digtri%ution set up in the ¥ network will
as before, represent the solution to the Shockley-Poisson equation (eg. (1)).
However, since ¢p and ¢, are themselves now derived from resistance networks,
it is necessary to interpose buffer stages, B, between the nodes of these
networks and the diode groups to prevent the current flowing through these
from affecting the ¢p and ¢n potential distributions.

The required derivatives a¥/dx, d¢./dx, and d¥,/dx may be computed
for a particular set of node points (x“? from the values of ¥, ¢, and ¢,
at neighbcuring node points (x"£1, 2, etc.) in terms of finite difference
approximations with an accuracy depending upon the highest order difference
which is included in the computation. In the diagram, the three computing
units 'D' perform these differentiations. An additional computing un
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('E') obtains the values of U/ugp and U/upn from the values of ¥, ¢y, ¢y,
and the constants governing the carrier generation - recombination process.
In this manner all the information required for the evaluation of the terms
on the right hand side of equations (13) and (14) is assembled, so that
the two computing units shown as 'C' can evaluate 4% /ax2, a%6,/dx2® end
provide currents proportional to these terms to the x* nodes of the ¢P

and ¢n networks.

The somewhat excessive equipment requirements involved in such a
threefold resistance network system can be scaled down very considerably
if a system utilising a successive approximation method is adopted.

This can be based upon the use of suitable storage devices, associated
with each node of the ¢y and ¢y networks, by means of which the result
of each successive computing step is impressed upon the potential
distribution in the two networks.

6. Conclusions

The feasibility and usefulness of the resistance network analogue
method for the evaluation of the characteristics of semiconductor systems
in equilibrium or guasi~equilibrium has been demons trated by the application
of the method to the case of a diffused asymmetrical p=-n junction. Datsa
on potential profiles, electric field distribution and mobile carrier
concentrations have been presented. The limitations of the method have
been shown to lie in the restriction to situations involving constancy
of quasi-Fermi levels thus implying absence of significant current flow.

Tt has been established that this limitation can, in principle,
be overcome by a system comprising three resistance networks interconnected
by analogue computing units. Such a combined system will provide a
means for the analysis of steady state cituations in current carrying semie-
conductor systems of arbitrary geometry and impurity profiles.
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P hole concentration

n electron concentration

Nb donor atom concentration

NA acceptor atom concentration

q absolute value of electronic charge

€ permittivity (= keg)

n; hole/electron concentration in intrinsic material

R resistance network mesh resistance

k Boltzmann's constant

T abgolute temperature

B = gfKT

V¥ electrostatic potential in physical system

$ Fermi level potential for system in equilibrium

¢p’ ¢n quasi Fermi level potentials for system in quasi-equilibrium

b distance co-ordinate in physical system

% distance co-ordinate in analogue system

a =x/x

B* empirical diode forward characteristic parameter
(B* ® B = g/KT)

is diocde reverse saturation current

v potential in analogue system, representing V¥

by, 92 iefeience potentials in analogue system, representing

2

P n
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mobility of holes, electrons
diffusion constant for holes, electrons

net electron-hole recombination rate.
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