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Preface 
 
With rising global competition, it is becoming increasingly more important for industry 
to optimise its activities. However, the complexity of real-life optimisation problems 
has prevented industry from exploiting the potential of optimisation algorithms. 
Industry has therefore relied on either trial-and-error or over-simplification for dealing 
with its optimisation problems. This has led to the loss of opportunity for improving 
performance, saving costs and time. The growth of research in the field of evolutionary 
computing has been encouraged by a desire to harness this opportunity. There are a 
number of benefits of evolutionary-based optimisation that justify the effort invested in 
this area. The most significant advantage lies in the gain of flexibility and adaptability 
to the task in hand, in combination with robust performance and global search 
characteristics. 
 
This report presents the proceedings of the workshop on ‘Challenges in Real World 
Optimisation Using Evolutionary Computing’. This workshop is organised in 
association with the Eighth International Conference on Parallel Problem Solving from 
Nature (PPSN VIII) held in Birmingham (UK) on 18-22 September 2004. The aim of 
this workshop is to explore the use of evolutionary computing techniques for solving 
real-life optimisation problems. It is the purpose of this workshop to bring together 
researchers working in the area of industrial application of evolutionary-based 
computing techniques such as genetic algorithms, evolutionary programming, genetic 
programming and evolutionary strategies. The workshop provides a great opportunity 
for presenting and disseminating latest work in optimisation applications of 
evolutionary computing in varied industry sectors and application areas, e.g. 
manufacturing, service, bioinformatics and retail. It provides a forum for identifying 
and exploring the key issues that affect the industrial application of evolutionary-based 
computing techniques. 
 
This report presents three papers from the workshop. The first paper examines the 
possibilities of train running time control using genetic algorithms for the minimisation 
of energy costs in DC rapid transit systems. The second paper provides an overview of 
soft computing techniques used in the lead identification and optimisation stages of the 
drug discovery process. The third paper proposes a micro-evolutionary programming 
technique for optimisation of continuous space. 
 

Dr. Ashutosh Tiwari & Dr. Rajkumar Roy 
Cranfield University 

September 2004 
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Train Running Time Control Using Genetic
Algorithms for the Minimization of Energy

Costs in DC Rapid Transit Systems

Thomas Albrecht

Dresden University of Technology,
Faculty of Traffic and Transportation Sciences ”Friedrich List”

Chair of Traffic Control and Process Automation,
D-01062 Dresden, Germany,

albrecht@vina.vkw.tu-dresden.de,
WWW home page: http://vina.vkw.tu-dresden.de/albrecht.html

Abstract. Costs for traction energy in DC electric rail transit systems
depend on the energy actually demanded in the substations as well as on
average power peaks there. Both are strongly influenced by the applied
train timetable, because synchronous powering of multiple trains causes
high power peaks whereas coordinated powering and braking of trains
leads to good usage of regenerative energy from braking and consequently
less energy need at the substation.

This paper examines the possibilities of train running time modification
in order to reduce power peaks and energy consumption. The problem
can be described as the search for an optimal distribution of a train’s
running time reserve along its ride. Due to the very high complexity of
the problem, the non-linearities in the model for the electric network
and the very large search space, the application of Genetic Algorithms is
proposed and examined in a case study for one line of the Berlin suburban
railway network.

1 Motivation

1.1 Energy Costs in DC Rail Systems and the Influence of the
Timetable

In DC-electric railway systems with non-inverting substations the efficient use of
regenerative energy is of special importance. Firstly, energy can only be regen-
erated during braking, when consumers in form of motoring trains are available
at the same time within the power supply network. Additionally, energy billing
is realized at substation level in almost all systems and the efficient use of re-
generative energy can directly contribute to reducing the amount of energy to
be purchased from the energy supplier.

But energy costs are not only determined by the consumed energy itself, but
also by the average power peaks in the substations. According to a UITP survey
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of underground railway system operators [7], the part of the energy price paid
for power peaks makes up one quarter of the energy bill on average.

Both, power peaks and energy consumption, are largely influenced by the
timetable the trains are travelling with. Synchronous powering of multiple trains
causes high power peaks, coordinated powering and braking leads to an efficient
use of regenerative energy from braking.

All these effects can only be computed taking into account the real behaviour
of trains and the power supply network, the positions of the trains and their
consumed or regenerated power changing every second.

1.2 The Optimization Case: Constant Headway Operation

Today, constant headway operation on a single line is the mode of choice for most
of the existing rail transit lines, even when in flexible and automatic railways
the headway can be adapted smoothly to demand.

There are two parameters in constant headway operation which have a big
influence on energy consumption: These are headway itself and the synchronisa-
tion time (difference between departure times from the two terminus stations).
But these parameters are primarily fixed in order to fulfil traffic and operational
requirements and not to minimize energy costs.

The only remaining free variables within such a timetable are running time
reserves that have to be included in a timetable to make it feasible even when
small delays occur. But as this happens with small probability only, running time
reserves can be used to de-synchronise power peaks and synchronize powering
and braking trains in non-disturbed operation.

Typically, all the trains on a line are travelling according to the same running
profile. That’s why, finding an optimal distribution of running time reserve along
a line in constant headway operation always means simultaneous optimization of
multiple trains. The cost function is therefore not Markovian, which eliminates
further solving methods, e.g. Dynamic Programming.

So, the application of Genetic Algorithms (GA) is proposed here for the
solution of this problem. It is explained in detail in the next section before a
case study on the Berlin suburban network is presented in Sect. 3.

2 The Application of Genetic Algorithms

With automatic train control systems it is possible to keep a timetable with the
precision of one second. Distributing a certain amount of running time reserve
k among n sections of a line becomes an integer problem. The coding of this
problem onto a chromosome is done in such a way, that each unit of running
time reserve (e.g. 1 unit = 1 sec) makes up one gene. The information the gene
contents is the section of the line on which this particular unit of running time
reserve is to be spent. The information is then brought into binary form using
Gray-coding.
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With this coding, every chromosome can be decoded into a valid solution for
the given problem. The solutions are binomially distributed among the search
space, favouring timetables with equally distributed running time reserve. These
are in general solutions with small energy absorption of the single train, which
contributes to finding the minimum of system energy consumption.

The independence of the content of the gene from its locus is favourable to
good convergence as building blocks can appear on multiple locations. The use
of operators changing the order within a chromosome can therefore be avoided.

By limiting the representations of a gene to selected sections of the line,
operational restrictions may be taken into account, e.g. using only one third of
the reserve for the first half of the ride.

The initial population is created randomly except for one individual, which
presents the timetable with minimal energy consumption for the single train
that can be computed using Dynamic Programming[2]. The solution is coded in
such a way that at first k1 genes are initialized with number 1, where k1 is the
number of units of running time reserve to spend on the first section of the line.
Following are k2 genes with number 2, etc. The coding principle is illustrated in
Fig. 1.
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Fig. 1. Coding of running time reserve for a simplified example of distributing 8 sec
on 4 sections

The number of different solutions can be calculated using simple combina-
torics: The size of the search space N for the particular problem is equal to the
number of combinations with allowed repetitions

N =
(

n + k − 1
k

)
. (1)

For a typical problem like the one presented in the next section the solution
can be found using only 25 inviduals in one population for 50 generations, this
is extremely fast taking into account the size of the search space N ≈ 1014 per
direction.
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The cost function to be minimized can be chosen freely. During simulation
studies the minimization of system energy consumption, of 15-min-average power
for all or selected substations as well as the maximization of the minimal voltage
at the train pantograph have been used.

As the timetable with minimal energy consumption of the single train is close
to the optimal solution in many cases, the Truncation method is applied for
selection with the best 25% of the individuals being selected, so the probability
is high for the initial solution to give its information to a comparably large
number of descendants.

The binary mutation is done with a rate of 0.7 per bit, for crossover, the
”Shuffle with Reduced Surrogate” method is used. Again, to protect the good
existing initial solution from disappearing too early, an elitest strategy is used
for reinsertion with a generation gap of 0.9.

3 Case study

A case study has been carried out for one line of the Berlin suburban railway
network (S-Bahn), details can be found in [1]. The quality criteria are computed
using a network simulator based on the solution of the nodal voltage equations,
specificities of DC systems are taken into account as proposed in [4].

The whole algorithm was implemented in MATLAB 6.5 using an existing
toolbox for the Genetic Algorithms (GEAtbx [6]). One optimisation takes be-
tween 60 and 90 mins on a 2.4 GHz Standard PC.

The problem consists of distributing 79 sec of running time reserve in the
in-bound direction and 80 sec in out-bound direction which leads to a length of
the chromosome of 159 sec because both directions of movement are regarded
simultaneously. The optimization was conducted for different synchronization
times at a headway of 10 mins.

Results for two different optimization criteria are plotted in Fig. 2. It can be
seen, that for all synchronization times the values of energy consumption and
15-min-average power are much smaller for the timetables optimized for system
energy and power than with the initial timetable. Although the influence of the
synchronization time on the objective criteria is still important, the optimization
using GA can lead to savings of 5% in system energy consumption and up to
17% in 15-min-average power.

It can also be recognised, that the GA does not necessarily find the optimal
solution, e.g. at 70 sec synchronisation time energy consumption is minimal for
the 15-min.-av. power optimized timetable and not for the timetable optimized
for system energy consumption. But, as the difference of the energy values is
very small (in the order of 0.1 %), both solutions can be regarded as very good.

The chromosomes of the best solutions obtained from the optimization of 15-
min-average power have been decoded to integer values and are plotted in Fig. 3:
Dark blocks vary only slightly compared to the initial solution and bright blocks
have significantly different values. It can be seen, that there are synchronization
times, where many building blocks [3, 5] from the initial solution survive.
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Fig. 2. Energy consumption and 15-min-average power for different synchronization
times and a headway of 10 min[1]

Fig. 3. Optimal solutions (15-min-av. power) for different synchronization times: The
surviving Building blocks from the initial solution are clearly visible (in black).
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4 Conclusions and Future Work

With the application of Genetic Algorithms it was possible to find distributions
of running time reserves along a line, by which system energy consumption and
15-min-average power at the substations could be reduced significantly compared
to single train optimization. The proposed coding leads to very fast convergence
which is necessary taking into account the computationally expensive cost func-
tion.

In this paper, only the optimization of train running times in constant head-
way operation has been regarded. For the optimization of a complete timetable,
transitions between periods of different headways have to be examined as well.
They can also be regarded as a problem of distributing time reserves, this time
between consecutive trains. The application of GA in this case is part of ongoing
research.

A practical application of train dwell time optimization using GA is cur-
rently under examination in cooperation with Transpole, the operator of the
fully automated metro lines VAL in Lille, France.
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Overview of Soft Computing Techniques in Lead 
Identification and Optimization for                                  

the Drug Discovery Process 

Abiola Oduguwa, Ashutosh Tiwari and Rajkumar Roy 

Dept. of Enterprise Integration, Cranfield University,  
Cranfield, Bedfordshire, UK. MK43 0AL. 

Abstract. Drug discovery (DD) research has evolved to the 
point of critical dependence on computerized systems, databases 
and newer disciplines. Such disciplines include but are not 
limited to bioinformatics, chemo informatics and soft 
computing. Their applications range from protein folding 
methods for determining protein structures to design of 
combinatorial libraries for identifying and optimizing new drug 
compounds. This paper presents a brief overview of techniques 
in lead identification and optimization stages of DD with their 
limitations, and outlines current SC based techniques in this 
research area.  

Keywords:  Drug discovery, GA, neural networks, fuzzy logic, 
bioinformatics  

1. Introduction 

Drug discovery has become an increasingly time-consuming and expensive process. 
Only a small fraction of the drug discovery (DD) projects undertaken eventually lead 
to successful medicines. Such programmes can take between 12 -16 years. 
Increasingly, the industry is compelled to find novel drugs that are more effective and 
safer than existing ones. New methods for DD are therefore receiving considerable 
attention in the industry. This is largely driven by several genome projects since the 
realization that common human diseases have genetic component. The 
pharmaceutical industry has thus embraced the field of genomics as a source of novel 
drug target in their DD process. Developments in areas of proteomics, bioinformatics 
and chemoinformatics are also providing solutions to the need to enhance the DD 
process. Bioinformatics is used to exploit the data produced on this genome-wide 
scale. Proteomics studies help to understand the role of gene products (protein) 
particularly structural information of protein for use in drug design. 
Chemoinformatics supports drug research by creating tools for evaluating the 
molecular properties of potential drug compounds in the chemical databases.  
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Soft computing (SC) techniques are emerging as solution alternatives for dealing with 
the problems of biological sciences and DD research [1-3]. It is being applied in 
several areas of the DD research to achieve better solutions. SC is a collection of 
methodologies including as its main constituents Evolutionary Computation (EC), 
Fuzzy Logic (FL), Neuro-computing (NC), probabilistic computing (PC), chaotic 
theory and parts of machine learning theory. These methodologies are parallel to the 
remarkable ability of the human brain to reason and learn in an environment of 
uncertainty, imprecision, and implicit knowledge to achieve tractability, robustness 
and low cost solutions [4]. SC differs from conventional techniques by providing an 
attractive opportunity to represent the ambiguity in human thinking with real life 
uncertainty which can result in more realistic solutions. It is these features that make 
SC a promising technology for dealing with DD problems. 

This paper therefore focuses on the description of the main SC methodologies used in 
the lead identification and lead optimisation stages of the DD process. The paper is 
organised as follows. Section 2 gives an overview of the DD process; section 3 
discusses the classical techniques used in DD and the application areas of SC in DD 
research. Section 4 discusses key findings and finally section 5 concludes this paper. 

2. Drug Discovery 

Drug discovery (DD) is a process of developing drugs for the safe and effective 
treatment of a disease. This process identifies, evaluates, and optimizes compounds 
and molecules with desired biological activity against a specified target or function 
[5]. This section briefly describes the DD process and the different stages of the 
process. 

2.1. The Drug Discovery Process  

The DD process starts with a disease target which originates from the discovery of a 
gene or from the elucidation of the molecular mechanism of a genetic defect. Once 
suitability for DD is established, new chemical entities are identified through random 
screening and/or rational drug design. The chemical leads with positive response in 
the screening process are selected and optimised as potential drug candidates. The 
result is a compound, or a small number of compounds that proceed to clinical trials 
for development into drug. 

Figure 1:  The drug discovery process 

The DD process is divided into four main steps: target identification, target validation, 
lead identification and lead optimisation. This process is depicted in figure 1 and 

Target 
Identification 

Target 
Validation 

Lead 
Identification 

Lead 
Optimization 
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described briefly in the section that follows. 

2.1.1. Target Identification 

This stage of the DD process aims to identify genes or gene products that may be 
correlated with a disease process. This is achieved by quantifying and analyzing the 
gene expression in diseased and healthy states [6-8]. The ultimate goal of this step is 
to find macromolecules that can become binding targets for potential drug 
compounds.  

2.1.2. Target Validation  

Once the gene involved in a disease has been identified, it is necessary to validate 
them as drug targets. Target validation verifies the DNA or protein molecule that is 
directly involved in a disease process. That is, its role in disease must be clearly defined 
before drugs are sought that act against it. The aim is to understand the 
pathways/interaction of genes and to test whether the gene has the potential to be a 
therapeutic target [6-8].  

2.1.3. Lead Identification 

This is the process of identifying biologically active chemical entities that could be 
optimized into drugs. In this stage, compounds which interact with the target protein 
and modulate its activity are identified.  

2.1.4. Lead Optimisation 

Lead optimization is the complex multi-step process of refining the chemical structure 
of a hit to improve its drug characteristics, with the goal of producing a pre-clinical 
drug candidate. This process generally involves iterative rounds of synthetic organic 
chemistry and compound evaluation of a potential drug compound to ensure optimal 
properties in drug development [5, 9]. These properties include potency, adsorption, 
metabolism, distribution, toxicity (ADME/Tox). 

3. Techniques in Lead Identification and Lead Optimization 

This section describes the classical techniques used in the lead identification and 
optimization stages of the DD process with their limitations. It also describes the 
application of SC in these two stages. 

3.1. Classical Techniques in Lead Identification and Lead Optimization 

Lead Identification: The methods used for lead compounds are random screening or 
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directed design approach and virtual screening approach [9, 10].  

High-throughput Screening (HTS) is used to test large collection of compounds or 
structurally selected compounds in the database for their ability to affect the activity 
of the target protein. A compound database made up of millions of compounds is 
screened with a throughput of 10 000 (HTS) up to 100 000 compounds per day 
(µHTS, ultra high throughput screening) [5, 9, 11, 12]. The main problem of HTS is 
cost. It can cost up to ~$300K to set up a high throughput screen. And for most 
companies HTS is not an option because it can take months to scale a low throughput 
screen up to high throughput capacity. Additionally, many screens are not yet possible 
with high throughput techniques. Hit rates against some receptors are reported to be 
very low, necessitating screening of very large numbers of compounds (tens to 
hundreds of thousands) [12]. 

The second approach is in silico or virtual screening. It involves computational 
analysis  of a subset of compounds considered to be appropriate for a given target. 
Three-dimensional structures of compound from virtual or physically existing 
libraries are docked into the binding sites of target proteins with known or predicted 
structures. Empirical scoring functions are used to evaluate the fit between the 
compounds and the target protein. The highest ranked compounds are suggested for 
further biological testing. One of the problems of virtual screening is the availability 
of protein structures.  Structure prediction methods include computationally intensive 
strategies that simulate the physical and chemical forces involved in protein structure 
determination. Despite several years of research, this problem is still unsolved [13-
15]. Experimental determination of protein structures by X- ray crystallography is 
time consuming and expensive [9]; [14]. Current prediction techniques like homology 
modeling and threading techniques require at least an experimentally determined 
protein in a fold class to model hundreds of related proteins.  These techniques 
involve using database search tools to identify similarity between sequences and 
structures. The researcher then identifies the biological significance of the sequences 
and determines if the sequences are derived from a common ancestor. These rational 
techniques however, produce low resolution models due to lack of adequate 
understanding on how the primary structure of the protein determines its tertiary 
structure.  

Lead Optimization: The process of lead optimization begins with evaluating hits in 
secondary test assays and analogs (a set of related compounds) which are then 
synthesized and screened. The resulting quantitative information is known as 
structure-activity relationships (SAR). SAR shows the relationship between chemical 
structure and biological data. Verkman et al [5] reported several approaches that are 
available to maximize the utility of this SAR information for directed acquisition and 
synthesis of structural analogues to improve compound potency. In terms of utilizing 
SAR data to accelerate compound optimization, visual inspection reveals many 
important structural features associated with activity. Several computational 
approaches are also reported in the literature adopted in lead optimisation; these are 
rational drug design, pharmacophore analysis, and quantitative structural activity 
relationship (QSAR) analysis. These approaches are used individually or combined in 
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various forms. The rational design method involves the use of high resolution 
structure of a target to direct the synthesis of new analogues. The process usually 
involves generation of large library of potential derivatives and use of computational 
docking methods to select derivatives that may interact with the target on the basis of 
shape complementarities or charge placement. The pharmacophore methods involve 
definition of minimal unit (e.g. hydrophobic group or other functional groups) that 
leads to activity in a 3-D space. The consensus pharmacophore is then used to 
examine the allowed placements of groups in a set of candidate compounds. The last 
method is to establish QSAR models. This relates calculated physiochemical 
properties of molecules, to activity, rather than strictly structural characteristics. It 
usually requires a set of structurally related compounds with a wide range of 
activities. The main limitation of these techniques is that they are labour-intensive and 
time consuming. Additionally, there is a need to have a better understanding of the 
mechanism underlying toxicity of drugs. Current methods using animal models are 
time-consuming, low throughput and can be unreliable. The use of cell-based assays 
to predict efficacy and toxicity of hits also poses problem of reproducibility. This 
shows the need for more robust methods to address these problems and yield better 
solutions. 

3.2. Soft Computing in Lead Identification and Optimization 

Section 3.1 outlined the classical techniques in lead identification and optimization. It 
also discusses some of the limitations of these techniques. SC is now emerging as a 
solution alternative to deal with some of these issues. This section thus presents an 
overview of interesting applications of SC techniques in these two stages of the DD 
process.  Table 1 presents a summary of the proportion of different SC techniques in 
the sample of publications reviewed in this paper.  

3.2.1. SC in Lead Identification 

Literature reveals SC techniques have been applied in the field of rational drug design 
to generate new leads. Lead compounds are found in existing chemical databases by 
fast searching or docking protocols, synthesized and isolated by combinatorial 
chemistry, or designed de novo by computational design programs [16]. SC 
techniques have been applied in each of these areas. 

GA has been applied to the problem of finding two dimensional matches to a query in 
chemical databases [16-18]. It has also used to compare 3-D structures, both to 
determine optimal alignments of molecular electrostatic potential fields in rigid 
searches [19] and in flexible searching for a pharmacophoric pattern [20].   

Another method for lead identification is docking of ligands into the active site of a 
target [16, 21-28]. Computational methods for docking involve a good scoring 
function and an efficient searching algorithm for searching conformational spaces. 
Trial ligands are taken from a 3D database, placed into the template site, and ranked 
in order of predicted binding affinity. A variety of methods have been used to obtain 



Challenges in real world optimisation using evolutionary computing 

 Cranfield University 2004 12

 

plausible binding orientations. One philosophy requires a user to manipulate the 
ligand, while the computer interactively reports a binding score [16]. Several groups 
have used GA in this area [16, 29-34]. [34] developed an evolutionary method, 
GEMDOCK for molecular docking and empirical scoring function. The program 
combines discrete and continuous global search strategies to speed up convergence. 
DOCK program [16, 29] uses GA to dock flexible ligands into rigid receptor after 
characterizing and identifying binding sites using a surface sphere cluster method. For 
each of the iteration, selective pressure is applied to encourage high-scoring features 
of current generation to be preserved in the next cycle. Random ‘mutations’ are 
permitted, while ‘crossover’ moves allow molecules to exchange characteristics.  

In addition to finding lead compounds by the previously described methods, they can 
also be developed experimentally by de novo design [16, 21-25].  Glen and Payne 
applied GA to the design of substructures based on a wide variety of user-defined 
constraints. The constraints selected for various design experiments provide the basis 
for the fitness function. 

Other application areas of SC in lead identification are protein folding simulations for 
predicting the three-dimensional structure of a target protein [2, 35-38] and 
combinatorial library design [39]. 

3.2.2. SC in Lead Optimisation 

The application areas of SC in lead optimisation include: combinatorial chemistry, de 
novo design leads and quantitative structure activity relationship measurement 
(QSAR) [16]. 

Combinatorial chemistry involves synthesis and screening of large libraries of 
compounds to determine lead compounds that exhibit biological activities of interest. 
GA has been applied in this area with successes in the design and automated synthesis 
of combinatorial compound libraries [16]. The optimization behavior of GA perfectly 
matches the discontinuous, non-steady structure space of chemistry. Lutz Weber 
demonstrated use of GA to develop thrombin inhibitors using non-peptidic molecules 
[40-42]. The study involves a Ugi reaction and 10x40x10x40 building blocks gives 
160,000 combinatorial products. GA was also used in combinatorial chemistry to 
select fragments for assembly into the library. Sheridan and Keasley [16, 40-42] 
applied GA to the optimisation of tripeptoids constructed from a wide variety of 
primary and secondary amines. Each tripeptoid generated in the GA run was 
evaluated based on its similarity to a target tripeptoid. The ones with high fitness 
values were chosen for use in library synthesis.  

The application of SC in de novo design is shown in the optimisation of the results of 
the design program PRO_LIGAND [16]. This program generates new lead 
compounds by assembling fragments for substructure libraries.GA uses these leads as 
the initial population for the optimisation process. 

The third approach for optimisation of lead compounds is QSAR modeling. The 
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method attempts to find relationship between the properties of bioactive molecules 
and the biological responses they produce when applied to a biological system. 
Winkler and Burden developed QSAR models to improve the efficiency of bioactive 
molecules with Bayesian regularized artificial neural networks (BRANNs) [43]. A 
hybrid GA/neural network method have also been used to suggest more potent 
descriptors from a set of variables in a QSAR model for dihydrofolate reductase 
inhibitors [3]. 

4. Discussion and Conclusion 

This paper gives a brief overview of the classical techniques in lead identification and 
optimization. It was shown that these techniques have several limitations which led to 
the introduction of soft computing. This paper reveals the several application areas of 
SC in these two stages. The main SC techniques are GA, FL, and ANNs. Literature 
reveals a number of studies of the application of GAs in these stages over the last 15 
years. This is largely due to the nature of the data and the search space being 
explored.  Many phases of the drug design involve finding solutions to large 
combinatorial problems for which exhaustive search is intractable. GA has been 
particularly useful in this area to rapidly find good solutions to such problems [16]. 

Table 1: Summary of applications of SC in drug discovery 

DD 
Process Applications Characteristics SC 

 component 

Database Searching 
• Comparison of two and three 

– dimensional structures using 
GA 

GA 

Protein Folding / 
Structure Prediction 

• Coded GA for simulating 
protein folding problem 

ANNs, FL, 
GA 

Virtual Screening and 
molecular  Docking 

• Docking of ligands in to 
receptor sites of target protein 
molecule using GA 

GA 

Lead  
Identification 

 

De novo drug design 

• Design of protein 
substructures, receptors, 
enzymes, ion channels using 
GA 

GA 

Combinatorial 
Chemistry 

• Development of thrombin 
inhibitors with non-peptidic 
molecules 

• Design of similar and 
dissimilar compounds in a 
combinatorial library 

GA 

De novo drug 
design 

• Optimisation of leads 
generated by PRO-LIGAND 
program 

GA 

Lead  
Optimisation 

QSAR 

• BRANNs for producing better 
descriptors and designing 
molecules with desired 
activity 

GA, ANNs 
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ANNs has also been successful in gene expression data analysis and pattern 
recognition in protein structure determination. FL has also been shown to help in 
extraction of information from biological datasets. The key feature of DNA that 
makes it appropriate for fuzzy computing is the uncertainty and incompleteness in the 
information of the double stranded duplex.  These three core techniques of soft 
computing have also been used in its hybrid form. For example, neuro-fuzzy 
algorithm that was used in protein motif extraction [1]. GA, ANNs and FL have thus 
proven their strengths in handling the imprecise nature of biological data. 

In conclusion, this paper presents a review of the application of SC techniques in lead 
identification and optimization. It explores the discovery phase of drug research. The 
paper shows a brief review of the classical techniques in these research areas with 
their limitations and critically evaluates how current SC techniques are suited for such 
complex biological sciences problems. Current research shows that SC methods have 
significant potential in dealing with the limitation posed by traditional methods. 
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Abstract. With the development of science, more and more powerful al-
gorithms and problem-solving tools appeared. However, they are becom-
ing more and more complex. In this paper, we propose a micro evolution-
ary programming (MEP) which is easy to use and ease of parallelization.
It also performs excellent and robust. Population size of MEP is 2, each
of which performs local search in its neighborhood and exchanges inher-
ent information in a probability. Furthermore, not Gaussian or Cauchy
mutation, but non-uniform mutation, is adopted in MEP which has the
feature of searching the space uniformly initially and very locally at later
stages of algorithms. MEP solve four functions whose dimensions rapidly
increase (up to 1000). It also solves one low dimensional function, how-
ever, whose search domain is greatly enlarged (maximal 1000 times).
These two groups of experiments proved its strong exploration ability,
robustness, and excellent performance from two different perspectives.

Keywords: evolutionary algorithm, non-uniform mutation, global opti-
mization, greedy idea

1 Introduction

Genetic algorithms (GAs) refers to the meta-heuristical use of concepts, princi-
ples and mechanisms based on our understanding about the natural evolution
to help solve the complex problems [1–3]. GAs has been successfully applied to
many areas [4–8]. In order to obtain more satisfiable algorithms, more and more
modified GAs, such as [9, 10, 6, 11] are proposed to enhance GAs. However, as
Wolpert and Macready [12] stated, we have to pay out more computing cost or
even stronger computing platform. That is to say, computing tools become more
and more complicated as they become more and more powerful.

In this paper, a micro evolutionary programming (MEP) of easy to use and
ease of parallelization is proposed. At the same time, it performs very robust
and satisfiable. The population size of MEP is set to be 2 in order to exchange
inherent information. Of course, larger population size will do to enhance its
performance. Inspired by the well known incomplete algorithm GSAT, MEP per-
forms greedy local search in the neighborhood of every individual and exchanges
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their loci genes in a probability. Experiments on the multimodal functions with
increasing dimensions are done. These experiments show that the performance
of MEP is nearly not affected by the increasing dimensions of benchmarks. As
similar works are not found in literatures, we do not make comparisons with
the related works. But the key point is that our MEP performs very robust and
excellent.

The other experiments further prove the robustness of MEP with the search
space of the function greatly expanding. Yao et al. [14] did similar experiments
based on the Cauchy mutation-based evolutionary programming. They made
comparisons between the classical evolutionary programming (Gaussian muta-
tion, CEP) and the fast evolutionary programming (Cauchy mutation, FEP).
It shows that FEP outperforms CEP because FEP generates more long jumps
than CEP. We compared MEP with FEP&CEP with the expanding definition
domains and showed that MEP performs even more robust than FEP. The fea-
ture of non-uniform mutation and the effective local search ensure the robust
performance of MEP.

2 Micro Evolutionary Programming

Michalewicz [15] proposed a non-uniform mutation which has the feature of
searching the space uniformly initially and very locally at later stages of algo-
rithms. The operator of exchange inherent information is similar with two point
crossover [3] in binary genetic algorithm.

2.1 Local Search of MEP

First of all, we give the definition of neighborhood of an individual.
Definition: Given a vector X = (x1, . . . , xi, . . . , xm) (m is the dimension of

vectors), we call X′ is its neighbor, if and only if one of its component is changed
and other components remain unchanged. Then the neighborhood N of a vector
X is composed of all its neighbors. That is

N = {X′|X′ is a neighbor of X} (1)

Different from the traditional local search that performs greedy local search
until a local optimum is obtained, we will perform once non-uniform local search
for a chromosome (vector) X in its neighborhood which is like to the well known
GSAT [13] which just tries one assignment of an expression once. The current
individual will be replaced by the new one only if the new is not worse than
the current individual.

2.2 Non-uniform Mutation

Michalewicz [15] proposed a dynamical non-uniform mutation operator to reduce
the disadvantage of random mutation in the real-coded evolutionary algorithm.
This new operator is defined as follows.
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For each individual Xt
i in a population, it creates an offspring Xt+1

i through
non-uniform mutation as follows: if Xt

i = {x1, x2, . . . , xm} is a chromosome (t is
the generation number) and the element xk is selected for mutation, the result
is a vector Xt+1

i = {x′1, x′2, . . . , x′m}, where

x′k =
{

xk + ∆(t, UB − xk), random number is 0
xk −∆(t, xk − LB), random number is 1 (2)

and LB,UB are the lower and upper bounds of the variable xk. The function
∆(t, y) returns a value in the range [0,y] such that the probability of ∆(t, y)
being close to 0 as t increases. This property causes this operator to search the
space uniformly initially (when t is small) and very locally at later stages. The
probability of generating an offspring closer to its parent is increased which is
higher than a random choice, which is similar to the working scheme of simulated
annealing. We used the following function:

∆(t, y) = y · (1− r(1− t
T )b

), (3)

where r is a random number from [0, 1], T is the maximal generation number,
and b is a system parameter determining the degree of dependency on iteration
number.

3 Experiments and Analysis

Functions n D fmin

fSph =
n∑

i=1

x2
i [-100, 100]n 0

fRos =
n−1∑
i=1

[100(xi+1 − x2
i )

2 + (xi − 1)2] [-5.12, 5.12]n 0

fGri = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
)+1 [-600, 600]n 0

fPen = π
n
{10 sin2(πyi) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)]

+(yn − 1)2}+
n∑

i=1

u(xi, 10, 100, 4), yi = 1 + 1
4
(xi + 1) [-50, 50]n 0

fShekel = −
5∑

j=1

[
4∑

i=1

(xi − aij)
2 + cj ]

−1 4 [0, 10]n -10.1532

Table 1. functions used in the paper

Sphere model function fSph, generalized Rosenbrock’s function fRos, general-
ized Griewank function fGri and generalized Penalized function fPen are chosen
from [14] in this paper. Function fSph is a typical unimodal function, fRos is
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a continuous and unimodal function, however, its optimum located in a steep
parabolic valley with a flat bottom and the variables having nonlinear interac-
tions among them. Function fGri is nonseparable and the search algorithm has
to climb a hill to reach the next valley and fPen is also a typical multimodal
function.

3.1 Experiments on Increasing Dimension Numbers of Problems

The experiments were executed 10 times independently for the long computing
time. Population size is 2, maximal evolutionary generation number is 1500,
crossover probability pc = 0.4 and mutation probability in the neighborhood
pm = 0.6. The computer is with a configuration of 2.40GHz CPU, 4G RAM.
The experimental results are given in Table 2.

Dim fSph fRos

numbers A SD B nFit t(s) A SD B nFit t(s)

30 2.9e-13 6.1e-13 2.3e-15 3.7e4 0.12 5.3e1 3.8e1 6.5e0 3.7e4 0.2
100 1.9e-12 3.3e-12 7.3e-14 1.2e5 0.66 2.2e2 1.4e2 1.3e2 1.2e5 0.8
250 2.1e-12 2.5e-12 2.7e-13 3e5 1.95 2.7e2 4.5e2 2.4e2 3e5 3.48
500 6.7e-12 4.3e-12 1.7e-12 6e5 14.56 9.5e2 1e2 7.4e2 6e5 17.72
750 3.9e-11 7.2e-11 1.8e-12 9e5 15.46 1.4e3 3.5e2 1.1e3 9e5 26.55
1000 8e-12 7.1e-12 1.1e-12 1.2e6 25.56 1.8e3 9.3e1 1.7e3 1.1e6 48.92

Dims fGri fPen

number A SD B nFit t(s) A SD B nFit t(s)

30 6.6e-3 1.3e-2 1.4e-14 3.7e4 0.45 2.9e-14 8.8e-14 3.3e-18 3.7e4 1.05
100 6.6e-3 8.7e-3 6e-14 1.2e5 2.77 1.3e-15 2.1e-15 1.4e-17 1.2e5 7.23
250 6.9e-3 7.4e-3 1.3e-13 3e5 15.31 5.2e-16 9.1e-16 3.1e-17 3e5 44.24
500 6.1e-3 6.9e-3 2.2e-13 6e5 68.40 5.3e-16 8.1e-16 7.8e-17 6e5 170.44
750 5.9e-3 5.2e-3 5.9e-13 9e5 133.04 5.7e-15 1.5e-14 1.2e-16 9e5 332.40
1000 9.3e-3 1.3e-2 2.2e-13 1.2e6 280.79 8.2e-16 6.4e-16 1.3e-16 1.2e6 683.91

Table 2. Experimental results for increasing dimensions of functions. A is the average
of the best result found at the end of each run. SD stands for standard deviation. B
is the best of the fitness in the all runs. nFit is the average function evaluations. t is
the average CPU time (second)

From Table 2, we find that the solution quality of the multimodal functions
fGri, fPen and fSph have no significantly statistical difference at all for the in-
creasing dimensions. Even for the nonseparable function fRos, the difficulty is
also linearly increasing when its dimensions expand to 1000 from 100 observed
from the A and B performances. Generally speaking, MEP has a very thick skin
to the initial conditions and comparable results can be obtained even the search
spaces become larger and larger1. As far as the computing speed is considered,
the number of function evaluations is just linearly dependent on the dimension
numbers of problems.
1 We also did experiments with even higher dimensions (just computing two times)

and obtained similar conclusion.
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3.2 Experiments on Expanding Definition Domains

Another group of experiments with the constringent or expanded definition do-
mains are done to validate the convergence or robustness of MEP from another
different perspective. One of the Shekel’s Family SQRN5 function [14] is chosen
to do this experiment. Its global minimum is -10.15. The experimental condi-
tions are equivalent to [14] and 50 independent runs are executed in this group
of experiments.

MEP FEP CEP
Initial Range Mean Best Std Dev Mean Best Std Dev Mean Best Std Dev

2.5 ≤ xi ≤ 5.5 -10.15 0 -5.62 1.71 -7.9 2.85
0 ≤ xi ≤ 10 -5.68 2.36 -5.57 1.54 -6.86 2.94
0 ≤ xi ≤ 100 -5.06 0 -5.80 3.21 -5.59 2.97
0 ≤ xi ≤ 1000 -5.06 0 -5.00 2.96 -5.33 2.76
0 ≤ xi ≤ 10000 -5.00 0.16 -3.97 2.28 -2.60 2.43

Table 3. Comparison of MEP with FEP&CEP [14] on solution quality of fShekel when
the initial population is generated uniformly in a constringent or expanded ranges of
variables. The black line shows the normal variables ranges.

Generally speaking, observed from Table 3, the performance of MEP is
greatly improved when the variables ranges become smaller and has no obvious
degradation when the variable ranges are expanded. But contrary conclusions
can be reached when other two algorithms are observed. If the current solution
is close to the global optimum, MEP shows powerful exploitation (fine-tuning)
ability which can be validated from the experimental results with 2.5 ≤ xi ≤ 5.5
that MEP all found its global optimum in 50 runs. If the current solution is far
(or very far) from the global optimum, MEP shows mighty exploration ability as
well which can be illuminated from the experiment with 0 ≤ xi ≤ 10000 when
other two algorithms are already far worse than the results of smaller search
spaces.

This group of convincing experiments, together with the experiments of Sec-
tion 3.1, indicate that MEP is not sensitive to the initial conditions and performs
very robust. The robust and nonsensitive features of MEP are highly suitable to
the real-world problems (such as engineering computing) whose global optimum,
even the problems themselves, are usually unknown. Under these situations,
MEP should have broader applications.

4 Conclusions and Future Works

An easy use, robust, excellent and ease of parallelization micro evolutionary
programming MEP is proposed in this paper. Two groups of experiments with
greatly expanding search spaces are done. Results show that MEP has a sick
skin to the initial conditions. Experiments validate the robustness and excellent
performance of MEP. However, the current algorithm is not suitable to com-
binatorial optimization due to the non-uniform mutation. Subsequently, more



Challenges in real world optimisation using evolutionary computing 

 Cranfield University 2004 22

 

comparisons with other algorithms, especially for real-world problems and the-
oretic proof how it works will be done.
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