Munoz, Andre Arelius MarcusVella, AnnaHealy, Matthew J. F.Lane, David W.Jupp, IanLockley, David2019-05-132019-05-132018-09-24Munoz AAM, Vella A, Healy MJF, Lane DW, Jupp I & Lockley D., Low open fraction coded masks for x-ray backscatter imaging, Optical Engineering, Volume 57, Issue 9, Article Number 093108.0091-3286https://doi.org/10.1117/1.OE.57.9.093108http://dspace.lib.cranfield.ac.uk/handle/1826/14152Previous research has indicated that coded masks with open fractions <0.5 are optimal for imaging some types of far-field scenes. The open fraction, in this case, refers to the ratio of open elements in the mask, with values <0.5 considered as low open fraction. Research is limited by the sparsity of <0.5 open fractions masks; thus a further 94 lower open fraction arrays are calculated and presented. These include the dilute uniformly redundant array and singer set, along with information on imaging potential, array sizes, and open fractions. Signal-to-noise ratio reveals the 0.5 open fraction modified uniformly redundant array to be the optimal coded mask for near-field x-ray backscatter imaging, over the lower open fraction singer set, dilute uniformly redundant and random arrayenAttribution-NonCommercial 4.0 Internationalcoded aperturescoded masksx-ray backscatterlow open fractionLow open fraction coded masks for x-ray backscatter imagingArticle