
ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through

Graph Embedded Network Representation

Josh Collyer 1 Alex Andrew 1 Duncan Hodges 2

Abstract

The adoption of autonomous cyber defense agents

within real-world contexts requires them to be

able to cope with differences between their train-

ing and target environments, bridging the simu-

lation to real gap to provide robust, generalized

defensive responses. Whilst the simulation to

real gap has been studied in-depth across domains

such as robotics, to date there has been minimal

research considering generalizability in the con-

text of cyber defense agents and how differences

in observation space could enhance agent gen-

eralizability when placed into environments that

differ from the training environment. Within this

paper, we propose a method of enhancing agent

generalizability and performance within unseen

environments by integrating a graph embedded

network representation into the agent’s observa-

tion space. We then compare agent performance

with and without a graph embedded network rep-

resentation based observation space within a se-

ries of randomized cyber defense simulations. We

find that there is a trade-off between the effec-

tiveness of the graph embedding representation

and the complexity of the graph, in terms of node

count and number of edges.

1. Introduction

AI-based cyber-attacks are no longer science fiction and

have been fuelled by the recent advances in artificial intel-

ligence technologies (Kaloudi & Li, 2020) with a growing

body of work exploring areas such as autonomous penetra-

tion testing (Chaudhary et al., 2020; Chowdhary et al., 2020;

Tran et al., 2021). These works have driven the research and

1Defence Science and Technology Laboratory (Dstl) 2Defence
Academy, Cranfield University. Correspondence to: Joshua Col-
lyer <jcollyer@dstl.gov.uk>.

Presented at the Workshop on Machine Learning for Cybersecurity
(ML4Cyber) as part of the Proceedings of the 39

th International
Conference on Machine Learning, Baltimore, Maryland, USA,
PMLR 162, 2022. Copyright 2022 by the author(s).

development of autonomous cyber defense systems which

are able to respond in a relevant timescale and at a sufficient

scale. Modern networks however are non-heterogeneous

and dynamic with new application deployment paradigms

such as serverless and containerisation becoming common

place alongside standard server deployments. This raises

challenges when trying to train and deploy decision mak-

ing agents due to the high likelihood of differences being

present between the training and target environments. This

problem, typically referred to as the ‘simulation to reality

gap’, is not something that is unique to a cyber defense set-

ting and has been researched heavily within contexts such as

robotics (Zhao et al., 2020) and autonomous driving (Balaji

et al., 2020). To date however, generalizability has not been

a specific consideration within the autonomous cyber de-

fense literature with a limited number of papers discussing

it as a key barrier to real-world deployment.

Current state of the art approaches towards autonomous

cyber defense have typically been focused on proving the

feasibility of agents in a range of settings; such as Industrial

Control Systems (ICS) (Mern et al., 2021) and Software

Defined Networks (SDN) (Akbari et al., 2020). In addi-

tion, a significant body of work exists that has considered

specific problem formulations such as; Optimal Stopping

for Intrusion Prevention (Hammar & Stadler, 2021), au-

tonomous network defender performance when faced with

adversarial perturbations (Molina-Markham et al., 2021),

as well as several works which have developed flexible

and re-usable agent training environments (Li et al., 2021;

Standen et al., 2021; Microsoft Defender Research Team.,

2021). This extensive body of work demonstrates the ap-

petite for autonomous cyber defense agents, yet we still do

not fully understand how to increase the generalizability of

autonomous defense agents.

Generalizability and the ability to transfer an agent from

its training environment to unseen environments is likely to

be key for the real-world adoption of autonomous cyber de-

fense agents. This is a complex problem to tackle, given that

the cyber security domain is both complex and adversarial

in nature (Kott et al., 2016). Cyber environments are non-

stationary by their very nature, which is a known challenge

for Reinforcement Learning (RL) approaches (Igl et al.,

li2106
Text Box
Proceedings of the 39th International Conference on Machine Learning (ML4Cyber workshop), 17-23 July 2022, Baltimore, Maryland, USAhttps://icml.cc/

li2106
Text Box
Published by ICML. This is the Author Accepted Manuscript issued with:Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0). Please refer to any applicable publisher terms of use.

ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through Graph Embedded Network Representation

2020). Several works propose approaches to tackle this

problem such as introducing data augmentation (Kostrikov

et al., 2020) or a representational learning step (Agarwal

et al., 2021) to enhance the agents observation space and in-

crease agent performance. Unfortunately, the vast majority

of these approaches are image based and therefore are not

directly transferable to a cyber security setting. Evidence

does however suggest that graphs are ideal representations

of computer networks (Dawood, 2014) and this is further

reinforced with several works using graphs as the underly-

ing representation of RL training simulations (Ridley, 2018;

Microsoft Defender Research Team., 2021). We am to build

upon this previous body of work by exploiting the graph

representation and supply it as an input into autonomous

agents as a means of providing a map or diagram of the

network to be defended.

In this paper, we investigate the relationship between agent

performance and the composition of an agent’s observation

space, using unseen environments that are structurally dif-

ferent from the training environment. The agent is placed

within an intrusion response setting across a three differ-

ent environment sizes. The agent’s objective is to prevent

a stochastic attacker from compromising the whole of the

network with the reward function favoring minimisation

of compromise. A stochastic attacker was chosen over a

deterministic attacker in order to provide an abstract rep-

resentation of different attackers across episodes and to

ensure the behavior was diverse across training and evalua-

tion. We formulate two observation space conditions; one

which incorporates an adjacency matrix representation of

the network to be defended, and another which incorporates

a graph embedded network representation. We then train

two sets of agents each with a different network representa-

tion as part of their observation space within a static training

environment for five million training timesteps, before com-

paring agent performance within a series of randomized

evaluation environments.

We find that whilst agents under both observation space

conditions exhibit similar training time performance, the

agents that observe an embedded network representation

perform significantly better in unseen 20 node environments

whilst performing similarly or worse in both the 10 and

40 node environments. This empirical evidence suggests

that there is a trade-off between the environments network

complexity and the effect of exploiting the graph structure

inherent of cyber security environments.

The remainder of this work has the following structure.

§Section 2 describes the methods used to generate the empir-

ical results, covering aspects such as the agent’s observation

space and action space, training and evaluation protocols

and metrics collected. The experimental results are then

presented in §Section 3 before finishing with §Section 4 de-

scribing the key conclusions and then §Section 5 detailing

potential future work directions.

2. Methods

2.1. Simulation Environment

A custom, highly abstract, flexible training environment

called YAWNING TITAN (henceforth YT) was developed

to provide a means of training autonomous cyber defense

agents 1. YT is an OpenAI Gym (Brockman et al., 2016)

based simulation which can represent a range of cyber sce-

narios, such as intrusion response and crown jewels defense.

As the simulation is OpenAI compatible, it provides a means

of seamless experimentation with open source RL algorithm

libraries such as Stable Baselines 3 (Raffin et al., 2021).

Each scenario within this environment is composed of two

components. The first is an undirected graph G = (V,E)
where V is a set of vertices and E is a set of edges. Each

vertex represents a computing device within the computer

network and each edge represents a connection between

computing devices. This undirected graph G represents the

network that is going to be defended by the autonomous

cyber defender. The second is a configuration file which

contains a range of parameters used for the simulation envi-

ronment. This provides a means of fine grained control of

key aspects of the simulation, such as what actions form the

defending agents action space, what reward function should

be used and how many time-steps each episode should be

(Sutton & Barto, 2018).

2.2. Scenario Initialization

For the purposes of this work, three environment sizes were

chosen, 10 nodes, 20 nodes and 40 nodes respectively. This

range was chosen primarily to provide a means of deter-

mining the effectiveness of the graph based observation

space as well as providing the agents with an incrementally

increasing challenge. The undirected graphs for all three

environment sizes were generated using an amended Erdős-

Rényi (Paul & Alfréd, 1959) graph generator which begins

by creating a random graph with n nodes and an edge proba-

bility value of p. Once created, the amended generator then

checks that every vertex within the graph has at least one

edge and for those vertices without edges, randomly creates

an edge. This ensures that there are no vertices without any

edges. This is important because if any vertex is inaccessible

and the lose criteria for the blue agent is total compromise,

the red agent would be unable to compromise nodes with no

edges and therefore, the blue agent would win consistently.

A selection of sample graphs can be seen in Fig. 1. The

edge probability value p was fixed throughout all of the ex-

1YAWNING TITAN is available at: https://github.

com/dstl/YAWNING-TITAN

ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through Graph Embedded Network Representation

0

1

2

3

4

5

6

7

8 9

(a) 10 Node

0

1
2

3

4

5
6

7
8

9 10

11

12

13

14

15

16

17

18

19

(b) 20 Node

0

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2122

23

24

25

26

27

28

29

30

31

32

33

34

3536

37 38

39

(c) 40 Node

Figure 1. Example Simulated Network Topologies

periments outlined within this paper to p = 0.1. This value

was chosen to balance between having a sufficient number

of edges present within each environment graph while also

ensuring that every node was not connected to every other

node, creating highly connected, dense graphs.

During training, a single YT scenario was created at the

beginning of training and then used as the environment

for the training duration. However during evaluation we

use a collection of different YT scenarios created as eval-

uation environments. The only variable change between

the evaluation environment initialization and training envi-

ronment initialization was the underlying topology of the

graphs. This provided a means of creating unseen environ-

ments, ensuring that if there were differences between both

observation space conditions, it could be attributed to the

observation space and not other parameter changes.

Each vertex of the graph has two attributes. The first is a

node vulnerability score nv ∈ R : nv ∈ [l, u], where l and

u denote the vulnerability score lower and upper bounds.

This is defined in the scenarios configuration as described

in Section 2.2. This can be considered a highly abstract

representation of the number of vulnerabilities a computing

device currently has, and is used as an attack multiplier

by the attacking agent. The second attribute c denotes the

binary compromised status where

c =

{

uncompromised, if c = 0,

compromised, if c = 1.

At the beginning of an episode all vertices are set to c = 0,

denoting uncompromised status. The node vulnerability

score for each vertex is sampled uniformly from nv ∼
U [l, u], where l and u are the lower and upper bounds. In

addition to these two steps, an entry node is selected and

Table 1. Blue Agent Action Descriptions

Action Description

patch Reduces the vulnerability score of the targeted

node by 0.2

recover Recovers a compromised node to its initial

state at the beginning of the episode

noop Performs no operation - effectively skipping a

turn

acts as the red agent’s primary route into the network. This

entry node can be viewed as an externally facing device

which is the initial target for compromise.

Once the environment is created, one blue, defending agent

and one red, attacking agent is placed into the environment.

The blue agent is a learner and uses RL to learn how to

achieve the task at hand, whereas the red agent is stochastic

and is described in more detail in Section 2.5. The objective

of the blue agent is to successfully stop the red agent from

compromising all of the nodes within the network. The

red agent’s objective is to achieve total compromise. These

objectives were chosen due to their similarities with the stag-

ing phase of a ransomware attack, where the attacker wants

to impact the highest percentage of assets as possible as

well as ensuring that training episodes would not terminate

too early.

2.3. Defending Agent Configuration

2.3.1. ACTION SET

The defenders action space, a, consists of three actions,

patch, recover and noop. Each of these actions are described

in Table 1.

ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through Graph Embedded Network Representation

This action space composition has been formulated to pro-

vide the agent with a means of both proactive (patch) and

reactive (recover) response. The patch value of 0.2 was cho-

sen to provide agents a means of reducing node vulnerability

by a meaningful amount, whilst restricting their ability to

create invulnerable hosts rapidly and ‘game’ the simulation.

In reality, these actions would both likely have different

costs and associated timescales, which would add another

layer of complexity and would need to be incorporated into

either the agent’s reward function or the simulation itself.

However this is outside the scope of this work.

2.3.2. OBSERVATION SPACE

We compose two different observation spaces which we

labelled standardObs and graphObs. The conditions for

both observation spaces share a number of common fea-

tures and include all node vulnerability values NV , where

NV = nv1, nv2, ..., nvn and compromised statuses C,

where C = c1, c2, ..., cn. Alongside these shared fea-

tures, both sets of agents are provided with a different

structural representation of the network they are defend-

ing. standardObs provides the agents with a flattened adja-

cency matrix network representation A where ∥A∥ = n×n
and n is the number of nodes within the network. graphObs
provides the agents with a fixed length graph embedded net-

work representation F , generated using the FEATHER-G

whole graph embedding algorithm (Rozemberczki & Sarkar,

2020) where ∥F∥ = 500.

Table 2. Observation Space Conditions

Observation Space NV C A F

standardObs ✓ ✓ ✓

graphObs ✓ ✓ ✓

NV: Node Vulnerability Scores C: Compromised Statuses A:

Adjacency Matrix F: FEATHER-G Graph Embedding

The FEATHER-G algorithm is a graph embedding approach

which is capable of embedding non-attributed whole graphs.

FEATHER-G calculates graph characteristic functions using

the probabilities derived from the transition probabilities

of random walks in a computationally efficient manner. Its

computational efficiency was one of the reasons it was cho-

sen for this experimentation. FEATHER-G does not require

any computationally intensive training because it derives

the embeddings from the statistical proprieties of the in-

putted graph. This is well suited to an RL use-case due

to the number of training experiences needed to generate

useful policies. In addition, it provides a means of gener-

ating graph embedding for the observation space quickly.

Whilst no computational limitations were encountered, due

to the limited number of actions that could make changes

to the underlying graph, if agents are able to take actions

such as isolating nodes, generating a new graph embedding

representation should be computationally inexpensive.

The second reason is that, due to not requiring training and

deriving the embeddings from the statistical properties of the

input graph, the graph embeddings are deterministic. This

means that when faced with the same graph, FEATHER-G

will output an identical graph embedding. This property

was viewed favorably as it could support generalizability

by providing the agent with a common looking map of

the network it was defending at any given moment. This

observation space transformation was implemented using

an OpenAI Observation Wrapper2.

2.4. Reward Function

The reward function used for all experiments was a score

based on the percentage of nodes compromised. If we let

N be the total number of nodes within the network and Co
be the total number of nodes compromised, then the reward

function R is:

R =
N − Co

N
.

This reward function incentivizes the blue agent to minimize

the number of compromised nodes within the network and

thus increase it’s per-timesteps reward. The terminal episode

reward is 100 for successfully surviving until the episode

end and −100 for unsuccessfully surviving until episode

end. This means that for a 500 timestep episode, the optimal

reward is 599.

2.5. Attacking Agent Configuration

The simulation would not be complete without an attacking

agent. Each episode has one red agent which is represented

by a probabilistic attacker with two possible actions - a basic

attack action or a zero-day action. The basic attack action is

an attack on a node where the ‘attack strength’, as, of the

attack is based upon both the attacker’s skill level, and the

target node’s vulnerability score, nvn. The attacker skill, s,

is defined at the the beginning of a scenario to be between

0 < s ≤ 100, giving the attack strength as:

as =
s2

s+ (1− nvn)
.

Once the attack strength as has been calculated, a threshold

value t is uniformly sampled from t ∼ U [0, 100] and the

2Observation space wrappers are used to trans-
form OpenAI Gym Observation Space objects - An
example implementation can be found here - https:

//github.com/openai/gym/blob/master/gym/

wrappers/flatten_observation.py

ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through Graph Embedded Network Representation

attacks success is determined by:

c =

{

unsuccessful, if as < t,

successful, if as/geqt.

The second action is a zero day action and is a guaranteed

node compromise, regardless of the node’s vulnerability

score. At the beginning of each episode the red agent starts

with a single zero day action and prioritizes its usage. When

the agent has no zero-days available, the agent will use

its basic attack action to randomly target connected, un-

compromised nodes. The red agent then periodically gains

additional zero days at a rate of one per three timesteps.

This rate of zero day generation was chosen to ensure that a

red agent could consistently make progress within a network

even when a blue agent had reduced the node vulnerabilities

significantly. In addition, a stochastic attacker was chosen

(as opposed to a deterministic attacker) to provide an ab-

stract representation of different attackers across episodes,

and ensure the attacker behavior was diverse across training

and evaluation.

2.6. Algorithm

All the agents within the experiments used the Proximal Pol-

icy Optimization (PPO) (Schulman et al., 2017) algorithm

which has been implemented as part of the Stable Baselines

3 Deep RL library. PPO was chosen primarily for its strong

performance across a range of different tasks. The default

hyperparameters provided within Stable Baselines 3 were

used, no hyperparameter optimization was undertaken and

the same hyperparameters were used across all observation

space conditions and environment sizes.

2.7. Training and Evaluation Protocol

The training and evaluation protocol outlined below was

used for both the StandardObs and GraphObs agents.

All agents were trained and evaluated using Amazon Web

Services (AWS) Sagemaker Notebook Instances using a

compute optimized ml.c5.9xlarge with 36 CPUs and 72 GiB

RAM.

2.7.1. TRAINING PROTOCOL

At the beginning of training, three random seeds were cho-

sen. These random seeds were then used to create three

uniquely seeded agents for each of the observation space

conditions resulting in six PPO agents. Each of these

agents were then trained individually for a total of 5 million

timesteps within a training environment unique to the agent.

This number of training timesteps was chosen to provide

agents with sufficient training time, especially those within

the larger environment sizes. It is shown in Fig. 2 that across

all environment sizes the mean reward for agents is typi-

cally still increasing at five million timesteps, suggesting

the agents are still learning. Techniques such as domain

randomisation were not implemented as part of the training

process in order to allow us to measure the raw effectiveness

of the agent’s observation space composition when faced

with unseen environments.

2.7.2. EVALUATION PROTOCOL

Once trained, all agents were set to deterministic mode and

then placed into 50 random environments for 10 episodes,

each resulting in 500 evaluation episodes. Each of the 50

evaluation environments used a unique, randomly initial-

ized graph generated using the amended Erdős-Rényi graph

generator described in Section 2.2, with an edge probability

value of p = 0.1 as the environments topology. For each of

the evaluation episodes, both the episode length and reward

attained were recorded.

2.8. Metrics Reported for Training and Evaluation

In order to provide a means of comparison between dif-

ferent training environments and between different agent’s

performance, a number of evaluation metrics were collected

during agent training and evaluation. During agent training,

an expanding window mean was calculated for both Episode

Reward and Episode Length. This provided a means of

tracking the progress of training and the data collected is

shown in Fig. 2.

During the evaluation phase, we collected both Episode Re-

ward and Episode Length for each agent evaluation episode.

This data was then used to calculate a range of summary

statistics such as max, min, standard deviation and mean.

Following the procedure outlined in the work of (Henderson

et al., 2017) these evaluation metrics were then aggregated

in several ways to produce a robust representation of agent

performance.

Alongside reporting the mean, we also report the truncated

mean where scores from the upper and lower quartile were

removed and then mean was recalculated. This procedure

ensures that any outliers are removed (such as those pro-

duced by a very highly performing agent) and provides

a robust representation of the central tendency across all

agents trained within the same conditions. Using this trun-

cated mean, a 95% confidence interval was also calculated

to provide a means of comparing variability and robustness.

3. Results

3.1. Training

To understand the training performance, both the Mean

Reward and Mean Episode Length calculated during agent

ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through Graph Embedded Network Representation

0 1 2 3 4 5
Timesteps 1e6

0

100

200

300

400
M

ea
n

Re
wa

rd
Mean Reward - Training

0 1 2 3 4 5
Timesteps 1e6

200

250

300

350

400

450

500

M
ea

n
Ep

iso
de

 L
en

gt
h

Mean Episode Length - Training

StandardObs 10 Nodes
GraphObs 10 Nodes

StandardObs 20 Nodes
GraphObs 20 Nodes

StandardObs 40 Nodes
GraphObs 40 Nodes

Figure 2. Mean Reward and Mean Episode Length during five million training timesteps across all three environment sizes

training can be found in the Fig. 2. Each line depicted

within Fig. 2 is the mean across all three agents trained

within that environment and observation space condition.

Each line has a shaded area which depicts the width of

the standard deviation about the mean. Fig. 2 shows that

when comparing agents within the same environment size,

the composition of the observation space neither aids or

hinders the agents, with both agent types exhibiting highly

similar scores for both reward and episode length. The

data also suggests there is a relationship between agent

training and environment size. We find that when examining

episode reward, both StandardObs and GraphObs agents

within the 10-node and 20-node environments begin by

rapidly improving performance until approximately 750,000

timesteps and then continue to make smaller incremental

improvements until the end of training.

In contrast, the agents within the 40-node environment size

begin strongly and then make incremental progress through-

out training. This behavior is partially explained within

the right hand panel of Fig. 2. Again, for agents trained

within the 10 and 20 node environment sizes a similar trend

is exhibited as seen in the mean reward data. The agents

start poorly, rapidly improve and then have a longer period

of incremental improvement. However, when viewing the

mean episode data, we can see that the for the 40-node en-

vironments, both StandardObs and GraphObs agents are

achieving a near optimal score in terms of episode length

from the very beginning. It is reasonable to conclude this is

likely a function of the environment’s size and the number

of attackers within the simulation. The single attacker sim-

ply cannot compromise the whole of the 40 node network

quickly enough. The fundamental insight however is that

regardless of the observation space composition used, the

agents are performing comparably and therefore provides a

useful baseline to take into agent evaluation.

3.2. Evaluation

Table 3 shows the experimental results for this study. For

the 10-node environment, the standardObs agents typi-

cally perform better in terms of both reward and episode

length across all measures. In contrast, graphObs agents

within 20-node environment size clearly benefit from the

addition of a graph embedded network representation with

the significant differences between metrics such as mean

reward, truncated mean reward and confidence intervals.

However, this trend changes within the 40-node environ-

ment size where the results are mixed. Interestingly, the re-

sults from the 40-node environment suggest that whilst both

standardObs and graphObs agents are performing com-

parably in terms of episode length, the graphObs agents

are performing better in terms of reward. The most notable

difference is seen in the maximum reward, with graphObs
successfully achieving the maximum - significantly higher

than that achieved by standardObs in the same environ-

ment size.

These results individually provide insight into agent perfor-

mance within specific environment sizes, but when consid-

ered together also tell another story. The results suggest that

there is a trade-off between when the graph embedded net-

work representation is helpful or not based on environment

complexity in terms of number of nodes and edges. Fig. 1

provides visualisation of example environment graphs used

during experimentation.

The results presented in Table 3 suggest that the graph em-

bedded network representation makes little difference within

the 10-node environment size. This theoretically makes

ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through Graph Embedded Network Representation

10-node 20-node 40-node
standardObs graphObs standardObs graphObs standardObs graphObs

Reward
Mean 150.4 125.19 138.38 181.94 100.79 122.59
Max 599 599 599 599 430.05 599
Min -93.4 -93 -85.9 -83.1 -69.23 -67.25
Std 233.71 213.19 177.84 178.95 127.92 173.25
Trunc. Mean 137.06 117,35 143.33 187.19 103.26 123.14
99% CI (70.38, 203.73) (57.31, 177.4) (99.52, 187.13) (146.38, 228) (72.42, 134.1) (77, 169.29)

Ep. Length
Mean 295.38 279.21 351.8 396.04 359.33 355.37
Max 500 500 500 500 500 500
Min 16 15 37 40 70 73
Std 231.08 232.52 208.6 185.24 185.17 187.02
Trunc. Mean 285.8 277.9 373.45 421.1 372.7 366.56
99% CI (223.18,

348.42)
(214.53,
341.28)

(328.32,
418.58)

(389.43,
452.77)

(328.45,
416.93)

(325.35,
407.76)

Table 3. Evaluation Metrics for each observation space condition and environment size. Bold numbers are used to highlight the highest

scores between observation space conditions in each environment size.

sense because of how simple the environment is in terms of

number of nodes and number of edges. A 500 dimension

network representation is likely overkill and an adjacency

matrix representation is more succinct. As the complexity

grows in the 20-node environment, the graph embedded

network representation significantly helps and provides the

agents with an enhanced view of the cyber terrain it is de-

fending. The effect of the enhanced network representation

becomes mixed when moving to the 40-node environment

size and can likely be attributed to the increased number of

edges and density of the graph.

4. Conclusion

To conclude, this paper has explored the impact of including

a graph embedded network representation into the obser-

vation space of an autonomous cyber defense agent. Two

observation space conditions were created, one with an ad-

jacency matrix network representation and one with a graph

embedded network representation. Agents using both obser-

vation space conditions were then trained within a unique

environment for five million timesteps before being evalu-

ated within a series of unseen randomized environments.

The primary finding of this work suggests that there is a

trade-off between the effectiveness of introducing graph

embedded network representations and the complexity of

the network to defend. The results suggest that the graph

embedding may become less useful when the environment

is either simple (in terms of number of nodes and number of

edges) as its greatly increasing complexity when compared

to an adjacency matrix or highly dense (in terms of number

of edges) as it could be over simplifying the relationships.

However, when faced with a network which is of modest

node count and edge density, the graph embedded network

representation provides a significant boost in performance

within unseen environments. This demonstrates the utility of

including the enhanced network representation as part of an

autonomous cyber defense agent and raises some interesting

questions related to agent observation space composition,

especially when the focus is on developing generalizable

agents.

5. Future Work

The results from this paper highlight several future work

areas. Only three different environment sizes were used

within this study. One possible avenue of further study

would be to explore the identified trade-off between environ-

ment complexity and potency of a graph embedded network

representation in more detail. This could be done by con-

ducting a broader set of experiments across a larger number

of environment sizes.

Another area to investigating would be the impact that do-

main randomisation has on the generalizability performance

when added to the training environment generation. This

could change aspects of the environment generation pro-

cess such as the values for the node vulnerability lower and

upper bounds or the edge probability within the graph gen-

erator. This enhanced variety of training experience could

enhance performance across both observation conditions,

and it would be interesting to see if the trade-off is still

exhibited.

Moreover, exploring the possibility of creating global vulner-

ability and compromised status observation features along-

side the network embedding could also be a potential avenue

for future work. This could provide insight into whether

it is possible to train agents which can generalize across

different environment sizes. This could open the door to

ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through Graph Embedded Network Representation

the possibility of agents being able to perform well within

a range of different environments in terms of both size and

topology.

References

Agarwal, R., Machado, M. C., Castro, P. S., and Bellemare,

M. G. Contrastive behavioral similarity embeddings for

generalization in reinforcement learning, 2021. URL

https://arxiv.org/abs/2101.05265.

Akbari, I., Tahoun, E., Salahuddin, M. A., Limam, N., and

Boutaba, R. Atmos: Autonomous threat mitigation in

sdn using reinforcement learning. In NOMS 2020-2020

IEEE/IFIP Network Operations and Management Sympo-

sium, pp. 1–9. IEEE, 2020.

Balaji, B., Mallya, S., Genc, S., Gupta, S., Dirac, L., Khare,

V., Roy, G., Sun, T., Tao, Y., Townsend, B., et al. Deep-

racer: Autonomous racing platform for experimentation

with sim2real reinforcement learning. In 2020 IEEE Inter-

national Conference on Robotics and Automation (ICRA),

pp. 2746–2754. IEEE, 2020.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. Openai gym,

2016.

Chaudhary, S., O’Brien, A., and Xu, S. Automated post-

breach penetration testing through reinforcement learning.

In 2020 IEEE Conference on Communications and Net-

work Security (CNS), pp. 1–2. IEEE, 2020.

Chowdhary, A., Huang, D., Mahendran, J. S., Romo, D.,

Deng, Y., and Sabur, A. Autonomous security analysis

and penetration testing. In 2020 16th International Con-

ference on Mobility, Sensing and Networking (MSN), pp.

508–515. IEEE, 2020.

Dawood, H. A. Graph theory and cyber security. In 2014 3rd

International Conference on Advanced Computer Science

Applications and Technologies, pp. 90–96. IEEE, 2014.

Hammar, K. and Stadler, R. Learning intrusion prevention

policies through optimal stopping. In 2021 17th Interna-

tional Conference on Network and Service Management

(CNSM), pp. 509–517. IEEE, 2021.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup,

D., and Meger, D. Deep reinforcement learning that

matters. CoRR, abs/1709.06560, 2017. URL http:

//arxiv.org/abs/1709.06560.

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., and

Whiteson, S. Transient non-stationarity and generali-

sation in deep reinforcement learning. arXiv preprint

arXiv:2006.05826, 2020.

Kaloudi, N. and Li, J. The ai-based cyber threat landscape:

A survey. ACM Comput. Surv., 53(1), feb 2020. ISSN

0360-0300. doi: 10.1145/3372823. URL https://

doi.org/10.1145/3372823.

Kostrikov, I., Yarats, D., and Fergus, R. Image augmen-

tation is all you need: Regularizing deep reinforcement

learning from pixels, 2020. URL https://arxiv.

org/abs/2004.13649.

Kott, A., Swami, A., and West, B. J. The fog of war in

cyberspace. Computer, 49(11):84–87, 2016. doi: 10.

1109/MC.2016.333.

Li, L., Fayad, R., and Taylor, A. Cygil: A cyber gym

for training autonomous agents over emulated network

systems. arXiv preprint arXiv:2109.03331, 2021.

Mern, J., Hatch, K., Silva, R., Brush, J., and Kochender-

fer, M. J. Reinforcement learning for industrial con-

trol network cyber security orchestration. arXiv preprint

arXiv:2106.05332, 2021.

Microsoft Defender Research Team. Cyberbat-

tlesim. https://github.com/microsoft/

cyberbattlesim, 2021. Created by Christian Seifert,

Michael Betser, William Blum, James Bono, Kate

Farris, Emily Goren, Justin Grana, Kristian Holsheimer,

Brandon Marken, Joshua Neil, Nicole Nichols, Jugal

Parikh, Haoran Wei.

Molina-Markham, A., Winder, R. K., and Ridley, A.

Network defense is not a game. arXiv preprint

arXiv:2104.10262, 2021.

Paul, E. and Alfréd, R. On random graphs i. Publicationes

Mathematicae (Debrecen), 6:290–297, 1959.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,

M., and Dormann, N. Stable-baselines3: Reliable rein-

forcement learning implementations. Journal of Machine

Learning Research, 22(268):1–8, 2021. URL http:

//jmlr.org/papers/v22/20-1364.html.

Ridley, A. Machine learning for autonomous cyber defense.

The Next Wave, 22(1):7–14, 2018.

Rozemberczki, B. and Sarkar, R. Characteristic Func-

tions on Graphs: Birds of a Feather, from Statistical

Descriptors to Parametric Models. In Proceedings of the

29th ACM International Conference on Information and

Knowledge Management (CIKM ’20), pp. 1325–1334.

ACM, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

and Klimov, O. Proximal policy optimization algo-

rithms, 2017. URL https://arxiv.org/abs/

1707.06347.

ACD-G: Enhancing Autonomous Cyber Defense Agent Generalization Through Graph Embedded Network Representation

Standen, M., Lucas, M., Bowman, D., Richer, T. J., Kim,

J., and Marriott, D. Cyborg: A gym for the devel-

opment of autonomous cyber agents. arXiv preprint

arXiv:2108.09118, 2021.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An

introduction. MIT press, 2018.

Tran, K., Akella, A., Standen, M., Kim, J., Bowman, D.,

Richer, T., and Lin, C.-T. Deep hierarchical reinforcement

agents for automated penetration testing. arXiv preprint

arXiv:2109.06449, 2021.

Zhao, W., Queralta, J. P., and Westerlund, T. Sim-to-real

transfer in deep reinforcement learning for robotics: a sur-

vey. In 2020 IEEE Symposium Series on Computational

Intelligence (SSCI), pp. 737–744. IEEE, 2020.

Cranfield University

CERES Research Repository https://dspace.lib.cranfield.ac.uk/

Cranfield Defence and Security Staff publications (CDS)

ACD-G: Enhancing autonomous cyber

defense agent generalization through

graph embedded network representation

Collyer, Josh

2022-07-23

Attribution-NonCommercial 4.0 International

Collyer J, Andrew A, Hodges D. (2022) ACD-G: Enhancing autonomous cyber defense agent

generalization through graph embedded network representation. In: 39th International

Conference on Machine Learning (ICML 2022), 17-23 July 2022, Baltimore, Maryland, USA.

(ML4Cyber workshop)

https://icml.cc/

Downloaded from CERES Research Repository, Cranfield University

