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Abstract

This PhD dissertation investigates the noise radiation produced by a rotor inside a

duct, which is convected by a swirling-translating mean flow. The study is based

on an extension of Gennaretti’s and Morino’s boundary element method to the

frequency domain for scattering problems in conjunction with a spinning rotor source

model in the presence of a swirling-translating flow. Firstly, two different source

models of the rotor are analyzed in absence of mean flow. The parametric study of

the two dipole components distributed over a ring or a disc shows that the source

radius is a crucial parameter. The scattered pressure directivity patterns of the ring

and disc source models are in perfect agreement when a particular ratio between the

two model radii is adopted. Therefore, the present analysis justifies the preference

for the ring source model due to its simplicity. The proposed formulation is validated

by means of exact solutions and used to investigate the effects of the translating flow

Mach number and swirling flow angular velocity on noise radiation both in the far

and in the near field. The scattered sound is highly affected by the convecting

mean flow. The modal content of the scattered field increases when increasing the

translating flow Mach number, while a swirling flow leads to a reduction of the mode

propagation, if co-rotating with respect to the azimuthal order of the spinning source,

or an increase of the modal content, if counter-rotating with respect to the source.

This is clearly confirmed by the scattered pressure patterns and levels both in the far

and in the near field for all the source frequencies. In general, the mean translating

flow moves the main lobes of the directivity patterns downstream, whereas in some

cases the mean swirling flow appears to neglect this effect and the downstream

lobe is completely shifted. However, the investigation on the in-duct propagation

shows that the main effect of the convecting mean flow is to change the modal

duct characteristics, more than the pattern itself. This results in turn in the strong

modification of the patterns noted in the far field.
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Introduction 1

Chapter 1

Introduction

In the last few years noise regulations have become stricter and stricter, thus noise

abatement has gained increasing importance in the aerospace sector. In 2006 the

ICAO (International Civil Aviation Organization), which defines the certification

standard for aircraft noise in annex 16 (Environmental Protection, Volume I), adopted

a new noise standard, decreasing the existing noise level accepted for certification.

This new standard now applies to newly certificated aircraft and to aircraft for which

re-certification is required.

One of the main sources of aircraft noise is the engine. There are several fluid

dynamics phenomena involved in the sound generation. Turbulence is mainly re-

sponsible for the jet flow noise and the broadband component of turbomachinery

noise. Unsteady aerodynamic loads on the compressor, fan and turbine rotor blades,

interacting with the stator blade rows, produce tonal noise, which propagates to the

far field after being strongly modified by the intake and exhaust ducts.

This research project investigates the effects of the mean swirling-translating flow

on the tonal noise generated by a single rotor in a duct. In contrast to the case of

purely convected waves in a duct, in swirling flows the waves do not form a complete

basis system for all wave types, therefore, they must be constructed numerically.

Generally, the effect of the mean flow swirl is to cut on or cut off modes depending

on the sense of rotation with respect to the swirl.

In order to tackle the turbomachinery noise problem, several numerical methods

have been employed in literature. Computational aeroacoustics (CAA) and finite
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element methods (FEM) have been most widely applied for non-uniform mean flows.

However, those methods require meshing of the entire fluid volume, therefore, they

are generally used in conjunction with surface integral methods, as Kirchhoff and

Ffowcs Williams Hawkings, for the propagation in the far field. Boundary element

methods (BEM) have the advantage of being less expensive computationally, as they

only require meshing of the body boundary surface, but have only been applied to

uniform translating mean flow.

In this study, a new possibility for BEM is explored. A BEM formulation is pre-

sented, which is an extension of the one proposed by Morino [1] and Gennaretti and

Morino [2, 3], to the frequency domain for scattering problems in conjunction with

a spinning rotor source model. Specifically, it is based on the formulation developed

by Gennaretti and Morino [2] for a frame of reference in rigid motion with respect

to the undisturbed air. Therefore, it can form the basis for predicting the sound

convected by a mean swirling-translating flow in a duct, by adding the swirl to the

translation of the flow.

In order to model the rotor as an acoustic source, an investigation of two differ-

ent source models for a wide range of frequencies is also carried out in absence of

mean flow. Both the thrust and drag dipole acoustic source are considered and

the singularities spanned over a ring or a disc inside the duct to assess the effects

of the source model on the propagated sound field. They are further extended to

the swirling-translating flow case and this analysis is used to define the model more

suitable for the results in presence of mean flow.

In summary, this is the list of the tasks of this PhD research project:

1. Investigation of complex, internal aerodynamic flows;

2. Validation of the state-of-the-art of the BEM in the calculation of internal

aeroacoustic flows;

3. Improvement of the BEM for internal aeroacoustics;

4. Investigation of the aeroacoustics for ducted rotor;

5. Application of the BEM aeroacoustics for complex internal flow.
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1.1 Thesis Outline

The thesis is organized as follows. In Chapter 2 the numerical methods for duct

acoustics, the swirling flow analytical investigations, and the rotor acoustic source

models proposed in literature are discussed; in Chapter 3 a description of the classical

duct acoustic theory, the rotor acoustic source models, and the BEM formulations

without and with the mean flow are introduced; in Chapter 4 the rotor source model

investigation is presented; in Chapter 5 the effects of the swirling-translating mean

flow to the propagation to the far field is analyzed; while, in Chapter 6 the analysis

is completed with the results of the propagation in the near field; finally, in Chapter

7 the conclusions and the overview of the possible future work end the thesis.
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Chapter 2

Literature Review

In classical aeroacoustics, the noise generated by an aerodynamic source is computed

using the Kirchhoff [4] or the Ffowcs Williams and Hawkings [5] formulation, the

latter based on the Lighthill’s acoustic analogy [6–8]. Both describe the propaga-

tion of the pressure fluctuation disturbance from the near to the far field through a

boundary integral equation. The substantial difference is that in the Kirchhoff for-

mulation the integral has to be evaluated on a fictitious arbitrary surface, including

all the non linearities, while in the Ffowcs Williams and Hawkings’ approach the

integral is on the actual body surface and the non linearities are modelled through

a volume integral (the quadrupole term), which is generally neglected for subsonic

motion. These methods have been extensively used for aeroacoustics of external

flow. However they are not applicable to internal duct aeroacoustics.

Other methods were developed to investigate the sound propagation in a duct, with

and without mean flow. In 1948 an exact solution of the radiation from an unflanged

cylinder was calculated by Levine and Schwinger [9] through the Wiener-Hopf tech-

nique. Due to the complexity of this solution, many approximate and numerical

methods were later developed.

In the early 60’s Tyler and Sofrin [10] modelled the radiation from a duct through a

superposition of simple sources, as vibrating spheres, one per element of area at the

open end. Later in the 80’s, Wang and Tszeng [11] developed a new formulation to

calculate the impedance of the opening of a finite length cylinder with a spinning

source inside. They showed that the degree of interference decreases when the

frequency or the duct length increases.
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Ray theory was also used for research in this field. This method consists in an

analytical approach, useful to analyze high-frequency sound, which can provide,

in combination with the Keller’s geometrical theory of diffraction (GTD) [12], the

order of magnitude of the problem. In this field Chapman [13] did pioneer work. He

modelled a duct acoustic mode as a field of rays and evaluated the sound radiated

from the end of the duct. Many followed his work. Keith and Peake [14,15] studied

the thin-walled cylinder, both axisymmetric and scarfed, using the GTD combined

with the uniform asymptotic technique, in agreement with the exact Wiener-Hopf

solution.

Recently, other important techniques, taking advantage of the progress in numerical

computation, were developed to attack the problem, such as finite element methods

(FEM) and boundary element methods (BEM). FEM has the advantage of handling

complex geometries and flows. On the other hand, it requires the discretization of the

whole domain, therefore, noise prediction in the far field is computationally highly

expensive. Astley and Eversman [16, 17] used FEM to study non-uniform ducts

with and without flow. Kagana et al [18] studied non-linear acoustics through a

FEM scheme, Giljohann and Bittner [19] proposed a time domain FEM formulation.

Zhang, Wu, and Lee [20], used a coupled BEM/FEM method to overcome the FEM

limits, because computationally expensive.

An interesting formulation close to classical FEM and finite difference (FD) was re-

cently presented by Casalino and Di Francescantonio [21], the Green’s function dis-

cretization (GFD) method. They took advantage of the physics of the propagation

problem using the Green’s function as shape function of the numerical discretization.

Thus, accuracy with only 3-4 mesh points per wave length was achieved.

More recently, computational aeroacoustics (CAA) methods have been widely ap-

plied. CAA is a computational approach for solving the unsteady fluid flow equations

using computational fluid dynamics (CFD) methods, with special emphasis on re-

solving acoustic perturbations [22]. The CAA analysis accounts for the complexity

of turbomachinery flow, however, because of the very fine scale necessary for the

acoustic analysis, it is computationally very expensive to apply to noise propagation

to the far field. Hybrid methods can be used instead to tackle this problem. The

CAA method is limited to the near field, whereas propagation to the far field is com-

puted using surface integral methods, which do not require the discretization of the

volume field. Two integral methods are generally adopted. The classical Kirchhoff
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method [23] (see [24–28] and references therein) and the formulation of the Ffowcs

Williams Hawkings method applicable to a permeable surface, see [29], Chap. 11.

Recently, the later have been more extensively used [30–34], having few advantages

over the Kirchhoff method [35].

Due to its computational advantage, model of the convention of sound in a duct

can be more straightforward done by BEM. The method is based on the Kirchhoff-

Helmholtz boundary integral equation (BIE). The integral is applied only on the

body surface, because at infinity the equation is automatically satisfied, therefore

only the body surface has to be discretized. However, the main difficulty with

this method is that the integral operator breaks down at certain frequencies, which

are called spurious or fictitious roots. It can be shown [36, 37] that an infinite set

of wave numbers k exists for which the BIE has a multiplicity of solutions and

these values coincide with the “resonant” wave numbers (or eigenvalues) of the

associated interior problem. It must be emphasized that this problem is completely

unphysical, because there are no real eigenvalues for the original exterior problem.

The uniqueness of the exterior problem is not in question [38] and the connection

with the interior domain has no physical meaning. The effect arises because of the

boundary integral numerical discretization and the ill-conditioning is more severe

at high frequency [39] . This problem, combined with the requirement of increasing

the discretization elements, makes difficult to use the method at high frequency.

Several methods have been proposed to overcome this difficulty. Among them, in

1968 Schenck proposed a method, known as the combined Helmholtz interior inte-

gral equation formulation (CHIEF) method [40], which was extensively used in the

literature, because it is easily applicable, regardless of the particular BEM formula-

tion adopted. In order to determine a unique solution, the method adds additional

constraints to the numerical system by applying the BIE to the interior problem

and imposing that the solution is equal to zero. This solves the ill-conditioning of

the system, provided that the internal points used for the additional constraints are

carefully selected. Since the CHIEF method is easy to implement, in the present

study this method was chosen to deal with the spurious root problem.

Quite a few BEM formulations are proposed in the literature for duct acoustics.

Many authors applied BEM to the radiation and scattering of sound in absence of

flow. Polacsek and Desbois-Lavergne [41] developed an original coupling between

a CFD numerical approach and BEM to study the turbomachinery generation and
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radiation of sound. In order to analyze the potentiality of noise reduction of a control

grid (wake generator) mounted upstream of the rotor, they used CFD to provide

the unsteady force components on the rotor blades and stator vanes as input to the

BEM propagation code SysNoise [42].

BEM has been mainly applied to analyze the scattering of sound, in order to account

for the surface acoustic shielding effects. In particular, recently, Monoha, Juvigny,

and Roux [43] applied the parallel BEM solver BEMUSE, developed at ONERA,

to investigate the shielding effect of the airframe for non-conventional installation

configurations of the engine. They tested the solver and compared the experimental

and computational results, obtained when the airframe scatters the sound produced

by the engine. The latter was modelled as a simple point monopole source. However,

the comparison suggested that a better model for the source was necessary.

Fan noise shielding was also studied by Chappuis, Ricouard, and Roger [44]. They

considered a full aircraft configuration, modelling the engine and nacelle using BEM,

using a given modal excitation as the sound source, and modelling the rest of the

aircraft by coupling the BEM with the Fast Multipole Method (FMM) [45], to

reduce the data storage and computational time. The exact formulation was used

only for interations between close areas, while an approximate formulation was used

for distant points. The results were compared with experiments.

BEM formulations were also developed to take into account the effect of a convecting

mean flow. In 1986, Astley and Bain [46] proposed a BEM formulation for acoustic

radiation in moving flows, restricted to uniform low Mach number flows. They

applied the BEM to the test case of a pulsanting or juddering sphere [47]. Later,

Dunn, Tweed, and Farassat [48, 49] presented a BEM formulation aimed to predict

axisymmetric duct fan noise, including the effect of a uniform axial flow and liners.

The method was validated through comparison between the predicted resonance

wavenumbers for an infinite cylinder and the results evaluated for an actual thin

duct. This approach was implemented in the TBIEM3D code developed at NASA

Langley Center. Following this methodology, Yang, Wang, and Guan [50] developed

a new formulation. The duct scattering problem was decomposed into two parts,

one for the duct interior and one for the exterior. They compared their results with

the TBIEM3D results and the solution for acoustic scattering by a non-rotating

monopole inside the duct [51].

BEM in a uniform flow was also applied to the acoustic radiation from the intake
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duct of a turbofan engine by Lidoine et al [52]. They performed a parametric study,

comparing BEM and an analytical method, taking into account both uniform flow

and liners, and introducing the concept of the nearly uniform flow. They noted

that for a thick duct, the usual boundary conditions [53] on the inlet surface pre-

scribe the presence of a grazing flow, which is incompatible with the assumption of

a strictly uniform flow on the inlet lip. Therefore, they applied an approximate so-

lution, including the effect of the flow distortion, only to the intake lip and used the

usual uniform flow boundary condition to the overall intake surface. The numerical

and analytical results showed a general agreement. Druon, Lidoine, and Roger [54]

extended the comparison between analytical and numerical methods to the FEM,

using the ACTRAM [55] software by FFT for the FEM and the ACTI3S [45] sofware

by EADS-CRC-F for the BEM. They studied the radiation through the engine ex-

haust, also analyzing the pressure release condition at the duct trailing edge. The

results showed that the BEM computations concided with the analytical solution

obtained when the Kutta condition was imposed, while the FEM was close to the

no-Kutta analytical solution. Wu and Lee [56] also proposed a BEM formulation

tailored to be coupled with FEM [20]. The field was decomposed into two regions.

The non-uniform flow zone was solved using FEM, while the uniform flow area was

solved using BEM in the original coordinates, so that the interface between the two

was easily resolved. That formulation was validated against the analytical solution

of the acoustic scattering by a pulsanting sphere in a low Mach number flow [47].

In this research project, a BEM formulation is presented, which is based on the

formulation proposed by Morino [1] and Gennaretti and Morino [2, 3], extended to

the frequency domain for scattering problems. More specifically, the method is based

on the BIE initially introduced for incompressible aerodynamic problems [57,58] and

later on extended to compressible aerodynamic flows [1, 2] and aeroacoustics [3]. It

has the advantage of being applicable to complex 3D duct geometries and having

integral coefficient matrices, arising when replacing the BIE with a linear system

of algebraic equations, independent of the incident frequency field. Therefore, it is

very appealing for multiple frequency computations. Furthermore, Gennaretti and

Morino [2] developed an extension of the formulation for a frame of reference in

rigid motion with respect to undisturbed air. This formulation can form the basis

for predicting the sound convected by a mean swirling-translating flow in a duct,

by adding the swirl to the translation of the mean flow. This possibility is explored

here with respect to duct aeroacoustics.
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Swirling flows have been of interest for turbomachinery applications since the 70’s.

As opposed to purely convected waves in a duct, for general swirling flows the

waves do not form a complete basis system for all wave types and they must be

constructed numerically. Kerrebrock [59] was the first to apply the normal mode

analysis to the linearized Euler equations of a swirling inviscid compressible flow in

an annular duct. More recently, Kousen [60] followed his approach using a spectral

method. He defined three families of modes: spinning acoustic waves (Tyler-Sofrin

type), nearly convected modes (due to the swirl), and purely convected modes (a

continuum of modes), but the physical meaning of the existence of unstable solutions

was not completely clear. Driven from the Kousen’s classification, which suggested

a weak coupling between the pressure and vorticity waves, Golubev and H. Atassi

[61] proposed a different modal analysis, by splitting the velocity field into two

main parts: a nearly convected (vorticity dominated) and a nearly sonic (pressure

dominated) part. The pseudo-spectral technique showed two families of solutions:

pressure dominated modes, propagating upstream and downstream, and vorticity

dominated modes, strongly dependent on the type of swirl involved. The above

study initially focused on a rigid body and a free vortex swirl, but was later extended

to a more general swirl profile [62].

Tam and Aurault [63] dealt with the ambiguities which can arise from the modal

analysis if the normal modes do not form a complete set, by posing the problem

as an initial-value problem. Their results were in agreement with the analysis of

Golubev and H. Atassi. They identified two families of modes: acoustic modes,

due to the compressibility effect, and rotational modes, due to the centrifugal force.

They noted that the so-called purely convected modes do not exist, but are derived

by a non-complete analysis of the problem. Golubev and H. Atassi [64] also criticized

the pure normal mode approach. They used a combined eigenmode and initial-value

analysis to represent the most general upstream disturbances spatially developing

in the duct. They also identified that the pressure-dominated modes represent the

acoustic part of the solution, while the initial-value solutions lead to the vorticity

dominated nearly convected modes.

Later, Cooper and Peake [65] used the multiple-scales method to take into account

the duct slow cross-sectional variations on the eigenvalues and eigenfunctions. They

also addressed the problem of the conditions for acoustic resonance in the duct. A

theoretical model was developed to predict the conditions of instability due to a vary-

ing cross section intake and a swirling flow behind the fan [66], because these con-
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ditions modify the propagation properties of the modes. In particular, the swirling

flow plays a crucial role, because a mode, which can be cut on ahead of the fan,

can be cut off by the mean swirl, thus giving rise to trapped waves. They later

extended the model in order to establish which characteristics of the geometry and

flow influence the mode trapping [67].

The effect of the mean flow swirl on the scattering from a turbomachinery cascade

was also object of many studies. H. Atassi et al [68] performed a numerical analysis

concluding that the swirl has effect on the annular cascade scattering by modifying

the number of propagating acoustic modes in the duct; changing the radial variation

in the duct; and varying the amplitude and radial phase of the incident disturbance.

Cooper and Peake [69] developed an analytical model to predict the rotor-stator

interaction noise due to the effect of the rotor wake impinging on the stator row,

taking into account the effect of the swirl on both the rotor wake evolution and

the acoustic response in the duct. Furthermore, Heaton and Peake [70] completed

the study on the instability arising in the swirling flow and corrected a number of

errors in the previous analysis. Sawyer, Nallasamy, and Hixon [71] performed a time

domain analysis by solving the fully non linear Euler equations and compared the

results with the linear theory. Logue and H. Atassi [72] analyzed the blade geometry

and mean swirling flow effects on the bandwidth of the mode trapping, which occurs

in the rotor-stator interaction.

In the investigation of the noise propagation through a duct, the problem of mod-

elling the rotor as an acoustic source was also considered. In the literature, the

modal analysis is widely used to decompose the sound field in actual engine intake

ducts [10]. It is common to apply the pressure field derived for a cylinder geome-

try, or, equivalently, the cylinder annular, to the fan interface and use one or even

more different numerical methods to predict sound scattering to the far field. Al-

ternatively, one can model the rotating sound of a ducted rotor field and study the

radiation in the far field as a spinning acoustic source. This approach is not gen-

erally suitable to model a realistic complex source of noise, but can be used for a

parametric study of the duct propagation.

Dunn, Tweed, and Farassat [48] used a set of spinning monopole point sources

located on a ring inside the duct. Carley [73] used an integral distribution of spinning

sources spanned over a disc. Jeon, Lee, and Choi [74,75] used the Lowson model for

a rotating source [76] to model the fan/compressor and an integral Kirchhoff surface,
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including the rotating source, as the stationary source input for the BEM. Chappuis

and Ricouard [44] performed an analysis to set up equivalent sources as two rings

of spinning point monopoles to model the fan noise modes. Polacsek and Desbois-

Lavergne [41], as mentioned above, used a CFD unsteady aerodynamic analysis of

the flow around the blades as the acoustic source for BEM. Furthermore, many

authors studied the inverse problem, using the reconstruction of simple acoustic

sources propagating in a duct from near and far field measurements, e.g. see [77,78].

Here, two models for the rotor source were implemented [79]. The ring source

model, spanning the singularities over a ring, and a disc source model, spanning

the singularities over a disc. The two are compared in absence of mean flow, then

further developed to include the swirling-translating mean flow effect.
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Chapter 3

Methodology

Objects of this chapter are the models and methodologies adopted for the analy-

sis of the acoustics of internal flows. The chapter presents the main concepts of

acoustics, with particular reference to duct acoustics; a description of two spinning

source models adopted to model the rotor as an acoustic source, both in absence of

mean flow and extended to the swirling-translating mean flow case; and the BEM

formulations: (i) BEM for a stationary body; (ii) BEM for a translating body; (iii)

BEM for a body in arbitrary rigid-body motion, further extended to the frequency

domain for scattering in a duct with swirling-translating mean flow.

3.1 Acoustic model

In this section the problem of the noise generated by a rotor and propagating through

a duct is considered. The wave equation is derived for a fluid at rest, and the

classical duct modal acoustic approach is summarized. Furthermore, two spinning

rotor source models are presented and compared in absence of mean flow.

3.1.1 Wave equation

In classical linear acoustics the governing equations are derived by the continuity

and momentum equations with the assumption of inviscid flow and negligible heat
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conductivity. The equations are

∂ρ

∂t
+ ρ∇ · v = 0, (3.1a)

ρ
Dv

Dt
= −∇p. (3.1b)

It is common to separate the acoustic (unsteady) field from the mean field by intro-

ducing

p = p∞ + p̄, (3.2a)

ρ = ρ∞ + ρ̄, (3.2b)

v = v∞ + v̄ (3.2c)

where the bar ¯ indicates acoustic quantities, and the subscript ∞ represents ambient

quantities.

Through substitution of Eqs. (3.2) into Eqs. (3.1), in the hypothesis of absence of

mean flow (v∞ = 0), one obtains a linearized form of the governing equations

∂ρ̄

∂t
+ ρ∞∇ · v̄ = 0, (3.3a)

ρ∞
∂v̄

∂t
= −∇p̄. (3.3b)

The flow field is assumed to be initially irrotational, therefore, Kelvin’s theorem

yields that it remains irrotational at all times. In such hypothesis, it is possible to

define the velocity potential φ as

v̄ = ∇φ. (3.4)

The homogeneous wave equation is then derived upon definition of the isentropic

speed of sound

c =

√
∂p

∂ρ
, (3.5)

and combination of Eqs. (3.3), as

∇2φ− 1

c2

∂2φ

∂t2
= 0. (3.6)

Initial conditions φ(x, 0) = 0 and φ̇(x, 0) = 0 and boundary conditions complete the

problem statement.
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When one considers scattering from a tonal source, the velocity potential can be

represented in the frequency domain as

φ(x, t) = φ̂(x)eiωt, (3.7)

where ω = 2πf is the radial frequency. The wave equation (3.6) becomes the famous

Helmholtz equation

∇2φ̂+ k2φ̂ = 0, (3.8)

where k is the wave number defined as k = ω/c.

3.1.2 Duct propagation

Sound waves in a duct can be described as guided wave modes [80]. Through the

separation-of-variables technique [81], one can obtain appropriate solutions of the

Helmholtz equation (3.8) in the form

φ̂n(x, r, ψ) = Xn(x)Ψn(r, ψ), (3.9)

where the Xn and Ψn are the modes, or eigenfunctions, respectively in the direction

of the duct axis (the x coordinate) and cross section (the r, ψ cylindrical coordinates).

Substitution in Eq. (3.8) leads to the equation

1

Ψn

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂ψ2

)
Ψn +

1

Xn

∂2Xn

∂x2
= −k2. (3.10)

Since the right-hand side of Eq. (3.10) is a constant, the left hand side must be

a constant too. Thus, both the terms of the sum, being dependent on different

variables, must be constant, that is(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂ψ2

)
Ψn + k2

nΨn = 0, (3.11a)

∂2Xn

∂x2
+ (k2 − k2

n)Xn = 0, (3.11b)

where the kn are the eigenvalues related to the cross section modes Ψn.

Possible solutions of Eq. (3.11) for the axial modes Xn are Cne
±ikxnx where Cn is a

constant depending on the boundary conditions and kxn =
√

(k2 − k2
n) for k2 > k2

n

or kxn = i
√

(k2
n − k2) for k2 < k2

n.
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Therefore, a propagating guided wave is described by the expression

φ̂n(x, r, ψ) = Cne
−ikxnxΨn(r, ψ) for k2 > k2

n, (3.12a)

φ̂n(x, r, ψ) = Cne
−|kxn |xΨn(r, ψ) for k2 < k2

n. (3.12b)

Thus, for a given frequency, i.e. a given k, there are a limited number of modes for

which k2 > k2
n, these are propagating modes. There is at least one for which kn = 0

and so Ψn is constant, this is the plane wave or fundamental mode. Modes for which

k2 < k2
n are evanescent, i.e. the disturbance exponentially dies out along x.

The above defines the well-known cutoff frequency concept. If ω is greater than the

cutoff frequency, ωc,n = c kn, the mode propagates in the duct and the propagation

is dispersive (i.e. different modes propagates at a different phase velocity vph =

ωn/
√
k2 − k2

n), but below that frequency the mode decays. The total sound field is

given by superposition of each nth mode.

For a spinning sound field propagating through a duct, the azimuthal field can also

be obtained by superposition of azimuthal modes. Introducing the azimuthal order

m, the radial modes Amn(r), associated to the eigenvalues kmn and the axial wave

numbers kxmn defined as before, the acoustic field is

φ̂(x, r, ψ) =
∑
m, n

Amn(r)e−i(kxmnx+mψ). (3.13)

Both kmn and Amn(r) depend on the duct wall boundary condition, therefore they

strongly depend on the actual duct geometry.

If the duct is an infinitely long rigid circular cylinder of radius a, the radial modes

have the well known expression [81]

Amn(r) = BmnJm(kmnr), (3.14)

where Bmn are the mode amplitudes, Jm the Bessel functions of order m and kmn

the nth solutions of the equations

J ′m(kmna) = 0, (3.15)

that is the mathematical formulation of the impermeability boundary condition on

the cylinder’s walls.

For complex duct geometries the radial modes Amn(r) do not take a closed math-

ematical form and the eigenvalues kmn vary axially. Therefore, there are cut-on
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modes propagating in some regions of the duct and cut-off modes decaying in other

ones.

When a uniform translating flow is running at M∞ inside the cylinder, the axial

wave number is modified as [82]

kxmn =
−kM∞ ±

√
k2 − (1−M2

∞)k2
mn

1−M2
∞

. (3.16)

The mode is cut on for k2 > (1 − M2
∞)k2

mn and cut off for k2 < (1 − M2
∞)k2

mn.

Therefore, the effect of the mean translating uniform flow is to enhance the mode

propagation in the duct.

For complex mean flows, as swirling flows, the scenario is not so clearly defined. An-

alytical solutions are not available and the analysis has to be carried out numerically.

Furthermore, the normal mode analysis is not sufficient to completely describe the

flow properties, because the modes do not form a complete set, and an initial-value

analysis is required [63, 64]. Generally, the presence of the swirl can cut on or cut

off modes depending on the sense of rotation with respect to the mean swirl. Modes

cut on in absence of mean swirl, but co-rotating with the swirl, are cut off by the

swirl effect, whereas modes cut off in absence of mean swirl, but counter-rotating

with the swirl, are cut on by the swirl effect [69].

3.1.3 Spinning rotor source models

In linear acoustics the acoustic velocity potential, φ̂, due to the scattering of a tonal

source of frequency ω, is given by adding the scattered, φS, to the incident, φI , field:

φ̂ = φI + φS. (3.17)

It is well known that a harmonic force applied to a fluid generates an acoustic dipole

field ( [81], Chap. 4). Whereas a monopole source radiates equally in all directions,

a dipole source is highly directional, thus the monopole strength is represented by

a scalar, but the dipole strength is represented by a vector. The loads resulting by

the rotor blade aerodynamics are the thrust, directed along the duct axis x, and

the drag, directed along the azimuth ψ. The blade thickness itself is also a source

of sound and this noise can be modelled as a monopole source. In total, three

components are associated to the rotor sound field: a monopole, a thrust dipole and

a drag dipole.
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Let us consider the incident potential φI evaluated at the point (x, r, ψ) due to a

point source (xs, rs, ψs). If the source spins around the azimuth ψs, the generic tonal

source strength Q is decomposed into the azimuthal components

Q =
∑
m

Qm(xs, rs)e
−imψs , (3.18)

where the azimuthal order m is a multiple of the number of rotor blades B. Defining

the distance between the points (x, r, ψ) and (xs, rs, ψs) as

R = [r2 + r2
s − 2rrscos(ψ − ψs) + (x− xs)2]

1/2
, and the source strength modules of

the monopole, thrust and drag dipoles as q, fx and fψ, respectively, the resulting

incident fields for each component m, are given by

φI =
−qm
4πR

e−i(kR+mψs), (3.19a)

φI =
−fxm
4πR2

(
ik +

1

R

)
e−i(kR+mψs)(x− xs), (3.19b)

φI =
−fψm
4πR2

(
ik +

1

R

)
e−i(kR+mψs)sin(ψ − ψs)r. (3.19c)

Equations (3.19a), (3.19b), and (3.19c) are referred to the monopole, thrust, and

drag dipole components, respectively.

If the sources are distributed over the rotor disc of radius b (rotor disc model), the

incident fields of (3.19) are integrated over the rotor disc as

φI =

∫ b

0

∫ 2π

0

−qm(rs)

4πR
e−i(kR+mψs)dψsrsdrs, (3.20a)

φI = (x− xs)
∫ b

0

∫ 2π

0

−fxm(rs)

4πR2

(
ik +

1

R

)
e−i(kR+mψs)dψsrsdrs, (3.20b)

φI = r

∫ b

0

∫ 2π

0

−fψm(rs)

4πR2

(
ik +

1

R

)
e−i(kR+mψs)sin(ψ − ψs)dψsrsdrs.(3.20c)

Alternatively, if one concentrates the blade loads on an annular ring (rotor ring

model), the rotor can be modelled as a ring. The source models are modified in

φI =

∫ 2π

0

−qm
4πR

e−i(kR+mψs)dψs, (3.21a)

φI = (x− xs)
∫ 2π

0

−fxm
4πR2

(
ik +

1

R

)
e−i(kR+mψs)dψs, (3.21b)

φI = r

∫ 2π

0

−fψm
4πR2

(
ik +

1

R

)
e−i(kR+mψs)sin(ψ − ψs)dψs. (3.21c)
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Using the variable ψ1 = ψs−ψ, the azimuthal mode decomposition can be introduced

φI(x, r, ψ) =
∑
m

φIm(x, r)e−imψ, (3.22)

thus in the disc source models (3.20) the modes φIm take the expressions

φIm =

∫ b

0

∫ 2π

0

−qm(rs)

4πR
e−i(kR+mψ1)dψ1rsdrs, (3.23a)

φIm = (x− xs)
∫ b

0

∫ 2π

0

−fxm(rs)

4πR2

(
ik +

1

R

)
e−i(kR+mψ1)dψ1rsdrs, (3.23b)

φIm = −r
∫ b

0

∫ 2π

0

−fψm(rs)

4πR2

(
ik +

1

R

)
e−i(kR+mψ1)sinψ1dψ1rsdrs, (3.23c)

and in the ring source models (3.21)

φIm =

∫ 2π

0

−qm
4πR

e−i(kR+mψ1)dψ1, (3.24a)

φIm = (x− xs)
∫ 2π

0

−fxm
4πR2

(
ik +

1

R

)
e−i(kR+mψ1)dψ1, (3.24b)

φIm = −r
∫ 2π

0

−fψm
4πR2

(
ik +

1

R

)
e−i(kR+mψ1)sinψ1dψ1, (3.24c)

where R is given by R = [r2 + r2
s − 2rrscosψ1 + (x− xs)2]

1/2
.

Integrating by parts the drag dipole source with respect to ψ1, one can obtain the

monopole source integrals multiplied by the factor imfψm/(qmrs). Therefore, the

two integrals are equivalent, with a phase shift of 90 degrees, when rs is constant

(ring source model), and almost equivalent, after integration over rs, if the point is

not too close to the disc source (disc source model).

In the present study, the disc and ring models were compared with regard to the

thrust and drag dipole sources. Furthermore, the source strength modules fxm and

fψm were assumed to be constant and equal to one on the disc.

Note that the above models were derived only by considering the acoustic field

relating to concentrated point sources, but the results are similar to the simplified

“thickness” and “loading” noise models derived in [79,83].

3.2 Boundary element method

In this section the BEM formulations employed for the analysis of the duct propa-

gation are presented. Consider a rigid bodyB placed inside the fluid volume. At
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first, the body is supposed to be at rest and the boundary integral equation (BIE)

is derived from the classical linear wave equation (3.6) in the undisturbed air frame

of reference. Then, the body is supposed to be moving and the BIE is rewritten

in a frame of reference rigidly connected with the body. The latter is applied for

the swirling-translating mean flow case. Both formulations are derived in the time

domain, but then translated into the frequency domain for scattering problems.

Furthermore, the spinning source rotor models modified by the swirling-translating

flow convection are presented.

The section also discusses the numerical implementation of the collocation method;

the outline of the CHIEF method to overcame the spurious root problem; and some

details on the numerical implementation of the element integrals and the MPI par-

allel version of the code.

3.2.1 Boundary integral equation for a stationary body

The classical linear wave equation (3.6) is rewritten in an integral form by introduc-

ing the Green’s function G, that satisfies the equation

∇2G− 1

c2

∂2G

∂t2
= δ(x− x?)δ(t− t?), (3.25)

being x the emission point and x? the point where the equation is evaluated, subject

to the boundary and time conditions{
G = 0 as ‖x‖ → ∞
G = Ġ = 0 as t→∞.

(3.26)

Here δ is the Dirac’s function δ, i.e. a generalized function such that, for whatever

function of position A(x) defined in the volume V ,∫
V

A(x)δ(x− x?)dV = A(x?). (3.27)

The Green’s function, G, in three dimensions is given by

G(x− x?, t− t?) =
−1

4πR
δ(t− t? + θ) = G0 δ(t− t? + θ), (3.28)

where R = ‖x− x?‖, G0 = −1/4πR, the free space Green’s function of the Laplace

operator), and θ(x,x?) = R/c, the phase lag due to the compressibility, i.e. the time

required for a signal to propagate from the source point x to the reception point x?.
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The boundary integral representation for the potential outside of the body surface

SB is obtained by

• multiplying Eq. (3.6) by G and Eq. (3.25) by φ, subtracting them,

• integrating over the volume V of the acoustic field,

• applying the Green’s theorem, i.e.∫
V

[A∇2B −B∇2A]dV =

∫
SB

n · (A∇B −B∇A)dS (3.29)

(n is the outward unit normal to the surface, A and B are scalar functions of

position), and the property of the Dirac’s function delta (3.27),

• integrating with respect to time, using the initial conditions on φ and G.

The resulting integral equation is

E(x?)φ(x?, t?) =

∫
SB

[
G0
∂φ

∂n
(x, t)− ∂G0

∂n
φ(x, t) +G0

∂θ

∂n

∂φ

∂t
(x, t)

]θ
dS, (3.30)

with the quantities in [. . . ]θ evaluated at the retarded time t = t?− θ. The quantity

E depends on the position of x? point. If x? is in V (exterior problem) or inside

the surface SB (interior problem), Eq. (3.30) is an integral representation (BIR)

for φ(x?, t?) in terms of φ, ∂φ/∂n and ∂φ/∂t on SB, E = 1 (exterior problem) or

E = 0 (interior problem). On the other hand, if x? tends to SB, Eq. (3.30) has to

be modified to take into account that∫
SB

A(x)δ(x− x?)dS =
1

2
A(x?) as x? → SB. (3.31)

so that Eq. (3.30) yields a compatibility condition among φ, ∂φ/∂n and ∂φ/∂t on

SB (BIE) with E = 1/2 for any φ satisfying Eq. (3.6).

The normal velocity ∂φ/∂n = v · n is known from the boundary condition for a

rigid stationary body, which states that the normal component of the velocity must

vanish at the surface. Therefore, at the surface

∂φ

∂n
= 0. (3.32)

That compatibility equation yields a BIE, which may be used to evaluate φ on the

body as a function of the boundary condition ∂φ/∂n.
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The linearized Bernoulli’s theorem, derived from Eq. (3.3), relates the acoustic

pressure p̄ to the acoustic velocity potential φ as

∂φ

∂t
+

p̄

ρ∞
= 0. (3.33)

Hence, p̄ can be directly obtained by (3.33), once the φ is known from Eq. (3.30),

subject to the boundary condition (3.32).

In the frequency domain, upon substitution of φ(x, t) = φ̂(x)eiωt, Eq. (3.30) becomes

E(x?)φ̂(x?) =

∫
SB

e−iωθ

(
G0
∂φ̂

∂n
(x)− ∂G0

∂n
φ̂(x) +G0iω

∂θ

∂n
φ̂(x)

)
dS. (3.34)

Applying the decomposition φ̂ = φI +φS, because the incident potential is a partic-

ular solution of the wave equation (3.6), Eq. (3.34) holds for the scattered potential

φS and the boundary condition at the surface (3.32) translates into

∂φS

∂n
= −∂φ

I

∂n
. (3.35)

The Bernouilli’s theorem (3.33) for the scattered pressure pS in the frequency domain

(p̄ = p̂ eiωt and p̂ = pS + pI) translates into

pS = −iωρ∞φS. (3.36)

In the case of lifting bodies, Kelvin’s theorem is not applicable to the points in

contact with the surface of the body, which then form a surface of discontinuity

for the velocity potential, called the wake. Therefore, the application of the Green’s

theorem to transform a volume integral into a surface integral yields to another term

in the BIE (3.30). The wake is modelled using an evolution equation for the velocity

potential discontinuity ∆φ, which states that ∆φ remains constant following the

wake point and equal to the value it had when it left the trailing edge. The Kutta-

Joukowsky hypothesis, that the vorticity at the trailing edge is zero, implies that

∆φ on the wake and the body are equal there. This gives the boundary condition

on the wake. However, in the present analysis only non-lifting bodies are considered

and the effect of the shear layer is neglected.

3.2.2 Boundary integral equation for a translating body

The integral formulation of the linear wave equation (3.6) can be modified to take

into account the effect of the body translation [84]. Let us assume that the body
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moves with uniform subsonic velocity v0. The fundamental solution G is obtained

by solving the differential equation

∇2G− 1

c2

(
∂

∂t
− v0 · ∇

)2

G = δ(x− x?)δ(t− t?), (3.37)

with the boundary and initial conditions (3.26). In the air frame of reference the

fundamental solution is

G(ξ − ξ?, τ − τ?) =
−1

4π%
δ
(
τ − τ? +

%

c

)
, (3.38)

being ξ = x + v0t, τ = t the transformation between the two frames of reference,

and % the distance % = ‖ξ − ξ?‖.

Using the property of the delta function δ, if f(t) is an arbitrary time function and

g(t) the argument of the δ function, then∫ +∞

−∞
f(t)δ[g(t)]dt =

∑
i

[
f

|ġ|

]
t=ti

, (3.39)

this implies that

δ[g(t)] =
∑
i

δ(t− ti)
|ġ|

, (3.40)

for ti the roots of g(t) = 0.

In our case g(x,x?, t, t?) = t− t?+%/c, therefore equation g(t) = 0 leads to equation

β2θ2 + 2R · v0θ/c
2 −R2/c2 = 0, (3.41)

defining θ = t? − t = %/c, β =
√

1−M2
0 , M0 = v0/c, and R = x− x?. In the

hypothesis of subsonic flow, the only positive root of this equation is

θ(x,x?) =
Rβ −R ·M0

cβ2
, (3.42)

where

Rβ =
√
β2R2 + (R ·M0)2. (3.43)

Furthermore,
∂g

∂t
= 1 +

v0 · (R− v0θ)

c%
, (3.44)

which is the aeroacoustic convecting factor (1 +Mr), for Mr the flow Mach number

vector projected along the distance vector. Then

Rβ(x,x?) = %

∣∣∣∣∂g∂t
∣∣∣∣ = % |1 +Mr|, (3.45)
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the distance between the source and reception points increased by the convecting

factor. Finally, combining Eq. (3.44) and Eq. (3.38), the fundamental solution in

the body frame is

G(x− x?, t− t?) =
−1

4πRβ

δ(t− t? + θ). (3.46)

Following the standard procedure to obtain the BIE, as explained in the previous

section, one obtains∫ ∞
0

∫
V

∇ · (G∇φ− φ∇g)dV dt

− 1

c2

∫ ∞
0

∫
V

(
∂

∂t
− v0 · ∇

)[
G

(
∂φ

∂t
− v0 · ∇φ

)
− φ

(
∂G

∂t
− v0 · ∇G

)]
dV dt

= −
∫ ∞

0

∫
V

δ(x− x?)δ(t− t?)φ dV dt (3.47)

Applying the Gauss’s theorem and using the boundary conditions at infinity and

the initial conditions on the potential and the fundamental solution G, the BIE is

written as

E(x?)φ(x?, t?) =

∫ ∞
0

∫
SB

(
G
∂φ

∂t
− φ∂G

∂n

)
dSdt

+
1

c2

∫ ∞
0

∫
SB

[
G

(
∂φ

∂t
− v0 · ∇φ

)
− φ

(
∂G

∂t
− v0 · ∇G

)]
v0 · n dSdt.

(3.48)

Evaluating ∇G = ∇G0δ(t− t? + θ) +G0δ̇(t− t? + θ)∇θ, for G0 = −1/(4πRβ), and

∂G/∂t = G0δ̇(t− t? + θ), and using the property of the delta function, finally in the

time domain the BIE for a translating mean flow is

E(x?)φ(x?, t?) =

∫
SB

[
G0
∂φ

∂ñ
− φ∂G0

∂ñ
+G0

∂φ

∂t

∂θ̃

∂ñ

]θ
dS, (3.49)

where
∂

∂ñ
= (n−M0 · n M0) · ∇, (3.50)

and

θ̃(x,x?) =
Rβ + M0 ·R

cβ2
. (3.51)

The boundary condition on the body surface SB is written as

∂φ

∂n
= v0 · n. (3.52)

The BIE for a scattering problem, translated into the frequency domain, results as

E(x?)φ̂(x?) =

∫
SB

e−iωθ

(
G0
∂φ̂

∂ñ
− φ̂∂G0

∂ñ
+G0iω

∂θ̃

∂ñ
φ̂

)
dS. (3.53)
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In terms of scattered potential, it is associated with the boundary condition on the

body surface SB (3.35).

In order to apply the boundary element method, it is common to use the Prandtl-

Glauert transformation. Let us assume that the x-axis is aligned with v0, the

dimensionless variables

x̆ =
x

β
, y̆ = y, z̆ = z, (3.54)

are introduced.

Therefore, G0 = −1/(4πR̆), for R̆ = x̆ − x̆?, the distance vector in the Prandtl-

Glauert coordinates, and ∂/∂ñ = ∂/∂n̆, for n̆ the normal vector to the body surface

S̆B in the Prandtl-Glauert space. Defining

θ̆ =
R̆−M0(x̆− x̆?)

cβ
, (3.55a)

˘̃θ =
R̆ +M0(x̆− x̆?)

cβ
, (3.55b)

Eq. (3.53) rewritten in the Prandtl-Glauert coordinates is

E(x̆?)φ̂(x̆?) =

∫
S̆B

e−iωθ̆

(
−1

4πR̆

∂φ̂

∂n̆
− φ̂ ∂

∂n̆

(
−1

4πR̆

)
+
−1

4πR̆
iω
∂ ˘̃θ

∂n̆
φ̂

)
dS̆. (3.56)

Equation (3.56) formally recalls the BIE in the absence of flow (3.34), plus an extra

term due to the difference in the last integral term.

3.2.3 Boundary integral equation for a moving rigid body

Let us consider a body B moving in arbitrarily prescribed subsonic rigid-body

motion, defined as a translation of velocity v0 plus a rigid-body rotation, U(t).

Define the frame of reference (x, t) rigidly connected with the body and the frame

of reference (ξ, τ) connected with the undisturbed air. The transformation between

the two is {
ξ(x, t) = U(t)x + v0 t,

τ = t.
(3.57)

Following the same procedure as for a translating mean flow [84], Eq. (3.25), defining

the Green’s function G, can be written in terms of the air variable (ξ, τ) as

∇2G− 1

c2

∂2G

∂τ 2
= δ(ξ − ξ?)δ(τ − τ?), (3.58)
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subject to the boundary and time conditions{
G = 0 as ‖ξ‖ → ∞
G = Ġ = 0 as τ →∞.

(3.59)

Equivalently, the fundamental solution G is given by

G(ξ − ξ?, τ − τ?) =
−1

4π%
δ(τ − τ? +

%

c
), (3.60)

where % = ‖%‖ and % = ξ (x, t)− ξ (x?, t?). Using then Eq.(3.40) and the transfor-

mation (3.57), for g(x,x?, t, t?) = t− t? + ‖ξ (x, t)− ξ (x?, t?)‖/c, hence

∂g

∂t
= 1 +

% ·U(t)M

%
, (3.61)

defining

M =
v

c
=

v0 + Ω(t)x

c
, (3.62)

the Mach vector of the point x as seen by an observer in the body frame of reference,

for Ω(t) the body-space rotation, such that dU/dt = UΩ.

For subsonic flow it exists only one root of equation g(t) = 0, t = t? − θ, where θ is

given by

θ =
1

c
‖ξ (x, t? − θ)− ξ (x?, t?)‖ (3.63)

Therefore, the fundamental solution of the wave equation G in the body frame of

reference is

G(x− x?, t− t?) =
−1

4π%̌
δ(t− t? + θ), (3.64)

where the quantity %̌ is defined as

%̌ =

[
%

∣∣∣∣∂g∂t
∣∣∣∣]θ =

[
%

∣∣∣∣1 +
% ·U(t)M

%

∣∣∣∣]θ , (3.65)

being U(t)M the Mach vector of the point x as seen by an observer in the space

frame. Therefore, equivalently to the translating mean flow case, %̌ is the distance

between the source and the evaluation points increased by the convecting factor

(1 +Mr).

The standard procedure to obtain the BIE yields to the equation

E(x?)φ(x?, t?) = −
∫ ∞

0

∫
V

∇ · (G∇φ− φ∇G)dV dt

+
1

c2

∫ ∞
0

∫
V

d

dt

(
G
dφ

dt
− φdG

dt

)
dV dt, (3.66)
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where d/dt is the time derivative in the body space following a fixed point in the air

space, i.e.
d

dt
=

∂

∂t
− v · ∇, (3.67)

for ∇ the gradient with respect to the point x on the body. Using this expression

of the time derivative, Eq. (3.66) becomes

E(x?)φ(x?, t?) = −
∫ ∞

0

∫
V

∇ · (G∇φ− φ∇G) dV dt

− 1

c2

∫ ∞
0

∫
V

v ·
(
G
dφ

dt
− φdG

dt

)
dV dt

+
1

c2

∫
V

(
G
dφ

dt
− φdG

dt

)∣∣∣∣t=∞
t=0

dV. (3.68)

Note that the last integral is equal to zero because of the initial conditions on the

potential and the fundamental solution G. Since the body moves in a rigid-body

motion, ∇ · v = 0, then applying the Gauss’s theorem, Eq. (3.68) is written as

E(x?)φ(x?, t?) =

∫ ∞
0

∫
SB

(
G
∂φ

∂n
− φ∂G

∂n

)
dS dt

+
1

c2

∫ ∞
0

∫
SB

(
G
dφ

dt
− φdG

dt

)
v · n dS dt, (3.69)

Expanding the fundamental solution G as previously obtained in Eq. (3.64), and

defining G0 = −1/(4π%̌), the terms of Eq. (3.69) are∫ ∞
0

∫
SB

(
G
∂φ

∂n
− φ∂G

∂n

)
dS dt =

∫
SB

[
G0
∂φ

∂n
− φ∂G0

∂n
+G0

∂φ

∂t

∂θ

∂n

]θ
dS

1

c2

∫ ∞
0

∫
SB

G

(
∂φ

∂t
− v · ∇φ

)
v · n dS dt =

1

c2

∫
SB

G0

[(
∂φ

∂t
− v · ∇φ

)
v · n

]θ
dS

− 1

c2

∫ ∞
0

∫
SB

φ

(
∂G

∂t
− v · ∇G

)
v · n dS dt =

1

c2

∫
SB

G0

[
∂φ

∂t
v · n + φ

∂(v · n)

∂t

]θ
dS

+
1

c2

∫
SB

[
φ v · n v · ∇G0 −G0

∂φ

∂t
v · n v · ∇θ −G0φ

∂

∂t
(v · n v · ∇θ)

]θ
dS.

Combining all the above terms, the solution in the body frame at point x? and time

t? is

E(x?)φ(x?, t?) =

∫
SB

[
−1

4π%̌

∂φ

∂ñ
− ∂

∂ñ

(
−1

4π%̌

)
φ+

−1

4π%̌

∂φ

∂t

(
∂θ

∂ñ
+ 2

M · n
c

)]θ
dS

−
∫
SB

[
−1

4π%̌
φ
∂

∂t

(
M · n M · ∇θ − M · n

c

)]θ
dS, (3.70)
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where
∂

∂ñ
= (n−M · n M) · ∇. (3.71)

The problem statement is completed by the boundary condition on the body surface

SB
∂φ

∂n
= v · n, (3.72)

where the velocity v is the velocity of the point on the body surface in the body

frame.

This formulation was applied to the particular case of a stationary duct with mean

flow, convecting an incident acoustic field due to a rotor tonal source of frequency

ω. The flow moves in helicoidal motion, of uniform translating velocity v∞, directed

along the duct axis x, and uniform angular velocity Ω∞, swirling around x. The

transformation (3.57) translates into

ξ(x, t) = U∞(t)x− v∞t, (3.73)

being U∞(t) the rigid-body rotation matrix

U∞(t) =


1 0 0

0 cos Ω∞t sin Ω∞t

0 −sin Ω∞t cos Ω∞t

 . (3.74)

This is a scattering problem, therefore the formulation has to be translated into the

frequency domain. Equation (3.70) becomes

E(x?)φ̂(x?) =

∫
SB

e−iωθ

(
−1

4π%̌

∂φ̂

∂ñ
− ∂

∂ñ

(
−1

4π%̌

)
φ̂+ iωφ̂

−1

4π%̌

(
∂θ

∂ñ
+ 2

M · n
c

))
dS,

(3.75)

being the Mach vector M = −M∞ + (Ω∞x)/c, for M∞ = v∞/c, and Ω∞ the

antisymmetric matrix

Ω∞ =


0 0 0

0 0 Ω∞

0 −Ω∞ 0

 . (3.76)

Following [85], in this specific case the variables in Eq. (3.75) are

%̌ =

∣∣∣∣(1−M2
∞)c θ +

1

c
x · (Ω∞U∞(θ)x?)−M∞ ·R

∣∣∣∣ , (3.77)
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θ is the unique positive root of the equation

(1−M2
∞)θ2 +

2

c2
x · ((U∞(θ)− I)x?)−

2

c
R ·M∞θ −

R2

c2
= 0, (3.78)

and R is defined as R = x− x?.

By expanding the terms of the BIE (3.75), decomposing ∇φ̂ = ∂φ̂/∂n n + ∇SB φ̂,

being ∇SB φ̂ the gradient over the body surface SB, and defining Mn = M · n, Eq.

(3.75) becomes

E(x?)φ̂(x?) =

∫
SB

−1

4π%̌
(1−M2

n)
∂φ̂

∂n
e−iωθdS −

∫
SB

−1

4π%̌
MnM · ∇SB φ̂ e

−iωθdS

+

∫
SB

∇
(
−1

4π%̌

)
· (MnM− n)φ̂ e−iωθdS

+ iω

[∫
SB

−1

4π%̌
∇θ · (n−MnM)φ̂ e−iωθdS + 2

∫
SB

−1

4π%̌

Mn

c
φ̂ e−iωθdS

]
.

(3.79)

In order to evaluate the integral terms, the gradients of the source term, −1/(4π%̌),

i.e. the doublet term, and the delay, θ, have to be defined. The former is function

of ∇%̌. The gradients of %̌ and θ are obtained by deriving Eqs. (3.77) and (3.78),

respectively, as

∇%̌ =

f if ∂g/∂t ≥ 0,

−f if ∂g/∂t < 0,
(3.80a)

f =

(
(1−M2

∞)c+
1

c
x · (Ω∞U′∞(θ)x?)

)
∇θ +

1

c
Ω∞U∞(θ)x? −M∞, (3.80b)

for U′∞ the derivative of U∞ with respect to θ;

∇θ =
cM∞θ + R− (U∞(θ)− I)x?

c%̌
. (3.81)

As mentioned in the previous section, the decomposition φ̂ = φI + φS is applied.

Thus, Eq. (3.79) translates in terms of the scattered potential and the boundary

condition (3.35) is also valid in the frequency domain.

The linearized Bernouilli’s theorem (3.33) is modified as

∂φ

∂t
+

p̄

ρ∞
+ v · ∇φ = 0, (3.82)
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which translates in the frequency domain in terms of the scattered pressure pS into

pS = −iωρ∞φS − ρ∞v · ∇φS. (3.83)

This formulation has the advantage of being suitable to model a wide range of

scattering problems in presence of flow. It consists of a suitable model for a wide

range of scattering problems in the presence of flow. In fact, for a complex geometry

(3.79) can be written for each part of the body in the appropriate frame of reference,

if the flow can be modelled as a translation plus a rotation, and the solution is then

obtained by a linear superposition.

3.2.4 Spinning rotor source models convected by a swirling-

translating uniform flow

In section 3.1.3 a model for the incident spinning rotor source is presented. The

model was obtained for the no-flow case, but can be extended to the swirling-

translating flow case, using the modified monopole and dipole solution of the wave

equation written in the body frame.

Equation (3.19), describing the incident fields evaluated in point x (x, r, ψ) for each

azimuthal component m of point source xs (xs, rs, ψs), is modified into

φI =
−qm
4π%̌

e−i(ωθ+mψs), (3.84a)

φI =
fxm
4π%̌

(
1

%̌

∂%̌

∂xs
+ iω

∂θ

∂xs

)
e−i(ωθ+mψs), (3.84b)

φI =
fψm
4π%̌

1

rs

(
1

%̌

∂%̌

∂ψs
+ iω

∂θ

∂ψs

)
e−i(ωθ+mψs). (3.84c)

Here %̌ is defined as

%̌ =

∣∣∣∣(1−M2
∞)c θ +

1

c
xs · (Ω∞U∞(θ)x)−M∞ ·R

∣∣∣∣ , (3.85)

θ is the unique positive root of the equation

(1−M2
∞)θ2 +

2

c2
xs · ((U∞(θ)− I)x)− 2

c
R ·M∞θ −

R2

c2
= 0, (3.86)

for R = xs − x. Therefore, the derivatives are evaluated by deriving Eqs. (3.85)
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and (3.86), as

∂θ

∂xs
=

cM∞xθ + (xs − x)

%̌c
, (3.87a)

∂%̌

∂xs
=

((1−M2
∞)c+ 1/c xs · (Ω∞U′∞(θ)x)) ∂θ/∂xs −M∞x if ∂g/∂t ≥ 0,

− ((1−M2
∞)c+ 1/c xs · (Ω∞U′∞(θ)x)) ∂θ/∂xs +M∞x if ∂g/∂t < 0,

(3.87b)

∂θ

∂ψs
=
−Ω∞θ + cM∞ψ

θ + (ψs − ψ)

%̌c
, (3.87c)

∂%̌

∂ψs
=

((1−M2
∞)c+ 1/c xs · (Ω∞U′∞(θ)x)) ∂θ/∂ψs −M∞ψ

if ∂g/∂t ≥ 0,

− ((1−M2
∞)c+ 1/c xs · (Ω∞U′∞(θ)x)) ∂θ/∂ψs +M∞ψ

if ∂g/∂t < 0,

(3.87d)

for M∞x and M∞ψ
the components of M∞ in the axial and azimuthal directions,

respectively.

Equivalently, the disc and ring source models (Eqs. (3.20) and (3.21)) modify,

respectively, as

φI =

∫ b

0

∫ 2π

0

−qm(rs)

4π%̌
e−i(ωθ+mψs)dψsrsdrs, (3.88a)

φI =

∫ b

0

∫ 2π

0

fxm(rs)

4π%̌

(
1

%̌

∂%̌

∂xs
+ iω

∂θ

∂xs

)
e−i(ωθ+mψs)dψsrsdrs, (3.88b)

φI =

∫ b

0

∫ 2π

0

fψm(rs)

4π%̌

(
1

%̌

∂%̌

∂ψs
+ iω

∂θ

∂ψs

)
e−i(ωθ+mψs)dψsdrs, (3.88c)

and

φI =

∫ 2π

0

−qm
4π%̌

e−i(ωθ+mψs)dψs, (3.89a)

φI =

∫ 2π

0

fxm
4π%̌

(
1

%̌

∂%̌

∂xs
+ iω

∂θ

∂xs

)
e−i(ωθ+mψs)dψs, (3.89b)

φI =

∫ 2π

0

fψm
4π%̌

1

rs

(
1

%̌

∂%̌

∂ψs
+ iω

∂θ

∂ψs

)
e−i(ωθ+mψs)dψs. (3.89c)

Introducing the variable ψ1 = ψs−ψ and the azimuthal mode decomposition (3.22),

the modes φIm take the expressions

φIm =

∫ b

0

∫ 2π

0

−qm(rs)

4π%̌
e−i(ωθ+mψ1)dψ1rsdrs, (3.90a)

φIm =

∫ b

0

∫ 2π

0

fxm(rs)

4π%̌

(
1

%̌

∂%̌

∂xs
+ iω

∂θ

∂xs

)
e−i(ωθ+mψ1)dψ1rsdrs, (3.90b)

φIm =

∫ b

0

∫ 2π

0

fψm(rs)

4π%̌

(
1

%̌

∂%̌

∂ψs
+ iω

∂θ

∂ψs

)
e−i(ωθ+mψ1)dψ1drs, (3.90c)
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for the disc source model, and

φIm =

∫ 2π

0

−qm
4π%̌

e−i(ωθ+mψ1)dψ1, (3.91a)

φIm =

∫ 2π

0

fxm
4π%̌

(
1

%̌

∂%̌

∂xs
+ iω

∂θ

∂xs

)
e−i(ωθ+mψ1)dψ1, (3.91b)

φIm =

∫ 2π

0

fψm
4π%̌

1

rs

(
1

%̌

∂%̌

∂ψs
+ iω

∂θ

∂ψs

)
e−i(ωθ+mψ1)dψ1, (3.91c)

for the ring source model.

3.2.5 Collocation method

The numerical implementation of the BIEs (3.34), (3.53), and (3.79) is subject to

a collocation method. In order to solve it computationally, the integral equation is

replaced by a linear system of algebric equations. The process by which the linear

system of equations is formed is called the boundary element method (BEM). In

this section the BEM is presented for both the no-flow and mean flow conditions.

The surface SB is discretized in N quadrilateral panels, Sj, j = 1, 2, . . . , N , and the

variables φS and χI := ∂φI/∂n are assumed to be constant on each element surface

(zeroth order method). Furthermore, also the quantities Mn and e−iωθ are supposed

to be constant on the panel. A collocation point x? = xk is placed at the center of

each panel and each quantity constant on the panel is evaluated at that point.

The BIEs (3.34), (3.53), and (3.79) must be satisfied at each collocation point,

therefore at a given xk the following equation, formally the same for all the mean

flow conditions, must be satisfied

1

2
φSk =

N∑
j=1

e−iωθkj
[
−Bkjχ

I
j +Hkjφ

S
j + Ckjφ

S
j + iωDkjφ

S
j

]
. (3.92)

Here the quantities are defined differently according to the proper BIE in presence

or absence of mean flow.
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In the no-flow case, BIE (3.34), the integral coefficients are

Bkj =

∫
Sj

−1

4πRk

dS, (3.93a)

Ckj =

∫
Sj

Rk · n
4πR3

k

dS, (3.93b)

Dkj = −1

c

∫
Sj

Rk · n
4πR2

k

dS, (3.93c)

Hkj = 0, (3.93d)

and the time delay

θkj =
Rkj

c
, Rkj = ‖xj − xk‖, (3.94)

where xj is the collocation point of panel Sj, and Rk is evaluated as Rk = x− xk

for x ∈ Sj. When the surface is discretized using hyperboloidal panels, the above

integrals can be integrated analytically.

In the translating mean flow case, BIE (3.53), the integral coefficients Bkj and Ckj

are formally the same, but defined in the Prandtl-Glauert space, as B̆kj and C̆kj.

Furthermore, the quantity θkj is replaced by the quantity θ̆kj and the last integral

term Dkj is modified to take into account the modified quantity ˘̃θ.

In summary, the integral coefficients are

B̆kj =

∫
S̆j

−1

4πR̆k

dS̆, (3.95a)

C̆kj =

∫
S̆j

R̆k · n̆
4πR̆3

k

dS̆, (3.95b)

D̆kj = −1

c

(∫
S̆j

R̆k · n
4πR̆2

k

dS̆ −M0

∫
S̆j

n̆x

4πR̆k

dS̆

)
, (3.95c)

and the time delay

θ̆kj =
R̆kj −M0(x̆− x̆?)

c
, R̆kj = ‖x̆j − x̆k‖. (3.96)

On the other hand, when the effect of the convecting mean swirling-translating flow
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is taken into account, BIE (3.79), the integral coefficients are modified as

Bkj = (1−M2
nj

)

∫
Sj

−1

4π%̌k
dS, (3.97a)

Ckj = (MnjMj − nj) ·
∫
Sj

∇%̌k
4π%̌2

k

dS, (3.97b)

Dkj = (nj −MnjMj) ·
∫
Sj

∇θk
4π%̌k

dS + 2
Mnj

c

∫
Sj

−1

4π%̌k
dS, (3.97c)

Hkj =
Mnj

2
Mj ·

(
4∑

h=1

∫
∂Sjh

−1

4π%̌k
n∂Sjhdl −

∫
∂Sjα3

−1

4π%̌k
n∂Sjα3

dl

−
∫
∂Sjβ4

−1

4π%̌k
n∂Sjβ4

dl −
∫
∂Sjγ1

−1

4π%̌k
n∂Sjγ1dl −

∫
∂Sjδ2

−1

4π%̌k
n∂Sjδ2dl

)
,

(3.97d)

and the time delay θkj ≥ 0, unique root of the equation

(1−M2
∞)θ2

kj +
2

c
xj · [(U∞(θkj)− I)xk]− 2 Rkj ·M∞θkj −

R2
kj

c2
= 0. (3.98)

Here the quantities in the integral coefficients are defined as

Mnj = Mj · nj, (3.99a)

Mj = −M∞ +
Ω∞xj
c

, (3.99b)

Rkj = xj − xk. (3.99c)

The variables %̌k, ∇%̌k, and ∇θk in the integral coefficients are evaluated by means

of Eqs. (3.77), (3.78), (3.80), and (3.81), for x ∈ Sj. Furthermore, the normal nj

is supposed to be constant on the panel and equal to the one at the center. In this

case an analytical integration is not available and a numerical implementation of

the integrals has to be used instead. Details on the implementation of the numerical

integration are provided in Section 3.2.7.

The integral coefficient Hkj is derived from a model of the second term of Eq. (3.79),

which is explained in details in the Appendix A. The surface integral is replaced by

line integrals over the four edges of the boundary of panel Sj, and line integrals over

the edges of the four adjacent panels, identified as Sjα, Sjβ, Sjδ, and Sjγ. The vector

n∂Sjh is the outward normal to the edge h of the panel Sj on the same plane of Sj.

The other normal vectors n∂Sjα3
, n∂Sjβ4

, n∂Sjγ1 , and n∂Sjδ2 are defined equivalently.

It is important to note that the integral coefficients, as defined in Eqs. (3.93),

(3.95), and (3.97), are frequency independent. This feature is very appealing from
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a computational point of view, because, when one has to compute the acoustic

response varying the source of the incident field, the integration on each panel only

has to be performed once.

Finally, the BIEs (3.34), (3.53), and (3.79) are replaced by a N × N linear system

of algebraic equations

YφS = −ZχI , (3.100)

where

Y =
1

2
I− e−iωΘ (H + C + iωD) (3.101a)

Z = e−iωΘB. (3.101b)

The matrix I is the identity matrix and H, C, D, B and Θ are the integral coefficient

matrices, as defined in Eqs. (3.93), (3.95), and (3.97). The solution of the system

(3.100) yields the unknown scattered velocity potential vector φS.

Once the scattered velocity potential on the body SB is known, the same is evaluated

in the volume field V (φSV ) by applying (3.34), (3.53), and (3.79) in the BIR form,

i.e. for E = 1. The resulting numerical system is

φSV = YV φ
S − ZV χ

I , (3.102)

where

YV = e−iωΘV (HV + CV + iωDV ) (3.103a)

ZV = e−iωΘV BV . (3.103b)

The coefficients HV , CV , DV , BV and ΘV are referred to point x? in the volume

field.

The scattered pressure in the volume field pSV is then obtained by applying the

linearized Bernoulli’s theorem (3.33) and (3.83).

3.2.6 The spurious root problem and the CHIEF method

As mentioned in Chapter 2, the BEM applicability, especially at high frequency, is

subject to the spurious or fictitious root problem [36, 37]. The BIE (3.75) breaks

down in correspondence to an infinite set of wave numbers k, coinciding with the

“resonant” wave numbers (or eigenvalues) of the associated interior problem, i.e. the
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same BIE coupled with the boundary condition on SB, φ̂ = 0. It can be shown [39]

that the fictitious frequencies are sparsely distributed when k is small, but, as k

increases, they become progressively denser. Asymptotically (as k → ∞) their

number is proportional to k3. From a computational point of view, ill-conditioning

is likely to occur for wave numbers k in the immediate vicinity of a critical wave

number. The ill-conditioning is consequently more severe when k is large.

The CHIEF method [40] was implemented in this study for addressing the spurious

root problem. When one considers the set of linear equations (3.100) at a frequency

corresponding to one of the fictitious frequencies, the set is not linearly independent.

In application, this means that the resulting coefficient matrix for the discretized

exterior problem is singular or ill-conditioned. In order to determine a unique solu-

tion, additional constraints for the system are required and these can be found by

applying the BIE to the interior problem.

Schenck suggested a numerical procedure to obtain an approximation to the common

solution of the exterior and interior problem. When only the exterior problem is

considered, the resulting system of equations is N ×N (for N surface elements). If

the wave number does not coincide with a fictitious wave number, the system can

be solved through a regular numerical technique (e.g. the LU factorization). When

the system is ill-conditioned, due to the fictitious wave number problem, Schenck

suggested that one add Ñ more equations that satisfy the interior equation at Ñ

interior points. He also suggested choosing Ñ << N(k) points (the number Ñ is

generally frequency dependent) in the interior domain, xi. The additional equations

take the form

0 = ỸφS − Z̃χI , (3.104)

where

Ỹ = e−iω Θ̃
(

H̃ + C̃ + iωD̃
)

(3.105a)

Z̃ = e−iω Θ̃B̃. (3.105b)

with the integral coefficients, H̃, C̃, D̃, B̃ and the acoustic delay Θ̃ related to the

interior points, i.e. x? = xi.

Coupling the exterior with the interior problem, i.e. system (3.100) with system

(3.104), results in a (N + Ñ)×N overdetermined linear system of equations which

can be solved in a least square sense. Schenck also proved that the solution resulting

from the exterior plus interior problems is theoretically unique for appropriately
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chosen xi. The resulting linear system is

YCφS = ZCχI , (3.106)

for

YC =

 1
2

I− e−iωΘ (H + C + iωD)

−e−iω Θ̃
(

H + C̃ + iωD̃
)  ,

ZC =

[
−e−iωΘB

−e−iω Θ̃B̃

]
.

(3.107)

Schenck proved that the resulting solution of the exterior plus interior problems is

theoretically unique for appropriately chosen xi.

The CHIEF method is easy to implement, but its efficiency is strongly dependent

on the choice of the interior collocation points xi. Unfortunately the only rule for

choosing an optimal set of internal points xi is that the points should not be placed

at interior nodal coordinates, because the resulting equations at these nodes will

not add an effective constraint to the system of equations. However, for a general

geometry, these nodal coordinates are not known a priori. Furthermore, the problem

becomes worse at high frequency, because more additional constraints are required.

In this range, the solution is strongly affected by a more or less “efficient” interior

point set. A method for creating an optimal set of interior collocation points remains

a research topic for future high frequency applications of the BEM.

3.2.7 Numerical integration

In the no-flow case the integral coefficients and the acoustic delay can be computated

analytically. In this case, the exact solution of the source and doublet surface

integrals over the four-edge-panel and the explicit solution of the acoustic delay

are available. However, this is not true in general, thus, a numerical integration of

the coefficients (3.97) and an iterative numerical procedure to solve Eq. (3.78) is

necessary to take into account the effect of a convecting swirling-translating mean

flow.

For multidimensional integration the C package CUBA [86] was used. Specifically,

the double integral over the four-edge-panel was calculated by means of the deter-
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ministic algorithm Cuhre [87], which uses one of several cubature rules of polynomial

degree in a globally adaptive subdivision scheme [87].

In order to calculate the acoustic delay, the Newton-Raphson method was applied.

This is a root-finding algorithm that uses the first few terms of the Taylor series of

the function in the neighborhood of a first-attempted root. The method converges

very fast when the initial choice of the root’s position is good enough. In this

application the first choice used was the root of Eq. (3.78) obtained by expanding

the rotation matrix U∞(θ) up to the second order, i.e. U∞(θ) = I+Ω∞θ+Ω2
∞θ

2/2,

was used. The resulting equation is a second order polynomial in θ, which can be

solved explicitly.

Another numerical issue arises to impose the boundary condition (3.35), for the

analysis of the rotor acoustic source models. Following the analytical derivation of

(3.23b), (3.23c), (3.24b), and (3.24c), the resulting integrals were evaluated through

numerical integration. The one-dimensional integration over the rotor ring was

performed through the standard FORTRAN package QUADPACK [88], while the

double integral over the rotor disc was performed through the above mentioned

Cuhre algorithm.

3.2.8 Parallel implementation

The analysis of the rotor source models propagating through the duct to the external

field was carried out by varying the blade tip Mach number Mt and the azimuthal

order m of the incident field. In the no-flow case, four tip Mach numbers Mt = 0.8,

1, 1.2, 1.4 and four orders m = 4, 8, 12, 16 were considered. These values were

chosen to simulate a wide range of frequencies and flow cases in a transonic rotor

regime. Defining the reference length a as the duct radius at the rotor disc, the

two quantities m and Mt relate to the non-dimensional frequency ka through the

equation ka = mMt. Therefore, the scattered field was computed at a wide range

of incident source frequencies, i.e. 3 < ka < 22.

In the flow case, the analysis was carried out for M∞ = 0, 0.2, 0.4, 0.6 and the non-

dimensional Ω∞ = 0, 0.2, 0.4, 0.6, being the duct radius a the length scale and a/c

the time scale. The rotor source analysis was, however, limited to m = 4, 8, 12, for

some numerical instability occuring at high azimuthal orders. In terms of frequency,
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only taking into account the compressibility factor due to the translating mean flow,√
1−M2

∞, this translates into a frequency range equal to 3 < (ka)/
√

1−M2
∞ < 21,

approximately the same as the no-flow case.

Convergence analysis has shown that at the highest frequency ka = 22 at least 8,000

panels must discretize the duct surface. In fact, this discretization assures that at

least 4 panels per wave length cover the surface in order to capture correctly the wave

at the highest frequency. Therefore, to solve the BEM linear system (3.100) a full

8,000 × 8,000 matrix must be computed, stored, and inverted. In order to overcome

this difficulty, a parallel implementation of the method was developed in Fortran

90. The aim of using a parallel solver is to decrease both run time and allocated

memory by dividing the calculation among parallel processors. Each processor is

responsible for the calculation on some subset of the data. Every portion of array

is directly defined and allocated as local to the single processor, which only works

on this portion of the solution. Then, the global solution is recomposed using the

appropriate library. Details of the implementation are reported in Appendix C,

enclosing details on the specific software organization.

This parallel implementation was developed using the Scalable Linear Algebra PACK-

age (ScaLAPACK) [89] as parallel solver. ScaLAPACK is a library of linear algebra

routines for distribuited-memory message-passing computers. It is a continuation

of the LAPACK [90] project based on the Parallel Basic Linear Algebra Subpro-

grams (PBLAS) [91] and the Basic Linear Algebra Communication Subprograms

(BLACS) [92]. The former is the distributed memory version of the BLAS [93]. The

latter is a collection of routines used to manage matrices for distribuited-memory

message-passing computers, either based on Message Passing Interface MPI [94]

or Parallel Virtual Machine PVM [95], implemented to provide a communication

support for the ScaLAPACK library and to make linear algebra applications more

portable.

Among the versions of the implemented BEM parallel code, two were compared to

evaluate the parallel software performance: the first based on the BIE (3.30) for the

no mean flow case; the second based on the BIE (3.79) for the swirling-translating

mean flow case. The specific test case is not of interest, because the only difference on

the results is due to the size of the problem. Figure (3.1) shows the performance per

node of the two codes for the calculation of both the integral coefficients (Eq. (3.97)

for the flow case) and the linear system (Eq. (3.100) for the flow case), considering a
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Figure 3.1: CPU time necessary for the two parallel BEM codes per computer node,

increasing the number of processors.
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couple of surface discretizations. An IBM eServer326m, dual-core, 2.2GHz computer

cluster with 1Gb of RAM per core was used for the computations. For example,

using 8 nodes, the computation of a 8,000 × 8,000 integral coefficient matrix requires

approximately 2 hours, while the solver requires 4 minutes. The allocated memory

per node is 64Mb. Increasing the number of processors, the computational time

is highly reduced. Generally, doubling the number of processors corresponds to

half the computational time, but the time for the solver is constant for more than

16 nodes, because this time is very low and the gain for using more processors

is decreased by the loss in the communication among the nodes. From the CPU

performance it can also be noted that the computation of the integral coefficients in

the no flow case is highly less expensive than the flow case. This is mainly due to

the numerical integration, required in the flow case, compared with the analytical

integration, used for the no flow case. In fact, the two solver times are comparable

and very low, while the time necessary to evaluate the integral coefficients is one

hundred times higher. Furthermore, the size of the discretization has an important

effect on the computational time. In the flow case, doubling the number of panels

results in increasing the time for the integral coefficients of almost four times and

the time for the solver of about five times.
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Chapter 4

Analysis of the Spinning Rotor

Source Models

In this chapter the analysis of the spinning rotor as acoustic source propagating

through a duct to the external field is presented. The analysis is focused on the

comparison between two different source models under the hypothesis of absence

of mean flow, by applying the BEM formulation presented in Section 3.2.1. For

the comparison, the disc and ring source models of the thrust and drag dipole

components presented in Section 3.1.3 were employed. The aim is to verify if the

disc model contains features which cannot be modelled through a ring model, as

suggested by Carley [73], in terms of the far field directivity patterns.

4.1 Validation of the model: comparison with ex-

periments

The parallel code based on the BEM formulation for scattering of a stationary body,

i.e. BIE (3.34), was validated against experimental data for the pressure scattered

by a cylinder of radius a in the far field [96]. The incident field was generated by

an array of acoustic drivers placed inside the cylinder and selected in such a way

that only one specific mode propagated in the duct. The pressure radiation patterns

were measured by varying the frequency, the azimuthal order m and the distance at

which the pressure was evaluated in the external acoustic field.
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Figure 4.1: Directivity pattern for the sound pressure level (SPL) generated by the

cylinder modes propagating in a stationary cylindrical duct to the far field.

Figure 4.1 compares the experimental and the numerical sound pressure level (SPL)

radiation patterns. The SPL is reported in dB and scaled in such a way that the

maximum level is 20 dB in each plot. Three spinning modes of azimuthal order m =

0, 1, 3 and radial order n = 0; three frequencies corresponding to ka = 2.38, 3.13,

and 5.16; and a distance for evaluating the pressure in the external field equal to 10a

were chosen for the comparison. The BEM solution was found to be in agreement

with the experimental data. Every mode is well predicted in both the number of

lobes and their relative values. The major difference is for the highest frequency and

order, where an average error of about 15% can be estimate on the experimental

data.
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Figure 4.2: Discretized duct geometry.

4.2 Spinning rotor source model results

The BEM parallel code was applied to analyze the characteristics of the radiation

patterns generated by two different rotor source models, (3.23b), (3.23c), (3.24b),

and (3.24c), in conjunction with an axisymmetric duct geometry. Figure 4.2 shows

a discretized version of the duct geometry, which was generated by the complete

rotation of a Joukowsky profile. The rotor disc of radius b is placed at one quarter

of the duct length, where the duct radius is equal to the reference length a, used as

scale length. The duct maximum radius at the exhaust is equal to 1.125 and the

duct length is 2. The frame of reference is centred at the duct inlet disc as shown

in Fig. 4.2.

Table 4.1: Non-dimensional frequencies ka chosen for the computation.

m/Mt 0.8 1.0 1.2 1.4

4 3.2 4.0 4.8 5.6

8 6.4 8.0 9.6 11.2

12 9.6 12.0 14.4 16.8

16 12.8 16.0 19.2 22.4

As mentioned in Section 3.2.7, this analysis was carried out varying the blade tip

Mach number Mt from 0.8 to 1.4 and the azimuthal order m from 4 to 16. The

resulting non-dimensional frequencies ka = Mtm are reported in Table 4.1.

The pressure values of the incident and scattered fields were evaluated over a circle

of radius D. In order to compare the directivity patterns, the absolute pressure
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Table 4.2: Maximum and minimum resonance ka at the minimum and maximum

radii, respectively.

a 1.125a

m/n 1 2 1 2

4 5.32 9.28 4.73 8.25

8 9.65 14.12 8.57 12.55

12 13.88 18.75 12.34 16.66

16 18.06 23.26 16.06 20.68

Table 4.3: Number of cylinder cut-on modes at the rotor disc and exhaust.

@ rotor disc @ exhaust

m/Mt 0.8 1.0 1.2 1.4 0.8 1.0 1.2 1.4

4 0 0 0 1 0 0 1 1

8 0 0 0 1 0 0 1 1

12 0 0 1 1 0 0 1 2

16 0 0 1 1 0 0 1 2

values were normalized with respect to their maximum. The maximum pressure

values and the power levels were also plotted. The power level Π is a measure of

the total power radiated from the duct. It is evaluated in dB as follows

Π = 10log

[
πD2/(ρc)

∫ 2π

0
|pV |2sinαdα

Pref

]
. (4.1)

Here |pV | is the absolute value of the pressure evaluated in the field, the integral is

taken over a circle of radius D, and Pref is the reference power, generally equal to

10−12Watt. Equation 4.1 is only valid for plane or spherical waves, however, in the

far field the waves propagating from the duct can be approximated as spherical and

this definition was used as a measure of the total power radiated from the duct.

Once the duct radius is given, it is possible to evaluate the resonance frequencies

for a cylindrical duct as reported in Section 3.1.2 (Eq. 3.15). Since in the present

case the radius is not constant, Table 4.2 reports the maximum and minimum res-

onance frequencies ka, corresponding to the minimum and maximum duct radius,

respectively, for the given azimuthal orders m and the two first radial orders n.
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a) Incident field for Mt = 1.0, m = 16.
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b) Scattered field for Mt = 1.0,

m = 16.
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c) Incident field for Mt = 1.2, m = 16.
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d) Scattered field for Mt = 1.2,

m = 16.

Figure 4.3: Comparison of the incident and scattered fields for the directivity pattern

of the normalized pressure for the thrust dipole source: ring model (upper side) and

disc model (lower side).

Comparing the results of Table 4.2 and 4.1, it is shown that for Mt = 0.8 and Mt = 1

there are no cylinder cut-on modes. In fact, the frequency is lower than the first

resonance frequency, whereas for Mt = 1.2 there is one cut-on mode (the frequency

is higher than the first resonance frequency, but lower than the second) and for

Mt = 1.4 two cut-on modes (the frequency is higher than the second resonance

frequency). Table 4.3 summarizes the number of cylinder cut-on modes, depending

on the two duct radii.
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a) Mt = 1.4, m = 4.
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b) Mt = 1.4, m = 8.
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c) Mt = 1.4, m = 12.
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d) Mt = 1.4, m = 16.

Figure 4.4: Comparison of the ring model (upper side) and the disc model (lower

side) for the directivity pattern of the normalized scattered pressure for the drag

dipole source (ring radius 0.75 and disc radius 1).

The modal propagation affects the directivity pattern of the scattered pressure and

the overall power radiated from the duct. Figure 4.3 shows how the incident and

scattered pressure directivity patterns at D = 8 differ, depending on the propagating

modes. Note that the upper and lower sides of the plot refer to the ring and the

disc model, respectively, If there are no cut-on modes, the scattered pressure pattern

(Fig. 4.3(b)) is slightly different, as there is not actual sound excitation (Fig. 4.3(a)).

However, if there is mode propagation, then the pattern is strongly modified; see

comparison of Figs. 4.3(d) and 4.3(c).



Analysis of the Spinning Rotor Source Models 49

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

a) Mt = 1.4, m = 4.
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b) Mt = 1.4, m = 8.
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c) Mt = 1.4, m = 12.
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d) Mt = 1.4, m = 16.

Figure 4.5: Comparison of the ring model (upper side) and the disc model (lower

side) for the directivity pattern of the normalized scattered pressure for the thrust

dipole source (ring radius 0.75 and disc radius 1).

Comparison of the ring and disc models for Mt = 1.4 and D = 8 is presented in Figs.

4.4 and 4.5. Assuming that the rotor disc covers the entire duct section, the disc

radius used in the computations is 1 and the ring radius is 0.75 (three quarters of

the blade chord). The differences between the patterns produced by the two models

are remarkable, especially for m = 12, m = 16, and the drag dipole source. These

differences could be due to the singularity occurring when the disc source approaches

the duct boundary. This singularity arises when imposing the boundary condition

at the duct panels intersecting the rotor disc. Here, the distance between the source
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a) Drag dipole source for Mt = 1.4,

m = 12.
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b) Drag dipole source for Mt = 1.4,

m = 16.
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c) Thrust dipole source for Mt = 1.4,

m = 12.
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d) Thrust dipole source for Mt = 1.4,

m = 16.

Figure 4.6: Comparison of the ring model (upper side) and the disc model (lower

side) for the directivity pattern of the normalized scattered pressure (ring radius 0.9

and disc radius 1).

point and the panels tends to zero, so that the functions in the integrals (3.23b)

and (3.23c), as well as in the corresponding normal derivatives, tend to infinity.

Because a zeroth order method was employed, the collocation points were set up in

the centre of each panel (centroids). By choosing the discretization carefully, it is

possible to avoid positioning the centroids at the rotor disc boundary, thus avoiding

the singularity. Therefore, the difference in the patterns depends on the ratio of the
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a) Drag dipole source for Mt = 1.4,

m = 12.
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b) Drag dipole source for Mt = 1.4,

m = 16.
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c) Thrust dipole source for Mt = 1.4,

m = 12.
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d) Thrust dipole source for Mt = 1.4,

m = 16.

Figure 4.7: Comparison of the ring model (upper side) and the disc model (lower

side) for the directivity pattern of the normalized scattered pressure (ring radius

0.75 and disc radius 0.8).

disc to ring radii. When increasing the ring radius to 0.9 (Fig. 4.6), the differences

are highly reduced. This is also confirmed by Fig. 4.7, where the disc radius is

reduced to 0.8 and the ring radius is 0.75. Therefore, from the scattered pressure

directivity pattern point of view the two models are equivalent for a right choice of

the radii, in spite of their different contents.

Figure 4.8 shows the variation of the scattered power levels between the two source
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Figure 4.8: Variation of scattered power level between the ring and disc models for

thrust and drag dipole sources.
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Figure 4.9: Scattered power level as function of the rotor disc radius for the thrust

dipole source and two different orders m.

models, ΠS
ring − ΠS

disc, as function of the tip Mach number Mt and the azimuthal

order m. The results correspond to the case of disc radius 1 and ring radius 0.9. The

ring source model predicts higher scattered power levels than the disc source model,

on average between 10 and 14 dB. Generally, varying the tip Mach number and the

azimuthal order has little effect on the variation of the scattered power level. The

maximum difference of ΠS
ring − ΠS

disc is less than 2 dB for the thrust dipole source

and less than 4 dB for the drag dipole source. In particular, the main effect is due

to the azimuthal order m. Fixing m, the maximum difference of ΠS
ring − ΠS

disc is

around 1 dB both for the thrust and the drag dipole source, having the minimum

variation of the scattered power level for m = 4 and m = 8.
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a) Ring model for Mt = 1.0, m = 16.
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b) Disc model for Mt = 1.0, m = 16.

Figure 4.10: Comparison of the ring and disc model varying the distance D for the

directivity patterns of the normalized scattered pressure for the thrust dipole source:

upper plot D = 16, lower plot D = 64.

In order to show the effect of the rotor disc radius on the radiated power, Fig. 4.9

reports the scattered power level versus the disc radius for a couple of orders m and

the thrust dipole source as sample. In this specific case the levels are referred to

Pref = 1. The power decreases when a lower disc radius is used. This is consistent

with the fact that when the disc radius decreases the source area decreases. The

trend is not affected by the source model and the azimuthal order.

Another important parameter is the distance D at which the pressure is evaluated in

the external acoustic field. In the above analysis, D was kept constant and equal to 8.

Figure 4.10 shows a comparison of the ring and disc models in the very far field. Here,

the upper and lower sides of the plot refer to the different distances. The ring model

performs numerically better, because the pattern is slightly affected by the increased

distance. Figure 4.11 shows the dependence of the directivity pattern on the distance

D and the comparison between the two source models for Mt = 1.4 and m = 12.

The agreement between the ring and disc source models is confirmed at different

distances D. The pattern changes with D, but the global characteristics, i.e., the

main lobes, remain the same, especially in the far field (D > 4). Furthermore, when

varying D, the scattered power level does not change, thus energy is conserved in the

model and this confirms that the expression of the power level (Eq. 4.1) is valid in

the field of interest. On the other hand, the maximum scattered pressure decreases
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a) Ring model for Mt = 1.4, m = 12:

upper plot D = 4, lower plot D = 8.
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b) Ring model for Mt = 1.4, m = 12:

upper plot D = 16, lower plot D = 64.
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c) Disc model for Mt = 1.4, m = 12:

upper plot D = 4, lower plot D = 8.
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d) Disc model for Mt = 1.4, m = 12:

upper plot D = 16, lower plot D = 64.

Figure 4.11: Comparison of the ring and disc model varying the distance D for the

directivity patterns of the normalized scattered pressure for the thrust dipole source

(ring radius 0.9 and disc radius 1).

linearly on a logarithmic scale (Fig. 4.12). This is a consequence of the fact that

for constant power the product of the pressure and distance, D, has to be constant,

so that half of the maximum pressure corresponds to a double distance.
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b) Disc model for m = 16.

Figure 4.12: Maximum scattered pressure versus distance D for the thrust dipole

source.
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Chapter 5

Effect of a Swirling-Translating

Mean Flow. Far Field

Propagation.

In this chapter the analysis of the spinning rotor source propagating through a duct

is extended to take into account the effect of a swirling-translating mean flow. The

BEM formulation and the source model presented in Section 3.2.3 is applied to

investigate the effect of the mean flow on the far field propagation.

According to the results presented in the previous chapter, the pressure directiv-

ity patterns of the disc and ring source models are in total agreement for a ring

to disc radius ratio equal to 0.9. Therefore, the analysis was limited to the ring

source model, using a ring radius equal to 0.9. For simplicity, the only thrust dipole

component, as presented in Section 3.2.4, was tested.

5.1 Model validation: comparison with the exact

solution

The computational model was validated by means of the exact solution of a dipole

point source

φ =
∂

∂xs

(
e−iωθ

4π%̌

)
, (5.1)
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Figure 5.1: Comparison of the directivity patterns of the velocity potential generated

by a dipole (ka = 4) and the BEM solution scattered from a cylinder.
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Figure 5.2: Discretized cylinder geometry surrounding the duct.

where quantities are defined as in Eq. (3.89)). The velocity potential due to the

dipole was compared with the BEM velocity potential scattered from a cylinder

with the same dipole providing the boundary condition for the incident field. The

cylinder axis was placed in the x-direction and its center at the coordinate center.

The cylinder radius a was used as the reference length; the length of the cylinder

was 2. The dipole, directed along the x axis, was placed on the z axis at a distance

0.5 from the origin of the coordinates. The directivity patterns were evaluated on a

circle of radius 2 on the xy plane.

Figure (5.1) shows the comparison for a dipole source oscillating at the non-dimensional

frequency ka = 4. The case concerns with the superposition of a flow translating

along the x axis and a swirling flow rotating around the same axis. The swirling

mean flow angular velocity Ω∞ was normalized using a/c as the time scale. The Ω∞

values are 0, 0.4, 0.6. The exact and computed velocity potentials agree very well,

especially for M∞ = 0.4, while for M∞ = 0.6 some distorsion can be noted in the

directivity pattern. The latter is probably due to the effect of the approximation

of the surface gradient integral coefficient, described in Appendix A, which is more

effective for high Mach numbers.

5.2 Spinning rotor source results in the far field

The computational model was used to investigate the characteristics of the far field

radiation patterns generated by the rotor ring incident field (Eq. (3.91b)) and

convected by a swirling-translating mean flow.
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b) Mt = 1.4, m = 12

Figure 5.3: Effect of the length of the fictitious cylinder, shorter (upper side) and

longer (lower side), for the directivity pattern of the normalized scattered pressure.
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Figure 5.4: Effect of the width of the fictitious cylinder, reference (upper side) and

wider (lower side), for the directivity pattern of the normalized scattered pressure.

M∞ = 0.4, Ω∞ = 0.4.

The duct geometry is the same used in the previous chapter (Fig. 4.2). In order to

simulate a stationary nacelle embedded in still air with a mean flow passing through,

the directivity pattern in the far field for a stationary observer was obtained as

follows: (i) for the duct in a swirling-translating mean flow, the BIE (3.79) was used

to calculate the scattered velocity potential on a fictitious cylinder surrounding the

duct; (ii) then, for the propagation outside the duct, the BIR formulation in the
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absence of flow was used to calculate the scattered pressure propagating from the

fictitious cylinder to the far field.

A discretized version of the fictitious cylinder geometry is shown in Fig. 5.2. The

dimensions were chosen so that the cylinder surface was very close to the duct

surface, especially to the external lateral boundary of the duct: radius and length

equal to 1.4 and 3, respectively. Figures 5.3 and 5.4 present the directivity pattern of

the normalized scattered pressure evaluated over a circle of radius D = 8, varying the

cylinder dimensions at M∞ = 0.4 and Ω∞ = 0.4, for a couple of source frequencies.

They show that a variation of the cylinder lenght, 0.5 longer and 0.3 shorter, does not

significantly affect the far field solution, and a variation of the cylinder radius, 0.4

larger, slightly affects the solution. This confirms that the solution is not sensitive

to the fictitious cylinder dimensions, therefore the results obtained using the chosen

reference dimensions can lead to general conclusions.

The investigation was carried out for different spinning source blade tip Mach num-

bers Mt and azimuthal orders m, according to the study on the comparison between

the rotor source models reported in the previous chapter. However, the order m was

limited to 12, to avoid some numerical instability occurring at the highest m value.

Furthermore, a negative value of m was also considered in order to investigate the

effect of the opposite rotation of the spinning source. Refer to Table 4.1 for the Mt

and m ranges and the corresponding non-dimensional frequencies ka. The Mach

number M∞ (opposite to the x-direction) and the rotation velocity Ω∞ of the mean

flow were chosen as M∞ = 0, 0.2, 0.4, 0.6 and Ω∞ = 0, 0.2, 0.4, 0.6.

5.2.1 Translating mean flow effect: varying the Mach num-

ber

In order to show the translating flow effect, the directivity pattern of the normalized

scattered pressure and the scattered power levels, evaluated at the distance D = 8,

were plotted by varying M∞ and keeping Ω∞ constant. Figures 5.5, 5.6, 5.7, 5.8

show the directivity patterns for the azimuthal orders m = 4 and 12 and the angular

velocities Ω∞ = 0 and 0.4. The upper and lower sides of the directivity patterns refer

to the different Mach numbers, M∞ = 0, 0.2, 0.4, 0.6. Figure 5.9 shows the variation

of the scattered power level versus the translating flow Mach number, fixing the tip

Mach number Mt and the order m. The difference of the levels were evaluated with
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respect to the case where there is no mean flow.

The effect of the mean flow is clearly remarkable. As predicted by the modal analysis

(Section 3.1.2), the modal content increases when the flow Mach number increases.

In fact, the directivity pattern gets richer in peaks, i.e. more lobes corresponds to

more cut-on modes [13], and the scattered power level increases. Furthermore, the

main lobes of the directivity patterns tend to move downstream.
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Figure 5.5: Directivity pattern of the normalized scattered pressure for varying M∞;

m = 4, Ω∞ = 0.
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Figure 5.6: Directivity pattern of the normalized scattered pressure for varying M∞;

m = 12, Ω∞ = 0.
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Figure 5.7: Directivity pattern of the normalized scattered pressure for varying M∞.

m = 4, Ω∞ = 0.4.
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Figure 5.8: Directivity pattern of the normalized scattered pressure for varying M∞;

m = 12, Ω∞ = 0.4.
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Figure 5.9: Variation of the scattered power level versus M∞, for constant m: lines

− ◦ − m = 4, − ∗ − m = 8, −4− m = 12. The difference is calculated with

respect to the case where there is no mean flow.
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5.2.2 Swirling mean flow effect: varying the angular velocity

The swirling flow effect was investigated using the directivity pattern of the normal-

ized scattered pressure and the scattered power levels; Ω∞ was varied for constant

M∞. Figures 5.10, 5.11, 5.12, 5.13, 5.14 show the directivity patterns for the az-

imuthal orders m = 4, 8 and −8 and translating flow Mach numbers M∞ = 0.4 and

0.6. The upper and lower sides of the directivity patterns refer to different Ω∞ = 0,

0.2, 0.4, 0.6. Figure 5.15 shows also the variation of the scattered power level versus

the swirling flow angular velocity for constant Mt and m.

The swirling flow does have an effect on the directivity pattern, which is different

depending on the case. Both the number and position of the lobes vary. In some

cases the downstream lobe is completely shifted. This can be noted for the cases of

M∞ = 0.6, m = 8, and M∞ = 0.4, m = −8 (Ω∞ = 0.6). In general, as predicted

analytically [69], the swirling flow decreases the modal content when co-rotating

with the spinning azimuthal order of the incident source, fewer lobes corresponds

to fewer cut-on modes [13]. For positive m, the trend of the scattered power level

is overall decreasing with Ω∞, while for negative m the effect is opposite and less

evident. On the other hand, the scattered pressure directivity pattern becomes

wider when increasing Ω∞.
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Figure 5.10: Directivity pattern of the normalized scattered pressure for varying

Ω∞; m = 4, M∞ = 0.4.
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Figure 5.11: Directivity pattern of the normalized scattered pressure for varying

Ω∞; m = 8, M∞ = 0.4.
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Figure 5.12: Directivity pattern of the normalized scattered pressure for varying

Ω∞; m = 4, M∞ = 0.6.
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Figure 5.13: Directivity pattern of the normalized scattered pressure for varying

Ω∞; m = 8, M∞ = 0.6.
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Figure 5.14: Directivity pattern of the normalized scattered pressure for varying

Ω∞; m = −8, M∞ = 0.4.
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Figure 5.15: Variation of the scattered power level versus Ω∞, for constant m: lines

− ◦ − m = 4, − ∗ − m = 8, −4− m = 12. The difference is calculated with

respect to the case where there is no mean flow.
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Chapter 6

Effect of a Swirling-Translating

Mean Flow. Near Field

Propagation.

In this chapter the analysis presented in the previous chapter is extended to inves-

tigate the model performance in the near field. The purpose is to further validate

the model, according to the modal analysis, and better investigate the modification

of the duct propagation patterns due to the swirling-translating mean flow.

6.1 Spinning rotor source results in the near field

The investigation was performed using the spinning rotor source model (Eq. (3.91b))

and the duct geometry (Fig. 4.2) previously defined. Both the source and the mean

flow parameters were varied according to the study of the far field propagation:

spinning source azimuthal order m = 4, 8, 12 and blade tip Mach number Mt = 0.8,

1.0, 1.2, 1.4; mean flow Mach number M∞ = 0.2, 0.4, 0.6 and rotation velocity Ω∞

= 0.2, 0.4, 0.6.

The scattered pressure field was evaluated on a plane longitudinal to the duct (the

plane z = 0) considering two scenarios: (i) propagation in the mean flow inside

the duct and its neighborhood; (ii) propagation in absence of mean flow in the

field surrounding the fictitious cylinder (Fig. 5.2), which was previously defined to
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evaluate the far field directivity patterns.

Firstly, the effects of the translation and rotation of the mean flow on the in-duct

scattered pressure field were separately investigated. Then, the comparison between

the scattered pressure fields, in-duct and around the cylinder, was performed to

analyze the connections between the two.

6.1.1 Translating mean flow effect: varying the Mach num-

ber

The in-duct scattered pressure field was plotted on the plane bisecting the duct, by

varying the mean flow M∞ and keeping Ω∞ constant. The plotting section of the

plane extends in −4 < x < 2 and in −2 < y < 2. Figures 6.1 and 6.2 show the

cut-away view of the resultant noise field for Ω∞ = 0.4, Mt = 1.4 and m = 12, -12,

respectively. The scattered pressure was normalized using 0.5ρ∞c
2 as the pressure

scale.

As predicted by the modal analysis (Section 3.1.2) and confirmed by the far field

results (Section 5.2.1), when increasing the flow Mach number, the propagation is

enhanced, for both the spinning source azimuthal orders, co-rotating (m = 12) and

counter-rotating (m = -12) with the mean flow. However, the main direction of the

propagation is shifted. This effect is opposite for the two opposite orders m. For

m = 12, when M∞ = 0.2, 0.4, the propagation is mainly downstream, through the

intake, whereas, when M∞ = 0.6, the propagation is wider, but manly upstream,

through the exhaust. On the contrary, for m = -12, when M∞ = 0.2, 0.4, the

propagation is mainly upstream, through the intake, while, when M∞ = 0.6, the

propagation is wider still, but mainly downstream, through the intake.

Furthermore, the overall value of the scattered pressure is much higher when the

spinning source is counter-rotating with the mean flow. This is in agreement with

the far field analysis and is due to the effect of the mean flow rotation, object of the

next section.
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Figure 6.1: Scattered pressure field on a plane bisecting the duct for varying M∞;

Ω∞ = 0.4, m = 12, Mt = 1.4.
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Figure 6.2: Scattered pressure field on a plane bisecting the duct for varying M∞;

Ω∞ = 0.4, m = −12, Mt = 1.4.
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6.1.2 Swirling mean flow effect: varying the angular velocity

The in-duct scattered pressure field was plotted on the same section of the bisecting

plane defined for the flow Mach number effect analysis, by varying the mean flow

Ω∞ and keeping M∞ constant. Figures 6.3 and 6.4 show the resulting pattern for

M∞ = 0.4, Mt = 1.4, 1.0 and m = 12, -12, respectively.

In agreement with the modal analysis [69] and the far field results (Section 5.2.2), the

effect of the mean flow rotation is opposite for the two opposite spinning source az-

imuthal orders. When increasing the flow angular velocity, for m = 12 (co-rotating),

the propagation is reduced, whereas, for m = -12 (counter-rotating), the propagation

is highly enhanced. As obtained for the analysis of the mean translating flow effect,

the main direction of the propagation is also modified. For m = 12, when Ω∞ = 0.2,

0.4, the noise propagates more downstream, through the intake, but, when Ω∞ =

0.6, the scattered pressure field is more intense around the duct external boundaries

and the propagation direction is not clearly defined. On the other hand, for m =

-12, when Ω∞ = 0.2, the propagation is very low through the intake, while, when

Ω∞ = 0.4, 0.6, the noise propagates more upstream, through the exhaust, and the

scattered pressure values are much higher.
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Figure 6.3: Scattered pressure field on a plane bisecting the duct for varying Ω∞;

M∞ = 0.4, m = 12, Mt = 1.4.
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Figure 6.4: Scattered pressure field on a plane bisecting the duct for varying Ω∞;

M∞ = 0.4, m = −12, Mt = 1.0.
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6.1.3 Comparison of the propagation in the duct and in the

no-flow external area

The scattered pressure fields in the mean flow duct region and in the external region

embedded in still air were compared. The fictitious cylinder defined for the far field

analysis was used to propagate from the duct area to the no-flow near and far field.

In order to show the noise field from the cylinder onwards, another section of the

plotting plane was defined, surrounding the cylinder, extending in −4.5 < x < 2.5

and in −3 < y < 3. The comparison was performed using the cut-away views of the

resulting noise field on the two sections, i.e. the one bisecting the duct and the one

around the cylinder.

In some cases the patterns are in agreement, as shown in Figs. 6.5 and 6.6, referring

to the case M∞ = 0.6, Ω∞ = 0.4, Mt = 1.2, m = 8,-8. Both the propagations are

mainly downstream, throught the intake, but wider for m = -8, due to the mean

flow rotation effect. On the other hand, in other cases the propagations in the two

regions are in the opposite directions. This is shown in Fig. 6.7, referring to the

case M∞ = 0.4, Ω∞ = 0.4, Mt = 1.4, m = -8. The in-duct propagation is mainly

upstream, through the exhaust, whereas in the no-flow area it is mainly downstream,

through the intake.

The reason for this discrepancy could be that in the transition between the two

regions (with and without the mean flow) the flow areas where the scattered pressure

is more intense are not necessarily the ones which propagate more in the external

no-flow field. In fact, in Fig. 6.8 (case M∞ = 0.4, Ω∞ = 0.6, Mt = 1.0, m =

-8) the area around the downstream boundary of the cylinder is clearly intense in

scattered pressure, but the one which propagates more is the upstream region. This

is confirmed by the far field results, as shown in Fig. 5.14(b). This can also be noted

in Fig. 6.9 (case M∞ = 0.4, Ω∞ = 0.6, Mt = 1.4, m = -8), where both the in-duct

and the cylinder near fields show an intense scattered pressure area upstream, from

the exhaust, but in the no-flow region the propagation is more intense downstream.

Furthermore, Fig. 6.10 shows another interesting effect, occurring generally at M∞

= 0.6, Ω∞ = 0.6, m = 8. In the near duct region the direction of the propagation is

not clear. An intense scattered pressure area is only found on the region around the

duct external boundary. However, in the no-flow region the propagation pattern is

clear, wide and mainly in the upstream direction.
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Figure 6.5: Comparison of the scattered pressure in the duct near field (propagation

in the mean flow) and in the fictitious cylinder near field (propagation in the absence

of mean flow); M∞ = 0.6, Ω∞ = 0.4, m = 8, Mt = 1.2.
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Figure 6.6: Comparison of the scattered pressure in the duct near field (propagation

in the mean flow) and in the fictitious cylinder near field (propagation in the absence

of mean flow); M∞ = 0.6, Ω∞ = 0.4, m = −8, Mt = 1.2.
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Figure 6.7: Comparison of the scattered pressure in the duct near field (propagation

in the mean flow) and in the fictitious cylinder near field (propagation in the absence

of mean flow); M∞ = 0.4, Ω∞ = 0.4, m = −8, Mt = 1.4.
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Figure 6.8: Comparison of the scattered pressure in the duct near field (propagation

in the mean flow) and in the fictitious cylinder near field (propagation in the absence

of mean flow); M∞ = 0.4, Ω∞ = 0.6, m = −8, Mt = 1.0.
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Figure 6.9: Comparison of the scattered pressure in the duct near field (propagation

in the mean flow) and in the fictitious cylinder near field (propagation in the absence

of mean flow); M∞ = 0.4, Ω∞ = 0.6, m = −8, Mt = 1.4.
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Figure 6.10: Comparison of the scattered pressure in the duct near field (propagation

in the mean flow) and in the fictitious cylinder near field (propagation in the absence

of mean flow); M∞ = 0.6, Ω∞ = 0.6, m = 8, Mt = 1.4.
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6.1.4 General comments on the in-duct propagation

From the analysis of the scattered pressure field in the duct area, two kinds of

propagation can be identified: (i) low propagation, occurring at positive m and low

M∞; (ii) high propagation, occurring at negative m and high M∞. The former

is essentially through the intake, because the source is placed at one quarter of

the duct length, towards the intake, and the noise does not propagate through the

overall duct. The latter is characterized by a much more intense scattered pressure

field which spans all over the duct, propagating both downstream and upstream.

Generally, the noise field is higher towards the duct internal boundary, where the

mean flow rotation is more effective.

In summary, the effect of the mean flow on the scattered pressure field is, essen-

tially, to change the modal duct characteristics, by increasing or decreasing the noise

propagation, therefore, resulting in a strong modification of the patterns. From the

analysis of the near field results, this appears to be the main effect, more than a

direct modification of the pattern itself.
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Chapter 7

Conclusions

In this chapter the main results of the research project are summarized and the

research contributions outlined. Furthermore, the questions arisen from this work

are identified for a further investigation and future research activities are proposed.

7.1 Summary of the research project

A boundary element method was applied to the study of the noise radiation from

a duct with the rotor as an acoustic source. Initially, two rotor source models were

compared in absence of mean flow and considering a constant source intensity dis-

tribution. The rotor was modelled as a dipole and two components were considered:

the thrust, directed along the duct axis, and the drag directed along the azimuth.

The two source models were implemented and compared at different frequencies,

by varying the acoustic parameters, the source radius, and the distance where the

pressure was evaluated in the external field. The results revealed that the source

radius is a crucial parameter. Perfect agreement between the normalized scattered

pressure directivity patterns was found when the ring to disc radius ratio equals

0.9. Concerning the scattered power levels, the ring source model predicts higher

levels, however, varying the tip Mach number Mt for a given azimuthal order m, the

difference between the scattered power levels predicted by the two source models is

around 1 dB.

The previous investigation was used for the main subject of this research: modelling
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the effect of a swirling-translating mean flow on the duct scattered field. It is well

known that the convection of sound is strongly modified by the mean fluid flow. In

particular, as discussed in Chapter 3 and predicted analytically [69], modes cut on

in absence of mean flow can be cut off in presence of a swirling flow co-rotating with

the spinning azimuthal order, whereas modes cut off in absence of mean flow can be

cut on in presence of a translating flow or a swirling flow counter-rotating with the

spinning azimuthal order.

A boundary element method in the frequency domain was derived for scattering

problems in conjunction with a spinning rotor source model. The method was

applied to study the noise radiation from a duct and the rotor was modelled as a

dipole representing the thrust directed along the duct axis, using the ring source

model previously investigated.

Both the translating flow Mach number and the swirling flow angular velocity af-

fect the overall noise propagation in the near and far field. The modal analysis

showed that the modal content of the scattered field increases when increasing the

translating flow Mach number. While, a swirling flow leads to a reduction of the

mode propagation, if co-rotating with the azimuthal order, or an increasing of the

propagation, if counter-rotating. This is clearly confirmed by the scattered pres-

sure patterns and levels both in the far and in the duct near field for all the source

frequencies.

From the in-duct and near field results and looking at the connection between the

flow duct area and the no-flow external region in the near field, the comparison shows

that in some cases the propagation patterns are in agreement, whereas, for other

flow and source conditions they differ. This can be explained by the fact that in

the no-flow region close to the cylinder boundaries there are areas of high scattered

pressure, derived from the flow duct region, which do not necessarily propagate to

the far field.

In summary, from the analysis of the far field results, the mean translating flow

moves the main lobes of the directivity patterns downstream, whereas in some cases

the mean swirling flow appears to neglect this effect and the downstream lobe is

completely shifted. However, a further investigation into the in-duct propagation

shows that the main effect of the convecting mean flow is to change the modal

duct characteristics, more than the pattern itself. This results in turn in the strong

modification of the patterns, also noted in the far field.
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7.2 Steps undertaken to accomplish the research

objectives

The steps followed to carry out this analysis are here outlined.

• A broad literature survey was conducted to validate the state-of-the-art of duct

aeroacoustics and in particular of the BEM for internal aeroacoustic flows.

• Two rotor source models were implemented and their acoustic effect was in-

vestigated in the far field, by comparing both the directivity pattern of the

scattered pressure and the power levels, varying the frequency and the spinning

mode order of the source.

• A BEM approach for a translating-swirling mean flow was derived in the fre-

quency domain from the Morino and Gennaretti’s formulation.

• A source model was developed for the incident field including the effect of the

translating-swirling mean flow.

• Both the BEM formulation and the source model were implemented in a par-

allel code using the MPI libraries.

• The far field, in-duct, and near field results were analyzed, varying the flow

and source parameters.

7.3 Main research contributions

From the analysis of the two source models, it has been shown that no substantial

difference can be related to using a ring or a source model. In spite of the higher

complexity of the disc model, it has been shown that in the far field propagation

there is a good agreement between the two, and this was also related to a specific

ratio of the source radii.

However, the main target of this work was the investigation of the possibility to

extend the BEM approach to duct aeroacoustics, by including the effect of complex

mean flows. In the literature, BEM has been mainly applied to scattering in absence

of mean flow or in case of uniform convecting flow, but a BEM formulation was
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proposed for more complex mean flows. This has shown to be able to capture the

main features of the duct propagation, in agreement with the duct modal analysis,

and could lead to a better understanding of the phenomena involved, also taking

advantage of the fully 3D applicability, to model the scattering from more complex

geometries.

7.4 Open questions and future work

Several questions need to be investigated further. Concerning the ring and disc

source models, the two models are shown to be in agreement on the directivity pat-

terns, for a specific ratio of the source radii, but varying the order m, the difference

between the scattered power levels is not constant, it depends on m. Furthermore,

the effect of the duct geometry on the models was not investigated. It is clear that,

changing the duct response, the directivity pattern changes, but, even if the varia-

tions of the source radius do not affect the agreement, the question of the effect of

the duct geometry is not addressed here.

Another question regards the specific form of the source intensity used in the analy-

sis. A constant load on the disc or annular modelling the rotor is not realistic. For an

actual rotor, the dipole strengths fx and fθ are strongly dependent on the azimuth

θ. In fact, the turbomachinery blades distort the flow, so that the aerodynamic

loads, which depend on the relative velocity between the blade and the incident

flow, have a strong azimuthal dependence. All these matters could be object of a

future research project.

Furthermore, as a future work, the analysis of the convecting flow effect could be

extended by involving the shear flow. This could be done by modelling the shear

flow as a wake downstream. The wake is a surface of discontinuity for the velocity

potential and can be modelled through an additional surface integral in the boundary

integral equation, leading to a modification of the propagation response.
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Appendix A

Model of the Surface Gradient

Integral Coefficient

The coefficients Hkj of Eq. (3.92) are derived by replacing the surface integral of

the potential surface gradient by line integrals. Using the two identities∫
Sj

∇SBφ
S −1

4π%̌k
dS =

∫
Sj

∇SB

(
φS
−1

4π%̌k

)
dS −

∫
Sj

φS∇SB

(
−1

4π%̌k

)
dS, (A.1a)∫

Sj

∇SBf(x)dS =

∫
∂Sj

f(x) n∂Sjdl (∀f(x) function on Sj), (A.1b)

where n∂Sj is the outward normal to the boundary of Sj on the plane of Sj, the

second integral of Eq. (3.79) can be rewritten as

N∑
j=1

Mnje
−iωθkjMi ·

(
4∑

h=1

φSj − φSjh
2

∫
∂Sjh

−1

4π%̌k
n∂Sjhdl

)
, (A.2)

considering the four edges h of the panel. The potential at the boundary edge h is

defined as the average between the potential at the panel Sj, φ
S
j , and the one at the

boundary panel, φSjh.

Considering the effective value of the index jh in the sum, Eq. (A.2) can be rewritten

by collecting all the factors and multiplying each discretized potential φSj , as

N∑
j=1

Mnj

2
e−iωθkjφSj Mj ·

(
4∑

h=1

∫
∂Sjh

−1

4π%̌k
n∂Sjhdl −

∫
∂Sjα3

−1

4π%̌k
n∂Sjα3

dl

−
∫
∂Sjβ4

−1

4π%̌k
n∂Sjβ4

dl −
∫
∂Sjγ1

−1

4π%̌k
n∂Sjγ1dl −

∫
∂Sjδ2

−1

4π%̌k
n∂Sjδ2dl

)
, (A.3)



106 Model of the Surface Gradient Integral Coefficient

where Sjα, Sjβ, Sjγ, and Sjδ are the panels at the boundary of Sj, and n∂Sjα3
, n∂Sjβ4

,

n∂Sjγ1 , and n∂Sjδ2 are the corresponding normals at the edges. Figure (A.1) shows

how these quantities are defined according to the local coordinates (ξ, η).
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Figure A.1: Definition of the panels, edges, and normals at the Sj boundaries,

according to the local coordinates (ξ, η).
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Appendix B

Software Organization

Based on the BEM formulations presented in Chapter 3, a few parallel codes were

developed to analyze the noise propagation duct characteristics. The codes are

implemented in FORTRAN 90 and specifically they are derived from:

1. BIE (3.34) in the no-flow case, used for the acoustic analysis of the rotor source

models;

2. BIR (3.34) in the no-flow case, used for the duct noise propagation from the

fictitious cylinder to the far field in the absence of mean flow;

3. BIE (3.53) in the translating mean flow case, used for validation purposes;

4. BIE (3.79) in the swirling-translating mean flow case, used for the duct noise

propagation in the in-duct and near field and for the propagation from the

duct to the fictitious cylinder.

The software is structured so that the body surface discretization is implemented

separately from the BEM solver. Two separate codes were developed

• The geometry generator, which deals with the discretized body surface geome-

try, by providing the arrays storing the panel nodal coordinates and topology;

• The BEM solver, which implements the specific BIE solution in the numerical

form.

In this appendix details on the software organization are provided.
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B.1 Geometry generator

The code is based on a BEM formulation, therefore the body surface has to be

discretized in panel elements. Quadrilater hyperboloidal panels are used. Each

panel is identified by four nodes, one centroid, the topology array, which defines the

nodes belonging to the panel, and the normal vector to the panel surface.

Every body geometry can be discretized and used for the acoustic scattering analysis,

provided that it is a closed body. Several possible geometry discretizations were

implemented, among them

• the sphere, used for validation purpose;

• the cylinder duct;

• the axisymmetric duct generated by the complete rotation of a Joukowsky

profile;

Figure 4.2 shows some examples of the implemented discretized geometries.

The geometry generator reads all the input data dimensions and geometry param-

eters from a data file, then it produces unformatted files, storing the panel nodal

coordinates and topology, and the coordinates of the points in the external field

where the solution is evaluated. The parameters used for the array dimensions are

stored in a data file. Furthermore, an output file is generated to plot the discretized

geometry and the normal vectors, through a Matlab postprocessor.

In the case of the swirling-translating mean flow the panel nodal coordinates and

topology of the fictitious cylinder are also generated to provide the body surface

geometry for the code using the BIR in the absence of flow for the propagation to

the far field.

B.2 BEM codes

All of the BEM codes are structured through a main module, which sets up the

communication among the processors working in parallel and manages the other

modules, and three submodules
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1. the module for calculating the integral coefficients on the body surface for the

solution of the BIE;

2. the module for calculating the integral coefficients in the field for the solution

of the BIR;

3. the solver module for calculating the solution for both the BIE on the body

and the BIR in the field.

Only the code based on the BIR in absence of flow does not calculate the solution

of the BIE, but uses the scattered velocity potential, output of the code based on

the BIE for the swirling-translating mean flow, to calculate the solution in the far

field.

Each module writes the parameters necessary to the next module to dimension

the arrays on a data file. Furthermore, the modules which calculate the integral

coefficients write the output arrays on unformatted files read by the solver module

for the BIE and BIR solution.

As the final output, the codes evaluate the acoustic scattered pressure in the vol-

ume field, which can be post-processed through a Matlab script to plot either the

directivity pattern in the far field or the scattered pressure on the plane bisecting

the duct in the near field.

Specifically, in the case of the swirling-translating mean flow there are two possible

outputs

• the scattered velocity potential solution on the fictitious cylinder to be post-

processed by the code based on the BIR in absence of flow for the propagation

to the far field;

• the scattered pressure on the plane bisecting the duct for the in-duct analysis.
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Appendix C

Parallel Implementation

The parallel versions of the codes were developed during this project, using the MPI

library, which is a communication protocol independent of the computing language

used for high performance parallel computers, running on distributed memory sys-

tem. In order to deal with the solution of the BEM linear system, the BLACS

and ScaLAPACK libraries were also employed. The latter provides the linear al-

gebra routines for distributed memory computers, whereas the former is a linear

algebra oriented message passing interface, easy to use and portable, used as the

communication layer for the ScaLAPACK project.

In general, the parallel programming has the purpose to decrease both run time and

allocated memory by dividing the calculation among parallel processors. The steps

required can be summarized as

1. Initializing the library (using standard routines);

2. Setting up a processor grid;

3. Mapping the data structure onto the processor grid;

4. Calling the appropriate parallel solver;

5. Recomposing the global solution.

The processor grid is a two-dimensional array whose size and shape is controlled

by the program. A processor is identified by its row and column number in the

processor grid rather than its traditional MPI identifier or rank. The MPI rank for
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Figure C.1: Distribution of the data among the processors.

a processor is given by its position in the processor grid, for example, in a 2 × 3

grid where the processors are inserted by row, the processor with MPI rank 4 has

grid coordinates (1,2). Note that the row and column numbering both begin with

zero.

The work distribution procedure (step 3) is the most important and delicate part of

the whole process. It allows each processor to be responsible for the calculation on

some subset of the data.

A common approach for creating a parallel version of a matrix solving code is to

evaluate the global arrays and split up their elements among the processors, each

processor has a local array that holds only the global elements for which it is re-

sponsible. In Fig. (C.1) 1 an example of a data distribution is shown. The matrix

A is divided in blocks 2 × 2, each block is allocated to a processor in the 2 ×
3 processor grid, as shown in Figure (C.1), e.g. the processor (0,0) holds all the

black blocks. This approach has the advantage that, for an existing code in which

the global arrays are already specified (e.g. to work in the serial mode), the only

required changes to the code are

1. the inclusion of the local array definition,

2. the modification of the call to the solver itself,

1http://foxtrot.ncsa.uiuc.edu:8900/SCRIPT/PNLIB/scripts/serve home
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3. the recomposition of the global solution.

On the other hand, this approach has the disadvantage that both the global and the

local arrays have to be allocated by each processor, so that, while the parallelization

leads to decreased run time, no saving on allocated memory is obtained.

For this reason, a different approach was applied, which fully takes advantage of

the parallel work distribution. Instead of working in terms of global variables, it

is possible to define (allocate) every array directly as local to the single processor.

No global arrays are allocated at all. Basically the two approaches differ because in

one the arrays are defined and then split among the processor in the processor grid,

while in the other one they are directly defined in the processor grid.

The advantage of the second approach is that each processor allocates and works on

its own part of the computation from the beginning to the final solution; hence, the

distribution of the matrix is complete. However, the conversion from a serial code

to this type of parallel approach requires to rewrite the code completely.

In particular the following procedure was applied. After the communication starts

and the processor grid is initialized, each processor mainly takes the following steps

(note that here every array is local to the processor itself)

1. evaluating the frequency independent coefficient arrays Qi(xk) (i = 1, 5) and

stores them on unformatted files, for the set of collocation points xk local to

the processor itself;

2. evaluating the boundary condition array χS (3.35), applying the QUADPACK

and CUBA integration packages;

3. assembling the matrix ZC (3.107);

4. multiplying ZC times χS, using the ScaLAPACK routine, PCGEMV;

5. assembling the matrix YC (3.107);

6. evaluating the scattered velocity potential array φS, by solving the system

(3.106) in the least square sense using the ScaLAPACK routine, PCGELS;

7. sending its local solution φS to the master processor, which gathers all the

local arrays to recompose the global ones.
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Specifically, the coefficient arrays Qi(xk) are defined as

Q1
j(xk)→ source coefficients Bkj, Eqs. (3.93a), (3.95a), and (3.97a);

Q2
j(xk)→ doublet coefficients Ckj, Eqs. (3.93b), (3.95b), and (3.97b);

Q3
j(xk)→ ratelet coefficients Dkj, Eqs. (3.93c), (3.95c), and (3.97c);

Q3
j(xk)→ ratelet coefficients Hkj, Eqs. (3.93d) and (3.97d);

Q5
j(xk)→ acoustic delay coefficients θkj, Eqs. (3.94), (3.96), and (3.98).

Once the solution is evaluated in terms of the body scattered velocity potential, the

solution in the field is obtained by means of Eq. (3.102). The coefficient arrays Qi
V

are evaluated in the acoustic volume field and the scattered velocity potential φSV is

obtained following the same steps described above, but replacing the step (d) with

another call to the ScaLAPACK routine, PCGEMV. Then, use of the linearized

Bernouilli’s theorem (3.36), (3.82) gives the scattered pressure pSV .


