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Abstract— Since age is the most significant risk factor 
for the development of Alzheimer’s disease (AD), it is 
important to understand the effect of normal ageing on 
brain network characteristics before we can accurately 
diagnose the condition based on information derived from 
resting state electroencephalogram (EEG) recordings, 
aiming to detect brain network disruption. This paper 
proposes a novel brain functional connectivity imaging 
method, particularly targeting the contribution of nonlinear 
dynamics of functional connectivity, on distinguishing 
participants with AD from healthy controls (HC). We 
describe a parametric method established upon a Nonlinear 
Finite Impulse Response model, and a revised orthogonal 
least squares algorithm used to estimate the linear, 
nonlinear and combined connectivity between any two EEG 
channels without fitting a full model. This approach, where 
linear and non-linear interactions and their spatial 
distribution and dynamics can be estimated independently, 
offered us the means to dissect the dynamic brain network 
disruption in AD from a new perspective and to gain some 
insight into the dynamic behaviour of brain networks in two 
age groups (above and below 70) with normal cognitive 
function. Although linear and stationary connectivity 
dominates the classification contributions, quantitative 
results have demonstrated that nonlinear and dynamic 
connectivity can significantly improve the classification 

Copyright (c) 2019 IEEE. Personal use of this material is permitted. 
However, permission to use this material for any other purposes must 
be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org. The paper was submitted on 27/06/2019. We 
thank Neurocare for purchasing the EEG equipment used in this work. 
This is a summary of independent research supported by BRC and 
carried out at the National Institute for Health Research (NIHR) Sheffield 
Clinical Research Facility. The views expressed are those of the authors 
and not necessarily those of the BRC, NHS, the NIHR, or the 
Department of Health. This work was supported in part by the Liaoning 
Science and Technology Plan Project under Grant 20180550047, in part 
by the Shenyang Science and Technology Plan Project under Grant 18-
013-0-58, and in part by the Liaoning Provincial Department of 
Education Research Funding Project (QN2019010). This work was also 
supported in part by the Lloyd’s Register Foundation under Grant 
number GA\100113, National Science Foundation Program of China 
(61601029), Zhejiang Provincial Natural Science Foundation 
(LZ19F010001). (Corresponding author: Liangyu Chen; *Yifan Zhao and 
Yitian Zhao are co-first authors.)

accuracy, barring the group of participants below the age 
of 70, for resting state EEG recorded during eyes open. The 
developed approach is generic and can be used as a 
powerful tool to examine brain network characteristics and 
disruption in a user friendly and systematic way. 

Index Terms— Alzheimer’s disease, dementia, 
visualisation, System identification, Machine learning 

I. Introduction 

LECTROENCEPHALOGRAPHY (EEG) is commonly 
used in everyday clinical practice mainly for providing 

evidence for the diagnosis, classification and management of 
patients with epilepsy but also other various brain disorders 
(e.g. dementia). When compared with other methods that 
provide information about anatomical structures like magnetic 
resonance imaging (MRI), computerised tomography (CT) and 
functional MRI (fMRI), EEG offers ultra-high time resolution 
[1], which is critical to understand brain function. Synchronous 
networks form and dissipate in the range of 100-300ms which 
is thought to be the meaningful operational brain temporal scale 
[2]. EEG is economical, non-invasive, easy to administer and 
widely available in most hospitals. On the other hand, fMRI is 
costly, requires highly trained staff, a significant number of 
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patients experience symptoms of anxiety and claustrophobia, 
while it is also very sensitive to head movements. The latter, 
can be troublesome in patients with dementia where high levels 
of anxiety and restlessness are commonplace. Additionally, 
EEG directly measures brain electrical activity, thought to 
underpin cognitive functions, with far greater temporal 
resolution than fMRI which in return offers a very high spatial 
resolution, through measuring metabolic neuronal traces as a 
surrogate measure of their activity [3]. Empirical interpretation 
of the EEG is largely based on recognising abnormal 
frequencies in specific biological states (e.g. wakefulness 
versus sleep [4]), the spatio-temporal and morphological (e.g. 
sharp waves, spikes etc.) characteristics of paroxysmal [5] or 
persistent discharges [6], reactivity to external stimuli and 
activation procedures (like a period of hyperventilation [7] or 
intermittent photic stimulation [8]). Despite being useful in 
many instances, these practical approaches to interpret EEGs 
leave buried within the recordings very important dynamic and 
nonlinear interactions between various brain network 
anatomical constituents. There is significant evidence of this 
undetected information, for many neurological conditions, 
including epilepsy, neurodegenerative dementias, 
neuropsychiatric and movement disorders and normal cognitive 
paradigms [9]–[11]. Although EEG has been extensively 
studied over the last 30 years, there is a lack of systematic 
approaches to establish and analyse brain connectivity 
exclusively based on EEG recordings due to the complexity and 
the non-stationary behaviour of the signals; for example in the 
case of high levels of artefact, nonlinear dynamics and the fact 
that it is a typical ill-posed inverse problem. 

There are three well-studied types of connection: anatomical, 
corresponding to white matter tracts between pairs of brain 
regions; functional, corresponding to magnitudes of temporal 
correlations in activity, and finally, effective connection 
representing direct or indirect causal influence of one region on 
another [12]. Most brain functions are performed not by single 
regions but by the combined coordinated activity of widely 
distributed brain networks. Several neurological and 
psychiatric disorders may be reflected in a breakdown of the 
ability of some brain regions to communicate effectively. This 
field was propelled forward when Watts and Strogatz [13] 
introduced the small-world network model, which described a 
network that provided regional specialisation with efficient 
global information transfer. Sporns et al. [14], Riviere et al.
[15], Lohmann et al. [16], Stam et al. [17], and Lynall et al. [18] 
all focused on the structural topology of brain networks and 
their interactions by viewing the brain as a well-connected 
system, comprised of various regions that interrelate with each 
other to produce complex behaviours. In terms of effective 
connection, Kiebel et al. [19]  presented a Dynamic Causal 
Modelling (DCM) for EEG and MEG, where a spatio-temporal 
neural mass mode was used to model the neuronal dynamics of 
each source. In combination with the Bayesian model 
comparison, it provides a useful way to test hypotheses about 
distributed processing in the brain. Studying brain functional 
connectivity is increasingly being recognised as an important 
approach for early diagnosis of many brain disorders (e.g. 

Alzheimer's disease) [20]. From the system engineering point 
of view, the brain is a typical Complex System, which features 
many measurable components, interacting simultaneously and 
nonlinearly with each other and their environments at multiple 
levels [21]. The conversion of these observed measurements 
into knowledge about a physical object or system without a pre-
known function model has been one of the most important 
inverse problems, where nonlinear system identification is one 
of the most significant methodologies. Such a pure data-driven 
approach is attractive for brain studies because it allows less 
dependency on experience and knowledge of how brain 
functions. Although many parametric and non-parametric 
methods have been developed and applied to understand brain 
functional connectivity, these usually have the following 
limitations: 
(1) Assumption that the connectivity is linear and stationary: 
Linear methods with assumptions about stationarity of the 
signals cannot sufficiently reveal and characterise hidden 
information of complex signals, commonly exhibiting dynamic 
and nonlinear behaviours. Brain network interactions are 
dynamic as phase synchronisation and phase scatter occur 
within the millisecond range (100-300ms) [2]. Additionally, 
nonlinearity is already introduced on the cellular level since the 
dynamical behaviour of individual neurones is governed by 
phenomena of  integration, threshold, and saturation [22]. 
Transient associations, usually highly nonlinear, among 
different brain regions have been observed, for example in 
epileptic patients when moving from a normal state to a seizure 
[10], [11]. Exploring this otherwise undetectable information 
within EEG signals, far beyond the capabilities of commonly 
available methods, is crucial to better understand brain function 
and diagnose diseases. 
(2) Dependence on rigorous assumptions and sufficiency of 
sampled data. For example, Granger causality [23] is one of the 
well-established methods to understand the interrelationship 
among EEG channels. However, this method and its extensions 
are model-based and require a known model structure before 
analysis and usually demand large number of samples to 
establish a full unbiased model [24]. This is far from 
straightforward when the underlying relationships in the system 
are nonlinear and dynamic and the measured observations are 
noisy because, unless a complete and full model which accounts 
for any potentially nonlinear noise effects is estimated, the 
results will be compromised. Nonparametric methods, such as 
entropy [25], tend to require larger data sets or averaging over 
many realizations to mitigate the effects of noise. The noise on 
the signals will usually be unknown prior to analysis but simple 
averaging methods will not work well if the noise is highly 
correlated and nonlinear, which may be expected if the 
relationships are also nonlinear. 

It is well recognised that the integrity of dynamically 
interacting widely distributed brain networks, supported by 
widespread anatomical interconnections, is a prerequisite for 
normal brain function and that neurodegenerative conditions, to 
include the dementias, are associated with distinct patterns of 
brain network disruption [26]. Since age is considered the most 
significant risk factor for the development of AD [27], resting 
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state EEG recordings have been increasingly used to study and 
define the effect of normal ageing on brain network 
characteristics [28] and to distinguish it from pathological 
ageing and specifically AD. A variety of electrophysiological 
features to include the power and distribution of specific 
frequency bands, functional connectivity and signal complexity 
has been applied to reveal the electrophysiological mechanisms 
underlying AD [29] which to our knowledge remain still not 
fully elucidated.  

Revealing the spatial characteristics and the dynamic 
properties and type of disruption involving brain networks 
would be a step in the right direction, aiming to develop a 
diagnostic tool and a sensitive biomarker that can track disease 
progression. Oscillatory synchronisation between EEG 
recordings has been commonly estimated in previous studies 
with coherence [30], a linear method of measuring 
synchronisation although other methods of functional coupling, 
that allow detection of nonlinear interactions, like the 
synchronisation likelihood have been also implemented to 
study network disruption in dementia [31].  

When correctly applied and interpreted within the context of 
a system neuroscience framework, the imaging and study of 
brain functional connectivity can be a very powerful tool that 
has the potential to revolutionise our understanding of brain 
degradation or dysfunction in a user friendly and systematic 
way. To achieve this level of understanding, this paper 
introduces a new approach to estimate and visualise the brain 
functional connectivity based on EEG signals, without fitting a 
full model, focusing on nonlinear and dynamic interactions. 
The proposed approach is applied to understand the differences 
in brain functional connectivity between Healthy Controls (HC) 
and AD participants, divided in two separate age groups. A 
supervised machine learning approach is then employed to 
investigate how the nonlinearity and dynamics of functional 
connectivity contribute to the classification of AD and HC 
subjects. 

II. MATERIALS AND METHODS

A. Case selection 

Participants were HC or patients diagnosed with AD who had 
detailed neuropsychology testing and structural and functional 
(fMRI) scans. All subjects were recruited from Sheffield 
Teaching Hospitals NHS Trust memory clinic, and HCs were 
enrolled through opportunity sampling and word of mouth over 
a period of a year (February 2015-16). Twenty HCs (10<70y 
old, 11 females, 10>70y with a mean age of 67y+/-SD of 12y) 
and 20 AD cases (10 female, 16<70y and 4>70y, mean age 
64y+/-SD of 8y) were collected. Information regarding years of 
education, neuropsychology examinations and structural MRI 
findings are described in great detail in previously published 
work [9] and on Table A3 of Supplementary Material.  The 
NINCDS-ADRDA criteria [32] were used to diagnose AD, 
based on a consensus taking into account clinical history, 
neurological examination, neuropsychological scores and 
neuroradiological findings. This project was approved by the 
Yorkshire and the Humber (Leeds West) Research Ethics 

Committee (reference number 14/YH/1070) and informed 
consent was provided by all participants. 

B. EEG recordings 

A modified 10/10 overlapping a 10/20 international system 
of electrode placement was adopted. All recordings were 
undertaken with the XLTEK 128-channel headbox (Optima 
Medical LTD) at a sampling rate of 2K Hz (analogue low pass 
filter at 680Hz). An earlobe reference was used (jump cables 
were devised to combine the right and left earlobe electrodes; 
impedances where kept equal between sides). Thirty minutes, 
resting state, EEG recordings were acquired and distinct eyes 
open (EO) and eyes closed (EC) 5-minute epochs were obtained 
(throughout the recording period we encouraged all participants 
to rest and to try and keep their minds free of thought). They 
were readily prompted if their EEGs showed any signs of 
drowsiness. 

Table I categorises patients in 4 groups, based on their age 
group, either below or above 70. For each participant, data was 
collected for two separate physiological states: EO and EC. 
Time-locked video was recorded with the aforementioned 
XLTEK equipment (Optima Medical LTD). Bipolar 
derivations were used to revise all EEG data in this study and 
the following bipolar channels were available: F8-F4, F7-F3, 
F4-C4, F3-C3, F4-FZ, FZ-CZ, F3-FZ, T4-C4, T3-C3, C4-CZ, 
C3-CZ, CZ-PZ, C4-P4, C3-P3, T4-T6, T3-T5, P4-PZ, P3-PZ, 
T6-O2, T5-O1, P4-O2, P3-O1, O2-O1. Subsequently, both for 
EO and EC, 12 seconds in duration, artefact free epochs were 
selected for analysis. To avoid bias (i.e. empirical data 
interpretation and selection), the first 12s EO/EC epochs, 
isolated from each of the 40 participants with Spike 2 (version 
8) software, were used for data-processing and export. Slow 
EEG frequency artefacts, like those generated by eye blinking 
and movements, in the low delta and below ranges, were 
attenuated by applying to all data a time constant, τ=0.08s (high 
pass filter at 2 Hz). A notch filter was also applied to all 
channels. For this paper, the middle 4s section of this 12s data 
was selected for further connectivity analysis to avoid the 
boundary issue. 

C. Nonlinear functional connectivity estimation 

This paper proposes a revised orthogonal least squares 
(ROLS) algorithm to measure the connectivity between two 
EEG channels. OLS is an approach that has been used in 
nonlinear system identification where it searches through all 
possible candidate model terms to select the most effective ones 
to build the model [33]. The significance of each selected model 
term is measured by the Error Reduction Ratio (ERR) index 
which indicates how much of the change in the system 
response, in percentage, can be accounted for by including the 

TABLE I 

THE NUMBER OF SUBJECTS OF SIX STUDIED GROUPS

Group AD HC 

Below 70 EO 16 10 

Above 70 EO 4 10

Below 70 EC 16 10 

Above 70 EC 4 10 
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relevant model terms. This capability allows the computing of 
the contribution of linear and nonlinear terms independently 
without fitting the full nonlinear model, where parameter 
estimation and model validation are required.  

Considering a single input and single output (SISO) system 
with input time series {�(1),�(2), . . , �(�)} and time-varying 

output time series {�(1),�(2), . . ,�(�)}}, where � denotes the 
number of data points. To quantify and track the correlation of 
the input to the output, this paper uses a Nonlinear Finite 
Impulse Response (NFIR) model, also known as the Volterra 
Nonlinear Regressive with eXogenous (VNRX) Inputs model, 
to represent a SISO system. It can be expressed as 

�(�) = ���[����]� + �(�),    (1)

where  � (� = 1,2, … ) is a time index, � is an unknown linear 
or nonlinear mapping which links the system output � to the 

inputs;�(�) denotes the model residual. The symbol �[����]

denotes the current and past information of the input �, which 
can be expanded as 

�[����] = �⋃ �(� − �)
��
��� �,    (2)

where �� is the maximal temporal lag to be considered for the 
input �.  

If the system is time-invariant, a commonly employed 
implementation to specify the function � in Eq. (1) is a 
polynomial function, which can be expressed as 

� = �� + ∑ ���� + ��
��� , (3)

where �� is the m�� model term selected from a candidate term 
set constructed from all input vectors. Note that ��, in general, 
can be linear or nonlinear. The constant  �� is the coefficient of 
each term; � is the total number of model terms.  

If the model order is set as �, the candidate term set, denoted 
by �, can be expressed 

� = �� ∪ �� ∪ …∪ �� ∪ …∪ �� ,    (4)

where �� is the linear term set, expressed as  

�� = ⋃ �(� − �)
��
��� (5)

and �� is the 2nd order nonlinear term set, expressed as 

�� = ⋃ ⋃ �(� − ��)�(� − ��)
��
�����

��
����

(6)

and ��  is the ��� order nonlinear term set, expressed as 

�� = ⋃ ⋃ …⋃ ∏ �(� − ��)
�
���

��
�������

��
�����

��
����

.    (7)

If the inputs and output of a system are observable, the model 
represented by Eq. (3) can then be identified based on the 
principle of least square errors. Equation (3) is re-written as 

� = �Θ,    (8)

where 

� = �

�(1)
�(2)
⋮

�(�)

� ,� =

⎣
⎢
⎢
⎡
��(1)

��(2)
⋮

��(�)⎦
⎥
⎥
⎤
, Θ = �

�(1)
�(2)
⋮

�(�)

� (9)

and ��(�) = ���(�),��(�), … , ��(�)�. ��, ��,…,��  are the 
model terms selected from the candidate term set, written as Eq. 
(4). Matrix � can be decomposed as � = � × � where 

� = �

��(1) ��(1) … ��(1)

��(2) ��(2) … ��(2)
⋮ ⋱ ⋱ ⋮

��(�) ��(�) … ��(�)

� (10)

and � = {���} is an upper triangular matrix with unity diagonal 
elements. Equation (8) is then rewritten as 

� = ��,  (11)

where � = �Θ = [�� �� … ��]�. Equation (11) is now 
ready to represent the relation between Y and G.  

The importance of each model term to the variation of the 
system output is then estimated. Initially, set values ��� = 0 for 

� ≠ � (� then becomes an identity matrix), so ��(�) = ��(�), 
and calculate �� as 

�� =
∑ ��(�)�(�)�
���

∑ ��
�(�)�

���
.  (12)

For � = 2,3, … ,�, set ��� = 1 and then calculate 

��� =
∑ ��(�)��(�)�
���

∑ ��
�(�)�

���

,  (13)

where � = 1,2, … , � − 1. Next, the algorithm calculates 

��(�) = ��(�) − ∑ �����(�)
���
���

(14)

and  

�� =
∑ ��(�)�(�)�
���

∑ ��
�(�)�

���
.  (15)

The ERR value for each term ��  is finally defined as 

���� =
���
� ∑ ��

�(�)�
���

∑ ��(�)�
���

.   (16)

Values of ERR range from 0% to 100%. The larger the value 
of ERR, the higher the dependence between this term and the 
output. To stop the search procedure and determine the number 
of significant terms �, a criterion called Penalised Error-to-
Signal Ratio (PESR) is used [34]. It can be written as 

����� =
�

���
��

�
�
� (1 − ∑ ����

�
��� ) (17)

This criterion is introduced to monitor the search procedure, 
where � denotes the index of the selected terms. The search 
procedure stops when �����  achieves a local minimum. In 
this paper, the value of � was chosen as 8. 

To calculate the contribution of the input to the output, the 
sum of ERR of all selected terms, denoted by ����, is 
calculated by 

���� = ∑ ����
�
��� . (18)

Note � is the number of the selected terms, not the number of 
total candidate terms. The value of ���� (0 ≤ ���� ≤ 1) 
describes the percentage explained by the identified model to 
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the system output. If the considered inputs can fully explain 
the variation of the system output, the value of ���� is equal 
to 100%. 

The linearity of connectivity is represented by the sum of 
ERR of the terms that are linear, and it can be computed by 

����(�,�) =
∑ (����)|��∈��)�
���

����
.  (19)

The nonlinearity of connectivity is represented by the sum of 
ERR of the terms that are nonlinear, and it can be computed by 

����(�,�) =
∑ (����|��∉��)�
���

����
.  (20)

Considering the estimated ���� and ���� being the 
measurement of bidirectional functional connectivity between 
two signals, with 23 channels used in this study, there are 253 

possible combinations (��
��) when any 2 channels are paired 

together. These were organised in a pairwise manner by taking 
the first channel in the list (F8-F4) and pairing it with every 
other channel according to their order (F8-F4:F7-F3, F8-F4:F4-
C4, F8-F4:F3-C3 …). The process was subsequently repeated 
for all other channels to the end of the list. However, since each 
channel is bipolar in nature, any pair with common electrode 
locations (such as F8-F4 and F4-C4) is neglected as this could 
lead to misleadingly high false correlation between the pair. 
There are 46 channel pairs that have this characteristic. A total 
of 207 channel pairs is therefore analysed in this paper. 

D. Functional connectivity dynamics estimation 

Dynamic Range of Connectivity (DRC) is introduced in this 
research to describe the dynamics of functional connectivity 
across multiple epochs (5 mini-epochs per participant both for 
EC and EO states). This was estimated both for linear and 
nonlinear connectivity in every EEG recording. DRC is based 
on the more commonly known “dynamic range” which is 
defined as the ratio between the largest and smallest values of 
that signal. DRC in this study is also based upon this definition. 
However, given the nature of the ERR estimates used in this 
study, some elements in the series of 5 values from 5 epochs 
can have 0 and would render the value of that series’ DRC 
infinitely large. To address this issue, in the case where the 
smallest element is 0, while the largest value is not, DRC is 
calculated using the second-smallest non-zero element instead. 
For the case in which the maximum is the only non-zero 
element, DRC is defined as 1 to reflect the fact that the 
minimum and maximum of non-zero values are the same. 
However, for the case in which the series consists entirely of 0, 
DRC is defined as 0 to represent the lack of dynamics for that 
series. Transient associations among different brain regions 
have been reported [10], [11] for various brain-related disorder, 
but have not been fully explored. This paper investigates the 
difference of DRC within both linear and nonlinear associations 
among all EEG channels in HC and AD participants.  

E. Connectivity Visualisation 

A revised Circular Graph (RCG) is introduced in this paper 
to visualise the ERR based connectivity estimates. The 
visualisation functionality was developed based on the original 

code written by Kassebaum [35] and was modified to include 
additional features to fit this research. The visualisation 
function draws a circular plot where the channel names are 
placed on the circumference of a circle. The connectivity values 
between channels are drawn as lines connecting the two 
channels, with its width representing the strength of the 
connection between two channels. The RCG also plots a legend 
for the plot containing 5 lines of differing width, with their 
corresponding values in the lower right corner, as can be seen 
in Fig. 1. Plotting the values for every channel pair would 
overwhelm the readers with too much information at once. 
Thus, RCG performs a thresholding operation prior to plotting, 
with only values higher than a specified threshold being plotted 
for visualisation. The threshold is selected by looking at the 
max, mean, and STD of the values in all datasets within the 
same plot. 

To further improve the interpretability of the plot, the 
location of the channels is based on the location of the electrode 
channels used in the datasets. The central channels (CZ-PZ, FZ-
CZ), since plotting them directly in the middle of the circle 
would render the plot unreadable, are placed instead together at 
the top of the plot. The rest of the channels are, then, placed in 
order from the frontal to the occipital areas. A grey middle line 

Fig. 1. An example of the introduced Revised Circular Graph for 
visualising the brain functional connectivity with the legend in the right-
bottom corner. The user-specified threshold and maximum value for 
this plot are 70 and 100 respectively. 

Fig. 2. The proposed RCG plot overlaid with EEG electrode locations 
to highlight the real electrode locations and their corresponding 
locations in the plot. 
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is also drawn to clearly mark the left-right hemisphere. To 
better illustrate this paradigm, an example plot, overlaid with 
electrode locations is shown in Fig. 2. 

F. Classification using Machine Learning 

The proposed classification using machine learning 
approaches based on features from ERR connectivity values, 
was developed as an add-on to the previously proposed 
dementia classification framework [36]. As already fine-tuned 
and implemented in the original framework, K-Nearest 
Neighbour (KNN) classification method where K=1 with 10-
fold cross-validation was used in this paper. Each value of 
classification accuracy in this paper was calculated through 
averaging 50 iterations of classifications. 

To capture the dynamics of functional connectivity of the 
data, the following procedures were done. For each dataset, the 
4s EEG record was equally divided into 5 mini-epochs, each of 
which is with a duration of 0.8s. For each epoch, the linear and 
nonlinear ERR values of each pair of electrodes, ���� and 
����, were calculated based on Eq. (19) and Eq. (20) 
respectively. The combined ERR values, ����=���� +
����, are also calculated. Therefore, 15 features were 
extracted (5 ���� values, 5 ����values, and 5 ���� values) 
from each bipolar pair. 

Arithmetic mean (Mean) and root-mean-square (RMS) of 
three types of connectivity for all five mini-epochs are used as 
two final features representing the average magnitude of 
functional connectivity for classification. In addition, statistical 
range (Range) and DRC are also produced for the same data, as 
two further final features for classification, representing the 
dynamics of functional connectivity. It should be noted that, in 
this paper, the number of features is kept consistently the same 
during comparisons to ensure unbiased outcomes. The 
following two analyses were conducted using the 
aforementioned features: 

Linear vs Nonlinear Component: The objective of this 
analysis is to inspect and quantify the impact of nonlinear 
connection on the classification accuracy. This impact was 
determined by comparison of classification performance of the 
linear features and the combined features, rather than the 
nonlinear features only (there are many elements with zero 
value in nonlinear features that affect the classification). Any 
improvement of performance using the combined features is 
contributed by the nonlinear component. Both Mean and RMS 
were used as features. 

Mean Magnitude vs DRC: It is well accepted that brain 
connections are dynamic and that functional connectivity is 
highly temporal in nature [37]. This analysis aims to investigate 
if the consideration of dynamics of connection can improve the 
performance of classification of AD and HC in the context of 
both linear and nonlinear components. It should be noted that 
the nonlinear connectivity is used directly to produce our 
estimates, as the elements with zero value have been neglected 
during DRC calculation. 

III. RESULTS

A. Functional connectivity magnitude in AD and HC 
Subjects 

In this study, strength of functional connectivity, represented 
by the linear and nonlinear ERR components, was obtained by 
averaging the 5 ERR values of a specified component (linear, 
nonlinear or combined) of each channel pair for each subject. 
These mean magnitudes were then averaged over all subjects in 
that group according to their label (AD/HC) to produce an 
average mean magnitude (AMM) value for each channel pair 
for a specific label. The resulting AMM values for linear and 
nonlinear components are plotted in Fig. 3 and Fig. 4 
respectively. 

In Fig. 3, the linear AMM shows a similar pattern in terms of 
significant connections and corresponding strength for HC 
subjects among all eye states and age groups, except for the 
Below 70 EC group where there is high connectivity strength 
among the parietal, temporal, and occipital areas. Contrary to 
the HC subjects, the linear AMM of AD subjects shows no 
consistent patterns among age groups nor eye states. The AD 
subjects in below 70 EO and above 70 EC show visible increase 
in the number of significant connections and strength for linear 
components, while the AD subjects in below 70 EC and above 
70 EO data show similar patterns to HC subjects (Fig. 3).   

The nonlinear AMM, plotted in Fig. 4, shows that in the EO 
and EC data for the below 70 cohorts, HC subjects display 
slightly more nonlinear connectivity among more channel pairs 
than their AD counterpart, mainly for the EO state. However, 
for the above 70 EO and EC states, the reverse can be observed 
with AD subjects showing significantly higher nonlinear 
connectivity strength than HC subjects in nearly all channel 
pairs. Even though there is an increase in the average magnitude 
of nonlinear connectivity both for AD and HC subjects in the 
elderly group compared to the below 70 groups, the most 
significant increase is observed in the older AD group during 
EO.  

Furthermore, similar as in Fig. 3 for the above 70 HC cohort, 
it is shown in Fig. 4 that the nonlinear connectivity strength in 
HC subjects remains relatively consistent throughout all eye 
states, with only a small drop in the below 70 EC group. From 
both figures, it can be inferred that for the older participants, 
HC subjects display relatively consistent linear connectivity 
strength, for EO and EC states but nonlinear estimates appear 
fairly consistent both for younger and older HC participants for 
both eye states.  This contrasts with the significant changes seen 
for the linear levels of connectivity strength between EO and 
EC states in AD, involving both the younger and older age 
group, albeit moving in opposite directions (i.e. higher for EO 
for those <70 and higher for EC for >70). On the other hand, 
the nonlinear estimates for the AD, show consistent findings for 
EO and EC states for each age group but striking differences in 
strength of connectivity for the below and above 70 cohorts, the 
latter showing brain networks engaging in much higher levels 
of widespread nonlinear synchronisation. 
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B. Functional connectivity dynamics in AD and HC 
Subjects 

In a similar manner as the last section, the functional 
connectivity dynamics of both linear and nonlinear ERR 
components, represented by the DRC of each channel pair, was 
calculated for each subject and each channel pair. By averaging 
DRC for a particular channel pair but over all subjects with the 
same label (AD/HC) separately for EO and EC states, the 
resulting average DRC for each channel pair was obtained and 
plotted in Fig. 5 and Fig. 6 for linear and nonlinear associations, 
respectively.  

Inspection of Fig. 5 shows that the average DRC of linear 
connectivity does not differ significantly between AD and HC 
subjects between EO and EC states, more obvious for those 
above 70. However, significantly higher nonlinear dynamics 
can be observed in Fig. 6, for the above 70 AD cohort, in 
comparison to the HC group both for EO and EC states. For the 
below 70 groups, HCs show higher level and more widespread 
nonlinear dynamic variability for the EO state. It is also worth 
noting that many more electrode pairs exhibit dynamic 
nonlinear connectivity fluctuations in the EO versus the EC 
state. 

C. Classification of AD and HC subjects 

An overview of the average classification accuracy of the top 
10 channel pairs with the best classification performance for 
linear, nonlinear, and combined connectivity is displayed in 

Table II. It can be clearly observed that the linear connectivity 
plays the dominant role in classification. It also shows that, for 
the magnitude features (Mean and RMS), the nonlinear 
connectivity in isolation does not provide a clear change in 
classification accuracy compared to results from the linear 
connectivity, which may be caused by the large amount of zero 
values.  

However, results from the combined connectivity provide the 
best classification accuracy for all groups (up to 90% average 
accuracy). It should be noted that the number of features used 
for all three tests was the same to ensure unbiased results. It can 
be inferred that adding nonlinear components into the algorithm 
has an impact on the overall average classification accuracy, 
although the linear component has the dominant contribution. 

To elaborate on the impact of nonlinear components on the 
classification accuracy, two sets of test were conducted: the first 
one used Mean and RMS features of linear connectivity while 

Fig. 3. The RCG plots of the AMM values of the linear connectivity for 
all subjects in a group. The threshold for all plots is set as 0.3. 

Fig. 4. The RCG plots of the AMM values the nonlinear connectivity for 
all subjects in a group. The threshold for all plots is set as 0.04505. 

TABLE II 
THE AVERAGE CLASSIFICATION ACCURACY AMONG THE TOP 10 CHANNEL 

PAIRS WITH HIGHEST CLASSIFICATION ACCURACY IN EACH DATA SET FOR 

MEAN AND RMS FEATURES. (IN %, MEAN(SD)) 

Group 
Mean & RMS

Linear Nonlinear Combined 

Below 70 EO 78.42 (3.44) 78.77 (3.58) 80.33 (3.26) 

Above 70 EO 83.54 (3.28) 86.71 (5.57) 86.56 (4.04) 

Below 70 EC 72.00 (2.11) 74.35 (2.66) 74.5 (4.38)

Above 70 EC 88.54 (2.88) 80.98 (1.05) 90.5 (5.34) 
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the second, combined linear and nonlinear connectivity. The 
difference in classification accuracy for each channel pair 
between the two tests was determined. They were grouped 
according to whether the classification accuracy for the 
combined group had increased or decreased from their linear 
counterpart and the results are shown in Table III. Table III 
conclusively shows that when nonlinear components were 
considered in addition to the linear estimates, the classification 
power of the features is impacted both positively and negatively 
(>8% average change for all groups). However, this change 
varies across different eye states, with EO seeing slightly more 
changes to the average classification accuracy (>11% average 
change) than eyes closed state (>10% average change). 

Further analysis of individual changes in accuracy for each 
channel pair is illustrated in Fig. 7 where the minimum 
threshold for all plots is 20% and the maximum value is 50%. 
For the EO state, adding the nonlinear components induces 

stronger changes in the classification accuracy for channels 
pairs which are in different hemispheres. In contrast, strong 
changes for both age groups in EC state tend to occur to channel 
pairs in the same, left or right hemisphere. Additionally, the 
results for EC state in Fig. 7 shows that it is in line with the 
results in Table III where weaker changes can be observed in 
both age groups. 

Focusing in isolation at the rate of change in classification 
accuracy (Fig. 7) reveals which areas/electrode pairs are 
influenced by the inclusion of nonlinear connectivity, but it 
does not provide insight into their actual classification accuracy 
values after those changes. The top 5 channel pairs that have the 
best classification accuracy in terms of linear and combined 
connectivity are listed in Table IV. The results suggest that the 
best performing classification accuracies for the combined 
features are generally better than their linear counterpart. For 
the below 70 EO group, a slight increase (up to 2%) of accuracy 
is observed; while for the below 70 EC group, an up to 8% boost 
can be observed. Using the combined features, the above 70 
cohorts obtain classification accuracy of up to 100% for 2 
channel pairs in the EC state and up to 93% in the EO state. 

Addressing the second analysis in Section 2.6, Table 5 shows 
a comparison of classification performance between dynamics 
and mean magnitude features for both linear and nonlinear 
connectivity. For the linear connectivity, no significant 
difference in classification was observed between mean 
magnitude and dynamics. However, for the nonlinear 

Fig. 5. The RCG plots of the average DRC of the linear connectivity for 
all subjects in a group. The threshold for all plots is set as 1.35. 

Fig. 6. The RCG plots of the average DRC of the nonlinear connectivity
for all subjects in a group. The threshold for all plots is set as 1.5.

TABLE III 
THE AVERAGE CLASSIFICATION ACCURACY AMONG ALL CHANNEL PAIRS IN 

EACH GROUP FOR LINEAR AND COMBINED MEAN AND RMS FEATURES. (IN 

%, MEAN(SD)) 

Dataset 
Linear vs Combined Mean & RMS 

Increase Decrease 

Below 70 EO +13.14 (8.93) -11.86 (8.56) 

Above 70 EO +12.99 (9.97) -12.68 (9.81) 

Below 70 EC +10.28 (8.00) -10. 40 (8.49)

Above 70 EC +10.77 (8.81) -10.13 (7.93) 
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connectivity, the dynamics features perform better than mean 
magnitude connectivity (up to 7% better) for all groups except 
for the above 70 EO group. 

IV. DISCUSSIONS

The high levels of linear synchronisation estimated with the 
AMM (Fig. 3) for EO, for the younger AD cohort, are a clear 
expression of network dysfunction, as it is common knowledge 
that healthy subjects typically exhibit a desynchronised EEG 
during periods of eyes open. This can be easily seen by 
comparing the age matched RCG findings for the HCs in the 
same figure; the differences between AD and HC are 
prominent. Noticeably, the DRC estimates, expressing the 
dynamic changes in the strength of synchronisation over time 
(Fig. 5) show, for the EO state for the same age group, very 
little variation in AD. Therefore, widely distributed networks 
appear “locked” in high levels of linear synchronisation. This 
observation confirms the validity of the concept suggesting a 
balanced and temporally precise pattern of synchronisation and 
desynchronisation is pertinent to cognitive functions [38]. On 
the other hand, in comparison to the AD group, the nonlinear 
synchronisation AMM estimates are more widespread in HCs 
for EO state below the age of 70 (Fig. 4). More importantly, the 
dynamic variability of nonlinear interactions, as expressed by 
the DRC, is also much higher and widely distributed for HCs 

for the same age group during EO. This suggests that a degree 
of nonlinear dynamic connectivity characterises brain network 
function of the younger group HC participants but there is no 
difference between EO and EC for the older cohort.  

It is of interest that on work we have previously undertaken 
on an entirely different neurological condition, a paroxysmal 
epileptic disorder, childhood absence epilepsy, significant 
dynamic changes in linear and nonlinear synchronisation occur 
while the patients remain vacant during their epileptic absences. 
This type of epilepsy is an ideal example of widely distributed 
linear ictal neuronal synchronisation, during which deep 
transient loss of consciousness occurs; the patients remain alert 
but deeply unresponsive. Ictal EEG data analysis shows widely 
distributed very high levels of linear synchronisation while 
cross frequency nonlinear interactions, involving high gamma 
and beta frequencies before the epileptic seizures, precipitate 
during the short lived paroxysmal epileptic attacks and reappear 
immediately after the cessation of the seizures.  At the same 
time linear synchronisation levels disintegrate and normal 
cognitive function re-emerges. Although this analogy may 
sound far-fetched, it gives an idea of how complex and dynamic 
can be the linear and non-linear brain network dynamics that 
underpin normal cognitive functions. It also implies that linear 
and nonlinear dimensions of synchronisation can exhibit 
counterintuitive shifts in opposite directions.  

This work provides the proof of principle that measuring in 
isolation the strength of linear synchronisation is not enough to 
describe the complex behaviour of brain network interactions. 
We provide evidence suggesting there are advantages from our 
approach where separate estimations of linear and nonlinear 
dimensions of synchronization, with their respective strength 

Fig. 7. The RCG plots of the change in classification accuracy from 
models trained with Mean and RMS of linear connectivity to models 
trained with Mean and RMS of combined connectivity.

TABLE IV 
THE TOP 5 CHANNEL PAIRS AND ITS CLASSIFICATION ACCURACY FOR EACH 

GROUP USING MEAN AND RMS FEATURES OF LINEAR AND COMBINED 

CONNECTIVITY. (IN %, *ACC DENOTES ACCURACY) 

Below 70 EO Below 70 EC 

Linear Combined Linear Combined 
Pair Acc Pair Acc Pair Acc Pair Acc 

T3-T5:
P4-PZ 

85.19 
F7-F3: 
T6-O2 

85.23 
C4-CZ:
O1-O2

76.92 
F4-C4:
P4-PZ 

85.23 

T4-C4:
P3-O1

81.54 
C3-P3:
P4-PZ

84.69 
F8-F4: 
O1-O2

74.42 
F4-FZ:
T5-O1

77.62 

CZ-PZ:
P3-O1

81.15 
F4-FZ:
T4-C4

84.15 
C4-P4:
C3-P3

72.88 
FZ-CZ:
T4-C4

77.38 

F7-F3: 
C4-CZ

80.58 
T3-C3:
P3-PZ 

81.00 
P4-PZ:
O1-O2

72.50 
T4-T6:
P4-PZ 

74.15 

C3-P3:
P4-PZ 

78.85 
C3-P3:
T3-T5 

80.38 
F8-F4: 
C3-P3 

71.15 
T4-C4:
C3-CZ

73.54 

Above 70 EO Above 70 EC
Linear Combined Linear Combined

Pair Acc Pair Acc Pair Acc Pair Acc
FZ-CZ:
T3-T5

86.79 
F7-F3: 
FZ-CZ

93.14 
F8-F4: 
C4-CZ

92.86 
C3-CZ:
O1-O2

100.00

F4-FZ:
O1-O2

86.79 
C4-CZ:
T3-T5 

92.86 
F3-C3:
P4-O2 

92.86 
F4-FZ:
P4-PZ 

100.00

T4-C4:
O1-O2

86.07 
C3-CZ:
P3-O1 

88.00 
F4-FZ:
T6-O2 

92.86 
F4-FZ:
T6-O2 

92.86 

P3-PZ:
O1-O2

86.07 
T3-C3:
C4-CZ

87.14 
F4-FZ:
C4-P4

87.86 
F3-FZ:
P4-O2

92.86 

F8-F4: 
F3-C3

85.71 
F8-F4: 
C4-P4

86.14 
F8-F4: 
C3-P3

87.14 
F3-C3:
T6-O2

86.86 
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and dynamic variations over time as well as their spatial 
distributions are determined. Noticeably, the latter can be very 
different for linear and nonlinear estimates. This 
comprehensive range of features we incorporate in this novel 
framework offers complementary information that sheds light 
on hidden dimensions of brain network behaviours in healthy 
aging and AD.    

The high levels of non-linear synchronisation observed for 
participants with AD above the age of 70, both for EO and EC 
states (Fig. 4) reveal that network dysfunction characteristics 
can be age related and future work in this area should consider 
analysing large numbers of age stratified cohorts. Our ERR 
method is a time domain approach, that does not provide 
information about the frequencies involved during those 
nonlinear cross-frequency interactions, which we suspect for 
the elderly patients with AD involve theta and delta bands, but 
this will be the aim of future studies.  

Changes attributed to brain maturation and development like 
the age-related background posterior slow wave (theta and 
delta) EEG activity, a well-known normal finding in clinical 
electroencephalography, referred to as “posterior slow waves of 
youth” merit some attention. These slow waves can be found 
interspersed with normal alpha rhythms until the age of 30 [39]. 
This is a good example of an age-related EEG change that can 
be easily appreciated on visual inspection of the data by a 
trained physician. More sophisticated quantitative EEG 
analysis with fractal dimension, an approach thought to be 
related to the complexity of EEG signal dynamics, has 
demonstrated significant change in the complexity of electrical 
neuronal activity throughout the lifespan, with a steady increase 
in young and middle-aged adults followed by a fall in the 
elderly [40]. In addition, previous work using various EEG 
features and a rigorous ML framework [36], estimated fairly 
reliably the participants chronological age exclusively based on 
brain electrical recordings. In this work we show that for linear 
synchronisation, HC participants below the age of 70 have clear 
differences in the strength of synchronisation between EO and 
EC states, stronger and more widespread in the posterior 
quadrant brain areas in the latter state. This network reactivity 
to eye opening is lost in the elderly HC group. In addition, the 
nonlinear estimates of DRC show higher variability in 
synchronisation with relatively wider spatial distribution only 
in the younger group during EO state. Of note, estimates of 
nonlinear functional connectivity show very little variation 
between EO and EC states in the elderly in the HC cohort. 
Equally, the strength of nonlinear synchronisation with AMM, 
remains consistent for EO and EC states both for the younger 
and older healthy participants. This observation suggests that 
this nonlinear approach produces state independent resting state 
EEG estimates of brain functional connectivity and that it could 
be applied on large EEG databases where the EO versus EC 
state is not known and data selection can easily become 
automated.  

V. CONCLUSIONS

This paper proposed a novel brain functional connectivity 
imaging technology, particularly aiming to determine the 

contribution of nonlinearity and dynamics, on distinguishing 
participants with AD from HC. The parametric method used in 
this work is established upon a NFIR model, and a revised 
orthogonal least square algorithm is proposed to estimate the 
linear, nonlinear and combined connectivity between any two 
EEG channels. This approach, where linear and non-linear 
associations and their spatial distribution and dynamics can be 
estimated independently, offered us the means to dissect the 
dynamic brain network disruption in AD from another angle 
and to get some insight into the effect of age in HCs. This 
algorithm does not require to establish an unbiased full model, 
which reduces the dependency on the number of sampling and 
model validation, which is attractive to understand a highly 
unknown complex system. A new parameter, called Dynamic 
Range Connectivity, is introduced to represent the dynamics of 
functional connectivity. A new functional connectivity 
visualisation method, the RCG, is also proposed to offer a 
visualisable conception and representation of linear and 
nonlinear associations and their dynamic changes between 
different brain regions during EO and EC states.  

Although the number of participants in this study is small, 
the spatial distribution and the linear and nonlinear dynamic 
behaviour of network disruption, revealed with the 
aforementioned approaches, gave us a glimpse into the 
complexity of brain network behaviours and spatial 
characteristics in health and AD, for participants younger and 
older than 70. Although this paper focuses on the application of 
this novel methodology on dementia, the developed approach is 
generic and can act as a powerful tool to better understand brain 
degeneration or dysfunction in a user friendly and systematic 
way. 
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