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This paper focuses on the application of an extended NSGA-II algorithm to the aeroas-
sisted spacecraft trajectory optimization problems. A new multi-objective spacecraft op-
timal control model is formulated and parameterized using discretization method. The
resulting multi-objective nonlinear programming problem is then solved via the multi-
objective evolutionary solver. In order to deal with path constraints that naturally arise
in practical trajectory planning problems, the original NSGA-II approach is extended by
introducing a new constraint handling strategy. Simulation results are provided to illus-
trate the effectiveness and feasibility of the enhanced NSGA-II algorithm in dealing with
spacecraft trajectory optimization problems.

I. Introduction

Spacecraft trajectory optimization problems have attracted significant attentions over the past couple of
decades.1,2 This type of problem is usually solved by applying direct transcription algorithms such as direct
collocation,3 direct multiple shooting4,5 or pseudospectral methods.6,7 All the direct methods aim to tran-
scribe the continuous-time trajectory optimization (optimal control) problems to a Nonlinear Programming
problem (NLP).3,8 The resulting NLP can then be solved numerically by well-developed algorithms such as
gradient-based methods or evolutionary-based algorithms.

In recent years, evolutionary-based methods have become more popular in the application of optimal con-
trol problems.8 The main difference between traditional gradient methods and derivative-free (evolutionary-
based) methods is that derivative-free methods such as Genetic Algorithm (GA),9 Artificial Bee Colony
(ABC) and Particle Swam Optimization (PSO),8,10 do not need the calculation of gradient information.
Moreover, evolutionary algorithms requires no initial guess since the initial population is chosen randomly,
and it is more likely than gradient methods to locate the global minimum. Contributions made to apply
these approaches can be found in literatures. For example, Yokoyama et al.11 implemented GA to solve a
constrained space plane reentry problem. Kamesh et al.12 applied a Hybrid Genetic Algorithm Collocation
to analyze an Earth-Mars orbit transfer problem. Although most of these applications are targeted at single-
objective problems, in reality, for space vehicle trajectory design, most missions may contain multiple mission
requirements and this brings the development of multiple objective evolutionary trajectory optimization.1,13

The mission scenario investigated in this paper focuses on the atmospheric skip hopping, targeting the
entry into the atmosphere down to a predetermined altitude point and the required controls involved in
returning back to Low Earth Orbit (LEO). Studies can be found in the literature regarding the skip reentry
of deep-space spacecraft with high speed over first cosmic velocity. However in the scenario considering in
this paper, a high thrust engine would be necessary for the SMV to return to low earth orbit. An example
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of a single-hop mission can be seen in Fig.1. Please note that for some other missions they might involve
multiple hops and not just one. The general skip-entry can be divided into five phases: initial roll, down

Figure 1. Mission profile

control, up control, Kepler and final entry. Considering the mission of the SMV is to overfly the ground
target at specific altitude, the most challenging two phases (i.e. phase 2 and 3) will be considered in this
paper.

To solve the constrained spacecraft trajectory optimization problems, an extended multi-objective evolu-
tionary algorithm is constructed and applied. The fundamental framework of this algorithm is based on the
Nondominated Sorted Genetic Algorithm-II (NSGA-II).14 The original algorithm is modified by embedding a
new constraint handling strategy so as to deal with the flight path constraints. This will be further discussed
in Section III.

II. Multi-Objective Aeroassisted Spacecraft Trajectory Optimization Problem

A. Dynamic model

Consider the motion of an aeroassisted vehicle modeled as a point mass over a spherical non-rotating Earth.
The vehicle re-enters the atmosphere at a predetermined altitude for observation and gathering of information
of inaccessible areas. Once this altitude point is reached, the spacecraft fires its engine and starts the ascent
phase, exiting the atmosphere and returning back to LEO. During the flight, the differential equations of
motion are given as:1,2

ṙ = V sin γ

θ̇ = V cos γ sinψ
r cosφ

φ̇ = V cos γ cosψ
r

V̇ = T cosα−D
m − g sin γ

γ̇ = L cosσ+T sinα
mV + (V

2−gr
rV ) cos γ

ψ̇ = L sinσ
mV cos γ + V

r cos γ sinψ tanφ

ṁ = − T
Ispg

(1)

where x = [r, θ, φ, V, γ, ψ,m]T are state variables representing: radial distance, longitude, latitude, speed,
flight path angle, heading angle and mass, respectively. u = [α, σ, T ]T are control variables of angle of
attack, bank angle and thrust. For simplicity reasons, the dynamic model described in Eq.(1) is abbreviated
as ẋ = f(x, u), x(0) = x0, where x ∈ <7 and u ∈ <3. x0 = [r0, θ0, φ0, V0, γ0, ψ0,m0] are the initial conditions
for the state variables.
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The atmosphere and aerodynamic model can be summarised as:

g = µ
r2 ρ = ρ0 exp r−re0

hs

L = 1
2ρV

2CLS D = 1
2ρV

2CDS

CD = CD0 + CD1α+ CD2α
2 CL = CL0 + CL1α

(2)

where S = 249.91m2 is reference area, ρ is the density of the atmosphere and ρ0 = 1.2250kg/m3 is the
density of the atmosphere at sea-level. re0 = 6378.135km is earth radius, L and D are the lift and drag
whereas CL and CD are the corresponding lift and drag coefficients. g is the gravitational acceleration.

A detailed description in terms of the entry reference frames and aerodynamic forces can be found in
Fig.2.

Figure 2. Aerodynamic forces

During the mission, each state and control variable should satisfy strict box constraints, which can be
described as xmin ≤ x ≤ xmax and umin ≤ u ≤ umax. In addition to taking the path constraints into
account, in this investigation the heating rate Q, dynamic pressure Pd and load factor nl are also considered.
The path constraints can be formulated as:

Q̇d = KQρ
0.5V 3.07qa < Q̇dmax

Pd = 1
2ρV

2 < Pdmax

nL =
√
L2+D2

mg < nLmax

(3)

where qa = (c0 + c1α+ c2α
2 + c3α

3).

B. Mission objectives

In the past, early studies on spacecraft trajectory optimization problems usually focused on single objec-
tive. However, in order to take more practical requirements into account, this type of problem should be
constructed containing multiple objectives and this is where nowadays the majority of research is focusing
on. To take more of the mission requirements into account, four objectives are considered. The first objec-
tive is to minimize the final time so as to complete a reconnaissance mission in the shortest possible time
interval. In addition, as mentioned in,1 minimizing the total aerodynamic heating is also chosen as one of
the objectives since the vehicle structure integrity is largely affected by the aerodynamic heating. While
the third objective is to maximize the final velocity so that the vehicle can have higher kinetic energy, to
enable the vehicle to have more flexibility to manoeuvre back into orbit. Moreover, in this mission scenario
to ensure the aeroassisted vehicle has enough fuel to carry-out several skip hops, the final objective is set to
minimize the fuel consumption, i.e., maximize the final mass value, during the whole manoeuvre. Therefore,
the objective functions selected for the analysis are:
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1). Minimizing the final time:
min J1 = tf (4)

2). Minimizing the total aerodynamic heating:

min J2 =

∫ tf

t0

Q̇(t)dt (5)

3). Maximizing the final velocity:
max J3 = V (tf ) (6)

4). Maximizing the final mass:
max J4 = m(tf ) (7)

III. Extended NSGA-II Algorithm

A. Discrete model

To solve the continuous trajectory optimization problem, discrete algorithms should be implemented such
that the continuous optimal control problem can be converted to static Nonlinear Programming (NLP)
problem. The control variables can be approximated by interpolation at Nkth discretized time nodes
[t1, t2, ..., tNk

]. Then the equations of motion are integrated with a fourth order Runge-Kutta method.
The discretized formulation of problem (1) is then given by:

minimize J = [J1, J2, J3, J4]

subject to xk+1 = xk + hk
∑s
i=1 bif(xki, uki)

xki = xk + hk
∑s
j=1 aijf(xkj , ukj)

g(xki, uki) ≥ 0

x(0) = x0

i, j = 1, ..., s, k = 0, ..., Nk − 1

(8)

where Nk is the number of discretized time nodes, while g stands for the inequality constraints described in
Eq.(3). Following the use of the discretization technique, the resulting multi-discipline NLP is solved by an
extended NSGA-II algorithm.

B. Extended NSGA-II algorithm

The multi-objective stochastic solver used for this work is the extended NSGA-II algorithm. This algorithm
utilises the mechanism of crossover and mutation operator to generate offspring population, and employs fast
non-dominated sorting approach to determine the non-dominant rank for each candidate solution. During
the optimization procedure, the first front is generated as the set of solutions that has the highest fitness
value and is not dominated by any other solutions in the current population. For completeness, a brief
description of this extended NSGA-II optimization algorithm is introduced.

There are four main procedures for the proposed algorithm, initialization, selection (based on the non-
dominated sort), crossover and mutation. In the initialization part, according to the discrete-time model
given by Eq.(8), the optimization parameters should be initialized at all the discrete time nodes. This can
be written as:

α = αmin + rand(·)× (αmax − αmin)

σ = σmin + rand(·)× (σmax − σmin)

T = Tmin + rand(·)× (Tmax − Tmin)

(9)

Following the population initialization, the mutation and crossover strategy used in this paper can be
found in.14 The classic NSGA-II determines the dominance relationship between individuals only by com-
paring the objective function values. When solving the trajectory optimization problem with constraints,
NSGA-II lacks the rule to handle the infeasible candidates. This paper extends the original NSGA-II al-
gorithm by using the violation degree of constraints V and this will be the primary metric to define the
V-based dominant relationship.15
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The constraint violation for each individual among the current population can be calculated as:

Vi =

I∑
j=1

µgj (u) +

E∑
k=1

µhk
(u), i = 1, 2...NP (10)

where E and I are the total number of equality and inequality constraints, respectively. NP is the size of
population. µgj and µhk

(u) are constraint violation functions corresponding to the inequality and equality
constraints, respectively. The definition of these function can be found in.1,15 Based on the V function
established above, each individual can be associated with all the constraints. In this way, the value of the V
function can directly reflect the magnitude of the solution infeasibility.

C. V-based dominant sorting

The violation degree of the ith individual is the sum violation of all the constraints and based on this
definition, the extended V-based dominant rule “�” is defined as follows:

Definition 1 (V-based dominant rule “�”) For two individuals u1 and u2 in the current population, u2 is
said to be dominated by u1 if and only if one of the following relationships is satisfied:

1. V (u(2)) > V (u(1)) > 0.

2. V (u(1)) = 0, V (u(2)) > 0.

3. V (u(1)) = V (u(2)) = 0, and for each objective function i, Ji(u(1)) < Ji(u(2)) is satisfied (Classic
dominance definition).

As shown in Definition.1, the feasible individual always dominates the infeasible one, while the individual
with smaller violation degree always dominates the one with higher violation degree. After the dominance
relationships are determined, the proposed algorithm applies a fast non-dominated sorting approach to
divide the population into different ranks.14 It should be noted that for constrained spacecraft trajectory
optimization problems, it is likely that all of the individual among the population are infeasible solution
in the first several generations. Then, three problem types can be introduced. If all the individuals in the
current population are infeasible solutions, the problem type is set to 0, whereas if some of the individuals
are feasible solutions, the problem type is set to 0.5. Correspondingly, Problem type = 1 means all the
candidates among the population are feasible solutions. To increase the algorithm efficiency, for the first
several generations (Problem type = 0), the non-dominant rank can be simply assigned by sorting the
violation degree of the individuals. The overall structure of this enhanced NSGA-II optimization algorithm
can be summarised as follows:

1. Initialize the population (u1, ..., uNp
) and other control parameters of the proposed algorithm.

2. For each candidate, calculate the objective function values J and the violation degree according to
Eq.(10).

3. Generate offspring population Qt by using the recombination and mutation processes,14 and combine
it with the parent population Pt to obtain Rt (Rt = Qt ∪ Pt).

4. Specify the problem type by checking the violation degree of individuals.

5. If Problem type = 0, then get all non-dominated ranks by sorting the violation degree (e.g. assign the
candidate trajectory having the smallest violation degree in the first front F1).

6. If Problem type = 0.5 or 1, then assign all non-dominated ranks using the V-based dominant rule.

7. According to the selection operator based on the crowding distance,14 select the best Np individuals
as the candidates of the new generation St.

8. Repeat step 2-7 until the maximum iteration number is achieved.
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Table 1. Control parameters for NSGA-II algorithm

Item Value

Population size 250

Maximum number of generations 10000

Tournament selection scale 3

Probability of crossover 0.8

Probability of mutation 0.2

IV. Simulation results

For the extended NSGA-II simulation, all of the control parameters are tabulated in Table 1.
The box constraint values (lower and upper bounds for each variable) are given in Table 2. The path

constraints maximum allowable values for heating, dynamic pressure and load factor are set as follows:
Qmax = 200BTU ; Pdmax = 13406.4583Pa; nlmax = 2.5.

Table 2. Initial conditions and box constraints for each variable

r(m) θ(deg) φ(deg) V(m/s) γ(deg)

Initial conditions 6450451.9 0 0 7802.9 -1

Minimum 6421191.1 -180 -70 609.6 -80

Maximum 6450451.9 180 70 9144.0 80

ψ(deg) m(kg) α(deg) σ(deg) T (N)

Initial conditions 90 92078.8 17.43 -75 0

Minimum -180 20000.0 0 -90 0

Maximum 180 92078.8 40 1 2× 106

A. Pareto-front solutions

Pareto front solutions are plotted in Figs.3-5. The pareto fronts are projected onto three planes: Minimiz-
ing terminal time versus minimizing aerodynamic heating, maximizing terminal speed versus maximizing
terminal mass, and minimizing aerodynamic heating versus maximizing terminal speed.

According to the mission objectives established in Eq.(4)-(7), it is observed that the objectives in Eq.(6)
and Eq.(7) are contradicting each other. More precisely, maximizing the final velocity can only be achieved
at the expense of fuel consumption (see Fig.4). This can also be reflected by the velocity and mass dynamics.
In addition, it should be noted that one of the parameters, that can increase aerodynamic heating, is dynamic
pressure. Dynamic pressure is functions of density and velocity. Since density in skip entry phase is relatively
small compared to velocity, maximizing velocity in turn increases aerodynamic heating (see Fig.5). This leads
to that the objective functions in Eq.(5) and Eq.(6) are also contradicting.

On the other hand, as can be seen from the aerodynamic heating equation, the total amount of heating
is largely affected by the upper limit of integration (tf ). Therefore, minimizing the terminal time (Eq.(4))
and minimizing the total aerodynamic heating (Eq.(5)) are highly correlated objectives (see Fig.3).

B. Path constraint solutions

To further analyze the performance of the enhanced NSGA-II algorithm, the path constraint results are
tabulated in Table.3.

As can be seen from Table.3, by applying the proposed V-based dominant sorting strategy, all the
candidate solutions in the obtained pareto-optimal set can satisfy the three path constraints. Therefore,
the structural and thermal safety of the aeroassisted vehicle is guaranteed, which is the prerequisite for the
validity of a constraint handling strategy for spacecraft trajectory optimization problems.
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Figure 3. Pareto front obtained via extended NSGA-II
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Figure 4. Pareto front obtained via extended NSGA-II
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Figure 5. Pareto front obtained via extended NSGA-II

Table 3. Path constraint results

Extended NSGA-II Qmax Pdmax nlmax

Maximum 197.62 13202.04 2.37

Violation degree 0 0 0

V. Conclusions

In this paper, an enhanced multi-objective evolutionary algorithm was constructed and applied to solve
the aeroassisted spacecraft trajectory optimization problem. To deal with the path constraints, a new con-
straint handling strategy is embedded in the original NSGA-II framework. Simulation results show the
trade-off and conflicting relationships between different mission objective. Moreover, all the obtained so-
lutions confirm the effectiveness and feasibility of the extended evolutionary solver for solving spacecraft
trajectory optimization problems. Therefore, the proposed solver can offer an efficient alternative for opti-
mizing this type of problem.
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