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SUMARY 

A general method for the solution of the non-
linear Shockley-Poisson differential equation which 
governs the potential distribution in non-degenerate 
semiconductor systems is described which can be applied 
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RESEARCH PROJECT Ra27-1 

An Analode Method for the Determination of Potential Distributiorks 
in Semiconductor :-y-stems 

1. INTRODUCTION 

This report provides an account of work carried out in conjunction with 

the Semiconductor Resistance Network Analogue project during the period 

September 1964 to September 1965, together with an outline of some earlier 

work which, while preceding the period under review, was significant for the 

formulation of the project. 

Part I provides a brief survey of the principles upon which this approach 

to the solution of potential distribution and related problems in semiconductor 

systems is based and indicates how resistance networks provide a reasonably 

convenient means for the study of a variety of simple systems. 

In Part II experimental results obtained so fax for a number of con-

figurations involving one and two dimensional p-n junctions are collected 

together. 

TX= 
1, 	Outline of Method 

A basic feature of the work described below is the use of diode groups 

in conjunction with resistance network analogues to simulate the two non-

linear terms representing the hole and electron densities in the Shockley 

Poisson equation 

V2* = -(q/c)(ND 
- NA 

 + p-n) 

where the symbols have their usual meaning, As previously pointed out(1) 

a representation has the advantage of providing solutions which encompass 

the correct potential distribution in regions of partial depletion of mobile 
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carriers, as well as in regions of complete depletion and of space charge 

neutrality. 

By the use of groups of matched diodes and adaptation of the scaling 

factor of the network to the (matched identical) reverse currents of the 

diodes, a representation of semicondoutor systems of arbitrary geometry, 

including arbitrary donor/acceptor profiles, under conditions of equilibrium 

and of quasi-equilibrium, i.e. applied bias but negligible current flow, 

becomes possible. 

In the remaining sections of Part I, one implementation of such a net-

work is described in detail. 

2. 	L.E612-tica lts 

The incorporation of semiconductor diodes into a resistance network as a 

means for the representation of non-linear terms in a Poisson type equation 

introduces a number of special requirements as well as certain limitations. 

(1) Any deviation of actual diode characteristics from the 'ideal' one upon 

which the representation is based will increase errors. 	In the networks 

under discussion, the doping ratio (ND  ytilat any point is represented by 

tile current ratio I/is 
where I is the current fed into the network node, while 

s 
is the diode reverse current upon which the network scaling is based. 

Under conditions corresponding to space charge neutrality in the semiconductor 

practically the entire current I will leave the node as diode forward current. 

Deviations from the ideal diode characteristics which occur at high levels of 

forward current may thus set a limit to the doping levels which can be incor-

porated in a network analogue. In fact for both Go diodes and for hot carrier 

diode s, ohmic series resistance will cause such deviations to become significant 

at current levels around 104  i so that the representation of doping levels 

in excess of this ratio leads to increasing error- 
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Fortunately, the region of primary interest in problems of the type con-

sidered here is that portion of the semiconductor structure in which complete 

or partial depletion of mobile carriers takes place and for many geometries 

of practical interest, which involve graded impurity profiles, this region 

coincides with low impurity concentrations, so that this shortcoming of actual 

diodes does not form a serious limitation. Nevertheless, the development of 

more 'ideal' diodes would extend the range of applicability of the network 

method. 

(2) Since i , the diode reverse saturr:tion current and 13*, the parameter 

governing the diode forward characteristic enter according to 

1  =  is(eV 

in a fundamental manner into the analogue equations, determining the scale 

factors for currents and distances, it is necessary, in principle, to use 

identical diodes. In practice this requirement can be adequately met by the 

use of diode groups, which are assembled from individually selected units in 

such a manner that each group rather than each diode has identical character-

istics. The manner in which this selection and grouping was carried out is 

described in L.1 below. Identical groups still impose the restriction of a 

uniform mesh cell size since the current fed into any node of a resistance 

network is proportional to the area of the cell of which the node forms the 

representative point. For greater freedom in the design of networks with 

varying mesh sizes an 'ideal diode', for which i
s 
is an adjustable parameter, 

would be required. 

On account of 'he rapid variation of i
s 

with temperature, it is clearly 

essential to provide facilities for the close control of the diode ambient 

temperature. 



3. Freedom of Desim 

In order to permit the largest possible number of different systems to be 

represented by R.N.W.A. methods it is desirable to design equipment in a manner 

which makes it easy to change from one geometry to another. In terms of semi-

conductor systems this means that as few restrictions as possible should be 

placed upon the impurity profile and the types of geometry. One-dimensional 

two dimensional and three-dimensional systems with/without various symmetries 

should all be capable of being set up. 

4. Description of Equi_Tment  

4.1 Diode Groups 

The preparation of diode groups to provide identical "equivalent diodes" 

involved the following steps which were carried out on 1200 individually labelled 

°A,1° junction diodes. 

(i) "2uality Control" 

(ii) Measurement of characteristic 

(iii) Grouping 

(iv) Assembly 

(i) alality.  Control 

The quality control step represented a qualitative check designed to 

eliminate diodes of grossly aberrant characteristics, diodes which showed any 

form of drift or instability and diodes which had low reverse break-down vol-

tages. It consistcdofavisual inspection of the forward and reverse character-

istics displayed on a Tektronix 575 curve tracer, and rejection of units in 

accordance with the above criteria, 

(ii) Measurement of Oharacteristics  

Far the purpose of grouping, diodes were characterised by a simple measure-

ment of is, However as a check against excessive leakage and against abnormal 
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forward characteristics, the following three measurements were carried out on 

diode and the results recorded: 

iri  at V = -0.5v 

ir2 at V = -1.5v 

Vf  at if  = 1001iv21 	(theoretical value rL 0.12) 

On account of the critical temperature dependence of these parameters all 

measurements were carried out with the diode located in a thermostatically 

controlled enclosure, after sufficient time had elapsed for the diode temperature 

to have become steady. 

Groupinz 

The identity number and ir
(-0.5v) of each accepted diode were used as data 

for a computer programme which sorted the diodes in ascending order of ir. 

(The programme was based upon the Pegasus library routine R720 MAX SORT but was 

extended to preserve the identity numbers through the sorting process.) 

From the sorted list diode pairs* were selected by inspection such that 

ir(1) + ir(2) = 1.04 + .014. In view of the inherent difficulty of accurate 

measurement of i
s 
a realistic estimate for the degree of conformity between 

diode groups is considered to be 1.05 + .05µA. A total of 400 groups was 

selected in this way. 

(iv) Assembly  

The groups selected by the procedure described were assembled on Veroboard 

Panels in accordance with the configuration shown in Fig. 1(b). Fig. 1(d) 

shows a photograph of such an assembly, each panel comprising 16 separate 

diode groups, i.e 32 diodes* or 8 'sinh term elements'. 

A few groups containing low it  diodes were made up with three diodes per 

group., 
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Periodic checks are made on the stability of the diode groups selected 

in the manner described, by measuring their leakage current. 	In Fig. l(a) 

is shown the didtribution of reverse currents of the 0A10 groups (is  measured 

at 0.75v and 25°C) 6 months after their initial sorting. 	Fig. 1(o) is a 

plot of: 

log(106if) = log is  + 13*V 

for a typical diode group, yielding the value of p*. 

4.2 Resistance Network+  

The individual diode group panels are used as plug-in circuits within a 

framework of printed circuit sockets and external terminals combined with a 

temperature °patrolled enclosure in such a manner that the resistance networks 

can be set up on the external terminals in patch board fashion. This arrange-

ment (Fig. 2) maintains the desired feature of versatility with respect to 

different geometries since these can be set up without any disturbance of the 

diode groups. At the same time individual diode groups are accessible for 

test purposes. 

4.3 Current Generators: NA  and ED  

As the analogue quantities corresponding to donor and acceptor impurity 

concentrations consist of currents which have to be fed into each node of the 

MIA, two simple units which allow choice of polarity and provide for the 

easy adjustment of these currents were constructed. As shown in Fig. 3 they 

consist essentially of a number of bus-bars to which external power supplies 

In Appendix I general design considerations for one and two dimensional 

semiconductor analogue networks, indicating the errors associated with the 

various networks, are collected together. 
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are connected, together with sets of plug-in and continuously variable resistors 

which serve for coarse and fine adjustments of thse currents. If gi  denote 

the conductance of the i
th channel and if V. is the supply voltage to this 

channel then the analogue relation will exist: 

N gI 
n.

s 

where i
s 
is the diode group reverse saturation current. 

4.4 Method of Measurement and Evaluation 

Once a desired system geometry has been set up by the addition of the 

appropriate network resistors and current and voltage supplies to the patch 

panel, measurements are taken by means of a digital voltmeter with print out 

facilities, which records the potential at each mesh point. 

The data obtained in this manner are then processed by means of a simple 

computer programme. Several such programmes have been writeen which evaluate 

p/ni, n/ni  and the field intensity E at every node of a one- or two-dimen-

sional network from the original potential data. 

FART II 

5. Experimenal Results 

The following investigations were all based upon the use of an intrinsic 

concentration figure ni  = 2.5 x 1013  cry
--3 

, i.e. representations of germanium 

systems. 

5.1 One dimensional systems: Single function structures  

(a) Linearly graded junct-ons:  

This case, which represents the 'classic' Shockley junction was the 

first to be investigated by the RN TA method(1) 

In Fig. 4 is shown a normalised plot for a junction with N
D
-N
A
= 

28 -4 
where a = 9.2 x 10 	under conditions of thermal equilibrium, 
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and forward and reverse biases. Also shown in this figure is the 

potential distribution for the equilibrium case as calculated from the 

Shockley approximations. The depletion layer width xm*, found from 

the latter equals 1.87 units (1 unit = 10 
1 
 microns). 

(b) Diffused junction  

Figs 5(a), (0), (c), show the potential distribution obtained for 

a diffused junction representation characterised by a uniform highly 

doped n-region (ND/ni  = 161 x 104) extending from x* = 1 to x* = 10, 

a uniform, moderately doped p region (N,/n. = 40) which extends from 
Ai 1 

X*  10 to x* = 60, and the non-uniform donor profile: 

N
D
(x*) = 104cerf(x*/L*) 	= 11 

This combination results in the formation of a highly asymmetrical 

p-n junction near x* = 33. 	Three potential profiles are shown, corres- 

ponding respectively, to zero bias and to reverse bias value of -1.5 

and 74.0 bias cases are shown in Fig. 6(a), (b), while Fig. 7 illustrates 

the electric fi-ld intensity distribution. 

5.2 One dimensional system: Multiple junction structures - 

"Critical Base Widths" 

(a) The variation of the 'critical' base width with base doping level 

in a p-n-p structure composed of two ?Irupt junctions is illustrated in 

Fig. 8. 	The emitter and collector p regions are characterised by 

N, = 6000 n.. 	The 'critical' base width, Xcrit  is that which produces 

inversiJn of the base regi)n, i.e. the n type base will be in a 'pseudo- 

p-state' under equilibrium conditions. 	This case has been discussed 

by Goldberg(} who derives the approximation, 

= 	L 
crit 	crit DE where L

DE 
denotes the 

extrinsic Debye length while?‘crit  is a dimensionless parameter related 
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to the base doping level. 	This approximation is shown in Fig. 8. 

Fig. 9 illustrates the effect on the potential distribution through 

the p-n-p structure of varying the base resistivity. 

(b) p-n-p
+ 
 configuration  

Some preliminary work has been done on this type of structure*. 

The electrostatic potential has been plotted for (i) equilibrium, and 

(ii) -0.4 reverse bias as shown in Fig. 10 and the effect of reducing 

the width of the n-region on the mobile carrier distribution has been 

recorded. 

5.3 One dimensional systems: Surface potential:  

By representing a 'half junction' on the RN 1L and applying a series of 

currents to the terminating node, the variation of surface potential as a 

function of surface charge can be investigated and data of the type first 

discussed by Kingston and Neustadter(3)  can readily be obtained. 

A 	 set up 

and, for different amounts of charge added to the surface, the variation 

of potential within the semiconductor was recorded as shown in Fig. 11(a). 

Accumulation or inversion is apparent at the surface depending upon the sign 

of the added surface charge, In Fig. 11(b) the Kingston and Neustadter 

potential function 

F(us'
u) = 	 B - u8) - (cosh u

B 
- cosh us) 

is plotted against us, where us  = (q/kT)40s, uB  = (q/kT)1)B  represent the norma-

lised surface and bulk potential, together with experimental data obtained 

from the analogue. 

Interest in this type of problem has been exprossed by Plessey Research 

Laboratories. 
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6. Two dimensional systems  

The following exploratory. investigations have been carried out on two 

dimensional systems, under the simplifying assumption that, as a first 

approximation, the influence of external fields upon the internal potential 

distribution can be neglected. 

6.1 LLDx122Ltuatiorl 

Potential distribution plots, under various reverse biases, across a 

single abrupt p-n junction situated normally to the external boundary surfaces 

are shown in Fig. 12. The graphs confirm the similarity between this quasi-

one dimensional structure and the one-dimensional systems explored previously. 

6.2 Sloping junction  

The capacitance-bias relationship was determined for an abrupt symmetri-

callydopedjunction(Wen)with the junction perpendicular to the 

surface and at 45
o 

to the surface. 	Both capacitance plots (log 	'Dr) 
versus log(V. 	(I) applied)  (Fig. 13) resulted in a slope approaching the normal 

value of -1. 

6.3 Surface Field  

The variation of electric field at the surface of an abrupt p-n junction 

was investigated for various junction geometries with some preliminary con- 

clusions relating surface field ilitensity to slope of junction. 	It appears 

from the measurements taken that it will be necessary to subdivide the repre-

sentative cells of the network at the junction surface to enable one to obtain 

a suitable range of angles between junction and surface. 

7. analogue Solution of one dimensional Shockley Poisson Equation 

The potential distribution, for a non degenerate semiconductor across a 

p-n jviaction is given by 
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d. = 	N, p-n] dx2 6  D A 

where the 1-1.1e and electron densities are given by 

p = n. expip(cpp  - 

n. expip(cp - On)] 

= V = applied bias 

Fora n type abrupt half junction the resulting equation is 

ND 	ni  expip(14) - 101 	ni  exp[p (111 	cP11).1 

 

In Fig. 14 is shown the flow diagram for the solution of the above equation 

where the voltages 

Vm. 	1.1 J 
Vii  =p - 

VV. 	(/) 1 n 

Y = N
D 
eP(cPP *) at x = 0 

The resulting computer equation, normalising * to give 1 = 1 in the neutral 

region away from the junction, if of the form 

d-- V:7-  = 	+ Vm• - m. 

where 	
ti 

*neutral 

Ka  is the initial value of 
x  -4-- and VU  is the voltage reprcsenting U. 

shown by Morgan and Smits(4) the solution of (1) tends to diverge 

rapidly to 4- 00 for small variations in the initial slope dx 

(1) 

Fig. 15 is a record, taken on an ultraviolet recorder, of the variation 
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ofilfwithxfor100n.Ge, and 105n. Si, for an abrupt half junction, with 

p 
-

n 
0. 	The problem was set up on the 'CR1.NK' iterative computer, 

which was designed and built in this Department(5). With the iterative loop 

closed, (Fig. 14-) the initial condition K2  = ax  is constantly modified in an 

attempt to maintain the condition that L 	= 0. The result is that the 
dx 

x-oco 
problem automatically converges to the correct solution. 

CONCLUSIONS  

The relevance and usefulness of both resistance network and analogue 

computing methods for the solution of potential profile and carrier concen-

tration problems in a variety of semiconductor structures has been established. 

In the present stage of development equipment is available for the solution 

of one and two dimensional problems involving system geometries of some degree 

of complexity as well as for the investigation of surface potential problems. 

The representation covers systems in equilibrium and in the presence of 

an applied bias, provided current flow effects can be neglected, i.e. the 

quasi-equilibrium representation involving constant quasi-Fermi levels is 

justified. 
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APPENDIX 1 

GENERAL DESIGN CONSIDERATIONS FOR TEE SEMICONDUCTOR ANALOGUE NETUORK 

Introduction:  

The analogue representation of a semiconductor system has been shown(1)  

to be directly concerned with the equations 

n. 
(i) a2R  

e (3* i 

. 
s 
 N 

(ii) I =1 D
-N
A 

n. 
1 

(iii) V = cp - p 	n 

I is the current fed to a particular node of the network and is proportional 

to the cell area associated with the node
(2)
. 	Therefore once a particular 

value of is 
has been ihosen then b?,sically the representative cell area is 

fixed, hence changing the cell area in any region of the analogue will necessi-

tate forming special diode groups of different reverse current. Designs have 

been considered from the point of view that once a representative cell area is 

chosen then the network is constructed to afford as few deviations from the 

standard cell area as is reasonably possible. 

One dimensional: 

a 	 CAL 
[l 

"- 10 

V 

Using square tell structure with representative point at the centre of the 

cell. 

(a) number of cells recuired: such that the network extends beyond depletion 
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region, i.e. depends on impurity distribution and applied bias. 

(b) cell size chosen: depends on potential distribution. 	However since 

this variation is probably unknown then one must reduce the cell size until 
a
x 

 g, 
—kis insignificant

(2)
(or plot i  against x reducing cell dimensions until a 

negligible deviation from graph). Since a diode group is associated with 

each cell it may be possible, as shown by experimental investigation to reduce 

the number of diode groups used over a given semiconductor area by increasing 

the area of certain cells which are associated with small variations in I. 

This will mean making up diode groups with various values of reverse current. 

(c) The value of the resistors between successive nodes is in general given 

by 
Rot 

a 

and the area associated with each node 

1 51 
A = -- 4 

Consider a cell structure divided as shown:- 

a 	a 

r • 
A 

2(a+ 
) 
• 
B 

current fed to A a ar a is 

current fed to B a br a is, 

s = a 
. . 

s 

i
s 
= reversed current 
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'or the cell division shown the error
2 

associated with node A is 

'0 - 4 F• 
, a30 - 	(a - b)D -22;717 (2ab + b2 	3a2) 

Error associated with node B is 

a2 q, 
s

o 
 = (b a) —Fs + 2 (2ab + a2  - 3b2  ) 	+ 	  14. 	a x 	1+  

To simulate the effect of surface change then the following representation 

indicates one possible netTork. 

 

I b 

2 	R 

1'7 

 

  

B 

 

      

-..'here the shaded area represents the surface charge, hence no diode group fed 

to node D. 

a Rasa/2+b)    
r 

Ra— ;  

Two dimensional network: 

(a) Junction perpendicular to surfave 
JMMMI 

The two dimensional analogue is simply an extension of the one dimensional 

case) where it was possible to use simple cell shapes of squares or rectangles. 

There is however the difficulty that the network must now be terminated to 

successfully represent the surfaces of the semiconductor. 

Y 

• 

X Y 



Ri  

a 
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Junction cosidered along XX or YY with surface AB. With junction along XX 

then points a, b, 0, etc. fed with zero current, i.e. 

N -N 
D A . 0  

s n. 

Junction YY, then nodes fed with current I, the magnitude of which will depend 

on the impurity distribution (ND  - NA) within the semiconductor. 

Termination of network  

q R3 	 q 	R3 
A ---.-vv 7-WV 

R t e,    
,.., 

• • 

--,^"/".40 
P R2 

A/ 	The advantage of this construction is that all cell areas are equal hence 

similar diode gr*ups. However, if surface properties such as V0 are required 

then representatative points such as p and q may be too widely separated. 

R3  = R2, Ri = 3/2 R2 

R2  given by equation (1) 

B/ R = 	, R, = (i x)R2  x  

Errors associated with B:- 

Error associated with node p 

	

0 
=
4  (
, 
 
	

2X) 
 a
-
y 	a 

 
L(1 +x) - 1 	

a
'
y

3

3

0  

Error associated with node q is 

	

80 	 020 
Bo 	-a.a7 4,  a2  (x i) 	+ 	  

uoy 



Hence for the case with x = 

at node p: E
o 
= no terms below a40 

at node q: o 
= -a (no further terms 

ay 	 below 44) 

Two Dimensional Bevelled Junctions 

(3\  It has been shown (3/  that it is possible to control the electric field at 

the surface of a p-n junction by bevelling the junction. 	To investigate this 

important effect, by the analogue technique, it is necessary to set up a two 

dimensional model in which it is possible to vary the angle the junction makes 

with the semiconductor surface. It is desirable to construct the network such 

that the distance of the representative nodes from the junction is readily 

ascertained in that it will facilitate the setting up of arbitrary impurity 

distribution in that
D 
- N

A
) = f(x)). 

(i) For the constant impurity concentration it may be possible to approximate 

junction by a step as shown. 

The reason that this constructing_ may not be suitable for complex profiles is 

that it is difficult to form an expression for the perpendicular distance of 

'.11e nodes from the junction and hence set ulo'N1)  t NA  = f(x) 



-6- 

(ii) The following constructions allow a linear representation of the junctions. 

(a) 

J 

N 

T 
I 
0 
N 

In the above network apart from the standard bulk cell of area a2, there are 

only two other cell areas to consider. 

Area of triangle = ia?tana. 

Area of rectangle = a2tana 

The distance of the representation nodes from the junction is straightforward 

in that p, r, s, etc. are at distance a/2 from junction while all other nodes 

are at simple multiples of a/2 from the junction. The errors associated with 

this construction are: 

nodes at the surface 0:- 

a i 	pcp 
e
o 
= a 

y 
 - atana a—x  - Ttan a -- + 

at p:- 

 

o 
= no terms below a40 

at s:- 
L 

a20  
c
0 	4 
= 	— 2tanx) 
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(b) 

JUNCTION 

/ ,._ P N. 
„\\.•//  

it 	, 

-: 3  

All triangles constructed will have the same area = a2cospsine3 

R m
2acosPcot20  = cot2p.  

P-s 	2acosp 

R cx
acotP  = cqt p-q  a 

Error at r:- 

a2  e 	= +a 	2.1_ 

	

2 	- — cot ay  

 

  

Error at p:- 

so = a2{2cosPsinei3 	.fcotp + possible terms in V34) 

     

The preceeding sections have indicated several simple constructions for 

the analogue of a semiconductor system. 
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