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Abstract: In this research, we developed a new rendering-based end to end Hyperspectral scene

simulator CHIMES (Cranfield Hyperspectral Image Modelling and Evaluation System), which

generates nadir images of passively illuminated 3-D outdoor scenes in Visible, Near Infrared (NIR)

and Short-Wave Infrared (SWIR) regions, ranging from 360 nm to 2520 nm. MODTRANTM (MODerate

resolution TRANsmission), is used to generate the sky-dome environment map which includes sun

and sky radiance along with the polarisation effect of the sky due to Rayleigh scattering. Moreover, we

perform path tracing and implement ray interaction with medium and volumetric backscattering at

rendering time to model the adjacency effect. We propose two variants of adjacency models, the first

one incorporates a single spectral albedo as the averaged background of the scene, this model is called

the Background One-Spectra Adjacency Effect Model (BOAEM), which is a CameoSim like model

created for performance comparison. The second model calculates background albedo from a pixel’s

neighbourhood, whose size depends on the air volume between sensor and target, and differential

air density up to sensor altitude. Average background reflectance of all neighbourhood pixel is

computed at rendering time for estimating the total upwelled scattered radiance, by volumetric

scattering. This model is termed the Texture-Spectra Incorporated Adjacency Effect Model (TIAEM).

Moreover, for estimating the underlying atmospheric condition MODTRAN is run with varying

aerosol optical thickness and its total ground reflected radiance (TGRR) is compared with TGRR of

known in-scene material. The Goodness of fit is evaluated in each iteration, and MODTRAN’s output

with the best fit is selected. We perform a tri-modal validation of simulators on a real hyperspectral

scene by varying atmospheric condition, terrain surface models and proposed variants of adjacency

models. We compared results of our model with Lockheed Martin’s well-established scene simulator

CameoSim and acquired Ground Truth (GT) by Hyspex cameras. In clear-sky conditions, both models

of CHIMES and CameoSim are in close agreement, however, in searched overcast conditions CHIMES

BOAEM is shown to perform better than CameoSim in terms of ℓ1-norm error of the whole scene

with respect to GT. TIAEM produces better radiance shape and covariance of background statistics

with respect to Ground Truth (GT), which is key to good target detection performance. We also report

that the results of CameoSim have a many-fold higher error for the same scene when the flat surface

terrain is replaced with a Digital Elevation Model (DEM) based rugged one.
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1. Introduction

Realistic assessment of detectability and vulnerability of targets is important in both civil and

military applications. This requires the acquisition of high fidelity hyperspectral remote sensing images

(HSI) for both targets and the background materials of the scene, which is time and cost-ineffective and,

in some cases, it is even not possible to achieve through experimental trials. This drives the motivation

of research to simulate remote sensing HSI data to allow the assessment of target detection capability

under a variety of scene backgrounds, atmospheric conditions, sensor characteristics, ambient

temperatures and light sources. Despite the existence of several commercial-off-the-shelf (COTS)

HSI simulators within the remote sensing community, procurement, modification or enhancement of

existing COTS simulation packages are prohibitive due to the export control and copyright protection

issues. The objective of the present work is to establish a HSI simulator known as the Cranfield

Hyperspectral Image Modelling and Evaluation System (CHIMES), which features an automatic

atmospheric parameterization through a search algorithm to match the ground radiance of a given

scene, and the proposal of two adjacency models to enhance the quality of the scene simulation.

The output of the CHIMES is validated by a ground truth HSI scene and also compared with a COTS

package CAMoflauge Electro-Optic Simulator (CameoSim).

The layout of the paper is as follows; Section 1 (this section) outlines the motivation and the

objective of the present work; Section 2 gives an overview of the methodologies and capabilities of

a few existing COTS scene simulator packages. Section 3 constitutes the main body of the paper

which outlines the skeleton of the proposed CHIMES simulator with more details on the proposed

adjacency models. Section 4 outlines the experimental data utilized in this work and Section 5 gives

the analysis of the simulation outputs using a variety of statistical methods such as the band to band

covariance statistics for eigenanalysis and also distance error measures. Section 6 summarizes the

main achievements of the present work and the appendix gives detailed simulation results achieved

by the proposed CHIMES and CameoSim.

2. Background Literature

2.1. Existing Simulators

Research interest in simulation of hyper-spectral imaging system has increased since the 1990s.

The diversity of application areas for HSI scene modelling drives different motivations behind

the development of such models and software applications. A detailed list of existing simulators,

their motivation and capacity is covered in subsequent sections with a brief overview in Table 1.
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Table 1. Hyperspectral scene simulators, their developers, year of development, primary objective, spectral bands and model types. DISORT algorithm [1] is

an integral part of MODTRAN which is used to calculate scattering and adjacency effect.

Simulators Developed By Primary Objective Spectral Bands (µm) Model Type Adjacency-Effect Modelling Noise Modelling

FASSP (1996–) MIT Lincoln’s Lab Sensor Modelling 0.3–2.5 MODTRAN-based Statistical Estimation DISORT Yes

CameoSim (1998–) Lockheed Martin/Insys Camoflauge Assessment 0.3–20.0 Light Transport (Radiosity) DISORT No

DIRSIG 1–4 (1997–2015) RIT HS Image Generation 0.3–20.0 Light Transport (Whitted Ray-tracing) DISORT Yes

DIRSIG 5 (2015–) RIT HS Image Generation 0.3–20.0 Light Transport (Metropolis Light Transport) DISORT/MODTRAN6 Yes

OSSIM (2004–) Denel SOC Ltd Countermeasure 0.4–20.0 Light Transport (Safir-based Ray-tracing) DISORT Yes

MCScene (1999–) Spectral Science HS Image Generation 0.3–20.0 Direct Simulation Monte-Carlo DISORT Yes

ATCOR (2006–) ReSe Atmospheric Compensation 0.3–14.0 MODTRAN-based Radiance Estimation Own Model Yes

PICASSO (1999–) MIT Lincoln’s Lab Sensor Modelling 0.3–14.0 MODTRAN-based Radiance Estimation DISORT Yes

EnMap (2009–) DLR Sensor Modelling 0.3–2.5 MODTRAN-based Radiance Estimation DISORT N/A

CHIMES (2017–) Cranfield University HS Image Generation 0.3–2.5 Light Transport (Path-tracing) DISORT No
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2.1.1. Forecasting and Analysis of Spectroradiometric System Performance (FASSP)

FASSP is one of the earliest attempts in this area, which pursued a statistical parametric modelling

approach. FASSP is a statistical model for the analysis of earth observing data acquired by optical

spectral imaging systems. The predominant surface parameters considered are the spectral reflectance

mean vector and spectral covariance matrix [2].

FASSP architecture provide identification of the primary components of the scene for the

simulation [3], these components are one of the building blocks for our proposed simulator, however,

we extended their components to include rendering and image reconstruction as supplementary ones.

Our revised components of a scene simulator and data flow is shown in Figure 1.
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Figure 1. Components of scene simulators.

2.1.2. Digital Imaging and Remote Sensing Image Generation (DIRSIG)

DIRSIG adopts an image-chain approach to Remote-Sensing simulation. It is capable to simulate

passive broadband, multi-spectral, hyper-spectral, low-light, polarized, active laser radar, and synthetic

aperture radar datasets. Its components include bi-directional reflectance distribution function (BRDF)

predictions of a surface, time and material dependent surface temperature predictions, to the dynamic

viewing geometry of scanning imaging instruments on agile ground, airborne and space-based

platforms [4–7]. In a recent update called DIRSIG5 [8] Metropolis Light Transport (MLT) based

path tracing has been used. Atmospheric processing can be performed by both MODTRAN5 and

MODTRAN6 [9].

2.1.3. CAMoflauge Electro-Optic Simulator (CameoSim)

CameoSim is a commercial scene simulator originally developed for the assessment of camouflage

systems, from the far Infra-Red, visible and to the UV with HSI capabilities [10]. It uses raytracing

with a Monte-Carlo radiosity light-transport scheme. All the geometric objects forming the synthetic

environment are modelled using textured faceted structures. Texel values in these textures are mapped

to the real materials associated with them [11,12]. These materials can have measured properties using
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one of several BRDF models, with optional transparency. It supports moving observers and players,

with moving parts. It can handle large complex scenes with billions of pixels and is applicable to

ground, ocean, air and space scenarios. It can model plumes and flares. It predicts surface temperatures,

with optional thermal shadowing, using weather measurements. Atmospherics can be generated using

MODTRAN 5, or measured atmospherics imported. Environmental maps based on High Dynamic

Range (HDR) images can be imported for scene simulation.

2.1.4. Optronic Scene Simulator (OSSIM)

OSSIM is another HSI scene simulator that creates synthetic images of arbitrary complex scenes by

rendering, the spectral range is in the visual and infrared (IR) bands, covering the 0.4–20 µm spectral

region. These images are radiometrically accurate and based on theoretical physics models. To allow

for the subtleties and full scope of variability in atmospheric attenuation, the simulation employs

all capabilities of the MODTRAN. The geometrical shape of objects and the terrain topography is

described in terms of a three-dimensional complex hull, consisting of a set of flat, convex facets or

polygons. Each polygon is assigned spectral radiometric properties, temporally variable spatial texture

properties and radiometric properties. Polygons can also be partially transparent to represent gas

clouds, countermeasure flares or aircraft plumes [13–16].

2.1.5. Monte-Carlo Scene (MCScene)

MCScene is also a rendering-based HSI scene simulator. It incorporates all optical effects important

for solar-illuminated and thermal scenes, including molecular and aerosol scattering, absorption

and emission and surface scattering with material-dependent bidirectional reflectance distribution

functions (BRDFs), multiple scattering events, surface adjacency effects, and scattering, emission

and shading by clouds, for arbitrary solar illumination and sensor viewing geometries. The “world”

of the simulation is a cube that encloses a user-definable atmosphere containing molecular species,

aerosols, and clouds, and a terrain representing the ground. The sensor spatial and spectral resolution,

its location, and the viewing angle are also specified. 3D objects can also be inserted into the scene.

A particular strength of MCScene is that a simulation can be data-driven. Terrain information can be

imported from United States Geological Surveys (USGS) digital elevation maps. Surface reflectance

or emissivity/temperature maps can be derived from collected imagery, thus incorporating natural

spectral and spatial texturing into a simulation [17–20].

2.1.6. Parameterized Image Chain Analysis & Simulation SOftware (PICASSO)

PICASSO is also one of the end-to-end HSI image simulation or image chain analysis tools which

estimate at-sensor radiance based on MODTRAN. Simulation flow begins with a description of the

remote sensing system to be modelled, in terms of standard engineering parameters (e.g., primary

aperture diameter, effective focal length, focal plane array detector size, focal plane array operating

temperature, etc.). PICASSO also requires an input earth scene that can serve as ground-truth.

The principal output of PICASSO is a simulated image, having the characteristics that would be

produced by the remote sensing system under simulation. In addition to this simulated image,

PICASSO produces figures of merit commonly used throughout the remote sensing industry to

characterize image quality. These can include such metrics as SNR for given radiance; plots of the

system transfer function (STF) and point-spread function (PSF) or overall image quality as measured

by the National Imagery Interpretability Rating Scale (NIIRS) [21,22].

2.1.7. The Environmental Mapping and Analysis Program (EnMAP)

ENMAP is a German hyperspectral satellite mission that aims at monitoring and characterising

the Earth’s environment on a global scale. The hyperspectral imager is a push-broom type consisting

of two prism imaging spectrometers—one for VNIR (Hyspex VNIR1600) and one for SWIR (Hyspex

SWIR320m). As a precursor of the mission, EnMAP simulator was developed. The EnMAP scene
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simulator is able to generate realistic EnMAP-like data in an automatic way under a set of user-driven

instrument and scene parameters. Radiance and digital numbers data are generated by five sequential

processing modules which are able to produce data over a range of natural environments, acquisition

and illumination geometries, cloud covers, and instrument configurations. The latter include

the simulation of data nonuniformity in the spatial and spectral domains, spatially coherent and

noncoherent instrumental noise, and instrument’s modulation transfer function (MTF). Realistic surface

patterns for the simulated data are provided by existing remote-sensing data in different environments,

from dry geological sites to green vegetation areas. A flexible radiative transfer simulation scheme

enables the generation of different illumination, observation, and atmospheric conditions [23].

2.2. Light Transport based Simulators and Radiative Transfer Models

In this section, the radiative transfer (RT) equations of light-transport based models are discussed.

The general RT equation for at-sensor radiance within an optical spectrum is given as Equation (1), [24].

Rendering based simulators perform integration by Monte-Carlo method, while approximate methods

assume Lambertian BRDF. DIRSIG’s big equation, which is given in Equation (2), also assumes

Lambertian BRDF to yield an analytical form of Equation (1). We also adopt Equation (2) for convention

and to elaborate alternate treatments of upwelled scattered term only, which is our focus.

Ls(θi, θr, φ, ρ, Ωi) =

fr(θi, θr, φ)Es(θi)cos(θi)τi(θi)τr(θr)ρ + τr(θr)ρ
∫

F

∫∫

Ωi

fr(θi, θr, φ)cos(θi)L
Ωi
d (θi, φ)dΩi + Lp(θi, φ), (1)

where Ls is total at-sensor radiance, fr is the Bidirectional Reflection Distribution Function (BRDF) [25],

Es is exoatmospheric solar spectral irradiance, τi and τr are incident and reflected transmittance, Lp is

path radiance, F is the view factor of sky, and solid angle Ωi is given as dΩi = sinθidθidφ. θi, and φi are

solar zenith and azimuth angles, respectively, θr is a reflected ray angle with respect to surface normal

and ρ is target reflectance.

RT equations implemented in various versions of simulators, such as the DIRSIG, CameoSim, and

ATCOR are slightly different. This is mainly because of the various adjacency models that have been

employed by these simulators are slightly different. For example, version 4 of the DIRSIG employs the

Whitted-style ray tracing, while CameoSim renders by radiosity and the proposed CHIMES adopts the

path-tracing strategy for computing the at-sensor radiance. Thus the performance of the HSI simulator

is greatly affected not only by the atmospheric or environmental factors, but also the blend of computer

graphics parameters such as the ray sampling strategy, the reconstruction filtering knowledge and also

the graphical rendering techniques which all impose impacts to the quality of the simulation.

In ray tracing, there are three types of rays—reflected, refracted, and shadow when a ray interacts

with an obscured surface. A ray continues its specular reflected direction when it hits a shiny surface.

Refracted rays travel through transparent material may be entering or exiting a material. Although

it is a recursive process, however, to avoid tracing all rays in a scene, a shadow ray is used to test

if a surface is visible to the light. If this test is true then a ray is traced between this intersection

point and the light. In the case of path tracing, a path history of a single point is created when a ray

interacts with the environment until it is fully absorbed. That is, rather than to spawn new rays at

the intersection point, it simply chooses a direction as according to the BRDF of the surface and to

assign the direction for the ray to follow. A number of random rays per pixel are then sampled using

the Monte-Carlo method and the final at-sensor radiance is computed through image reconstruction

filter, which rasterizes the accumulated radiance. An important property of path tracing is that the

computation is more emphasis on those low-depth rays, while the Whitted ray tracing concerns more

of the high-depth rays. The rendering in CameoSim uses radiosity method which will be described in

more detail in Section 2.2.2.



Remote Sens. 2020, 12, 74 7 of 39

2.2.1. DIRSIG

DIRSIG utilizes the RT Equation called Big Equation [4,7], having radiance components of different

types of rays as illustrated in Figure 2. Assuming the BRDF of the target object conforms to Lambertian

which reduces the big equation into the analytical form as shown in Equation (2). According to

reference [26] the "I" type ray can be grouped together with the "C" type if the average albedo of the

scene is slowly varying, which is common [15] in relatively homogeneous scenes. DIRSIG employs

an image-chain differential thermodynamic model to evaluate the temperature of background objects

in the scene. It accounts for both optical and thermal shadows caused by full or partial occlusion due

to the opaqueness of the transmissive objects. The loss due to the interaction of rays between the media

and the transmittance of objects can also be accounted for during rendering.

L(λ) = τ2(λ)

{
A

︷ ︸︸ ︷

E′
s(λ)

π
τ1(λ)ρ(λ)cosσ

︸ ︷︷ ︸

reflected sunshine

+

D
︷ ︸︸ ︷

ǫ(λ)LT(λ)
︸ ︷︷ ︸

thermally emitted

+ ρd(λ)F

[
B

︷ ︸︸ ︷

Eds(λ)

π
+

E
︷ ︸︸ ︷

Edǫ(λ)

π

]

︸ ︷︷ ︸

reflected sky

+

ρd(λ)(1 − F)
[

G
︷ ︸︸ ︷

Lbs(λ) +

H
︷ ︸︸ ︷

Lbǫ(λ)
]

︸ ︷︷ ︸

reflected background

}

+

C+I
︷ ︸︸ ︷

Lus(λ) +

F
︷ ︸︸ ︷

Luǫ(λ)
︸ ︷︷ ︸

atmospheric path radiance

. (2)

DIRSIG uses MODTRAN for its atmospheric processing. It also creates a sky-dome environment

map for illumination which is created by MODTRAN based lookup tables [27]. The texture applied to

geometry is used as material and thermodynamic database identifier [13]. Symbols of Equation (2) are

explained in Table 2.

Figure 2. DIRSIG big equation components [13,26].
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Table 2. Symbols in Equation (2) and their meaning, λ shows that quantities are function of wavelength.

Symbol Meaning Symbol Meaning

E′
s(λ) Exoatmospheric irradiance 1-F

Fraction of hemisphere above target that
is background

σ Solar zenith angle w.r.t target normal Eds(λ) Downwelled solar irradiance

τ1(λ) Transmittance along sun-target path Edǫ(λ)
Downwelled self-emitted radiance from
the atmosphere

τ2(λ) Transmittance along target-sensor path ρd(λ) Target diffuse reflectance

ρ(λ) Target reflectance Lbs(λ)
Background reflected solar radiance onto
target

ǫ(λ) Target emissivity Lbǫ(λ)
Background self emitted irradiance onto
target

LT(λ)
Self emitted radiance from target at
temperature T

Lus(λ) Upwelled solar irradiance

F
Fraction of hemisphere above target that
is sky

Luǫ(λ) Upwelled self-emitted radiance

ρ(λ) Target direct reflectance

2.2.2. CameoSim

CameoSim is one of the earliest commercial HSI simulators and is feature-rich. It can require some

effort from the end-user if all its features are to be exploited. CameoSim is developed in a modular

fashion therefore features are divided into modules’ user interfaces, typically called editors. Figure 3

shows components of CameoSim and data flow.
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Figure 3. CameoSim data flow.

In the process of generating radiometrically accurate synthetic images of scenes, all sources in the

synthetic environment affect the solution of a rendering equation. The rendering equation for a general

radiosity model is given in Equations (3)–(6). The three main components of the rendering equation
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are the thermal self-emission, the atmospheric terms, global illumination accounting for reflected

radiance. In CameoSim, a general bidirectional, spectral, recursive solution is sought using importance

driven Monte-Carlo sampling. At longer wavelengths, such as mid-infrared, the full hemispherical

integration of incident irradiances enable the software to account for the radiative interaction between

different surfaces at varying thermodynamical states. BRDF models take account of bi-directional

light reflecting properties of a surface, in CameoSim it is termed as (surface) scatter models, as shown

in Figure 3.

Figure 4 illustrates components of a radiosity rendering equation. Bidirection Reflection

Distribution Function (BRDF) and Bidirectional Transmission Distribution Funtion (BTDF) represent

the surface response on interaction with rays. Geometrical definition of sources is shown in Figure 4b

and the hemispherical integration is included in Figure 4c. Equations (3)–(6) shows the rendering

equation for CameoSim. Symbols and their meaning are explained in Table 3.

Lo(x, ωo) = Lpath(x1, x2) + Le(x, ωo) + Lr(x, ωo) + Lt(x, ωt) (3)

Lr(x, ωo) =
∫

Ω
fr(x, ωi → ωo)Li(x, ωi)cosθidωi (4)

Lt(x, ωo) =
∫

Ω
ft(x, ωt → ωo)Li(x, ωt)cosθtdωt (5)

Lo(x, ωo) = Lpath(x1, x2) + Le(x, ωo) +
∫

Ω
fr(x, ωi → ωo)Li(x, ωi)cosθidωi+

∫

Ω
ft(x, ωt → ωo)Li(x, ωt)cosθtdωt. (6)

a) BRDF/BTDF b) Radiosity Geometry

d) Radiosity in a scenec) Radiosity Hemispherical Geometry

Ω

ft  (ωi → ωt)

ωtωt

Figure 4. CameoSim-like recursive ray-tracing.
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Table 3. Symbols in Equations (3)–(6) and their meaning.

Symbol Meaning Symbol Meaning

ωo Observer or sensor direction or position Li(x, ωt) Radiance incident on x from direction ωt

x A point on the target surface Lt(x, ωt)
Radiance transmitted through point x in
the direction of ωt.

ωt
Incident direction of transmitted
radiance w.r.t x

ft(ωo, x, ωt)
Bidirectional reflectivity at point x with
respect to directions ωo and ωi

ωi
Incident direction of emitter’s radiance
w.r.t. x

ft(ωo, x, ωt)
Bidirectional transmittivity at point x
with respect to directions ωo and ωi

Lpath(ωo, x) Radiance along target-sensor path

Le(x,ωo)
Radiance emitted from point x, towards
direction ωo

Lr(x,ωo)
Radiance reflected from x in the direction
of ωo

Li(x, ωi) Radiance incident on x from direction ωi

2.3. Adjacency Effect Models

2.3.1. MODTRAN

MODTRAN adopts the DISORT algorithm with a variable number of streams for scattering and

adjacency modelling. At-sensor apparent reflectance ρa is given in Equation (7).

ρa =
πLs

E′
scosθ

. (7)

The upward surface flux that is reflected by the atmosphere back to the ground and then reflected

by the ground ρ̄b upwards. Since this phenomena occur multiple times before it is finally scattered

into the LoS of the sensor, therefore it takes the form of power series as given in Equation (8).

(τdir
1 + τ

dif
1 )(τdir

2 ρt + τ
dif
2 ρ̄b)

[
1 + sρ̄b + (sρ̄b)

2 + ...
]
=

(τdir
1 + τ

dif
1 )τdir

2 ρt

1 − sρ̄b
+

(τdir
1 + τ

dif
1 )τ

dif
2 ρ̄b

1 − sρ̄b
. (8)

At-sensor apparant reflectance ρa can be redefined in terms of Equation (8) as Equation (9) [28].

ρa = ρo +
(τdir

1 + τ
dif
1 )τdir

2 ρt

1 − sρ̄b
+

(τdir
1 + τ

dif
1 )τ

dif
2 ρ̄b

1 − sρ̄b
, (9)

where ρo is the path reflectance. In order to calculate the total upwelled scattered reflectance term, ρt

should be set to zero, which is target albedo during MODTRAN run. Therefore Equation (9) takes the

form of Equation (10).

ρu = ρo +
(τdir

1 + τ
dif
1 )τ

dif
2 ρ̄b

1 − sρ̄b
, (10)

where ρu is the upwelled scattered apparant reflectance. It includes both path reflectance and adjacent

reflectance, in the first and the second term, respectively.

Symbols used in Equations (7)–(10) are explained in Table 4.
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Table 4. Symbols in Equations (8) and (9) and their meaning.

Symbol Meaning Symbol Meaning

ρo Path reflectance τ
dif
2 Ground to sensor diffuse transmittance

τdir
1 Sun to ground direct transmittance s spherical scattering albedo of the atmosphere

τ
dif
1 Sun to ground diffuse transmittance ρt Target reflectance

τdir
2 Ground to sensor direct transmittance ρ̄b Area averaged background reflectance

2.3.2. CameoSim

Although CameoSim provides surface scattering through built-in BRDF models, it does not

include volumetric scattering during the texture rendering. CameoSim treats the adjacency through

the DISORT models of the upwelled scattered radiance, which means the adjacency is dependent only

on a single source of spectral albedo, that is, the average background albedo of the scene.

2.3.3. DIRSIGs

DIRSIG5 handles adjacency effect by considering all rays that are scattered into the sensor from

outside of its Field Of View (FOV) through the path tracing. This volumetric scattering is driven by

the atmospheric phase function of the scene [29], but in this version of the simulator, the scattering

efficiency as a function of the sensor altitude has not been taken into account. Older version of DIRSIG,

that is, DIRSIG4 incorporated atmospheric variability [27] and adjacent scattered light can be grouped

with the path radiance particularly when the averaged background albedo of the scene is slowly

varying [26]. Hence the adjacency in DIRSIG4 is functioning like that of the CameoSim, which utilizes

a single stream of the background albedo for the DISORT calculation.

2.3.4. ATCOR

Although ATCOR is not an HSI scene simulator, it features an adjacency model which does not

employ rendering for the estimation of the observed at-sensor radiance in its atmospheric correction

package [30]. Jianwen et al. [31] conducted a series of measurement to estimate adjacency effect, they

reported that the adjacency effect becomes stronger from visible, near-infrared to shortwave infrared

wavelength. In response to this work, Reference [32] presented Equation (14) to include the effect of

contrast between the target and background pixels in at-sensor radiance. Before deriving ATCOR’s

model the RT equation can be rephrased in terms of atmospheric spherical albedo for a “large surface”

with reflectance ρ, as follows [33,34],

Ls(ρ) = Lp +
τEg(0)ρ/π

1 − sρ
, (11)

where τ, Eg(0), and s are the total ground-to-sensor transmittance, global flux on the ground for

ρ = 0, and the spherical albedo of the atmosphere, respectively. τ is the sum of the direct and diffuse

transmittance, that is, τ = τdir + τdiff. Equation (11) shows that the effective global flux is;

Eg(ρ) =
Eg(0)

1 − sρ
(12)

and it depends on the ground reflectance and spherical albedo [32]. However, for “small target” of

reflectance ρt, the at-sensor radiance is calculated as given in reference [34].

Ls(ρ) = Lp +
τdirEg(0)ρt/π

1 − sρ̄b
+

τdi f Eg(0)ρ̄b/π

1 − sρ̄b
. (13)

Furthermore, Richter et al. [32] rewrote Equation (13) to accommodate the contrast term;
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Ls(ρ) = Lp +
τEg(0)ρt/π

1 − sρ̄b
+

τdi f Eg(0)(ρ̄b − ρt)/π

1 − sρ̄b
. (14)

Equation (14) emphasizes the fact that the adjacency term is directly proportional to the target

background reflectance contrast. ATCOR also includes sensor height based scattering efficiency

calculation based on air density, and volume between the sensor and the target material.

3. Proposed CHIMES Simulator

CHIMES is a texture rendering based simulator and an overview of its design and system

components are shown in Figures 1 and 5 respectively. As mentioned in the introduction section,

there are two main features in the proposed CHIMES; one is enhanced adjacency treatment that

has been implemented for a better estimation of the volumetric scattering of upwelled scattered

radiance, which is particularly important for the simulation of rugged scenes. This feature is in the

form of a regional background neighbourhood function, which, embeds an altitude dependence of

the optical scattering characteristics between the ground and the sensor. During the simulation, the

averaged background albedo of the surrounding region of the test pixel, and the total upwelled

radiance are evaluated for each pixel in the scene during the rendering process. The use of this

neighbourhood function together with volumetric scattering has not been found in the open domain,

and it is believed that this approach may help to enhance the performance of other scene simulators in

the community. DIRSIG5 offers volumetric scattering based adjacency model, however considering

effective background neighbourhood based on sensor height, air volume and density is not reported.

Although ATCOR also employs the neighbourhood based adjacency, however, it performs differencing

of target and background spectra to model the reduced contrast. This is only an approximation because

volumetric scattering is not considered in ATCOR, probably due to its application domain. Moreover,

variable height difference from every pixel to the sensor is not also considered in ATCOR or any other

COTS scene simulation package.
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Figure 5. CHIMES Simulator, system level design overview.
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The other feature in the CHIMES is the automatic search of the optimal atmospheric parameters

to be used for the simulation of a scene, such that the output will be as realistic as that of the ground

truth data. Many simulators, such as the DIRSIG and the CameoSim, require the user to define the

atmospheric parameters which are unknown. Thus a number of trial and error of simulation runs using

different sets of atmospheric parameters are normally required for these simulators. This contribution

will help to reduce the amount of guesswork and help to obtain the optimal simulation result without

repeatedly trial and error processing by varying the aerosol optical thickness.

3.1. Proposed Adjacency Models for CHIMES Simulator

The adjacency effect reduces with wavelength [32] as it depends on scattering efficiency.

In CHIMES we maintain most of DIRSIG radiative transfer equation, however, treatment of I type

of rays (adjacency) is handled with two different models. Both of our models adopt DISORT based

upwelled scattering, however approach of setting average background albedo ρ̄b is different in them.

Our first and comparably simplistic model is similar to CameoSim.

Based on Equation (10), the upwelled scattered radiance into the sensor is therefore expressed as

in Equation (15). This is the path radiance output from MODTRAN when target albedo is set to zero,

during execution.

Lm
us =

ρuE′
scosθ

π
. (15)

Replacing upwelled scattered term of Equation (2) by Equation (15) we get Equation (16), which

is the lambertian BRDF form of CHIMES Background One-Spectra AEM (BOAEM) model. The final

estimation of Lm
us during rendering is driven by volumetric scattering. This model is constructed to

provide a better comparison of CHIMES with CameoSim, in terms of overall performance, which

include several parameters such as sensor model, scene, ray tracing, volumetric scattering and

background reflected radiance and so forth.

L(λ) = τ2(λ)

{

E′
s(λ)
π τ1(λ)ρ(λ)cosσ + ǫ(λ)LT(λ) + ρd(λ)F

[

Eds(λ)
π + Edǫ(λ)

π

]

+ ρd(λ)(1 − F)
[

Lbs(λ) + Lbǫ(λ)
]
}

+ ρuE′
scosθ
π + Luǫ(λ). (16)

In the second, more comprehensive, adjacency model, CHIMES adopts the methodology similar

to that in ATCOR to deduce the upwelling of the adjacency through a sliding window of regions along

the horizontal scale of the terrain. Since the extent of the adjacency scattering depends on the density

of air within the field of view of the sensor, hence the adjacency is a function of the sensor altitude

(h1) and the elevation of ground (h2). Through experimental analysis Richter et al. [35] derived an

empirical equation to quantify the approximate adjacency range R(h1, h2) on the ground as;

R = (h1 − h2)0.1. (17)

The above empirical equation is the result of the air density differentiation along elevation z.

It has been shown that the density of air D(z) is exponentially reduced above zd elevation;

D(z) = Doexp(
−z

zd
), (18)

where D(z) is air density at altitude z, Do represents density at sea-level and zd is the average scale

height for the density of air which is 8 Km [35]. The adjacency effect for every pixel in a scene is

evaluated by forming a region of interest (ROI) of (2R × 2R) pixels having the test pixel (target) in

the center. According to Equation (17) the dimension of the ROI is dependent on the difference of

elevation of the test pixel (target) and sensor altitude. Therefore in rugged terrain’s ROI dimension

is variable across the scene. For each pixel in the scene, CHIMES deduces the path reflectance (ρo),

adjacent contribution for unit reflectance (∆ρu) and the ROI background reflectance ( ρ̄bK ) for each
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(2R × 2R) ROI. We incorporate ρ̄bK into Equation (2) by interpolation, therefore ρu is calculated for

ρ̄b = 0.0 and ρ̄b = 1.0 from Equation (10), and it is denoted by ρu0 and ρu1, respectively which is given

in Equation (19). Interpolation between zero and one is performed in these experiments due to large

test scene and memory constraints which may incur interpolation errors, therefore it is recommended

to calculate ρu from MODTRAN at more intermediate points between zero and one.

ρu0 = ρo (19a)

ρu1 = ρo +
(τdir

1 + τ
dif
1 )τdir

2

1 − s
(19b)

∆ρu = ρu1 − ρu0 =
(τdir

1 + τ
dif
1 )τdir

2

1 − s
. (19c)

ρ̄bK, inside ROI is calculated by Equation (20).

ρ̄bK =
M

∑
s=1

ρs

R2
s
, (20)

where ρs is the reflectance of the sample pixel as shown by red pixels depicted in Figure 6b and Rs is

the distance between target pixel (green/orange) and sample pixels. M is the number of samples in

the grid. The upwelled scattered reflectance for the ROI region is therefore computed according to

every pixel’s position and height by interpolation as given in Equation (21), where Subscript K denotes

the kernel ROI. The approximate upwelled scattered radiance for the ROI is given in Equation (22).

ρuK = ρu0(1 − ρ̄bK) + ρ̄bKρu1 (21a)

ρuK = ρ̄bK∆ρu + ρu0 (21b)

Lm
usK =

(ρ̄bK∆ρu + ρu0)E
′
scosθ

π
. (22)

Once ρ̄bK is computed for the intersecting ray, it is backscattered by coupling the phase function

of the atmosphere and the diffuse emitter in ray-tracing by utilizing Monte- Carlo multiple importance

sampling [36]. A ray-level computation of upwelled scattered radiance is shown in Figure 6a. Moreover,

the actual model in CHIMES also considers BxDF models in calculating the radiance. It should be

noted that, unlike ATCOR, TIAEM does not perform any differencing between target and background

reflectance. Contrast reduction is the consequence of volumetric backscattering of the computed

upwelled scattered radiance under the kernel, which eventually takes the form of Equation (22).

The final rendering equation for the TIAEM model (assuming Lambertian BRDF) takes the form of

Equation 23.

L(λ) = τ2(λ)

{

E′
s(λ)

π
τ1(λ)ρ(λ)cosσ + ǫ(λ)LT(λ) + ρd(λ)F

[

Eds(λ)

π
+

Edǫ(λ)

π

]

+ ρd(λ)(1 − F)
[

Lbs(λ) + Lbǫ(λ)
]
}

+
(ρ̄bK∆ρu + ρu0)E

′
scosθ

π
+ Luǫ(λ). (23)

We reused DIRSIG rendering equation to represent the modified upwelled scattered term in our

presentation, however, this equation assumes Lambertian BRDF. In our simulator three BRDF models

are supported such as Phong, Lambertian and Torrence and Sparrow. In our experiments, we assume

Lambertian BRDF for all simulations due to the abundant vegetation in the background of the scene.
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Figure 6. (a) Depicts the work flow of the proposed TIAEM model which features the computation of

adjacency upwelling through the evaluation of volumetric scattering within terrain and sensor altitude

dependent regional region of interest (ROI). (b) Shows an example for the evaluation of the background

reflectance of the adjacency pixels (in red) for the test (target) pixel which is in orange/green.

3.2. Automatic Atmospheric Search for Atmospheric Parameters for Scene Simulation

The presence of aerosols or water droplets in the atmosphere is a complicated phenomenon to

model as their properties, such as their sizes, densities and their distributions are subjected to many

atmospheric factors which makes them highly in-homogeneous along the solar zenith and azimuth

dimensions. Given the upwell radiance of a scene, there is no method to know exactly what are the

aerosols and their density distributions over the measured site because it is an inverse problem and the

solution is likely to be non-unique. To simulate a scene, one will need the knowledge of the material

characteristic on the ground, and more importantly the atmosphere property over the scene. The latter

input is normally ‘guessed’ from the data provided by the weather stations perhaps with the help from

radiosonde and so forth. Among the list of atmosphere parameters which is outlined in Table 5, some

relatively more important ones such as the optical thickness and water droplets dimensions in the

cloud can be modelled within certain limits given by the seasonal model of the test site. Studies [37]

have shown that light’s extinction by the presence of clouds is dominantly affected by the effective

radius of droplets (r) and their densities (Cw) in the cloud.

The optical transmittance τ of a slab of cloud with thickness R, effective radius of droplets in the

cloud r, density of droplets in the cloud Cw and density of water ρ (ρ = 1.0 gm/cm3) has been found

analytically in the form of Equation (25) [28,37].

τ = exp −δ (24)

δ =
3CwR

2ρr
. (25)
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Table 5. MODTRAN parameters and their respective value for the Selene scene.

MODTRAN Parameter Value [Searched Value]

Seasonal model Sub-arctic summer

Water vapour column (gm/m3) Variable (List) [0.223]

CO2 (ppm) 400

Boundary Temperature (K) 283

Surface Albedo Grass scrub (Spectral)

Aerosol Thickness Variable (List) [0.024 Km]

Spectral Range 0.414 µm–2.51 µm

Scattering DISORT Scaled, 8 streams

Sensor Orientation nadir

Observation Parameters 12/08/2014, 13:04 (GMT), Solar Zenith : 37.5◦ Azimuth : 199.88◦,
Sensor Altitude : 0.944 Km, Target Altitude : 0.001 Km

Cloud base 0.610 Km

Thus, the above equation gives a first-order estimation of the optical transmittance τ(Cw, R, r) of

the cloud. For a scene with known materials on the ground and when it subjects to solar irradiation,

the albedo of the ground or the radiance of some specific materials in the scene can be evaluated

analytically through Equation (25) for a given set of droplet parameters (Cw, R, r), For low altitude

clouds having Stratus profile, MODTRAN assumes (r = 8.33 µm). A set of the albedo can then

be evaluated under systematic variation of these droplet parameters as according to Equation (25).

After this set of albedo is convolved with the sensor characteristics, they can then be monitored through

a distance metric measurement with respect to the ground truth radiances of the scene. In a nut shell

the atmospheric search algorithm is a subroutine to obtain the ground or material albedo under the

different configuration of cloud (Cw, R, r) and a subsequent call of MODTRAN for the radiative

transfer evaluation. A flowchart of the atmospheric search is given in Figure 7. The experimental setup

during GT data acquisition and the results of the search algorithm are presented in Section 7.

Water Vapour Concentration List 

Cw [0.01:increment(0.01):0.25]

Aerosol Thickness List

R [0.001:increment(0.005):0.040]
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Figure 7. Flowchart for the atmospheric parameters search method.
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In this section, we discussed adjacency models included in CHIMES. Concisely, the BOAEM

is a simplistic adjacency model which evaluates the upwelling by using one spectral reflectance.

Other simulators such as the CameoSim has also employed a similar model for adjacency modelling.

However, the TIAEM may represent a more comprehensive adjacency model in which it evaluates the

local adjacency in upwelling radiance within several small ROIs across the entire scene.

4. Components of CHIMES

4.1. Scene

The terrain is generated by DEM-based smoothed deformation in the flat polygon, which is

the basic primitive of a scene. The input data is airborne reflectance images with the high spatial

and spectral resolution, which is processed by QUAC atmospheric compensation on radiance image.

Classification of reflectance image cube is the first step for material mapping, which is performed

by K-means clustering algorithm with a user-defined number of materials (classes) input. Details

about classified texture are covered in a subsequent section. The number of specified material and

their identifiers are created and stored in the database. A texture is generated based on materials RGB

colours. An identifier based coded-texture layer is generated to handle the loading of spectral data

during rendering. Corresponding BRDF/BTDF is associated with each material, however, the thermal

description is out of the scope of this work. This classified texture is mapped onto the terrain to create

static geometry. A potentially roving geometry as shown in Figure 1 might be represented by vehicles,

plumes or clouds, however, it is not included in this version of the simulator.

In terms of rendering system, a scene is an input to the rendering algorithm which recursively cast

rays to test occlusion for casting shadows or perform an interaction with scene surface to determine

the ray response according to reflection or transmission distribution functions. Another important

interaction of the scene is with the sensor, the orientation, altitude and azimuth of the sensor create

a perception of the scene on the sensor. Although the skydome itself is not part of scene geometry,

however, it may include substantial space in an outdoor scene, viewed by the sensor.

Classified Texture

In our experiments, K-means clustering is employed for classification, which is performed

on an atmospherically compensated (by QUAC [38]) reflectance hyperspectral cube. In this

phase of research where the focus is on RT models, classification from MSI or RGB image like

CameoSim/DIRSIG is out of the scope. K-means clustering requires a user-defined number of classes

as input. RGB image of classification from 80 and 120 classes are shown in Figure 8a,b, respectively.

These classification results are performed in Matlab GPU based implementation using 100 K iterations.

A flat polygon is transformed into the terrain by introducing DEM driven realistic bumps onto it.

DEM is measured in Absolute Ground Level (AGL) for the test scene and it is shown in Figure 9a. The

classified image from Figure 8b is mapped on the terrain to construct a classified texture, as shown in

Figure 9b.
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(a) 80 classes, orange perspex appears to have white colour

(b) 120 classes, orange perspex appears to have orange colour.

Figure 8. QUAC is processed on HSI cube to retrieve reflectance cube. K-means clustering is applied to

classify this reflectance cube. Classified textures with 80, 120 classes are shown in (a,b).

(a) Digital Elevation Model (AGL) of the experiment scene. Height is given in meters, the

highest point is tree top that is 31.3 m with respect to the trough which is 0.0 m.

(b) Classified texture

Figure 9. Terrain with fixed geometry and skydome in CHIMES environment (Pre-spectral rendering

RGB view).

4.2. Sensor

Radiance generated by MODTRAN has a very high spectral resolution ranging from

wavenumbers (ν̃) between 3800 to 28000 (cm−1). To simulate a real sensor the output is spectrally

degraded to represent the instrument characteristic spectral channels. This is achieved by means of
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convolution with sensor response functions. The normalised convolved radiance values in band i are

calculated as;

Lsi =

∫

λ
Lmi(λ)ri(λ)dλ
∫

λ
ri(λ)dλ

, (26)

where Lsi is convolved radiance of ith band, Lmi is MODTRAN high spectral resolution radiance

and ri is the response function in ith band [39].The sensor module also takes part in the rendering

system by accepting the samples and returning rays distributed on the detector’s view grid, whose

count is defined by the user as rays per pixel. A scene is visible to the view grid by depth-sensitive

perspective projections.

5. Additional Enhanced Features in CHIMES

5.1. Polarised Skydome Radiance

Although MODTRAN has provided irradiance models for the emitters such as the sun, moon [40],

in CHIMES the sun and sky irradiance have been implemented as a skydome which is generated

through interpolation of MODTRAN’s look-up table (LUT) for various zenith and azimuth settings.

MODTRAN is typically run with multiple scattering models (DISORT scaled Isaac) and Mie scattering

for the appropriate atmosphere (aerosols) of the scene given by the atmospheric search algorithm as

described in Section 3.2. A skydome degree of polarisation (DOP) is achieved by rayleigh scattering on

environment maps pixel position (zenith, azimuth) with respect to solar position, polarimetric version

of MODTRAN called MODTRAN-P [24] is not used to generate this skydome. The sensor response is

convolved with the MODTRAN radiance as described in Section 4.2. Figure 10a, plots the variation of

radiance for skydome with clouds, while Figure 10b shows the DOP of the sky for depicted (by yellow

circle) solar azimuth and zenith positions. It is seen from these figures that a strong polarization of

solar irradiance is observed at 90◦ with respect to solar vector and is caused by the Rayleigh scattering

of the air molecules in the atmosphere [41]. It should be noted that clouds are not added as roving

geometry in this version of CHIMES, however reduced radiance due to presence of cloud is calculated

from MODTRAN and skydome with lower radiance is created. A polar plot of skydome radiance in

overcast weather is shown in Figure 11a. A similar plot for clear sky, that is, with no aerosol is shown

in Figure 11b.

(a) Skydome radiance variability with

respect to zenith and azimuth.

(b) Skydome degree of polarisation.

Figure 10. CHIMES sky and sun emitters.
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(a) Skydome radiance W/(m2.sr) with

cloud of Table 5 .

(b) Skydome radiance W/(m2.sr) clear

sky

Figure 11. CHIMES emitters.

5.2. Rendering

Rendering is the key component of the CHIMES simulator. The light-transport scheme employed

in rendering path tracing. A more detailed text about this rendering scheme may be found in

Reference [42] . Each pixel in the sensor plane is sampled by Poisson sampling and variable number of

rays can be defined in parameters. Increasing number of rays increases rendering time but provide

higher image quality. Multiple importance sampling [36] is applied for direct light source with

BRDF/BTDF and diffuse light source with phase function. The phase function employed during

rendering is Henyey-Greenstein function. Rendering is a recursive operation which is repeated

for a user-defined ray bounce. A scene is divided into blocks where each block is rendered in

parallel. The eventually accumulated radiance for each pixel is computed which is passed to the image

reconstruction component. The image reconstruction component estimates the pixel intensity based

on radiance and applies anti-aliasing filter, together with texture interpolation.

6. Experiment

6.1. Experimental Data

For experimental validation, we have a reference airborne HSI scene called Selene SCIH23

dataset [43] which was acquired by the Defence Science and Technology Laboratory (DSTL) covering

0.4 to 2.5 µm. DEM of this scene was also captured by LIDAR (Light Detection And Ranging) which is

shown in Figure 9a. It is a registered image which is separately taken from HySpex VNIR-1600 (160

bands between 0.414–0.975 µm) and SWIR-384 (288 bands between 0.978–2.509 µm) sensors mounted

on the same airborne platform at altitude of 944 meters. This scene was acquired near Salisbury, UK,

on 12 August 2014 BST 13:00:04. The registered image has a GSD of 70 × 70 cm, QUAC was applied

using ENVI software for atmospheric compensation. This scene has several planted calibration panels,

tiles, carpets and perspex, having both full and sub-pixel sizes. RGB images of Selene scene is shown

in Figure 12, which also contains ROI markings, used in Section 7.
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Figure 12. Selene SCIH23 RGB image with ROI marks, used in Section 7.

6.2. Experimental Setup Employed in Automatic Search for Atmospheric Parameters

The Selene scene is a vegetation biased scene, however, several fabric calibration panels with

known reflectance are planted across the scene as shown in Figure 13. A white calibration panel with an

average reflectivity of 99.0% and a black panel with average reflectivity of 2.0% are selected as reference

materials. Moreover, there are seven large fabric panels with particular spectral properties were placed

to act as calibration targets and deployed across the centre of the Hard Target (concrete) [43]. Figure 13

shows both ground (first row) and aerial (second row) image of the scene. Aerial image marks regions

where some panels and tiles are planted.

Figure 13. Commercially available fabric based calibration panels and tiles were planted in Selene

scene [43]. Average reflectivity for calibration panels varies from 99.0% to 2.0%.

7. Results and Validation

Simulation results are assessed based on variable terrain types, atmosphere types and adjacency

models as discussed in Section 3.1. Summarized results for each of these parameters are included

subsequently, however, more detailed material-wise statistical analysis is included in Appendix A.

Error metrics used for evaluation are defined in Appendix B.

We report the results of the search algorithm for atmospheric parameterization in the subsequent

section, followed by results of simulations. In atmosphere search we observe a closer match between

white panel’s radiance and MODTRAN’s Lw, however relatively larger error for MODTRAN’s path

radiance Lb and black panel’s radiance. In simulation results, we observe a closer match between

CHIMES BOAEM and CameoSim under cloudy atmosphere and flat terrain, in terms of radiance error

ranges and patterns. Moreover, the material wise results in Appendix A also shows a closer agreement

between CHIMES (BOAEM) and CameoSim. It is shown in the appendix that TIAEM produces better

spectral reflectance shapes (colours) for the man-made target materials, particularly in the VNIR region.

In the case of a clear sky, all models produce similar results.

7.1. Automatic Search for Atmospheric Parameters

During the search process, MODTRAN is input with several parameters, few of them are shown

in Table 5. In our experimental data, sensor altitude is higher than cloud base and presence of thin

cloud below the sensor is also reported [43], therefore we will vary the aerosol optical thickness below

the sensor to search the approximate underlying atmospheric condition in the scene.
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In each iteration MODTRAN’s Lw that is, accumulated total ground reflected radiance and path

radiance is calculated and goodness of fit is recorded. Estimate of searched white panel radiance

Lw and black panel radiance Lb is shown in Figure 14, that possesses the highest goodness of fit,

that is 90.4% of match in terms of NRMSE for Lw and 55.26% for Lb, respectively. These results

manifest good atmospheric search in terms of total ground reflected radiance, however, estimation

of path radiance is relatively worse. If path radiance estimated in the search process is lower than

the GT panel then it may result in higher contrast than the GT. As the search method only employs

MODTRAN at-sensor radiance estimate, the effect of volumetric scattering is not accounted for.

At rendering time, volumetric scattering may either reduce the error in the estimate of Lb or increase

it depending on the choice of phase function and backscattering parameter, such as the variable g in

Henyey-Greenstein function [42]. However, due to good estimation of the TGRR, we have selected

searched parameters (Cw = 0.22 gm/m3 and R = 0.024 Km) and fixed parameters given in Table 5 for

our overcast condition simulations. In the case of atmospheric search by using white and black panel,

it is easier to segregate the path radiance and TGRR, therefore these targets were employed. A similar

search based on orange perspex yielded (Cw = 0.22 gm/m3 and R = 0.023 Km), which is very close to

white and black panel’s parameters.

(a) White Panel Estimation

(b) Black Panel Estimation

Figure 14. White and black panel estimates from atmospheric search.

7.2. CHIMES and CameoSim Simulation Results with Flat Terrain

RGB images of Selene scene rendered by CHIMES and CameoSim are shown in Figure 15. Inputs

and parameters to both simulators are the same, particularly the atmospheric condition is cloudy
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with parameters shown in Table 5 and the scene geometry is flat terrain. We observe illumination

differences in the RGB images, particularly at the region having trees, closer to the farm. It should

be noted that the region with trees and buildings on the concrete hard target show a higher error.

The scene posses both trough and crest bumps which cause a higher error. Another contributing

factor that accumulates the error, is the presence of shadows [44]. As shown in Figure 16b,c, CHIMES

BOAEM and CameoSim, apparently have closer ℓ1-norm error, the error map also shows a closer error

range and mean error, compared to TIAEM. The error range of BOAEM is between 0–3.16 with a mean

error of 1.05. CameoSim error lies in the range of 0–3.74 with a mean error of 1.25. The visual pattern

of the error map does look similar to discrepancies in the tree region in CHIMES BOAEM which has

high error relative to CameoSim. On the other hand CHIMES TIAEM error map has a higher range,

lying between 0–3.99 with a mean error of 1.33. All three error maps have higher error in tree, building

and low reflectance target regions.

(a) CHIMES TIAEM simulated Imagery

(b) CHIMES BOAEM simulated Imagery

(c) CameoSim simulated Imagery

(d) Ground Truth Imagery

Figure 15. RGB color image for simulated and Ground Truth Selene scene. Atmospheric condition

listed in Table 5.
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(a) CHIMES TIAEM ℓ1-norm error range [0 3.99 ], Mean error

[1.33 ]

(b) CHIMES BOAEM ℓ1-norm error range [0 3.16 ], Mean error

[1.05 ]

(c) CameoSim ℓ1-norm error range [0 3.74 ], Mean error [1.25 ]

Figure 16. ℓ1 Norm error of simulated scenes with respect to Ground Truth in atmospheric condition

of Table 5.

Several ROIs are considered for evaluating the mean of radiance across the scene, these ROIs are

shown in Figure 12. Selection of these ROIs is biased towards vegetation which constitutes more than

80% of the scene. As mentioned in Section 1, the rationale behind this ROI selection is in the evaluation

of background statistic of models. Out of this eight, seven are grass, while one is from the concrete

hard target. Mean spectral radiance of these ROIs is shown in Figure 17. NRMSE and ℓ1-norm errors

are tabulated in Table 6, which shows that CHIMES BOAEM has consistently lower errors compared

to TIAEM and CameoSim.

Similarly, man made material radiance shown in Appendix A also show closer match between

BOAEM and CameoSim in terms of NRMSE error of mean radiance.

Eigenanalysis is also performed for evaluation of results. Eigenvectors of band to band covariance

matrix are calculated. A NRMSE error between first four eigenvectors with respect to GT is shown in

Figure 18. As the trend developed in a previous error metric, both BOAEM and CameoSim have similar

NRMSE error magnitude. It should be noted that TIAEM has substantially lower error magnitude in

first eigenvector. This trend also apparent in material wise eigenanalysis shown in Appendix A.
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Figure 17. Mean radiance of ROIs shown in Figure 12.

Table 6. NRMSE, ℓ1-norm error of radiance in Figure 17. Material of ROI 2 is concrete, other ROIs are

grass across the scene. Least errors are shown in bold text.

ROI Error CHIMES TIAEM CHIMES BOAEM CameoSim

ROI 1
NRMSE 29.9207% 17.602% 24.822%
ℓ1-norm 1.3772 0.921 1.211

ROI 2
NRMSE 30.187% 19.455% 22.871%
ℓ1-norm 1.637 1.107 1.270

ROI 3
NRMSE 25.970% 17.250% 22.059%
ℓ1-norm 1.3839 1.010 1.234

ROI 4
NRMSE 29.436% 16.736% 26.695%
ℓ1-norm 1.255 0.774 1.163

ROI 5
NRMSE 25.476% 16.904% 21.673%
ℓ1-norm 1.325 0.959 1.172

ROI 6
NRMSE 29.901% 17.575% 24.417%
ℓ1-norm 1.255 0.930 1.255

ROI 7
NRMSE 27.547% 17.483% 23.101%
ℓ1-norm 1.428 1.010 1.269

ROI 8
NRMSE 31.918% 20.771% 22.313%
ℓ1-norm 1.673 1.215 1.275
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Figure 18. Eigenvectors of covariance of whole simulated and GT scenes. NRMSE of simulated scene

Eigenvectors with respect to GT’s.

For example, TIAEM has 18.3% NRMSE compare to 79.4% and 73.4% of BOAEM and CameoSim,

respectively, for first eigenvector. In the next two eigenvectors BOAEM has the lowest error magnitude,

while CameoSim has the lowest error in the last one. In case of material wise radiance analysis

presented in Appendix A, CHIMES TIAEM and BOAEM have the lower NRMSE error with respect to

GT compared to CameoSim. For example in orange perspex near grass TIAEM has an error of 13.2%,

while CHIMES BOAEM has an error of 8.8%, compared to CameoSim’s 89.9%.For concrete, TIAEM

has the error magnitude of 28.0% compared to BOAEM’s 26.8% and CameoSim’s 25.5%. Therefore

CameoSim performs slightly better for concrete, in terms of eigenvector matching with GT.

Figures A1 and A2 clearly show influence of albedo material that is, grass scrub in VNIR region

in BOAEM and CS results. However, TIAEM does not depict this over influence of the average

background albedo material used in MODTRAN calculations. Even though TIAEM still cause increase

in radiance at high albedo bands. Similarly this trend is visible in the DEM based results as well.

7.3. CHIMES and CameoSim Simulation Results with DEM

Rugged terrain causes a non unity sky-view factor, which attributes to inclusion of background

reflection and reduced diffuse radiance. It is therefore important to validate the differences in radiance

with and without terrain. RGB images of simulated scene with DEM surface is shown in Figure 19.

In case of RGB channels, we observe that in contrary to results of flat terrain, the contrast in both

models of CHIMES images has substantially reduced, particularly in the region where terrain is higher.

This manifests the background contribution due to reflection. In CameoSim image we observe reduced

spatial reconstruction quality leading to apparent pixelation. However, the visual contrast appears to

increase in CameoSim compared to the flat terrain simulation. A more clearer picture about error is

found in ℓ1-norm error map in Figure 20, subsequently.
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(a) CHIMES TIAEM simulated Imagery

(b) CHIMES BOAEM simulated Imagery

(c) CameoSim simulated Imagery

Figure 19. RGB color image for simulated and Ground Truth Selene scene. Atmospheric condition is

given in Table 5.

Figure 20 shows that CHIMES TIAEM has an error range of 0–4.13, with the mean error of 1.38

compared to 0–3.99, with the mean error of 1.33, in case of flat terrain. The increase in mean error is

therefore 3.6 %. Simlarly, CHIMES BOAEM has an error range of 0-3.28, with the mean error of 1.09

compared to 0–3.16, with the mean error of 1.05, in case of flat terrain. The increase in mean error in

this case is 3.7%. For CameoSim result, the error range is 0–18.33, with the mean error of 6.11 compared

to 0–3.74, with the mean error of 1.25 for flat terrain. The increase in error is 388.8%. The relative

pattern of error as shown Figure 20 is similar to that in flat terrain case.
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(a) CHIMES TIAEM ℓ1-norm error range [0 4.13], Mean error [1.38 ]

(b) CHIMES BOAEM ℓ1-norm error range [0 3.28], Mean error [1.09]

(c) CameoSim ℓ1-norm error range [0 18.33], Mean error [6.11]

Figure 20. ℓ1 Norm error of simulated scenes with respect to Ground Truth.

We present the ROI based mean radiance magnitude like presented in flat terrain case.

The radiance is increased in all simulations due to background reflected contributions. Figure 21

and Table 7 show that CHIMES BOAEM has the least NRMSE and ℓ1 Norm error in almost all ROIs.

It is encouraging to note that CHIMES BOAEM’s error reduced for all eight ROIs when DEM is

introduced. CHIMES TIAEM however maintains similar error as in flat terrain case. The CameoSim

result for ROIs shows an enormous increase in errors.

Similar to flat terrain, eigenvectors for the DEM are also calculated. Eigenvectors’ plot is shown in

Figure 22.The NRMSE error in this case observe an increase in simulated results. For example, TIAEM

has 44.2% NRMSE compared to 72.6% and 53.4% of BOAEM and CameoSim, respectively, for the

first eigenvector. Similar to flat terrain, in the second two eigenvectors BOAEM has the lowest error

magnitude. The error magnitude of all simulation results exceed 100% in third and fourth eigenvector

cases.
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Figure 21. Mean radiance of ROIs shown in Figure 12.

Table 7. NRMSE, ℓ1-norm error of radiance in Figure 21. Material of ROI 2 is concrete, other ROIs are

grass across the scene. Least errors are shown in bold text.

ROI Error CHIMES TIAEM CHIMES BOAEM CameoSim

ROI 1
NRMSE 27.510% 16.980% 118.307%
ℓ1-norm 1.338 0.913 6.160

ROI 2
NRMSE 29.793% 17.806% 112.323%
ℓ1-norm 1.651 0.979 5.997

ROI 3
NRMSE 25.040% 16.955% 96.663%
ℓ1-norm 1.365 1.001 5.901

ROI 4
NRMSE 28.456% 17.235% 134.023%
ℓ1-norm 1.248 0.816 6.341

ROI 5
NRMSE 24.896% 16.621% 99.948%
ℓ1-norm 1.316 0.944 5.951

ROI 6
NRMSE 28.253% 18.353% 116.072%
ℓ1-norm 1.436 1.006 6.092

ROI 7
NRMSE 26.090% 17.259% 101.742%
ℓ1-norm 1.426 1.014 5.916

ROI 8
NRMSE 30.925% 19.874% 91.241%
ℓ1-norm 1.661 1.184 5.724
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Figure 22. Eigenvectors of covariance of whole simulated and GT scenes. NRMSE of simulated scene

Eigenvectors with respect to GTs.

7.4. CHIMES and CameoSim Simulation Results with Clearsky

We have briefly included the results of a simulation in a clearsky atmosphere. There are no

aerosols and clouds in these simulations. This is a scenario where scattering has little affect therefore

adjacency effect should not be observed. Lack of aerosol increases transmission and therefore the

at-sensor radiance magnitude is higher. We include ℓ1-norm error map and radiance of white panel to

show a comparison of simulations.

Due to the lack of adjacency effect, a closer match between CHIMES TIAEM and BOAEM models

is expected. It is premised by the ℓ1-norm error map shown in Figure 23. Although we calculate

ℓ1-norm error with respect to ground truth, however as the atmosphere is far from the true scene’s

atmosphere, therefore error magnitude have no significance. GT is only used as a reference radiance to

show similarity between the simulation models. In ℓ1-norm error CHIMES TIAEM has an error range

of 0–12.79, with the mean error of 4.28. CHIMES BOAEM has an error range of 0–12.70, with the mean

error of 4.23. CameoSim’s error is in range 0–14.71, with the mean error of 4.90, as shown Figure 23.

We observe a close match in error ranges, mean error and error pattern across the scene.

Radiance from ROI of white panel is shown in Figure 24. Both magnitude and signature of output

radiance for all simulation models look in close agreement with each other.

(a) CHIMES TIAEM ℓ1-norm error range [0 12.79], Mean error [4.28]

Figure 23. Cont.
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(b) CHIMES BOAEM ℓ1-norm error range [0 12.70], Mean error [4.23]

(c) CameoSim ℓ1-norm error range [0 14.71], Mean error [4.90]

Figure 23. ℓ1-norm error of simulated scenes with respect to Ground Truth in clear sky atmosphere.

GT radiance is only used as reference for calculating error.

Figure 24. Radiance of white calibration panel in a (5 × 5) ROI. Simulated radiance are for clearsky

while ground truth (GT) is under cloudy condition. GT is only used as a reference in this comparison.
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8. Discussion

8.1. Variable Atmospheric Condition

In a clear-sky atmosphere, MODTRAN’s predefined "no-aerosol" setting is used. Clearsky

simulation results show that both models of CHIMES produce similar results compared to CameoSim.

The ℓ1-norm error range for the whole scene simulated with TIAEM and BOAEM the error ranges

are between 0–12.79 and 0–12.70 with the mean error of 4.28 and 4.23, respectively. In the case of

CameoSim simulation the range of ℓ1-norm error is between 0 and 14.71 with a mean error of 4.90. In

terms of rendering the coupling of ray tracer with phase function is relatively insignificant because of

lower scattering coefficients in this atmosphere. On the other hand coupling of the ray-tracer direct

emitter with target reflectance, BRDF is more dominant which manifests the fact that all models are

working similarly when direct light is dominant and atmosphere has lower scattering efficiency. In

clear-sky simulations, flat terrain was used. Results of overcast condition are covered in subsequent

sections, for flat and DEM terrains.

8.2. Flat Terrain

When simulations were performed with flat terrain, CHIMES TIAEM simulated image has

ℓ1-norm error for the whole scene in the range of 0–3.99 with the mean error of 1.33, compared to

CHIMES BOAEMs 0–3.16 with the mean error of 1.05. CameoSim’s ℓ1-norm error range lies between

0–3.74 with a mean error of 1.25. Therefore CHIMES BOAEM model is the best performer, while TIAEM

is the worst in terms of ℓ1-norm error, which might be a consequence of higher textural variation during

volumetric scattering. On the other hand, if we compare the eigenvectors of the covariance matrix of

the simulated scenes, TIAEM’s first vectors have minimum 18% NRMSE compared to BOAEMs 79.4%

and CameoSims 73.4%, with respect to the ground truth. Better estimation of covariance statistics of

a scene signifies better estimation of detector performance through a simulated scene. These target

detectors include Adaptive Cosine Estimator (ACE) and Match Filter and so forth, that depends upon

HSI image’s band to the band covariance matrix. If a simulator generates good statistics of the scene

for variable conditions then target vulnerability can be better assessed.

8.3. DEM–Based Realistic Terrains

When simulations were performed with DEM–based realistic terrain, all three models show an

increase in the mean ℓ1-norm error for the whole image. CHIMES BOAEM still possesses the least

mean error of 1.09 with a range of 0–3.28. The TIAEM model’s ℓ1-norm error lies within 0–4.13 with

the mean error of 1.38. CameoSim, on the other hand, shows an unexpected many-fold increase in

ℓ1-norm error compared to both models of CHIMES. As CameoSim is a closed software system, it is

not possible to verify the cause of increase error in CameoSim. However, as mentioned in the text

the sky-view factor, in this case, becomes less than 1.0, causing non-zero contribution of background

reflected radiance.

9. Conclusions

In this paper, we introduced a new end-to-end Hyperspectral Image generation system,

which generates HSI image in the visible to SWIR region of the electromagnetic spectrum. The image

simulated in this work was taken by Hyspex dual VNIR1600 and SWIR384 cameras. Our simulator

creates a skydome from MODTRAN radiance and employs path tracing based light transport for

calculating the at-sensor radiance. It also incorporates Digital Elevation Models to generate the

relatively rugged surface. We also presented a method to search for atmospheric parameters, given a

known reflectance material in the scene.

In this research, we were primarily focused on implementing and evaluating alternate adjacency

models. We introduced an adjacency effect model which uses one average background spectra for the

whole scene (BOAEM), we also proposed localized background spectra retrieved from neighbouring
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texture pixels (TIAEM). Both of our models employ volumetric backscattering builtin the renderer. We

compared results of both these models with CameoSim and Ground Truth.

Imagery generated by CHIMES using BOAEM model shows close agreement with CameoSim.

The CHIMES TIAEM model shows deviation from both BOAEM and CameoSim results and yields a

higher error in flat scene geometry, however, it consistently performed better in eigenanalysis of the

whole imagery, particularly in first eigenvectors of both flat and DEM terrains. Moreover, analysis

of target material in Appendix A shows that the shape of radiance generated by CHIMES TIAEM

matches closely in VNIR region. It is noted during the analysis that CHIMES-BOAEM came out to

have the least error as shown in Table 6, it even showed a slump in error when rugged terrain is used,

as shown in Table 7. This DEM data represent the real height-map of the scene when it was captured.

CameoSim generated imagery in flat terrain stands second in terms of least error with respect

to ground truth, as shown in Table 6. However, when DEM is introduced in terrain, the error leapt

up by several times as shown in Figure 20 and Table 7. Selene scene has some regions consisting tall

tree, however, it is essentially a flat scene otherwise. An increase in error to this extent was therefore

not expected.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Atmospheric Compensation

ACE Adaptive Cosine Estimator

AEM Adjacency Effect Model

AGL Absolute Ground Level

AOT Aerosol Optical Thickness

BOAEM Background One-Spectra Adjacency Effect Model

BRDF Bidirectional Reflection Distribution Function

BST British Standard Time

BTDF Bidirectional Transmission Distribution Function

BxDF Combined reference to BRDF and BTDF

CameoSim CAMoflauge Electro-Optic Simulator

CHIMES Cranfield Hyperspectral Image Modelling and Evaluation System

DEM Digital Elevation Model

DSTL Defence Science and Technology Laboratory

DIRSIG Digital Imaging and Remote Sensing Image Generation

DOP Degree Of Polarisation

DISORT Discrete Ordinate Radiative Transfer

EnMAP Environmental Mapping and Analysis Program

FOV Field Of View

GSD Ground-Sampling Distance

GT Ground Truth

HDR High Dynamic Range

HSI Hyperspectral Image/Imaging

IR Infra-red

LIDAR Light Detection and Ranging
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LoS Line of Sight

LUT Look-up Table

MCScene Monte-Carlo Scene

MF Matched Filter

MODTRAN MODerate resolution TRANsmission

MSI Multispectral Image/Imaging

NIR Near Infrared

NIIRS National Imagery Interpretability Rating Scale

NRMSE Normalized Root Mean Square Error

OSSIM Optronic Scene Simulator

PDF Probability Density Function

PICASSO Parameterized Image Chain Analysis and Simulation SOftware

PSF Point Spread Function

QUAC QUick Atmospheric Correction

RGB Red Green Blue

ROI Region Of Interest

RT Radiative Transfer

SNR Signal to Noise Ratio

SWIR Short-Wave Infrared

STF System Transfer Function

TGRR Total Ground Reflected Radiance

TIAEM Texture-Spectra Incorporated Adjacency Effect Model

USGS United States Geological Survey

Appendix A. Material Wise Simulation Results

In Figures 17 and 21 we presented mean radiance of ROIs given in Figure 12. The prime focus in

selecting these ROIs is firstly in capturing the background that is, vegetation for most of the targets

and secondly concrete on which a number of other target are planted. It is however important to

highlight some man made materials such as orange perspex and other patch of concrete, radiance of

these targets are shown in this appendix. Radiance of each target is plotted and statistical analysis is

presented next to them, along with eigenanalysis. In Figures A1 and A2 results of radiance with a flat

terrain are presented.
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Figure A1. Flat Terrain: Radiance of a ROI (5 × 5) for Orange Perspex near grass. Mean, standard deviation of all simulations along with first three Eigenvectors of

covariance are shown. NRMSE of entities with respect to GT is also calculated.
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Figure A2. Flat Terrain: Radiance of a ROI (5 × 5) for Concrete. Mean, standard deviation of all simulations along with first three Eigenvectors of covariance are

shown. NRMSE of entities with respect to GT is also calculated.
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Appendix B. Definitions of ‘1-norm, NRMSE Errors

Generally, ℓp-norm of a vector is given as;

||x||p = (∑
i

|xi|
p)

1
p . (A1)

‘1-norm:

ℓ1-norm error is calculated for the whole scene to show the extent of error and error pattern.

ℓ1-norm error is calculated by Equation (A2), where B is the number of spectral bands.

ℓ1-norm(GTRadiance, SimulatedRadiance) =
B

∑
n=1

|GTRadiance − SimulatedRadiance| (A2)

NRMSE:

Goodness of Fit is calculated by means of NRMSE in atmospheric search algorithm. Moreover

NRMSE is also calculated for mean radiance of different material ROIs. NRMSE is calculated by

Equation (A3).

NRMSE = 1 − (ℓ2-norm(GTRadiance, SimulatedRadiance)/ℓ2-norm(GTRadiance, MeanGTRadiance)) (A3)
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