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Abstract— In this paper, theoretical analysis on the incre-
mental backstepping control is suggested especially under the
existence of model uncertainties. This algorithm is proposed
in the previous studies by modifying the backstepping method
to reduce model dependency. Because this method is a type
of nonlinear control and the model uncertainties are assumed
to be considered, it is difficult to have theoretical analysis,
which causes lack of understandings about this algorithm.
Therefore, this paper suggests closed-loop analysis with simpli-
fied dynamics under the model uncertainty. Transfer function
is derived and poles, stability condition, steady state error,
and settling time are presented. In addition, the effects of
model uncertainties and gains are identified through analysis.
Proposed analysis is meaningful in terms of establishing critical
understandings about the algorithm, even though the simplified
dynamics is applied for analysis purpose.

I. INTRODUCTION

Gain-scheduled linear feedback controller is the most
widely applied control method, which uses a number of local
linear controllers with scheduled gains to cover the whole
flight envelope. There exists well-established linear control
theory, so certification becomes easier thanks to the well-
accepted robustness and performance metrics. However, if
there is flight envelope region with significant nonlinearities,
accurate tracking cannot be guaranteed with linear control
because it is based on linearized nominal aircraft model.
Additionally, gain scheduling in traditional linear control
framework requires enormous workload.

Nonlinear control algorithms, on the other hand, do not
suffer from those kinds of drawbacks. Consequently, back-
stepping method [1], a recursive nonlinear control algorithm
originally proposed to eliminate the relative-degree restric-
tion of passive design, also has advantages from a standpoint
mentioned before. It has been successfully applied in aerial
systems for benchmark examples and real aerial platforms
[2]- [7]. Nevertheless, backstepping method belongs to the
model-based control strategy. It indicates that the method
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is sensitive to model uncertainties like aerodynamic uncer-
tainties. However, it is difficult to get accurate model which
requires tremendous amount of cost. Hence, the incremental
backstepping(IBKS) control [8] [9] is suggested to reduce the
dependency on the aircraft model, which is known to require
accurate knowledge only about the control effectiveness.

This paper suggests theoretical analysis for IBKS method
under the model uncertainties. This method is a type of
nonlinear control, so it has shortcomings in theoretically
well established analysis. Absolute stability using Lyapunov
candidate function is almost the only metric for nonlinear
control that is commonly discussed so far. It is hard to tell
relative stability or fundamental performance metrics ana-
lytically. Furthermore, analysis becomes more complicated
if model uncertainties are introduced, since nonlinearities
can not be completely cancelled for the closed-loop sys-
tem. Besides, it is difficult to find previous studies which
successfully perform theoretical analysis for IBKS under the
model uncertainties. There only exist papers [8] - [10] and
[11] which show closed loop characteristics under the model
uncertainties just through simulations or experiments.

In this paper, IBKS is derived in Sec. III and closed
loop analysis is performed in Sec. IV, with short period
mode dynamics suggested in Sec. II. Simplified dynamics
is applied for analysis purpose, and model uncertainties are
considered in closed loop analysis. Proposed analysis is
meaningful in terms of establishing critical understandings
about the closed loop system with IBKS. Transfer function
is calculated and consequently, poles, stability condition,
steady state error, and settling time are presented to discuss
more about the stability and the performance metric. Several
properties like the effects of model uncertainties and gains on
the system characteristic can be understood. Through some
case studies, these features are more easily explained and
finally shown in the simulation.

II. PRELIMINARIES : DYNAMICS

Short period mode dynamics, one of the longitudinal oscil-
lation modes with high natural frequency, is applied for the
derivation of IBKS and its closed loop analysis. This mode
is of paramount importance in the flight control, because one
of the main purposes of the stability augmentation system for
the airplane is to improve characteristics about this mode and
it is highly related to the angle of attack control.

α̇ = Zα(M,α)α+ q + Zδ(M,α)δ

q̇ = Mα(M,α)α+Mq(M,α)q +Mδ(M,α)δ
(1)
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where the state variables α and q represent the angle of
attack and the pitch rate. The control input δ corresponds
to the deflection of the elevator. Zα, Zδ,Mα,Mq and Mδ

are aerodynamic derivatives.
This simplified dynamics is utilized for the simplicity of

analysis which will be performed in Sec. IV with consider-
ation of model uncertainties. It’s still meaningful enough to
have understandings about the effects of IBKS controller and
the characteristics of the closed loop systems under the model
uncertainties. As a future work, this study can be extended
to the analysis with full 6-DoF dynamics.

III. DERIVATION OF CONTROL LAWS

IBKS controller is based on the backstepping method,
which requires that the dynamics should be in the strictly
feedback form. Therefore, this approximated dynamics (2)
is applied for the control law derivation. In the original
dynamics (1), Zδδ which is related to non-minimum phase
is neglected. It is often made assumption in flight control
systems design. Additionally, aerodynamic derivatives esti-
mates (̂·) identified from wind turnel test or aeroprediction
are used, and they are handled in piece-wise way in order
to easily utilize existing analysis framework for the linear
time-invariant system in Sec. IV.

α̇ = Ẑαα+ q

q̇ = M̂αα+ M̂qq + M̂δδ
(2)

State errors can be defined as below.

z1 = α− αc
z2 = q − qc

(3)

where subscript c indicates command.
Asymptotic stability for nonlinear system can be guar-

anteed if Lyapunov candidate function becomes positive
deflinite and its derivative becomes negative definite. To
derive IBKS control command which satisfies asymptotic
stability, 2 cascaded steps are performed.

First, Lyapunov candidate function V1 with only consid-
eration of z1 is selected as

V1 =
1

2
z21 (4)

which is positive definite.
Then, its derivative becomes

V̇1 = z1ż1

= z1 (α̇− α̇c)

= z1

(
Ẑαα+ q − α̇c

) (5)

In order to satisfy Lyapunov stability condition, psedo-
command qc is derived as

qc , −C1z1 − Ẑαα+ α̇c (6)

which makes negative definite V̇1 = −C1z
2
1 .

The first step is related to the outer-loop control design
which just classical backstepping design procedure is applied
to. For the inner-loop control design, q dynamics in (2)

is modified with the assumption that the states α, q and
the control input δ can be expressed as a combination of
trim values (·)0 and disturbances ∆(·) around them. This
assumption is valid especially for the environment with the
sufficiently high sampling rate.

q̇ = M̂α (α0 + ∆α) + M̂q (q0 + ∆q) + M̂δ (δ0 + ∆δ)

= q̇0 + M̂α∆α+ M̂q∆q + M̂δ∆δ
(7)

∆α and ∆q, the increments in states, can be ignored because
the effects of them are much smaller than the one with
increment in input, ∆u, which directly affects the pitch
moment. Then, the q dynamics for the design of IBKS
control becomes

q̇ ' q̇0 + M̂δ∆δ (8)

As the second step, Lyapunov candidate function V2 with
consideration of both z1 and z2 is selected as

V2 =
1

2
z21 +

1

2
z22 (9)

which is positive definite.
Then, its derivative becomes

V̇2 = z1ż1 + z2ż2

= z1

(
Ẑαα+ q − α̇c

)
+ z2

(
q̇0 + M̂δ∆δ − q̇c

) (10)

By using pseudo-command equation which is suggested in
(6), V̇2 becomes

V̇2 = z1 (−C1z1 + z2) + z2

(
q̇0 + M̂δ∆δ − q̇c

)
(11)

In order to satisfy Lyapunov stability condition, the control
command ∆δ is derived as

∆δ ,
1

M̂δ

(−C2z2 + q̇c − z1 − q̇0) (12)

which makes negative definite V̇2 = −C1z
2
1 − C2z

2
2 .

Therefore, the final form of the derived IBKS control is

qc = −C1z1 − Ẑαα+ α̇c

δ = δ0 + ∆δ

=
1

M̂δ

(−C2z2 + q̇c − z1 − q̇0) + δ0

(13)

To make the angle of attack α go to the desired value αc,
pseudo-command qc is derived and it is achieved that q goes
to qc by the actual control input δ. Only information about
Ẑα and M̂δ is required to formulate the control law. It’s
because the effects of the aerodynamic derivatives M̂α and
M̂q are disappeared by neglecting ∆α and ∆q in q dynamics.
Model dependency is reduced, and there is no need to worry
about the uncertainties in M̂α and M̂q . Instead, additional
measurements δ0 and q̇0 related to current control surface
deflection and state derivatives are required for control law
implementation.



IV. CLOSED-LOOP ANLAYSIS

In this chapter, closed-loop analysis is performed. The
control input (13) derived in the previous section is sub-
stituted to the original dynamics (1) with Zδ = 0 condition
and with the other true aerodynamic derivatives in piece-wise
way. Zδ can be usually neglected for the large airplanes, even
though it is hard to ignore Zδ , which has always negative
sign, for the air vehicles with high maneuverability like
missiles. For analysis, transfer function for the closed-loop
system is derived and then, the equation for the steady state
error as one of performance metrics is suggested.

To easily provide more interpretations and understandings
about the control algorithm, case studies are performed
when there exists uncertainty respectively in Ẑα and M̂δ .
For each case, transfer function is given and consequently,
poles, stability condition, steady state error, and settling time
are suggested to discuss more about the stability and the
performance metric. In addition, several properties like the
effects of model uncertainties and gains can be understood
through analysis.

A. General analysis
Before analysis, it is good to decide how to deal with

current state derivative and control surface deflection mea-
surements q̇0 and δ0. In this paper, they are suggested as
following.

q̇0 = Mαα+Mqq +Mδδ0

δ0 = δ(t− τ)
(14)

Current state derivative measurement q̇0 is modelled by using
piece-wise version of (1). If an actuator is assumed to be
perfect, control surface deflection becomes the same with
generated control command. Then, current control surface
deflection measurement δ0 can be regarded as control com-
mand generated in the previous step. τ stands for step size.

Under the assumption of constant αc, i.e. α̇c = α̈c = 0,
transfer function can be derived as below.

α(s)

αc(s)
=

T (s)

s2 + 2ζωns+ ω2
n

where

T (s) = (C1C2 + 1)
Mδ

φ(s)

2ζωn = −
{
Zα +Mq −

Mδ

φ(s)

(
C1 + C2 +Mq + Ẑα

)}
ω2
n =

(
1− Mδ

φ(s)

)
(ZαMq −Mα)

+
Mδ

φ(s)

{
C2

(
Ẑα − Zα

)
+ (C1C2 + 1)

}
(15)

φ(s) is written as below.

φ(s) = M̂δ

(
1− e−τs

)
+Mδe

−τs (16)

For step input, αc(s) = K
s . Therefore, α(s) becomes

α(s) = K
T (s)

s2 + 2ζωns+ ω2
n

1

s
(17)

Steady state error can be derived from

ess = αc − lim
t→∞

α(t) = αc − lim
s→0

sα(s) (18)

Then, the steady state error ess,1 with IBKS controller can
be represented as below.

ess = K

{
η2

η1 + η2

}
(19)

η1 and η2 in steady state error equation can be written as
below.

η1 = C1C2 + 1

η2 = C2

(
Ẑα − Zα

) (20)

B. Case study

1) Case with only uncertainty in Ẑα: If there exists
uncertainty only in Ẑα = Zα(1 + ∆) and uncertainty in
M̂δ is neglected(i.e. M̂δ = Mδ), then φ(s)

∣∣
M̂δ=Mδ

= Mδ .
Therefore, transfer function becomes

α(s)

αc(s)
=

T (s)

s2 + 2ζωns+ ω2
n

where
T (s) = (C1C2 + 1)

2ζωn = (C1 + C2) + Zα∆

ω2
n = (C1C2 + 1) + C2Zα∆

(21)

Then the poles p1 can be suggested as below.

p =
−2ζωn ±

√
(2ζωn)

2 − 4ω2
n

2
(22)

It is observed from the above equation that the poles move
to more left side as gains increase, which means relative
stability can be improved with high gains.

The condition to maintain stability with model uncertainty
can be proposed from 2ζωn > 0 (Cond.1) under ω2

n > 0
(Cond.2) as follows.

G = {C1, C2 ∈ R>0|Cond. 1 & Cond. 2}
Cond. 1 : C1 + C2 > −Zα∆

Cond. 2 : C1C2 + C2Zα∆ > −1

(23)

Settling time, when the magnitude of the error is reduced
within 5%, can be calculated by using approximated equation
below

ts =


3.2

ζωn
if 0 < ζ < 0.69

4.5

ωn
ζ if ζ > 0.69

(24)

where

ωn =
√

(C1C2 + 1) + C2Zα∆

ζ =
C1 + C2 + Zα∆

2
√

(C1C2 + 1) + C2Zα∆

(25)

ζ and ωn represent damping ratio and natural frequency.



The steady state error ess becomes

ess = K
C2Zα∆

(C1C2 + 1) + C2Zα∆
(26)

From derived equation above, following properties related to
the steady state error can be found. First, |ess| gets larger as
|∆| increases. Second, ess can be reduced with high gains.

2) Case with only uncertainty in M̂δ: If there exists
uncertainty only in M̂δ = Mδ(1 + ∆) and uncertainty in
Ẑα is neglected(i.e. Ẑα = Zα), analysis can be performed
as following.

If τ is small enough, e−τs ' 1 and φ(s)
∣∣
Ẑα=Zα

' Mδ .
Therefore, transfer function becomes

α(s)

αc(s)
=

(C1C2 + 1)

s2 + (C1 + C2) s+ (C1C2 + 1)
(27)

Then the poles p1 can be suggested as below.

p =
− (C1 + C2)±

√
(C1 − C2)

2 − 4

2
(28)

From the above equation, following characteristics can be
shown. First, poles can be expressed as a function of gains
only, without any model parameters like aerodynamic deriva-
tives. Second, when the gains are just positive, the poles are
always located in the left half plane, which means the system
always becomes stable. Third, poles go to more left side as
gains become larger, which means relative stability can be
enhanced with high gains.

Settling time can be calculated by using (24) with

ωn =
√
C1C2 + 1

ζ =
C1 + C2

2
√
C1C2 + 1

(29)

Performance metrics related to fast response like settling time
and rise time are also determined only by gain values.

The steady state error ess always becomes zero because
η2
∣∣
Ẑα=Zα

= 0.
Under the condition that τ is small enough(i.e. the cal-

culated control command is transmitted and reflected fast
enough to the real control surface deflection), the system
becomes robust with respect to the uncertinty in M̂δ even
if this information is still required to implement IBKS. Ths
is the one of the most important findings obtained from the
theoretical analysis.

V. SIMULATION

Under the Zδ = 0 condition, simulations are performed
for each case with uncertainty in Ẑα and M̂δ respectively.
Simulations for these 2 cases are carried out with specific
values in table 1. For aerodynamic derivatives, piece-wise
approach is considered. Several points were simulated, and
the result from the case with Zα = −0.0075, Zδ = 0, Mα =
1.4049, Mq = −1.19 and Mδ = −11.56 is suggested in this
paper as an example.

TABLE I
SIMULATION PARAMETERS

Parameter Value
αc 2◦

C1, C2 2
τ 0.01sec
∆ [−0.75, −0.5, −0.25, 0, 1, 2, 3, 4]

A. Simulation results with only uncertainty in Ẑα

Predicted ts, ωn, ζ and ess from the previous analysis are
given in table 2. Fig.1 and Fig.2. suggest simulation results.

TABLE II
PREDICTED RESULTS WITH ∆ IN Ẑα

∆ ess,1 ωn ζ ts

−0.75 0.0045 2.2386 0.8947 1.7985
−0.5 0.0030 2.2377 0.8946 1.7990
−0.25 0.0015 2.2369 0.8945 1.7995

0 0 2.2361 0.8944 1.8
1 −0.0060 2.2327 0.8941 1.8020
2 −0.0121 2.2293 0.8938 1.8041
3 −0.0182 2.2260 0.8934 1.8061
4 −0.0243 2.2226 0.8931 1.8082
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Fig. 1. Pole Trajectory (Zα Disturbance, IBKS)
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Fig. 2. Time Response (Zα Disturbance, IBKS)



As shown in Fig. 1, uncertainty in Ẑα doesn’t have much
influence on the location of poles. Therefore, ωn, ζ and
consequently ts do not change a lot, which is observed in
Fig 2. This also happens in |ess|. Gains rather have more
effects on the characteristics of the closed-loop system; in
this example, gains are big enough to make poles located in
left half plane, so the system becomes stable with every ∆.

The predicted values summarized in table 2 have the same
tendancy with the simulation results. |ess| slightly increases
as |∆| goes up. As ∆ becomes larger, ωn and ζ decrease
in a small amount, and ts increases a liittle bit. However,
there’s no big difference in performance metrics caused by
the uncertainty ∆ in Ẑα

B. Simulation results with only uncertainty in M̂δ

Predicted ts, ωn, ζ and ess,1 from the previous analysis are
summarized in table 3, and simulation results are suggested
in Fig.3 and Fig.4.

TABLE III
PREDICTED RESULTS WITH ∆ IN M̂δ

∆ ess,1 ωn ζ ts

For all ∆ 0 2.2361 0.8944 1.8
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Fig. 3. Pole Trajectory (Mδ Disturbance, IBKS)
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Fig. 4. Time Response (Mδ Disturbance, IBKS)

Previous analysis indicates that p, ωn, ζ and ts are
functions of gains only, and ess is always zero. Therefore,
table 3 suggests a result regardless of ∆. Simulation results
coincide with the prediction. It shows robust result with
respect to ∆ in M̂δ . With positive gains, poles are always
in the left half plane, so the system is stable all the time.
There’s no change in the location of poles. Conseqently, ωn,
ζ and ts remain the same. ess is always zero.

VI. CONCLUSIONS

This paper proposes theoretical analysis with IBKS under
the model uncertainties. IBKS algorithm is derived espe-
cially for the inner-loop control design. It is based on the
backstepping method, but ∆α and ∆q are ignored under the
assumption of sufficiently high sampling rate. Consequently,
the effects of the aerodynamic derivatives M̂α and M̂q are
disappeared and accurate knowledge only about the control
effectiveness is required. In this paper, closed loop analysis is
performed considering model uncertainties. Transfer function
and steady state error are derived for general analysis.
Case studies are performed when there exists uncertainty
respectively in Ẑα and M̂δ , to easily provide more inter-
pretations and understandings about the control algorithm.
For each case, transfer function is given and consequently,
poles, stability condition, steady state error, and settling
time are suggested to discuss further about the stability
and the performance metric. For analysis purpose, simplified
dynamics is used. Simulations are performed to check if
expected characteristics from the analysis really appear.

Proposed analysis helps to establish critical understandings
like the effects of model uncertainties and gains on the
system characteristic. Identified properties from the analysis
can be suggested as follows. If the uncertainty only exists
in M̂δ and calculated control command is transmitted and
reflected fast enough to the real control surface deflection,
poles and the settling time can be expressed as a function of
gains only, without any model parameters like aerodynamic
derivatives. If the gains are just positive, poles are always
located in the left half plane and the system is stable
regardless of the uncertainty. Besides, ess,1 always becomes
zero. It indicates that the uncertinty in M̂δ doesn’t affect
stability and performance of the closed loop system, even if
this information is still required to implement IBKS. This
is the one of the most important findings obtained from the
theoretical analysis. For the case with only uncertainty in
Ẑα, |ess,1| increases as |∆| increases and it can be reduced
with high gains. For both cases, poles go to more left side
as gains become larger, which means relative stability can
be enhanced with high gains.
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