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ABSTRACT 

The increasing concern about water quality and energy demand promotes the 

development of innovative and low-cost processes to improve the nutrient 

uptake and energy efficiency of existing wastewater treatments (WWT). In this 

context, the inclusion of a microalgae system (MAS) in the flowsheet of a WWT 

plant represents a sustainable alternative to conventional technologies, as it 

combines a low-cost nutrient uptake system with the production of biomass 

suitable for biofuel production. However, at present, the energy required to 

cultivate and process the algae cells is often too high to justify their use. The 

adoption of a low energy harvesting system and an efficient energy conversion 

process are the sine qua non requirements to guarantee the sustainability of the 

process.  

In this thesis, current and innovative harvesting technologies for large scale 

applications have been reviewed to identify the optimal working conditions of 

each system and their link to the main characteristics of the algae suspension. 

In particular, the performance of the Ballasted Dissolved Air Flotation (BDAF) 

system was investigated using different algae and compared to the 

conventional Dissolved Air Flotation (DAF). BDAF was demonstrably a very 

viable harvesting method where the use of floating microspheres as ballasting 

agents allowed significant coagulant savings, reduced the level of energy 

dissipation within the flotation chamber, and lowered the overall carbon 

emissions and the process costs. 

The use of microalgae as a feedstock for anaerobic digestion (AD), considered 

the most feasible process for algal biofuel production, results from their high 

energy content and potential in reducing greenhouse gas emissions. However, 

work published so far reports values of methane yield 30% to 70% lower than 

their potential theoretical value. This work investigated the effect of four 

biomass pre-treatment technologies (thermal, thermal hydrolysis, ultrasounds 

and enzymatic hydrolysis) on the microalgae cells, and their impact on the 

digestion process yields. For the first time, the impact of the specific mechanism 

of each pre-treatment on microalgae cell breakage was studied and linked to 

biogas production. Post-treatment analysis of the composition of the solubilised 
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biomass of two green algae, Scenedesmus obliquus and Chlorella sorokiniana, 

and the cyanobacteria Artrhospira maxima, revealed that thermal and ultrasonic 

pre-treatments are primarily responsible for cell wall deformation and 

breakages, while the enzymatic pre-treatment was the only one able to provide 

the complete cell wall solubilisation. With thermal treatments, maximum biogas 

improvement occurred at 165°C with S. obliquus yielding 268 ± 2 ml kg VS-1 (+ 

208%) followed by A. maxima (+ 70%) and C. sorokiniana (+ 98%). The 

ultrasound pre-treatment produced 96% methane improvement with S. 

obliquus, 38% with A. maxima and 42% with C. sorokiniana. Notwithstanding 

these great results, enzymatic hydrolysis produced significantly higher amounts 

of methane, and, depending on the algae species, the methane production 

improved up to 12 times with yields ranging between 477 and 730 ml gVS-1.  

The data obtained in the initial part of the work was used to build the business 

case of a hypothetical WWT for the integration of a MAS in its flowsheet. The 

results showed that the layout of the process is algae specific and that this 

parameter, the choice of the algae species involved in the process, has a 

significant impact on the overall operational costs and carbon footprint of the 

system. 
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1 INTRODUCTION 

1.1 Project background 

Algae are aquatic organisms, some of which are capable of converting sunlight and 

CO2 into chemicals and energy through photosynthetic activities (Tommaselli, 2007). 

Worldwide, more than 30,000 different species have been isolated and classified 

according to their colour, size and shape, chemical characteristics, cell wall 

constituents and intracellular composition (John et al., 2003; Mata et al., 2010). Their 

dimension ranges from micrometres to metres, providing an obvious size division 

between micro-algae and macro-algae. The latter, commonly known as seaweed, 

are multicellular organisms similar to plants, growing predominantly in the marine 

environment, whereas micro-algae, or phytoplankton, include small unicellular 

organisms found in water representing the primary source of food for most aquatic 

fauna and causing seasonal algal blooms in rivers, lakes and ponds under eutrophic 

conditions.  

Microalgae are commercially cultivated for the production of a number of different 

goods including human and animal food additives and biochemicals. However, algae 

biomass has the potential to deliver a wider range of products which include; 

bioenergy, biofuels and bio-based products (bio-plastics, bio-cosmetics, bio-

solvents).  

1.1.1 Microalgae biomass utilisation 

Currently, despite the high number of algae species available in nature, only a few 

are mass cultivated, with a worldwide annual production exceeding 10,000 tons of 

dry mass (DM) (Brennan and Owende, 2010). More than 30% of these are used to 

meet the dietary requirements of a variety of animals such as fish, pets and farm 

animals. The remainder is used as food additives in the human diet or for the 

extraction of pigments, proteins, polyunsaturated fatty acids (PUFAs) and 

hydrocolloids (e.g. agar) for the production of cosmetics, pharmaceuticals and 

biopolymers (Spolaore et al., 2006; Harun et al., 2010). 

Arthrospira sp., a blue-green alga (cyanobacteria), is the most largely produced 

microalga (3,000 ton y-1 as DM), followed by Chlorella sp. (2,000 ton y-1), Dunaliella 

salina (1,200 ton y-1) and Haematococcus pluvialis (classified as green-algae, 300 

ton y-1) (Brennan and Owende, 2010). Arthrospira sp., particularly enriched in 
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proteins (60 -70% DM), vitamins, antioxidants and fatty acids such as linoleic acid, is 

largely processed for human and animal health to treat renal failure, hyperlipidaemia 

and hypertension (Spolaore et al., 2006). Used for akin applications, Chlorella sp. 

contains lutein, a pigment for eye health, and β-1,3-glucan, an active immune 

stimulator, a free radical scavenger and a reducer of blood lipids (Spolaore et al., 

2006; Harun et al., 2010). Dunaliella salina and Haematococcus pluvialis, instead, 

are cultivated for the extraction of β-carotene and astaxanthin, respectively (Brennan 

and Owende, 2010). The former is an essential pigment source of vitamin A, vital for 

normal growth, immune system function and vision, while astaxanthin is a strong 

antioxidant fundamental in the aquaculture sector and for the production of 

pharmaceuticals and cosmetics.  

The average market price for raw algae biomass used as a food additive into the 

aquaculture sector ranges between £1 and £8 per kgDM. On the contrary, the value 

of algae derivatives varies largely from a minimum of £170 per kilogram of products 

up to £1,000 when producing fine extracts such as omega-3 fatty acids (Pulz and 

Gross, 2004; Ip and Chen, 2005). This explains the increasing interest of the 

biochemical and pharmaceutical sectors in this biomass for the extraction of high 

valuable compounds, which represents, in the short term, the most profitable field for 

algae exploitation (Spolaore et al., 2006; Brennan and Owende, 2010; Harun et al., 

2010). 

1.1.2 Microalgae and biofuels 

Biofuel production from microalgae biomass relies on the ability of microalgae to 

accumulate a high content of lipids, proteins and carbohydrates which can be easily 

converted into biofuels (Table 1.1). The higher production efficiency per hectare of 

cultivation (30 to 50 times) compared to other biomass such as sunflower, rapeseed 

and sugar cane, and the absence of lignin, a non-fermentable biomass component, 

make microalgae the optimal source for renewable energy production (Schenk et al., 

2008). Although the research community started to investigate the production of 

biodiesel, bioethanol, biohydrogen and biogas from algae more than 60 years ago 

(Borowitzka, 2013), the process is still not satisfactory or economic and, 

consequently, is not fully available on a commercial scale (Schenk et al., 2008; 

Demirbas, 2010; Lee, 2011; Yang et al., 2011; Zamolla et al., 2011). According to 

different cost-benefit analyses and life-cycle assessments, the potential for 
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microalgae to become an important component of the future renewable energy 

strategies relies on the optimisation of the biomass production process together with 

the development of more advanced technologies to reduce the energy/cost inputs 

required to process the biomass to final production (Norsker et al., 2011; Sturm and 

Lamer, 2011; Acién et al., 2012; Jonker and Faaij, 2013; Slade and Bauen, 2013). 

For instance, the cost-production of algae-biofuels per unit of energy produced is 

estimated to range between £136 and £489 per GJ, against a gasoline/diesel 

production cost lower than £20 per GJ (Jonker and Faaij, 2013). Furthermore, while 

the current market price of conventional diesel is close to £0.46 – 0.52 per litre (West 

Texas, Dubai, Brent) and biodiesel from crops is sold at £0.36 – 0.40 3 l−1, ethanol at 

£0.41 l−1 and hydrogen at £1.84 – 6.73 l−1 (Oncel, 2013), the costs for the only dry 

algal biomass production range from a minimum of £1.5 kgDM-1 to almost £10 kg 

DM-1 depending on the cultivation process adopted (Norsker et al., 2011; Slade and 

Bauen, 2013).  

Currently, biodiesel and biogas are the most investigated and closest to market 

algal-derived biofuels, with a large number of pilot plant facilities in operation to 

establish process feasibility and asses new low-energy and low-costs technologies 

(Lee, 2011; Bahadar and Khan, 2013). Bioethanol and biohydrogen, instead, are at 

earlier stages of exploitation as they require a better understanding of the production 

process and the identification of optimal algae species or strains. For ethanol 

production, the process relies on the microalgae biomass’ ability to accumulate 

starch which can be hydrolysed to glucose and fermented to ethanol using alcohol 

producing microorganisms (Melis and Happe, 2001; Eshaq et al., 2010; Harun et al., 

2011; Miranda et al., 2012; Liu et al., 2013). Similarly, a better understanding of the 

direct and indirect photolysis mechanisms of production is required before 

considering large scale application for hydrogen production (Benemann, 2000; 

Oncel, 2013). 
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Table 1.1 Microalgae energy content compared to other biomass used for renewable 

energy production.  

Biomass/Feedstock Protein Lipid Carbohydrates Approx 
energy 
potentiala 
MJ kg-1 

Approx 
electricity 
potential 
kWh kg-1  

% % % 

Microalgaeb      

Chlamydomonas reinharditii 48 21 17 18.65 5.22 

Chlorella emersonii 32 29 41 22.73 6.36 

C. emersonii (low N) 28 63 11 29.83 8.35 

Chlorella vulgaris 51-58 14-22 12-17 19.15 5.36 

C. vulgaris (low N) 7 40 55 24.79 6.94 

Euglena gracilis 39-61 20-21 17-18 18.62 5.21 

Scenedesmus obliquus 50-56 12-14 12-17 16.05 4.49 

Spirulina maxima 60-71 6-7 13-16 15.88 4.45 

Dunaliella salina 57 6 32 17.03 4.77 

Sunflowerc - 50-54 - 19.24 5.39 

Rapeseedd 18-20 43-45 - 19.51 5.46 

Sugar canee - - 63-75 11.2 3.13 
ausing a conversion factor equal to 16 kJ g-1 proteins, 17 kJ g-1 carbohydrates and 37 kJ g-1 

lipids (Atwater system: http://www.nutrientdataconf.org/PastConf/NDBC17/9-3_Stewart.pdf); 
bHeaven et al., 2010; cRobertson et al., 1978; dLajolo et al., 1991; eMasarin et al., 2011; 'low 

N' = algae cultivated in low nitrogen media. 

1.1.2.1 Biodiesel 

At present, biodiesel production depends on a series of steps where the lipid content 

of the algae biomass is initially extracted, and then processed and refined to the final 

product. Conventional extraction methods include solvent, supercritical fuel, 

ultrasound and oil press extraction, which often require a large amount of solvents 

and pre-dried biomass (Harun et al., 2010; Singh and Gu, 2010). After extraction, the 

oil is treated to reduce viscosity and increase fluidity, and therefore turning it into 

commercial biodiesel (Rawat et al., 2013). Commercially available methods include 

transesterification, catalysis and pyrolysis. Transesterification is the most commonly 

found technology at full-scale production, where the extracted lipids, triacylglycerols 

(TAGs), are mixed with alcohol to produce glycerol and fatty acid methyl esters 

(FAMEs), which are the main constituents of biodiesel (Meher et al., 2006; Sharma 

and Singh, 2009; Mata et al., 2010). Similarly, direct esterification achieves the same 
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lipid transformation using acids, bases or enzymes. In contrast, pyrolysis allows a 

direct conversion of the algal biomass to liquid fuel by heating it at high temperatures 

(350 - 700°C) in the absence of air. All three approaches are economically 

demanding and energy intensive, being the bottleneck for algae-biodiesel 

commercialisation. As a consequence, the research focuses on alternative systems 

such as in situ transesterification which allows biodiesel production from dry biomass 

processed with methanol and/or sulphuric acid at low/medium temperatures, e.g. 90 

- 100°C (Johnson and Wen, 2009).  

The quantity of biodiesel that can be produced from microalgae varies largely 

between species and will also depend on factors such as the efficiency of lipid 

extraction and the conversion yields. On average, from 1,000 tons of dry algae 

biomass, it is expected to obtain 180 ton of biodiesel at 30% lipid extraction 

efficiency and 60% conversion efficiency (Ventura et al., 2013).  

1.1.2.2 Biogas 

Biogas, 60% CH4, 30% CO2, 5% N2 and 2% H2 on average, is produced by bacterial 

degradation of the algae biomass in the absence of oxygen through a four step 

process which includes hydrolysis, acidogenesis, acetogenesis and 

methanogenesis. Depending on the chemical composition of the specific algal 

species, the methane production can vary from 400 to 800 ml g-1 of volatile solids 

(VS), estimated using the Symons and Buswell equation (1933) which is based on 

the stoichiometric conversion of the organic matter in methane, carbon dioxide and 

ammonia (Heaven et al., 2010). However, since the initial investigation of Golueke et 

al. (1957), the anaerobic digestion of algae under mesophilic conditions (35 - 38°C) 

has proved to be difficult. The presence of bacteria-resistant compounds causes low 

methane production (30 – 60% of the theoretical methane potential), which leaves 

the energy conversion process unsatisfactory (Sielve et al., 2009; Mussgnug et al., 

2010). 

To overcome this limitation and create a more efficient energy conversion process, a 

pre-treatment is usually recommended. Ultrasonic, high temperature, French press 

and enzymes are the most commonly used methods for biomass pre-treatments. 

Methane gas production of a mesophilic anaerobic digestion (AD) process with pre-

treatments (Table 1.2) could lead to approximately 50% yield improvement (Chen 

and Oswald, 1998; Heerenklage et al., 2010). These efficiencies are usually linked to 
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the algal characteristics. However, very often the energy required for the pre-

treatment does not offset the additional energy produced in the process. 

Another limitation for microalgae biomass digestion is its typical low carbon:nitrogen 

(C:N) ratio, close to 5:1 (Yen and Brune, 2007), compared to a conventional C:N 

ratio for AD being between 20:1 and 30:1 (Parkin and Owen, 1986). A low C:N ratio 

together with high ammoniac nitrogen concentration, derived from the high protein 

content, might produce an accumulation of volatile fatty acids (VFAs) inhibiting the 

whole digestion process. Although efficient digestion has been reported even at a 

low C:N ratio (Stroot et al., 2001; Yen and Brune, 2007; Ehimen et al., 2010), a 

number of different works suggested microalgae as an optimal feedstock for co-

digesting carbon enrich biomass: for instance, changing from digesting 100% algae 

to a co-digestion with waste paper (40:60 algae:paper). Yen and Brune (2007) 

reported an increment on the methane production from 100 ml gVS-1 to 320 ml g VS-

1. Similar results were obtained using soybean oil and glycerin as a carbon enriched 

co-substrate of algae (Salerno et al., 2009).  

Despite the efficiency of the process, compared to the other algae-biofuels biogas 

production currently appears to be the most feasible energy conversion process (De 

Schamphelaire and Verstraete, 2009). The ability of treating low concentrated (2 - 5 

% wt. total solids) wet biomass significantly reduced the energy inputs required by 

preliminary treatments such as harvesting and drying, improving the overall energy 

balance of the process. 

Table 1.2 Microalgae pre-treatments for anaerobic digestion 

Treatment Parameters 

Biogas 
improvement 

% 

References 

Ultrasound 
20-1700 kHz 

10-300 kWh m-3 7-17 
González-Fernández et al., 2012 

Park et al., 2013 

French press 35-104 bar 27 Heernklage et al., 2010 

Thermal 

60-150 °C 

(NaOH, H2SO4, 
NH4OH) 

30-60 

Chen and Oswald, 1998 

Cho et al., 2013 

Alzate et al., 2012 

Enzymatic 
Cellulose, 
Pectinase, 
Lipase, 

50 
Ehimen et al., 2013 

Yin et al., 2010 
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1.1.3 Microalga biomass production 

Photoautotrophic microalgae require light, temperature, carbon dioxide (CO2), 

nitrogen (N), phosphorus (P), and a number of micronutrients including vitamins to 

grow (Hu, 2007; Grobbelaar, 2007). Conventional outdoor cultivation systems rely 

upon the sun to guarantee enough light and temperature. As a consequence, they 

are subjected to seasonal weather changes which impact on the biomass production 

yields, doubling in spring and summer compared to autumn and winter (Arbib et al., 

2013; Garcia et al., 2000). In addition, to enhance biomass production yields, CO2 

and nutrients need to be added to balance the low concentrations of these 

compounds in the atmosphere and in conventional fresh/marine water, respectively.  

1.1.3.1 Cultivation systems 

Microalgae are generally cultivated in outdoor in photobioreactors (PBRs), open 

ponds or using hybrid systems where biomass initially grown in a PBR is used as 

inoculum for the pond system (Rodolfi et al., 2009; Brennan and Owende, 2010; 

Mata et al., 2010; Williams and Laurens, 2010). Photo-bioreactors are typically 

designed as tubular or flat panel reactors, where the algae biomass (up to 2 kg m-3) 

is maintained in suspension by a constant air flow (Tredici, 2007; Min et al., 2010). 

Conversely, open ponds are designed as rectangular raceway channels where a 

continuous flow around the circuit is maintained by peddle wheels (Greenwell et al., 

2010; Huang et al., 2010; Mata et al., 2010). Compared to PBRs, open ponds are 

cheaper to construct and operate as the energy demand of paddle wheels ranges 

between 20 to 50 kWh ha-1, compared to air pumps which require between 0.3 and 2 

kWh m-3 to maintain turbulent flow along the PBR (Demirbas, 2010; Jorquera et al., 

2010; Mata et al., 2010; Acién et al., 2012; Jonker and Faaij, 2013). On the other 

hand, open ponds are more exposed to external contamination and atmospheric 

changes, limiting the biomass production to a maximum of 1 gDM l-1, with average 

values between 0.5 and 0.6 gDM l-1 under optimal conditions (Cromar and 

Fallowfield, 1997; Tredici, 2007). Alternative systems, not yet used on a large scale, 

include biofilm solution where the biomass grows attached to the surfaces of 

supporting materials or is immobilised in a matrix (Lau et al., 1994; Wei et al., 2008; 

Zhang et al., 2008; De-Basham and Basham, 2010). 
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1.1.3.2 Alternative source for nutrients and carbon dioxide 

The combined costs of CO2 and nutrients required to support algal growth have been 

estimated to contribute for more than 50% to the total biomass cost production 

(Slade and Bauen, 2013; Singh et al., 2014). Hence, the identification of low cost or 

zero cost sources for these two main compounds can significantly reduce the costs 

of the biomass production.  

For instance, fume gases from power plants or other energy-production facilities are 

a free source of CO2 which can be directly uptaken (1.83 kgCO2 kgDM-1) by 

microalgae saving up to £4,500 per hectare of cultivation per year (Jonker and Faaij, 

2013). However, this saving can only happen if the location of the plant is close to 

the algal facility or by offsetting the costs required for transferring the CO2 onsite 

(Ventura et al., 2013). 

Similarly, the costs for pure nutrient supplements can be replaced by nutrient-rich 

wastewater such as municipal or industrial wastewater which contains all the 

nutrients and micronutrients required to support microalgae growth (Xin et al., 2010; 

Sydney et al., 2011; Singh et al., 2014). In particular, municipal wastewater is 

enriched in NH4
+, NO3

- and PO4
2- which are easily taken up by the algae 

(Grobbelaar, 2007). In addition, the use of wastewater as a free source of nutrients 

has the double advantage of contributing to the treatment of the wastewater. 

Using treated municipal wastewater, with a starting ammonia concentration of close 

to 40 mg l-1, García et al. (2000) reported more than 95% removal after 3 to 8 days 

of hydraulic retention time (HRT) using a mixture of algae species including 

Dicyosphaerium pulchellum, Chlorella sp., Micratinium pusillum, Scenesdesmus 

armatus and S. acutus, in an open pond system having a biomass concentration 

close to 0.35 gDM l-1 (3 - 4 mg l-1 as Chlorophyll a) in spring/summer seasons and 

0.15 gDM l-1 (1 - 2 mg l-1 as Chlorophyll a) in autumn/winter seasons. Similarly, with 

inflow concentrations of 13 mgNH4-N l-1 and 2 mgPO4-P l-1, Sydney et al. (2011) 

reported complete ammonia and phosphorus removal after 9 days HRT using 

Chlorella sp. which tripled its biomass from 0.15 to 0.51 gDM l-1. Scenedesmus sp. 

achieved 98% ammonia and phosphorus removal after 5 days starting with even 

lower concentrations equal to 2.5 mgNH4-N l-1 and 0.5 mgP l-1, respectively (Xin et 

al., 2010). Along with N and P uptake, different authors reported BOD and COD 
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removal between 40% and 50% when using primary effluents (Airbib et al., 2013; 

Craggs et al., 2012; Cromar and Fallowfield, 1997).  

Despite the higher energy demand required by the system, PBR systems have been 

reported to achieve similar N and P uptake in significantly lower HRT (Arbib et al., 

2013, Doria et al., 2012). For instance, when comparing the performance of open 

ponds to PBRs, Arbib et al. (2013) observed a 2-fold difference in the HRT with 

biomass concentration close to 0.2 gDM l-1 using ponds and 0.6 gDM l-1 in PBRs.  

1.1.3.3 Harvesting 

The contribution of the recovery step to the total algal biomass cost production has 

been estimated to be between 20% and 30% (Brennan and Owende, 2010). The 

small cell size (3 - 11 μm) of microalgae, their cell density similar to the water, the 

negative charge density, as well as the specific chemical composition of the whole 

algal suspension, are important parameters to be considered when selecting the 

harvesting process (Edzwald, 1993; Mata et al., 2010; Christenson and Sims, 2011). 

All harvesting systems can be categorised into four main technological groups: 

sedimentation, flotation, filtration and centrifugation. The latter two technologies are 

one to ten times more energy demanding, and therefore more expensive, compared 

to sedimentation and flotation. Amongst all the flotation technologies, the Dissolved 

Air Flotation (DAF) system is considered one of the most efficient and low-energy on 

the market. The energy demand required by the system is about 0.3 kWh m-3, 

against 0.3 - 8 kWh m-3 for centrifuge systems or pressure and vacuum filter (Molina 

Grima et al., 2003). In the DAF system, dissolved micro-bubbles are trapped in the 

pre-flocculated algal biomass and the float conglomerates to the surface (Wiley et 

al., 2009; Brennan and Owende, 2010; Williams and Laurens, 2010; Zamolla et al., 

2011). Furthermore, modification of the DAF system, such as PosiDAF and Ballasted 

Dissolved Air Flotation (BDAF), can achieve even higher energetical and financial 

savings. The PosiDAF process uses the same principle as the DAF system by 

modifying the charge of the bubble surfaces through the addition of polymers to the 

air saturator, which then aggregate with the algae cells (Henderson et al., 2009). In 

the BDAF system, the air bubbles are replaced with low-density microspheres which, 

when added to the algae suspension prior to flocculation, become part of the algae 

floc driving flotation (Jarvis et al., 2009). PosiDAF is more efficient in saving 

chemicals rather than energy, whereas the estimated energy demand of BDAF 
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ranges between 0.01 and 0.04 kWh m-3, 60 to 80% lower than conventional DAF 

system (Jarvis et al., 2009). Other emerging technologies such as bio-flocculation or 

dispersed ozone flotation are no-chemical and no-energy alternative systems, which 

could generate even higher savings (Cheng et al., 2011; Salim et al., 2011).  
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1.2 Project development 

The work presented in this thesis was developed as part of the European project 

Advance Technologies for Water Resource Management (ATWARM) to investigate 

the feasibility of an integrated microalgae wastewater treatment (WWT) process for 

biogas production. In this context, the project brought together water companies 

including Anglian Water, Severn Trent Water, Scottish Water and Northern Ireland 

Water, as well as expertise from Cranfield University and other academic partners 

through the QUESTOR centre, the coordinator of the ATWARM project.  

Two main research areas were identified as pivotal in the integrated system; 

microalgae harvesting and microalgal anaerobic digestion.  

A low energy harvesting system, Ballasted Dissolved Air Flotation (BDAF), was 

investigated and compared to a conventional Dissolved Air Flotation (DAF) system 

using three different microalgae to assess the impact of the biomass characteristics 

on the process parameters.  

In parallel, the recovered algae were tested for biogas production using a number of 

different pre-treatments which included thermal, thermal hydrolysis, ultrasound and 

enzymatic hydrolysis. All the pre-treatments were optimised for the three algal 

species to assess the impact of the biomass characteristics on the pre-treatment 

processes and on the digestion performances. 

Finally, to establish the potential impact of the findings from the thesis, a series of 

case studies have been considered. In particular, the impact of different microalgae 

harvesting options and pre-treatments on the energy, carbon and economic balance 

of an integrated microalgae wastewater treatment has been estimated. 
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1.3 Aim and objectives 

The main aim of the project was to optimise different harvesting technologies and 

anaerobic digestion (AD) pre-treatment processes using three different algae 

species, and to evaluate their impact on the energy balance of a wastewater 

treatment plant integrated with a microalgae system (MAS) for nutrient removal. It 

was hypothesised that an improvement in the biogas production of the microalgal 

cells in the AD process, combined with a low energy harvesting technology, has the 

potential to provide a self-sufficient energy wastewater treatment. A series of 

objectives were agreed: 

1. To produce a state of the art review of low energy microalgal harvesting 

technologies. 

2. To assess the impact of the characteristics of different microalgae on the 

efficiency of a low energy BDAF harvesting technology compared to the 

traditional DAF system using different harvesting conditions. 

3. To estimate the potential biogas/methane production of different algae 

species under mesophilic anaerobic digestion conditions. 

4. To investigate the effect of different pre-treatments (thermal, thermal 

hydrolysis, ultrasounds and enzymatic hydrolysis) on different microalgae 

species and the associated biogas improvements. 

5. To evaluate the impact of DAF, BDAF and different AD pre-treatments on the 

energy balance and carbon footprint of an integrated microalgal wastewater 

treatment plant using the outcomes of objectives 2 and 4. 

A conceptual diagram of the integrated microalgal wastewater treatment plant is 

reported in Figure 1.1, where the pre-defined objectives have been highlighted in 

different colours.  

 

Figure 1.1 Integrated process for wastewater microalgae biogas production. 
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1.4 Thesis plan 

This thesis is presented as a series of chapters formatted as papers for publication. 

All papers were written by Francesco Ometto, and edited by Dr Raffaella Villa 

(principal supervisor) and Prof Bruce Jefferson. All experimental work was designed, 

coordinated and completed by Francesco Ometto at Cranfield University (UK) with 

the contribution of a few other students over the years. The algae cultures were 

periodically subcultivated and monitored in collaboration with Rachel Whitton, 

Cranfield University. In Chapter 2, parts of the jar tests were completed by Carlo 

Pozza, University of Duisburg-Essen (DE), while preliminary work was performed in 

collaboration with Davide Pierobon, University of Padua (IT), and Marta Bortolotti, 

University of Verona (IT), during their internship. In Chapter 3, the bacteria 

community analysis was undertaken in collaboration with Robert Ferguson, Cranfield 

University. Parts of the ultrasound pre-treatments were performed in collaboration 

with Gerardo Quiroga, University of Oviedo (ES), and the preliminary work on 

enzymatic hydrolysis was completed by Pavel Psenicka, Czech University of Life 

Sciences Prague (CZ), as part of their internship. 

Chapter 2, Harvesting Microalgae, focused on the separation process of the algae 

biomass from the growth media. Paper 2.1, entitled Innovation on microalgae 

harvesting technologies for biofuels production: a review by Ometto, F., Whitton, R., 

Jefferson, B. and Villa, R., to be submitted to Water Research, reviews the available 

harvesting microalgae technologies for large scale application, underlining the 

efficiency and the energy demand of different systems depending on the 

characteristics of the algae suspension. Paper 2.2 is entitled The impact of replacing 

air bubbles with microspheres for the clarification of algae from low cell-density 

culture by Ometto, F., Pozza, C., Whitton, R., Smyth, B., Gonzales Torres, A., 

Henderson, R.K., Jarvis, P., Jefferson, B. and Villa R., Water Research. This paper 

reports the experimental results relating to the comparison between a conventional 

harvesting technology, Dissolved Air Flotation (DAF) and the innovative low energy 

Ballasted Dissolved Air Flotation (BDAF) where floting microspheres replace air 

bubbles to allow algae separation. 

Chapter 3, Anaerobic Digestion of Microalgae, focuses on biogas production from 

algal biomass. Paper 3.1, entitled Adapting anaerobic digestion bacteria to algal 
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biomass by Ometto, F., Ferguson, R., Whitton, R., Coulon, F., Jefferson, B. and 

Villa, R., to be submitted to Bioresource Technology, evaluates the potential of 

increasing anaerobic digestion efficiency adapting a bacteria community to 

microalgae. Paper 3.2 investigates the effect of different pre-treatments (thermal, 

ultrasound and enzymatic) of the algae on the biogas production. The title of this 

paper is Impacts of microalgae pre-treatments for improved anaerobic digestion: 

thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis by 

Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B. and Villa, R., to be 

submitted to Water Research. 

Chapter 4, Implication of the work, is an overall discussion which highlights the key 

findings of the previous chapters and then evaluates their practical implications using 

a business case for a hypothetical integrated algae wastewater treatment plant. The 

business case is based on the impact of different low-energy technologies for 

nutrient removal, including algae, to the flowsheet of a small treatment work (2000 

p.e. capacity). The case, Paper 4.2, Energy balance of an integrated microalgae 

wastewater treatment, by Ometto, F., Jefferson, B. and Villa, R., compares the 

energy balance and the carbon emissions of different low-energy nutrient-removal 

technologies and algae, using the data obtained in Chapters 2 and 3.  

Chapter 5, Conclusions and future work, summarises the key results and suggests 

recommendations for future investigations on the development of novel microalgae 

harvesting systems and anaerobic digestion pre-treatments. 

A summary of the thesis plan is reported in Table 1.3.  
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Table 1.3 Thesis plan 

Chapter Paper 
Objective 
addressed 

Title Journal Status 

2 

2.1 1 
Innovation of 
microalgae harvesting 
technology: a review. 

Water 
Research 

In preparation 

2.2 2 

The impact of 
replacing air bubbles 
with microspheres for 
the clarification of 
algae from low cell-
density culture  

Water 
Research 

Published 

3 

3.1 3 
Adapting anaerobic 
digestion bacteria to 
algal biomass 

Bioresource 
Technology 

In preparation 

3.2 4 

Impacts of microalgae 
pre-treatments for 
improved anaerobic 
digestion: thermal 
treatment, thermal 
hydrolysis, ultrasound 
and enzymatic 
hydrolysis 

Water 
Research 

In preparation 

4 

4.1 1, 2, 3, 4 Key observations - - 

4.2 5 
Energy balance of an 
integrated microalgae 
wastewater treatment 

Biomass and 
Bioenergy 

In preparation 

5 - - 
Conclusions and 
future works 

- - 
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2 HARVESTING MICROALGAE 

2.1 Innovation on microalgae harvesting technologies for biofuels 

production: a review 

Francesco Ometto, Rachel Whitton, Bruce Jefferson and Raffaella Villa. 

Cranfield University, Bedfordshire, UK; 

Abstract 

Biomass production cost is the main bottleneck for the large-scale commercialisation 

of microalgae biofuels. In particular, the harvesting step plays a key role in the 

process, affecting the characteristics of the separated biomass and hence their 

range of use. This chapter focuses on the main harvesting methods used in algae 

production (sedimentation, flotation, filtration and centrifugation), and in particular on 

innovative applications, to identify the most efficient and financially viable process for 

the production of algal biofuel. The identification of the most appropriate harvesting 

method was determined using the properties of individual algae species (size, 

shape, density and charge) and the properties of their post-growth suspension media 

(composition, algogenic organic matter, pH and zeta potential). This review links for 

the first time the biological aspects to the engineering parameters, and explains why, 

knowing the specific characteristics of the algae suspension to be treated, it will 

prevent the adoption of harvesting systems from being unable to guarantee high 

efficiencies or causing unexpected high operational costs and failures. 

 

 

 

 

 

Keywords: microalgal harvesting, flocculation, sedimentation, flotation, filtration, 

centrifugation, algogenic organic matter (AOM). 
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2.1.1 Introduction 

Microalgae are a valuable biomass processed worldwide for the production of a 

number of goods, such as food additives, pharmaceutical compounds, biochemicals 

and biofuels. The production of these algae derivatives is the results of a number of 

energy intensive and cost demanding steps including (1) cultivation, (2) harvesting, 

(3) dewatering and (4) downstream processes to final products (Brennan and 

Owende, 2010). For highly valuable algae products such as pigments, Omega-3 

Fatty Acids and bioactive compounds, such costs are offset through a high market 

price (£170 - £6,500 per kilogram of products) and lack of alternatives (Table 2.1). In 

contrast, algae biofuels are low value products which need to compete with the low 

price of other renewable or non-renewable fuels (Pulz and Gross, 2004; Ip and 

Chen, 2005; Harun et al., 2010; Lee, 2011). 

The recent analysis of Jonker and Faaij (2013) estimated that the cost of production 

of algae-biofuels ranges between £136 and £489 GJ-1 against gasoline/diesel costs 

ranging from £5 to £20 GJ-1. Hence, there is a need to reduce algae-biofuels cost 

production to create a sustainable and economically competitive algae-biofuel 

market. Cost-benefit and life-cycle assessments have identified the optimisation of 

biomass cultivation and harvesting as two of the key steps for microalgae to become 

an important component of future energy production (Collet et al., 2011; Harun et al., 

2011; Norsker et al., 2011; Razon and Tan, 2011; Sturm and Lamer, 2011; Acién et 

al., 2012;Jonker and Faaij, 2013; Slade and Bauen, 2013). 

Cultivations for large scale production of algae-biofuel are currently limited to open 

pond systems (Tredici, 2007; Chen et al., 2011; Craggs et al., 2012), as they are 

more economical to construct and operate compared to closed photobioreactors 

(PBRs), although they require much a higher footprint (Grobbelaar, 2010; 

Christenson and Sims, 2011). For instance, the estimated annual energy demand 

required to produce 50 x103 ton of Tetraselmis suecica decreased from 153 to 8.7 

GWh y-1 using raceway ponds rather than horizontal PBRs (Harun et al., 2011). The 

cost production of raw biomass using raceway ponds has been estimated between 

£1.5 and £4.2 kg-1 of dry mass (DM) (Norsker et al., 2011; Slade and Bauen, 2013).  

For efficient outdoor growth, algae cultures require nitrogen (N), phosphorus (P), 

micronutrients and carbon dioxide (CO2) (Grobbelaar, 2007). Using waste CO2 from 

power plants or other facilities and replacing pure nutrient supplements (7 – 10% 
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total production costs) with wastewater, which contains all the required components 

to support biomass growth (Singh et al., 2014), has the potential to reduce the 

biomass production cost by 50% (Xin et al., 2010; Zhang et al., 2008; Zamalloa et 

al., 2010; Craggs et al., 2012) lowering the costs to £0.35 kgDM-1 (Slade and Bauen, 

2013). Therefore, for biodiesel production, assuming a biomass oil content of 30% by 

weight (Chisti, 2007), the biomass cost to produce 1 litre of algae-biodiesel at 80% 

conversion efficiency (Xu et al., 2006) will be close to £1.5 kg-1 (Chisti, 2007; Lee, 

2011; Gallagher, 2011; Bahadar and Bilal Khan, 2013), whereas the current market 

price of conventional diesel as a final product (West Texas, Dubai, Brent) is close to 

£0.46 – 0.52 per litre (Slade and Bauen, 2013). Algae production costs can be 

further reduced by optimising the harvesting step, which is estimated to account for 

20 - 30% of the total production cost (Gudin and Therpenier, 1986; Jonker and Faaij, 

2013).  

Microalgae harvesting technologies can be classified into four categories: (1) 

sedimentation, (2) flotation, (3) filtration and (4) centrifugation. According to 

Christenson and Sims (2011), on a representative number of large-scale microalgae 

cultivation facilities (open ponds), filtration (33%) is the most used harvesting method 

followed by flotation (22%), sedimentation (14%) and centrifugation (10%). While the 

energy demand relating to sedimentation processes is generally negligible, 

conventional flotation, filtration and centrifugation require energy inputs which can be 

as low as 0.1 - 0.5 kWh m-3 for flotation and membrane microfiltration, or higher than 

5 kWh m-3 for centrifugation and vacuum filtration (Mohn, 1980; Shelef et al., 1984; 

Uduman et al., 2010). Despite the low operation-energy input, the economics of 

sedimentation and flotation systems is affected by the use of coagulants which 

impact the total production costs by more than 10% (Zamalloa et al., 2010). In 

addition, the low concentration (1 - 5% wt. DM) of the separated biomass often 

requires additional concentration steps, which will further increase the overall costs 

of the process. 

The mechanism of biomass recovery for the four identified harvesting systems has 

been described in a number of comprehensive reviews (Mohn, 1980; Shelef et al., 

1984; Molina Grima et al., 2003; Uduman et al., 2010; Christenson and Sims, 2011; 

Show et al., 2012). The outcome of these works indicated that the optimal harvesting 

system will be determined (1) by the algae physical characteristics and (2) by the 
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downstream process requirements (e.g. solid content, cell integrity, dry or wet 

biomass). For instance, stable algal suspensions with negative zeta potential will 

have poor particle aggregation and hence chemical flocculation will not be a suitable 

separation process, whereas cultures with low density cells will not be suitable for 

sedimentation. Furthermore, the composition of the extracellular algogenic organic 

matter (AOM), which affects charge density, requires the adoption of preliminary 

destabilisation processes (e.g. chemical flocculation) to guarantee higher efficiencies 

of low energy harvesting systems such as sedimentation and flotation (Edzwald, 

1993; Henderson et al., 2010). On the other hand, while high valuable algae 

products require dry, intact and concentrated biomass to allow efficient extractions of 

biochemical components, low valuable algae derivates might not require the same 

level of concentration and dryness, which will allow the adoption of low energy 

harvesting technologies (Table 2.1). In particular, a large number of biofuel 

production processes, such as anaerobic digestion and alternative lipid/carbohydrate 

extraction methods, have been reported to efficiently process wet biomass at low 

solid contents (2 - 10 wt.% DM) achievable with low-energy, low-cost harvesting 

systems (Xu et al., 2011; Frigon et al., 2013; Liu et al., 2013). 

Over the last 20 years, a number of innovative separation technologies have been 

developed to combine high particle separation efficiency with low energy inputs. 

Particular efforts have been made to clarify the interaction between algae cells, AOM 

and separation efficiency to guarantee high cell recovery whilst maintaining low 

separation costs. Although the downstream process requirements remain a key 

parameter on the decision-making process, when selecting the harvesting solution, a 

preliminary screening of the technologies based on the biochemical composition of 

the algae suspension might have the potential to prevent unexpected harvesting 

failures and high operational costs. 

The present work reviews current and innovative harvesting technologies for large 

scale application and links the optimal working conditions of each system to the main 

algae characteristics. In the first part, the characteristics of the microalgae 

suspension affecting cell separation are identified by distinguishing between cell 

properties and growth media characteristics. After which, the impact of these 

characteristics on different destabilisation processes and harvesting systems is used 

to provide a guide on optimal harvesting performances. 
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Table 2.1 Summary table of algae derivate valuable products and harvested biomass 

characteristics requirements 
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Algae

Aphanizomenon flos -

aquae
● ● Brennan and Owende, 2010; Oilgae a ;

Arthrospira  sp. ● ● ● ● ● ● ●

Samson and LeDuy, 1986; Walker et al., 

2005; Spolaore et al., 2006; Brennan 

and Owende, 2010;

Botryococcus braunii ● Frigon et al., 2013; Liu et al., 2013;

Chaetoceros gracilis ● ● Wahlen et al., 2011; Oilgae a ;

Chlamydomonas sp. ● ● ● ● ●

Hirano et al., 1997; Hirayama et al., 

1998; Frigon et al., 2013; Melis et al., 

2000; Walker et al., 2005; Mussgnug et 

al., 2010; Oilgae a ;

Chlorella sp. ● ● ● ● ● ● ● ● ●

Hirano et al., 1997; Ueno et al., 1998; Ip 

and Chen, 2005; Spolaore et al, 2006;  

Converti et al., 2009; Frigon et al., 2013; 

Ometto et al., 2013; Oilgae a ;

Chlorococum sp. ● ● Harum et al., 2010; Halim et al., 2011;

Crypthecodinium cohnii ● ●

Walker et al., 2005; Spolaore et al., 

2006; Ganuza et al., 2008; Brennan and 

Owende, 2010; 

Cryptonemia crenulata ● Spolaore et al., 2006;

Dunaliella sp. ● ● ● ● ● ● ● ● ● ●

Shirai et al., 1998; Walker et al., 2005; 

Brennan and Owende, 2010; Mussgnug 

et al., 2010;  Tang et al., 2011; Oilgae a ;

Euglena gracilis ● Mussgnug et al., 2010;

Haematococcus pluvialis ● ● ● ●
Spolaore et al., 2006; Razon and Tan, 

2011; Brennan and Owende, 2010;

Isochrysis sp.; Ulkenia ● Brennan and Owende, 2010;

Laminaria ● ● Spolaore et al., 2006; Oilgae a ;

Microcystis aeruginosa ● ● Oh et al., 2000;

Nannochloropsis sp. ● ● ● ● ●
Spolaore et al., 2006; Converti et al., 

2009; Razon and Tan, 2011; Oilgae a ;

Neochloris oleoabundans ● Frigon et al., 2013;

Nitzschia ● Spolaore et al., 2006;

Pavlova viridis ● ● Spolaore et al., 2006; Oilgae a ;

Phaeodactylum tricornutum ● ● ●
Spolaore et al., 2006; Zamalloa et al., 

2012; Oilgae a ;

Phormidium ● Spolaore et al., 2006;

Porphyridium aeruginosa ● ●
Yang et al., 2011; Frigon et al., 2013;  

Oilgae a ;

Porphyra; Anabaena flos-

aquae
● Spolaore et al., 2006;

Scenedesmus sp. ● ● ● ● ●

Yang et al., 2011; Miranda et al., 2012; 

Mandal and Mallik, 2012; Frigon et al., 

2013; Ometto et al., 2013; Oilgae a ;

Schizochytrium ● ●

Spolaore et al., 2006; Ganuza et al., 

2008; Brennan and Owende, 2010; 

Oilgae a ;

Skeletonema ● Spolaore et al., 2006;

Thalassiosira ● Spolaore et al, 2006;

Tetraselmis suecica ● ●
Spolaore et al., 2006; Wahlen et al., 

2011; 

Cells integrity +++ +++ +++

Final solid concentration +++ ++ +++

Dry mass ++ + +++

ReferencesParameters

Harvested biomass characteristics requirementsb

++++ +++

Low market price products                                                                            

(£ 1-50 per kg)

High market price products                                                                                                                                                                                                              

(£ 170-37k per kg)

Mohn, 1980; Shelef et al., 1984; Xu et 

al., 2011; 
+++

+++

+++

+++

++

+  
ahttp://www.oilgae.com/ (accessed 17th June 2013); b'+++': high importance/absolute 

requirement; '++': medium importance/most recurrent requirement; '+': low 

importance/requirement related to the specific product. 

http://www.oilgae.com/
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2.1.2 Algae suspension characterisation  

2.1.2.1 Microalgae cell properties: size, shape, density and charge  

Typical dimensions for single cell microalgae such as Chlorella sp. Dunaliella sp., 

Scenedesmus sp. and Mycrocystis sp. at stationary growth phase range between 3 

and 20 µm in diameter, while filamentous species, such as Anabaena sp., 

Arthrospira sp. and Melosira sp., can reach up to 100 µm length (Table 2.2). The 

shape of the algae depends on the species and varies from simple geometric scapes 

such as ellipses or spheres, to more complex structures such as a helix or disc 

(Canter-Lund and Lund, 1995; Tomaselli 2004). It is possible to distinguish between 

cells with a compact structure characterised by a rigid cell wall able to resist external 

compression forces, and cells with a more elastic configuration characterised by the 

presence of air vesicles in the membrane, making them more subjected to cell 

breakage under high pressure/turbulence conditions (Tomaselli, 2007; Bhave et al., 

2012; Purcell et al., 2013). 

Open pond cultures operate with biomass concentrations up to 1 kgDM m-3 with an 

average value of between 0.2 and 0.6 kgDM m-3, while PBRs operate up to 2 kgDM 

m-3 (Cromar and Fallowfiels, 1997; Tredici, 2004; Min et al., 2011). When in 

suspension, the algal cell surface has a negative electrical charge enabling 

stabilisation within the water body, in some species accentuated by the presence of 

flagella, causing repulsion forces between cells (Canter-Lund and Lund, 1995; 

Pietersen and Cloot, 1997). According to Pietersen and Cloot (1997), the average 

cell density value is equal to 1.02 g cm-3, although it can be slightly lower for  algae 

containing air bubbles within the membrane, which enable them to float.  

These characteristics, small dimensions, non-flocculent nature and the low 

concentration, together with a cell density value similar to the water, are responsible 

for a slow cell sinking rate of 10-6 m s-1 which causes the natural sedimentation 

processes to take longer than a day or a week depending on the algae species 

(Benemann et al., 1980; Shelef et al., 1984; Granados et al., 2012).  

2.1.2.2 Growth media characterization: composition, AOM, pH and zeta potential  

The characteristics of algal suspension changes during the growth cycle of the 

biomass (Pietersen and Cloot, 1997). Fresh water algae cultures are generally found 

at neutral pH values, while marine species are adapted to a stronger basic 
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environment (pH 8-9) due to the presence of salts in the water. The media 

composition is the most direct parameter affecting the overall characteristic of the 

algae suspension. For instance, low nitrogen concentrations increase the lipid and 

carbohydrate content of the biomass (cell wall and AOM composition) (Hu, 2007; 

Cheng et al., 2011a), while the presence of multivalent cations, such as Mg2+ and 

Cl2+, impact on the charge density increasing the negative surface zeta potential 

(Ozkan and Berberoglu, 2013). In addition, light intensity, temperature and mixing 

velocity and retention time contribute to enhancing algae growth and nutrient uptake 

(Hu, 2007). While growing, the algae modifies the composition of the media through 

the release of intracellular AOM that produces an increase in DOC (Pivokonsky et 

al., 2006; Henderson et al., 2008a; Li et al., 2011). The AOM changes over time and 

is species specific. However, as reported by several authors the AOM 

characterisation (Kam and Gragory, 1999; Babel et al., 2002; Wang et al., 2006; 

Henderson et al., 2008b; Li et al., 2011; Ozkan and Berberoglu, 2013; Ometto et al., 

2014) of different algal species, C. vulgaris, S. obliquus, A. maxima and M. 

aeruginosa, shows some consistent characteristics: 

 the AOM is composed primarily of proteins (hydrophobic) and polysaccharides 

(hydrophilic); 

 in the absence of humic/fulvic acids, proteins are responsible for the 

hydrophobicity of the system;  

 proteins and polysaccharides tend to complexify with iron and aluminum 

compounds limiting their nature of flocculant agents; 

 an increase in protein:carbohydrate rate increases the hydrophobicity and 

reduces the charge density; 

 the zeta potential ranges between -15 and -30 mV for fresh water algae at pH 

values of between 4 and 10; 

 charge density values range between 0.002 and 0.6 peq cell-1 and is affected by 

pH and the ionic strength of the medium. An increase in charge density is 

observed with increasing pH in fresh water media, while the opposite happens in 

the presence of high salt levels, which causes an increase in charge density with 

decreasing pH. 
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Table 2.2 Microalgae characteristics  

Algae species Picture Classification
Growth 

condition
Scape

Particle 

size
a       

(µm)

Surface area
a     

(µm
2
 cell

-1
)

Charge 

density (peq 

cell
-1

)

ZP (mV) DOC (mg l
-1

)
Worldwide 

production
b References

Chlorella vulgaris JM spherical 4.5ɸ 28
0.13                        

(pH 7.8)

-30.5 ± 1.2 

(pH 7.8)
4.8 ± 0.6 2000 ton DM y

-1 Ometto et al., 2014

Chlorococcum sp. BG-11 spherical 9ɸ 254 -
-10 (pH 7-

8)
- na Wu et al., 2012

Chlorella zofingiensis BG-11 spherical 3.25 33 - -13.2 3 51.7 na Zhang et al., 2012

Scenedesmus obliquus JM spindle 6ɸ; 10l 49.5
0.05                     

(pH 7.5)

-34.6 ± 6.0 

(pH 7.5)
3.8 ± 1.8 na Ometto et al., 2014

Scenedesmus quadricauda BB spindle 5ɸ; 10l 196 - - 11.8 na Pivokonsky et al., 2006

Dunaliella salina SW spindle 6ɸ; 10l 245 -
-30                      

(pH >1)
18 ± 2.3 1200 ton DM y

-1 Gimmler et al., 1991; 

Crypthecodinium cohnii Red algae SW dinoflagellatta 18ɸ 1018 - - - 240 ton DHA y
-1 Mendes et al., 2009; 

Arthrospira maxima
Zarrouk 

media
helical 4.5ɸ; 100l 3720

0.564                          

(pH 9.4)

-44.2 ± 7.8 

(pH 9.4)
100 ± 0.7 3000 ton DM y

-1 Ometto et al., 2014

Microcystis aeruginosa JM spherical 5ɸ 95
0.0019                 

(pH 7)

-20                

(pH 7)
18 ± 2.3 na Henderson et al., 2008a

Anabaena flos-aqua
Zarrouk 

media
filamentous 5ɸ 63 - - 16.8 500 ton DM y

-1 Pivokonsky et al., 2006

Melosira sp.
Diatom 

media
filamentous  18ɸ; 35l 5500 negligeble

-15 ± 7.8 

(pH 9.4)
3.6 1 na Henderson et al., 2008a

Nitzschia
Diatom 

media
spindle 5ɸ; 10l 196 - -28 - na Konno, 1993

Green algae

Cynobacteria

Diatom

c

c

c

c

c

c

c

c

d

 
awhere possible cells’ dimension reported by the study were used to calculate the surface area, otherwise most likely dimension were 

estimated from pictures; bfrom Brennan and Owende, 2010; ‘cPhotos provided by Culture Collection Algae and Protozoa (CCAP) (Oban, 

Scotland); dPhotos provided by La Molina (Hayward, CA); DM’: Dried Mass; ‘na’: not available information. JM: Jaworski's Medium; BG-11: 

Blue-Green Medium; BB: Bold's Basal Medium; SW: Sea water. 
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2.1.3 Destabilisation techniques 

The efficiency of most microalgae harvesting systems can be improved by 

preliminary treatments, which aim to destabilise the suspension to enhance floc 

formation. Chemical flocculation and pH-induced flocculation are the most commonly 

used preliminary treatments though electric flocculation, bio-flocculation and 

ultrasonic aggregation are emerging alternatives (Table 2.3). 

Table 2.3 Application of destabilisation processes  

small scale large scale

Chemical flocculation high high chemicals negligible

Sedimentation 

Flotation           

Filtration

pH induced flocculation high medium chemicals negligible Sedimentation 

Electric flocculation high low electrodes varies largely
Sedimentation   

Flotation 

Bioflocculation medium low na negligible Sedimentation

Ultrasounds medium na na  intensive
Sedimentation    

Filtration

Efficiency

Destabilisation process Main costs Energy demand Application

 

'na': not applicable 

2.1.3.1 Chemical flocculation 

Chemical flocculation enhances aggregation and improves floc formation by altering 

the surface properties of the algal cells reducing their inhibitory properties (Shelef et 

al., 1984). Metal salts, such as aluminium chloride/sulphate and iron 

chloride/sulphate, or cationic polymers, e.g. Chitosan, Pestan and Zetag, are the 

most commonly used chemicals to help the formation of algae aggregates (Shelef et 

al., 1984; Granados et al., 2012). Compared to metal salts, cationic polymers have a 

significantly higher molecular weight and therefore require lower chemical dosages 

to produce similar removal yields (Molina Grima et al., 2003). Depending on the 

separation technology adopted after flocculation, conventional metal salt dosages 

range between 10 and 200 mg per litre of solution, while cationic polymers are 

usually effective with less than 20 mg l-1 and rarely exceed 100 mg l-1 (Tables 2.4 

and 2.5). Furthermore, they are less susceptible to protein and carbohydrate 

complexation than metal salts, suggesting a better performance at a high AOM 
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concentration (Molina Grima et al., 2003; Pivokonsky et al., 2006; Cheng et al., 

2011a). The average market price of aluminium and iron salts is between £0.3 and 

£2 kg-1, compared to a price range of £1.5 to £90 kg-1 for cationic polymers (Cheng 

et al., 2011a; Granados et al., 2012). For this reason, in the last few years, the 

research has focused on innovative coagulants that combine high flocculation 

efficiency with low dosage and low cost. 

For instance, Granados et al. (2012) reported a high flocculation efficiency (>90%) of 

Muriellopsis sp., using less than 40 mg l-1 flocculant, using a number of low cost 

(£0.8 – 4.5 kg-1) polyelectrolytes, including cationic, non-ionic and ionic polymers, in 

addition to bentonites and activated carbon. Zheng et al. (2012), used poly ɤ-

glutamic acid from Bacillus subtilis to aggregate C. vulgaris and C. protothecoides at 

doses close to 22 and 20 mg l-1, respectively. Similarly, Oh et al. (2001) reported 

efficient bio-flocculant extraction from bacteria Paenibacillus sp. 

The main disadvantage of chemical flocculation is related to the uncertainty of the 

optimal coagulant dosage required which varied between algae suspensions. Low 

cell concentration (< 0.5 mg l-1), large particle sizes, high AOM concentrations, high 

charge density, as well as salinity concentrations higher than 5 g l-1 are often 

responsible for poor floc formation (Edzwald, 1993; Pieterse and Cloot, 1997; 

Knuckey et al., 2006; Takaara et al., 2007; Henderson et al., 2010; Zheng et al., 

2012). In most cases, this is resolved by additional coagulant doses, although this 

increases the operational costs and the concentration of coagulant in the harvested 

biomass. For instance, marine algae tend to require between 5 to 10 times more 

coagulants than freshwater algae (Sukenik et al., 1988). 

Furthermore, overdosing impacts on the floc structure by modifying its morphology 

and increases the contamination of the separated biomass. For instance, using iron 

chloride (FeCl36H2O) for Thalassiosira pseudonana separation, Knuckey et al. 

(2006) reported a 10 fold density reduction of the algae in the floc by doubling the 

Fe3+ concentration from 250 to 500 µM.  

Different authors have suggested using the AOM characteristics to estimate the 

efficiency of the coagulation step. It has been shown that for similar algal species, 

the protein:carbohydrate ratio is an indication of the coagulant dose required and 

that a high protein:carbohydrate ratio will generate a reduction in charge density and 

related chemical savings (Henderson et al., 2012; Zhang et al., 2012; Ometto et al., 

2014;). Practically, monitoring zeta potential values has been demonstrated to be an 
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efficient method to prevent poor chemical separation efficiency as optimal 

flocculation occurs between -10 mV and +10 mV (Henderson et al., 2010; Ometto et 

al., 2014). 

2.1.3.2 pH induced flocculation 

pH induced flocculation involves precipitation of magnesium hydroxide and calcium 

carbonate induced by a change in pH (Gregory and Duan, 2001). While precipitating, 

the crystalised salts bring together the algae cells (sweep flocculation) enhancing the 

sedimentation process. However, recent works suggested the presence of a more 

complex separation mechanism involving charge neutralization combined with salt 

precipitation (Yahi et al., 1994; Vandamme et al., 2012;). For instance, precipitating 

calcium phosphate and brucite have positive charges, which allow them to bind with 

the negatively charged algae in suspension (Vandamme et al., 2012). As a 

consequence, the presence of Mg2+ and Cl2+ in the solution is essential to guarantee 

an efficient crystallisation and consequent floc formation (Yahi et al., 1994). 

Accordingly, the advantages of such an approach are maximised in marine 

environments, as the background water counts sufficient concentration of Mg2+ and 

Cl2+ as opposed to a fresh water system where dosing is required (Semerjian and 

Ayoub, 2003).  

Conventionally, the pH is increased by NaOH addition, however innovative 

applications suggest the potential use of carbon dioxide (CO2) or aqueous ammonia 

(Spilling et al., 2011; Chen et al., 2012;). Using NaOH (~£ 0.08  kg-1) with C. vulgaris, 

Scenedesmus sp. and Chlorococcum sp., Wu et al. (2012) reported an efficient 

algae floc formation when increasing the pH between 9 and 12 with an optimal 

magnesium ionic concentration of between 3 and 5 mg l-1.  

The adoption of CO2 is based on the possibility to exploit the microalgae’s 

photosynthetic ability to increase the pH above the threshold of floc formation by 

CO2 uptake (Spilling et al., 2011). This mechanism was successfully applied on 

Phaeodactylum tricornutum and S. obliquus, although it required more than 3 h to 

achieve optimal flocculation at pH values equal to 10.5 and 11.5 respectively.  

Chen et al. (2012) investigated the potential of using ammonia to alter the pH and 

subsequently, after floc separation, converted the un-ionized ammonia to its ionic 

form by CO2 injection to prevent the presence of toxic gaseous ammonia. The 

authors reported promising results using doses of up to 38 mmol ammonia with 



Innovation on microalgae harvesting technologies for biofuels production: a review 

60 

Nannochloropsis oculata, Dunaliella HTBS and C. sorokiniana demonstrating the 

feasibility of the process and the ability of direct reuse of the clarified water.  

2.1.3.3 Electric flocculation 

During electrolysis a constant current applied between electrodes immersed in the 

algae solution generated positive metal polyvalent ions (Al3+, Fe2+ or Fe3+), attracting 

algae which lose their negative charge and bind together (Poeleman et al., 1997; 

Duan and Gregory, 2003; Paersall et al., 2010). In this process, the pH is a key 

parameter as high pH values support sweeping flocculation, while charge 

neutralisation occurs at low pH levels when ions are in their soluble state (Gao et al., 

2010; Vandamme et al., 2012). Polyvalent ions tend to react with water and produce 

insoluble metal hydroxide responsible for sweep flocculation (Vandamme et al., 

2012). 

Continuous applications are subjected to significant localised temperature variations 

near the electrodes which reduce the efficiency of the process (Alfafara et al., 2002). 

Although the adoption of gentle mixing to guarantee a homogeneous distribution of 

the temperature during treatment was reported to be an efficient mitigation, it might 

interfere with the flow of the particles (Alfafara et al., 2002). 

The main advantage of this technology is the absence of high chemical 

concentrations in the separated biomass, however it can be energy intensive and 

cost demanding due to the need of electrode replacements (Poeleman et al., 1997). 

Poeleman et al. (1997) reported an energy consumption equal to 0.33 kWh m-3 

operating electrolysis for 75 min to a mixture of natural algae from a reservoir. 

Similar values were reported by Vandamme et al. (2011), who observed higher 

energy demand when treating the freshwater algae C. vulgaris (1 kWh m-3) 

compared to the marine specie P. tricornutum (0.15 kWh m-3) due to the lack of 

polyvalent ions already available in the solution. In accordance with Gao et al. 

(2010), higher current densities reduce the treatment time to below 30 minutes 

although higher energy inputs are required (2 kWh m-3). While green algae 

responded well even at high currents (> 2 A), cyanobacteria are subjected to cell 

fragmentation causing high release of intracellular AOM (Gao et al., 2010; Paersall 

et al., 2010). Furthermore, when applied to marine algae cultures, the high salt 

concentrations subjected to currents higher than 0.6 A are responsible for sodium 
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hypochlorite formation causing irreversible degradation of the biomass (Gao et al., 

2010; Vandamme et al., 2011). 

2.1.3.4 Bio-flocculation 

Bio-flocculation relies on the ability of specific algae species or bacteria to naturally 

aggregate under quiescent condition. While aggregating, auto-flocculating 

microorganisms (e.g. Ettlia texensis, Ankistrodesmus falcatus, S. obliquus) act as 

flocculating agents supporting floc formation, mixed with a non-flocculating culture 

(e.g C.vulgaris, N. oleoambundas) they have been observed to generate mixed 

culture floc causing high floc formation without the need of addition of chemical 

(Salim et al., 2011; Salim et al., 2012). However, when using bacteria as an auto-

flocculating culture, the addition of a temporary source of organic carbon (e.g 

acetate, glucose or glycerine) in the algae culture is required to support bacteria 

growth. In addition, under nutrient limitation, the bacterial biomass releases 

extracellular polymers substances, which help floc formation (Lee et al., 2009). 

Recently, the work of Zhang and Hu (2012) investigated the possibility of using 

filamentous fungal strains (Aspergillus niger) to generate co-pelletisation with algae, 

obtaining promising results.  

The main advantage of this technology is the low energy input, estimated to be 

around 0.9 kWh per 10 ton of harvested dry mass, equal to 1 Wh m-3 assuming an 

initial biomass concentration of 1 g l-1 (Lee et al., 2010). Depending on the 

downstream utilisation of the biomass, the process will be beneficial for the 

maintenance of the cell structure, although the separated biomass will be mixed with 

other algae, bacteria or fungi. For instance, where downstream cell wall breakage is 

required (e.g. chemical extraction), the adoption of cellulase-producing fungi will 

improve the degradation of cellulose enriched algae (Zhang and Hu, 2012). 

2.1.3.5 Ultrasound 

Ultrasound is a known method for microalgae cell disruption (Purcell et al., 2013), 

however is has also been identified as an innovative harvesting technique by Bosma 

et al. (2003). Applying ultrasound to an algae suspension generates standing waves 

producing high pressure nodes and anti-nodes (low pressure) where algae can be 

concentrated or collected (Laurell et al., 2007).  
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The use of high frequencies (2.1 MHz) and low power inputs (4 – 8 W) prevents 

stress of the cells which remained intact. Despite its potential application, the system 

exerts a very high energy demand of >1.4 kWh l-1, and a need to control residual 

temperature (Bosma et al., 2003). 

However, low energy input ultrasound can be used as a pre-treatment to reduce the 

amount of flocculants required. For instance, Heng et al. (2009) reported a more 

efficient chemical flocculation (10 mg FeCl3 l
-1) using ultrasound as a pre-treatment 

at lower frequencies (40 kHz) and higher power (40 – 80 W) for 30 seconds applied 

to a mixture of freshwater algae. Higher exposure times have been reported to result 

 in cell breakage when treating algae containing gas vesicle in the cell wall (mixture 

of cyanobacteria), while input power of close to 120 W had a detrimental effect on 

the floc formation causing smaller flocs than at 40, 60 and 80 W (Zhang et al., 2012). 

To illustrate, Zhang et al. (2012) used ultrasound with Spirulina platensis to reduce 

the floating ability of the alga by breaking the intracellular gas vesicles which efficient 

flocculation achieved at low coagulant doses (0.4 - 0.8 mg l-1 of polyaluminium 

chloride). The corresponding energy input required to treat 200 ml of algae for 5 

seconds using a 50 W power was estimated as equal to 0.35 kWh m-3. 
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2.1.4 Separation technologies 

2.1.4.1 Sedimentation 

2.1.4.1.1 Gravity sedimentation  

Gravity sedimentation is a traditional solid-liquid separation process where algae are 

left to settle according to Stokes’ Law (Shelef et al., 1984). The small primary particle 

size of most algae results in a very low sedimentation rate, so pre-flocculation is 

commonly used to ensure settle rates of equal to or higher than 0.6 cm s-1 (Collet et 

al., 2011), equivalent to a minimum hydraulic loading rate (HLR) of 0.14 m3 m-2 h-1 

(Metcalf and Eddy, 2003a). Conventional sedimentation systems (e.g. clarification 

tank or lamella type sedimentation tanks) achieve a final slurry concentration 

between 1 and 3% as total suspended solids (TSS), using less than 0.1 kWh m-3 

(Yahi et al., 1994; Uduman et al., 2010). When higher solid concentrations are 

required, sedimentation can be adopted as a pre-concentration step combined with 

other technologies such as Dissolved Air Flotation (DAF) and centrifugation (Collet et 

al., 2011). Compared to other harvesting systems, the absence of turbulent flows or 

high pressures guarantees the integrity of the microalgae structure, both internally 

(chloroplast) and externally (cell wall) (Chen et al., 2012; Şirin et al., 2012; Zheng et 

al., 2012) and exerts a low energy demand (Shelef et al., 1984; Schlesinger et al., 

2012).  

Chemical flocculation is the most applied pre-flocculation technique achieving an 

efficient cell separation higher than 90% in 10 - 30 minutes settling time, depending 

on the chemical adopted and the environmental conditions (pH, charge density, cell 

concentration). Similarly, pH induced flocculation allows separation times of below 

30 min, however using CO2 or ammonia to alter the pH increasesthe settling time to 

up to 12 hours depending on the microalgae tested (Table 2.3). An even longer 

settling time is required for efficient separation by the bioflocculation and the 

autoflocculation system which limit their application at a larger scale (Salim et al., 

2012; Zhang and Hu, 2012). According to Lee et al. (2010), microbial 

flocculation/sedimentation applied to harvest 1 km2 high rate algae pons (HRAP) 

having 5.8 days of cultivation time to reach the steady growth phase required three 

clarifiers in the series, having a HLR of 0.88 m3 m-2 h-1 each (19 hours settling). 

Forcontext, such HLR are in the range typically seen in conventional secondary 

clarification units for wastewater treatment plants (0.66 and 1.16 m3 m-2 h-1), where 
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maximal sedimentation velocity is assumed as equal to 12 m s-1 (Metcalf and Eddy, 

2003a). 

Table 2.4 Gravity sedimentation performances under different working condition.  

92 9.9 9.26 Chitosan 20 mg l-1

83 5.9 2.68 Al2(SO4)3               28 mg l-1

67 7.5 1.88 PAC  28 mg l-1

Chlorella fusca 37 8 mg l-1

Chlorella vulgaris 36 3 mg l-1

Scenedesmus sp. 38 25 mg l-1

Scenedesmus subspicatus 37 2 mg l-1

11 Al2(SO4)3               200 mg l-1

9 Pestan 100 mg l-1

Chlorella vulgaris

Chlorella sorokiniana

Chlorella variabilis

Chlorella minutissima

<20 Fe2(SO4)3 

95 7.2 Chitosan 100 mg l-1 B Beach et al.,  2012

<10 Al2(SO4)3               

Chlorella protothecoides 0.6 98 2 h 29.8 19.82  mg l-1

Chlorella vulgaris 0.57 91 2 h 20.5 22.03  mg l-1

Thalassiosira pseudonana (M) 3 x106 cells ml-1 90 9.5 15 min 200-800 Magnafloc LT-25 0.5  mg l-1 L Knuckey et al., 2006

Spirulina plantesis 3 x108 cells l-1 90 8-9 30 min PAC  2.4  mg l-1 B Zhang et al., 2006

Chlorella vulgaris 0.68 g l-1 >99 12

Scenedesmus sp. 0.75 g l-1 >99 10.5

Chlorococcum sp. 0.77 g l-1 >99 11.5

Phaeodactylum tricornutum (M) 1.8 g l-1 >90 9

Nannochloropsis oculata (M) 1.6 g l-1 >90 9.3

NaOH 9 mg g-1 DM

KOH 12 mg g-1 DM

Ca(OH)2
18 mg g-1 DM

9.7 Mg(OH)2
27mg g

-1
 DM

Phaeodactylum tricornutum >90 11

Scenedesmus obliquus >70 11.5

Chlorella sorokiniana - 50 10 12h 113.3 mmol

Nannochloropsis oculata (M) - 93 10.7 3h 57.31 mmol

Dunaliella HTBS (M) - 91 10.8 3h 38.37 mmol

30 Scenedesmus obliqqus

>50 Tetraselmis suecica (M)

>45 Ankistrodesmus falcatus

>60 Ettlia texensis

0.1 g l-1

0.5 g l-1

3.3 x109 cells ml-1 >80 Aspergillus niger 

2.6 x109 cells ml-1 >99 Aspergillus flavus

3.9 x109 cells ml-1 >93 Aerococcus viridans

2.8 x10
9 

cells ml
-1

>99
Leucogyrophana 

arizonica

Chlorella vulgaris 0.062 gl-1 83 11 10 min -
Bioflocculant from 

Paenibacillus sp.
20 ml l-1 B Oh et al., 2001

Scenedesmus obliqqus >40

Tetraselmis suecica (M) >60

Ankistrodesmus falcatus >20

Chlorella vulgaris >90  Electrodes (Al) -

Phaeodactylum tricornutum (M) >80  Electrodes (Al) -

0.2 g l-1 10 min

0.6 g l-1 20 min 

Algae mix 0.03-0.4 g l-1 >99 8-9 10 min -  Electrodes (Al)               - B Azarian et al., 2007

Monodu subterraneus 107 cells l-1 85 7.8 3 sec ultrasounds (4-8W) - Bosma et al., 2003

Spirulina plantesis 3 x108 cells l-1 >90 - 30 min - PAC* 10  mg l-1 B Zhang et al., 2006

Algae mix 3 x107 cells l-1 >80 8-8.1 30 min - FeCl3
*

0.8  mg l-1 B Heng et al., 2009

5

-

1.1 g l-1

-

24 h

Chlorella sp.

0.3-0.6 g l-1

Chlorella vulgaris

10 min

8 30 min

Treatment

Neocloris oleoabundans 0.5 g l-1

10.8
>950.5 g l-1 30min

-

24 h

Post chemical 

flocculation

Post pH induced 

flocculation 

Bio-flocculation /                                   

Auto-flocculation

>95

Concentration

10 min

Electroflocculation

6 h

-

Chlorella vulgaris 3 h
Algae ratio      

0.6-0.9 
0.5 - 0.6 g l-1

-

>90Pleurochrysis carterae (M) - B

-

-

Phaeodactylum tricornutum 0.1 g l-1 20 min

pH  Settling timeAlgae 

Botryococcus braunii

Chlorella vulgaris

CF

-

-

Efficiency                

(%)

-

50

-

9

-

1 g l-1 >90

7.5

8.5

226

0.3 g l-1 >90 Chitosan30 min

Coagulant agent

69.6 mg l-1

-

-

-

Microbe culture

Dose                

NaOH/CO2 30min -

Ammonia 

 Electrodes (Al)                                

60V, 2A
-

ɤ-PGA

15min
Polyelectolytes                                              

(ACTIPOL)

-NaOH 

--

Pearsall et al., 2011

B

B

B

B

B

B

Salim et al., 2011

Spilling et al., 2011

Chen et al., 2012

Vandamme et al., 2011

Zheng et al., 2012

B

B

B

Vandamme et al., 2012

Wu et al., 2012

Lee et al.,1998

Cheng et al., 2011b

Granados et al., 2012

Sirin et al., 2011

ReferenceScale

B

B

B

B

10min

-

0.5-2.5 g l-1 >90 -

Ultrasounds

Lee et al., 2009

Zhang and Hu, 2012

Salim et al., 2012

B

 

CF: concentration factor; M: marine algae; B: bench scale; L: large scale; *ultrasounds were 

used as pre-treatment to improve chemical flocculation. 
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2.1.4.1.2 Magnetic sedimentation 

Magnetic separation is an induced sedimentation process where magnetite 

nanoparticles, or other magnetic polymers, are added to the algae suspension and 

mixed to allow flocculation (Liu et al., 2009; Gao et al., 2009; Xu et al., 2011; Cerff et 

al., 2012; Prochazkova et al., 2013). Appling a magnetic field to the aggregated 

suspension results in complete clarification within a few minutes, leaving clarified 

water in one side and algae/magnetic particles in the other (Bitton et al., 1975; Gao 

et al., 2009). High cell separation has been observed with a number of different 

algae in both fresh water and marine cultivation environments (Table 2.5). For 

instance, Botryococcus braunii and C. ellipsoidea were successfully recovered (> 

99%) in less than 3 minutes using a magnetite nanoparticle dose equal to 75 and 

300 mg l-1 of solution, respectively (Xu et al., 2011). Similarly, high separation 

efficiencies were observed using hydrophilic silica-coated magnetic particles on 

Chlamydomonas reimhardtii, P. tricornutum, N. salina in less than 5 minutes (Cerff et 

al., 2012). Only 2 minutes were sufficient to settle 90% of C. vulgaris using 

microwave synthesised iron oxide magnetic micorparticles (IOMMs) (Prochazkova et 

al., 2013). Using montomorillonite-Cu(II)/Fe(III) oxides particles, Gao et al. (2009) 

observed pH values higher than 6.5, lowering separation efficiency to below 80%, 

while the presence of Na+ and Ca2+ optimized the performance. Depending on the 

downstream utilisation of the biomass, after separation, the magnetic material might 

need to be dissolved in a chemical solution (HCl, n-hexane, H2SO4) to allow pure 

microalgae cell recovery though membrane filtration (Xu et al., 2011; Prochazkova et 

al., 2013). The magnetic material can then be recycled and reused. Similarly to 

gravity sedimentation, when the magnetic material is added to the system, the 

solution required high mixing rates to allow optimal adsorption between particles. In 

most of the bench studies reviewed, a high shear rate was maintained for between 1 

to 5 minutes prior to magnet (~ 0.5 T) activation. Compared to conventional 

sedimentation, magnetic separation significantly reduces the clarification time 

maintaining the energy requirements negligible. However, the costs involved with 

respect to the magnetic material production and post-harvesting separation limit the 

practical application of this technology (Xu et al., 2011). To the best of our 

knowledge, no large or pilot scales for microalgae application are available.  
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Table 2.5 Magnetic sedimentation performances under different working conditions. 

Chlorella vulgaris
13.9 99 4 1-2 IOMM 0.8 g g-1 B Prochazkova et al., 2013

Chlamydomonas reinhardtii 600-1500 8 0.07-0.8 g g-1

Chlorella vulgaris 650 >8 0.03 g g-1

Phaeodactylum tricornutum (M) 700-3500 12 0.01-0.03 g g-1

Nannochloropsis salina (M) 4200 8 0.03-0.2 g g-1

Botryococcus braunii 1800 4 2-3 0.04 g g-1

Chlorella ellipsoidea 800 7 2-4 0.4 g g-1

Chitosan 4 mg l-1

Fe3O4 1.6 mg l-1

Fe3O4 300 ug ml-1

Al2(SO4)3 50 ug ml-1

Liu et al., 2009

Gao et al., 2009B

Bitton et al., 1975Mix lake algae culture - B105 cells ml-1

- B

6.5

Mycricysits aeruginosa 106 cells ml-1 99 7

>90

Xu et al., 2011B

B
MagSilica                                  

Fe3O4 

Separation 

time (min)

Fe3O4 

5-10

ReferencesTechnology Algae

Cerff et al., 2012

Concentration     

(mg l-1)

Efficiency                  

(%)

>90

Dose*

12.5 g g-1

100

20

ScaleAdditivespH

>94Mycricysits aeruginosa 80
M ontmorillonite-

Cu(II)/Fe(III) oxides 
6.8

Magnetic separation

 

M: marine algae; B: bench scale; L: large scale; *grams or milligrams of additives per grams 

or liters of biomass. 

2.1.4.2 Flotation 

Flotation is a solid-liquid separation mechanism where micro-bubbles, or low density 

microspheres, attached to the algal biomass float the algae floc to the surface 

allowing high cell recovery (Edzwald, 1993; Rawat et al., 2013).  

2.1.4.2.1 Dissolved Air Flotation (DAF)  

Dissolved Air Flotation (DAF) is the most applied technique for flotation systems. In 

the DAF process, pressurised air is injected into a pre-flocculated algae solution 

where micro air bubbles (≤ 500 µm) bind with the algae aggregates reducing the net 

density and hence floating the aggregate to the surface (Edzwald, 1993). Compared 

to sedimentation where floc formation enhances sedimentation rate, with DAF 

optimal coagulant doses will provide floc the ability to resist the shear rate generated 

during saturated flow injection (Henderson et al., 2010). According to the design 

parameter reported by Edzwald and Haarhoff (2011), the saturators operate with a 

recycle ratio of close to 10%, optimal pressure values between 350 and 600 kPa, 

with a typical value for microalgae harvesting equal to 450 kPa (Table 2.6), and HRT 

between 5 and 15 m3 m-2 h-1. Reported trials indicate very high separation 

efficiencies from 90% to 99%, despite the characteristic of the soluble matter which 

affects the coagulant dose. The only exception was the cyanobacteria A. maxima, 

which in two different cases reported poor separation due to high density floc 
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formation (Jarvis et al., 2009; Ometto et al., 2014). In terms of final solid 

concentration, DAF enables between 2 and 5% as TSS to be obtained depending on 

the desludging frequency (Rawat et al., 2013). 

The theoretical energy demand for a saturator is close to 0.02 kWh m-3 of treated 

water depending on operational conditions, however considering loss of energy and 

the energy required to pump the water into the saturator and allow flocculation, 

conventional energy usages range between 0.2 and 0.5 kWh m-3 of treated water 

(Molina Grima et al., 2003). A number of recent innovations have reduced the energy 

demand through the development of a novel air flow device (micro flotation system) 

modifying a stream of continuous air flow into an oscillatory flow at a specific 

frequency using the Coanda effect (Hanotu et al., 2012). Compared to DAF, this 

system enables a very fine bubble formation which optimises the flotation process 

and offers the potential for several orders of magnitude of reduction in energy 

demand. Similar to DAF, Dispersed Air Flotation (DiAF) was reported to be effective 

at harvesting some microalgae, however, due to the difficult control of air bubble 

size, does not find many applications (Liu et al., 1999; Hanotu et al., 2012). 

2.1.4.2.2 Ballasted flotation 

A different adaptation of the DAF system involves the replacement of air bubbles 

with microspheres to drive the flotation process. Similar to a ballasted sedimentation 

process where sands or micro particles are added to the system to improve 

sedimentation (Desjardins et al., 2002), low density 40-100 μm glass microspheres 

(100 kg m-3) are added into the flocculation tank to form stable aggregates with the 

algae cells and separate them without the need of the saturator (Jarvis et al., 2009; 

Jarvis et al., 2011). After the float is removed, the beads can be recovered through 

the use of a hydrocyclone. According to Ometto et al. (2014), compared to DAF, the 

so called Ballasted Dissolved Air Flotation (BDAF) allows high coagulant saving 

depending on the characteristic of the algae suspension. For instance, to harvest C. 

vulgaris, A. maxima (high salinity) and S. obliquus at pH 7 using BDAF, the author 

reported a reduction of aluminum sulphate equal to 45%, 25% and 17%, 

respectively, than with DAF. In addition to this economic saving, the BDAF required 

less than 40% of the energy required by DAF and can allow up to 60% carbon 

emission saving (Jarvis et al., 2009; Ometto et al., 2014). Furthermore, this system 
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has the potential to obtain an algae slurry with a TSS concentration of close to 10% 

(Ometto et al., 2014). Nevertheless, the feasibility of the system still needs to be 

proven at a larger scale. 

2.1.4.2.3 Coagulant free flotation 

To reduce the use of coagulants in the concentrated biomass, a few studies reported 

promising results replacing the pre-coagulation system with the addition of polymers 

or surfactants, such as polyDADMAC or CTAB, into the saturator (Henderson et al., 

2009; Willey et al., 2009). This generates positively charged bubbles that naturally 

bind with the algae cells in suspension enhancing flotation as in posiDAF and 

Suspended Air Flotation (SAF) systems. Despite the feasibility of the process, from 

the limited information available, large microalgae (e.g. M. aeruginosa) appeared to 

respond better than small single cells like Scenedesmus sp. and Chlorella sp., as 

they showed lower separation efficiencies than DAF (Henderson et al., 2008c). In 

addition, Willey et al. (2009) reported the potential of a lower energy demand due to 

the higher air:solid (A:S) ratio achieved to obtain the same final solid concentration of 

4.5% as TS. A bench scale system with an A:S ratio equal to 120:1 (HLR of 37 m3 m-

2 h-1 and solids loading rate (SLR) equal to 5.6 kg m-2 h-1) required only 3 Wh m-3, 

more than one order of magnitude less than DAF performed at 2:1 A:S ratio (HLR of 

16 m3 m-2 h-1 and SLR of 1.7 kg m-2 h-1). 

Ozone can be used as floating agents instead of air, without the need of a pre-

flocculation step (Betzer et al., 1980). Compared to the energy demand required by a 

saturator, ozone production is a low energy system as only 10 Wh are required to 

produce 1 g of ozone (Metcalf and Eddy, 2003b). 

However, when using ozone, the algae biomass is subjected to high cell wall 

degradation which causes the release of internal AOM in the media, which can 

interfere on the turbidity and chlorophyll removal efficiency (Benoufella et al., 1994; 

Ma et al., 2006). Zhang et al. (2012) observed significant particle size reduction 

when treating a number of diatoms (15 - 20 µm long and 2 - 5 µm wide), including 

Fragilaria sp., Navicula sp. and Diatoma sp. Increasing the ozone dose from 0.5 to 2 

mg l-1, the authors observed an increasing amount of particles below 15 µm. High 

cell breakage was also detected by Ma et al. (2006), dosing 2 mg O3 l-1 on 

Oscillatoria amoena. For these reasons, Cheng et al. (2010) suggested this 

harvesting method as an efficient option to combine harvesting and cell breakage 
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together. For instance, harvesting C. vulgaris with 0.005 - 0.03 mgO3 mgBiomass-1, 

the authors observed an increment of the C16:0 quantities available in the floated 

algae from 31% to 55%.  

2.1.4.2.4 Electro flotation 

Electro flotation uses oxygen and hydrogen bubbles produced at the anodes during 

electrolysis to drive the algae floc to the surface. Depending on the configuration of 

the system, the electrodes are placed horizontally at the bottom of the separation 

tank to ensure efficient distribution of the generated bubbles (Sandbank and Shelef, 

1988), or vertically to attract the algae cells and then drive them to the surface along 

the electrode. The system reported complete separation of B. braunii after 30 min 

and was successfully applied to a large scale pond to separate mixed species of 

algae (Poelman et al., 1997; Xu et al., 2011). From the data reported by Poelman et 

al. (1997), 95% separation efficiency is achievable in 35 min for an algae flow of 1 

m3 h-1 using a 0.5 m3 tank, which gives a HLR of 1 m3 m-2 h-1 assuming a 0.5 m high 

tank. Compared to sedimentation application where high pH values are adopted, for 

flotation application, low pH levels are require to limit sweep flocculation 

mechanisms. Gao et al. (2010) reported optimal separation of M. aeruginosa adding 

Cl- ions which reduce the separation time to below 20 min. However, chlorine 

generated during the process interacts with the microalgae causing severe cell 

demand and lysis.  

In terms of energy, the demand of the process varied largely from 1.98 kWh m-3 to 

0.33 kWh m-3 depending on the number of cathodes and anodes used, their surface 

area, the distance, and the specific voltage and current applied (Poelman et al., 

1997).
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Table 2.6 Flotation separation performances under different working conditions. 

Efficiency

% Pressure recycle ratio (%) treatment coagulant agent dose

>80 (NTU)  PAC 37 mg l-1

>73 (NTU) Al2(SO4)3               70 mg l-1

Chlorella sp. 10

Melosira 6

Mycricysits aeruginosa 10

Chlorella vulgaris 5 x105 cell ml-1 95 12.6 mg l-1

Mycricysits aeruginosa 6 x105 cell ml-1 97 3.78 mg l-1

Melosira sp. 5 x104 cell ml-1 99 3.15 mg  l-1

Asterionella formosa 2 x103 cell ml-1 99 9.45mg l-1

Chlorella vulgaris 105 cell ml-1 6.5-6.7 AlCl3 20 mg l-1

Cyclotella 5 x104 cell ml-1 6.3-6.5 FeCl3 28 mg l-1

Chlorella zofingiensis 8 x107 cell ml-1 >90 6.2 10 550 kPa 20 chemical flocculation Al2(SO4)3               63-633 mg l-1 Zhang et al., 2012

Scenedesmus obliquus 2 x106 cell ml-1 99 158 mg l-1

Chlorella vulgaris 2 x106 cell ml-1 99 13 mg l-1

Arthrospira maxima 2 x104 cell ml-1 70-90 443 mg l-1

Chlorella sp. /               

Scenedesmus sp.
131 mg l-1 85 - 10 450 kPa 33 chemical flocculation

 C-FLOC 60                              

(cationic polymer)

0.5 ml at 1%              

(per 100ml)
L Willey et al., 2009

AlCl3 50 mg l-1

 PAC 30 mg l-1

CTAB 40 mg l-1

Chitosan 10 mg l-1

Chlorella 

Melosira

Mycricysits aeruginosa

Scenedesmus obliquus 2 x106 cell ml-1 95 mg l-1

Chlorella vulgaris 2 x106 cell ml-1 13 mg l-1

Arthrospira maxima 2 x104 cell ml-1 221 mg l-1

Disperse Air Flotation 

(DiAF)

Air Flotation

Ballasted Dissolved Air Flotation (BDAF)

450  kPa

450 kPa

5

7

>90

Chlorella sp. 7 x105 cell ml-1 88-92 20 68-206 ml min-1

10

483 kPa

5.5

0.5-1 x106 cell ml-1 chemical flocculation5.5

chemical flocculation Al2(SO4)3450 kPa10

10

10

105 cell ml-1

99

90

chemical flocculation10

5

7-8

10 10

10 Ometto et al., 2014chemical flocculation

chemical flocculation
Fe2(SO4)3                                                                                                          

Glass beads (300 mg l-1)
Jarvis et al., 2009

B

B10

Al2(SO4)3                                                                                                                

Glass beads (300 mg l-1)

12.5 mg l-1

Al2(SO4)3               

Fe2(SO4)3 B

L Edzwald, 1993

B

12.5 mg l-1

Ometto et al., 2014chemical flocculation

chemical flocculation Liu et al., 1999

Jarvis et al., 2009

Henderson et al., 2010

B

6-12

Mycricysits aeruginosa 3 x109cell ml-1 8.0-8.4 -5 chemical flocculation

References

10 B

Treatment Algae Concentration pH
Floting     time 

(min)

Pre-treatmentsFlow characteristics
Scale

Yuheng et al., 2011

Dissolved Air 

Flotation                   

(DAF)

12

>90

 

B: bench scale; L: large scale. 
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Table 2.6 Flotation separation performances under different working conditions (continued). 

Efficiency

% Pressure recycle ratio (%) treatment coagulant agent dose

Suspended Air 

Flotation (SAF)

Chlorella sp. /               

Scenedesmus sp.
131 mg l-1 83 - 10 100  kPa -

surfactant addition into 

the saturator
MicroFrothTM 2.5 ml l-1 L Willey et al., 2009

63 CTAB
0.0022-0.0040 

meq l-1

95 polyDADMAC 0.32-0.44 mg l-1

>80 Agefloc A50 -

Chlorella vulgaris 1.7 x104cell ml-1 54 0.005 meq l-1

Asterionella formosa 6 x105cell ml-1 89  0.0008 meq l-1

Melosira sp 1100 cell ml-1 97 0.0005 meq l-1

Scenedesmus obliqqus 1.6 g l-1 95 (NTU) - 4

0.52 mg O3 mg-1 

algae;                                           

0.65 kg cm-2

- - - B Cheng et al., 2011b

Chlorella vulgaris 640 (NTU) 98 (NTU) 6

0.24 mg O3 mg-1 

algae;                                           

0.65 kg cm-3

- - - B Cheng et al., 2010

Microcystis aeruginosa 109 cell l-1 >90 - -
1.5-5 lO3h-1;                                             

0.5 bar
- - - B Benoufella et al., 1994

Botryococcus braunii 1.6 g l-1 90-99 7-12 30
 Electrodes (Al)                                

15V, 60A
- - - B Xu et al., 2010

Mix algae 2-3.6 mg l-1 99 35
 Electrodes (Al)                               

18-85V, 1-4A
- - - L Poelman et al., 1997

Microcystit sp. 350mg Ch(a) m-3 99 8-9 10
 Electrodes (Al)                            

60W dm-3 - B Alfafara et al., 2002

M. aeruginosa 15 x109 cell ml-1 >90 8-9 20
 Electrodes (Al)                                

30V,3 A - Cl-1 B Gao et al., 2010

References

Electroflotation

Treatment Algae Concentration pH
Floting     time 

(min)

Flow characteristics Pre-treatments
Scale

B Henderson et al., 2009

7 10 450  kPa 20
surfactant addition into 

the saturator
CTAB B Henderson et al., 2008c

Coagulant free flotation

PosiDAF

Mycricysits aeruginosa 7.5 x105cell ml-1 7 10 450  kPa 20
surfactant addition into 

the saturator

Disperse Ozone 

Flotation                                      

(DOF)

 

B: bench scale; L: large scale. 



Chapter 2 

73 

2.1.4.3 Filtration 

Conventional filtration is adopted to harvest large algae, such as A. maxima, 

Scenedesmus sp. and Coelastrum sp., using filter presses, diaphragm filters, 

vacuum bed filters, screen belt, vibrating screen and cylinder sieving machines 

(Mohn, 1980; Pretorius and Hensman, 1984;). Despite the high separation efficiency 

of the process, between 70% and 90%, these separation methods report energy 

demands between 3 and 5 kWh m-3 of suspension. Low energy alternatives rely on 

the efficiency of fine sand/silt bed filters and membrane reactor (MR) systems 

(Naghavi and Malone, 1986; Bhave et al., 2012;). For highly concentrated algae 

solutions, sand filtration, largely applied in the drinking water sector, reported severe 

and rapid clogging which limits its utilisation leaving MR as the only feasible 

alternative (Naghavi and Malone, 1986; Esen et al., 1991; Zhang et al., 2010).  

2.1.4.3.1 Membrane filtration 

Modern membrane filtration systems are based on tangential flow filtration (TFF) and 

submerged filtration (Molina Grima et al., 2003). Within the TFF system, the 

membrane is subjected to intensive cross flow velocity (CFV) causing biomass 

compaction on its surface. Submerged filtration instead uses lower pressures 

reducing the flux rate that can be applied. Despite the configuration adopted, the 

energy demand ranges between 0.3 and 1 kWh m-3 of suspension to obtain 

concentrated biomass of between 15% and 20% as TSS (Judd, 2006; Zhang et al., 

2010; Bhave et al., 2012; Bilad et al., 2012).  

Depending on the nominal pore size of the membrane, it is possible to differentiate 

between microfiltration and ultrafiltration (Table 2.7). The first has an average pore 

size between of 0.04 and 1.5 µm while the second range between 1 to 100 kDa. 

Most of the algae has a cell size equal to or higher than 1 µm which suggests 0.5 µm 

as a conservative pore size diameter, however smaller sizes can retain other 

organisms such as protozoa or bacteria, and contribute to maintaining a high quality 

of the clarified liquid (Bhave et al., 2012; Bilad et al., 2012).  

Fouling is the limiting factor of these applications and it is strongly affected by the 

presence of extracellular polymeric substances (EPS) which includes AOM (Babel et 

al., 2002; Wicaksana et al., 2012; Discart et al., 2013; Discart et al., 2014). Studying 

Chlorella sp., Babel et al. (2002) demonstrated the AOM released in solution during 
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storage of the biomass was the main cause of increasing fouling performance. An 

incremental increase in the extracellular AOM concentration from 0.01 to 0.03 mg C 

mg-1 cells increases the specific cake resistance by one order of magnitude from 

below 2 1011 m g-1 to more than 1012 m g-1. After measuring the AOM composition, 

the authors detected a higher concentration of sugars than proteins, and suggested 

that the sugar content in the solution can be used as an index to predict cake 

resistance. Analysing the composition of fouled membranes, other authors verified a 

high presence of proteins and polysaccharides, confirming the importance of the 

extracellular AOM on the filtration efficiency (Wicaksana et al., 2012). Furthermore, 

according to De Baerdemaeker et al. (2013), another important parameter affecting 

operation is the physical structure of the cell wall. In particular, the authors observed 

that rigid cell walls (e.g. Chlorella sp. and Phaeodactylum sp.) concentrate on the 

membrane surface without blocking the water passage (critical flux equal to 50 l m-2 

h-1) while cells with less mechanical resistance in the wall structure (e.g. Isochrysis 

sp. and Pavlova lutheri) can compress, leading to significantly reduced hydraulic 

passages (critical flux equal to ≤ 20 l m-2 h-1) or even cause irreversible blockages. 

Similarly, Babel and Takizawa (2010) observed an initially low cake layer resistance 

when using rigid microalgae cells (e.g. 3 1012 m-1 for a pressure value of below 10 

kPa), however as soon as membrane surface cell deposition occurs, the resistance 

increases exponentially due to the release of intracellular AOM under pressure which 

rapidly fills the gaps between cells and membranes (e.g. 6 1012 m-1 at pressure 

above 60 kPa). 

In general, in the presence of high AOM concentration (>0.5 mg DOC l-1), 

hydrophobic membranes, e.g polyvinylidene difluorure (PVDF) or 

polytetrafluoroethylene (PTFE) membrane, are more subjected to flux reduction than 

hydrophilic membranes e.g. polyethersulfone (PES), polyacrylonitrile (PAN) or 

cellulose ester (CE) membranes, as they tend to foul by adsorption of 

polysaccharides (Rossignol et al., 1999; Hung and Liu, 2006). Between PVDF hollow 

fiber membranes and tubular ceramic membranes, the tubular system was reported 

to be more reliable for microalgae due to the higher resistance to backpulsing 

pressure (up to 100 bar) required to unblock the fouling membrane (Bhave et al., 

2012).  

The use of coagulant can prevent fouling by reducing the fine particle fraction 

blocking the membrane (Danquah et al., 2009; Bhave et al., 2012; Lee et al., 2012). 
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For instance, the addion of 100 mgChitosan l-1 in a suspension of C. vulgaris (2 gDM 

l-1) increased the constant flux of the membrane (PTFE) from 6 l m-2 h-1 to above 110 

l m-2 h-1 (Lee et al., 2012). A few studies investigated the effects of ultrasounds 

(Rossignol et al., 1999) and ozonation (Hung and Liu, 2006) pretreatments on the 

separation efficiency. In both cases, the idea was to reduce the particle size of the 

algae to limit blockages derived from small size particles. Although both systems 

reported efficient separation, the higher DOC content post-ultrasound treatment (due 

to cell breakages) increases the fouling resistance when using hydrophobic 

membranes. 

Efficient alternatives apply a constant bubbling air flow (e.g. 1 l min-1) during the 

filtration to maintain the membrane surface out of cells deposited (Wicaksana et al., 

2012). However, this increases the energy demand of the process by 0.23 kWh m-3, 

as estimated for a full scale MBR treating municipal wastewater (Biland et al., 2012). 
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Table 2.7 Membrane filtration performances under different working conditions. 

Membrane filtration Algae pore size TMP CFV constant flux Reference

µm kPa m s-1 l m-2 h-1

PVDF 0.17-0.38

Anopore 0.10-0.14 Wicaksana et al.,2012

Chlorella vulgaris 410 20-40

Phaeodactylum tricornutum (M) 230 30-50

Chlorella sp. 240
- - - PVDF 0.45 6.45-86.43 - - - - - B Babel and Takizawa., 2010

Arthrospira plantensis (M)
450 >90 9.5 -

organic 

membrane 0.1-1.5 1000 1 40-50
- - - B

Rossi et al., 2004

Chlorella sp.
4.8 x108 cells ml-1

- CA 1.2 50-150 0.13-4 100
- - - B

Ahmad et al., 2012

Chlorella vulgaris 140-340 - -
PC 0.1-0.4 100-1000 - -

- - -
B Discart et al., 2013

240 - - -

283 FeCl3 20 mgl-1

458 PAC 50 mg l-1

75-80 6 - - -

99 110 chemical flocculation chitosan  200 mg l-1

0.1
0.2

0.4

0.8

1.5

PES-PVP 0.1 40-50

PVC 0.4 50

PVDF 0.4 50

0.43

0.84 ozonation O3 1mg l-1 Hung and Liu, 2006

Arthrospira plantensis (M)
450 100 9.5 -

organic 

membrane 3-100kDa 1000 1 30-50
- - - B

Rossi et al., 2004

Chlorella vulgaris 300
-

- -
PES 5kDa 10000 - -

- - - B
Discart et al., 2013

Scenedesmus quadricauda 1004 >90 7-8.9 154 g l-1 PVC 50kDa 34.5 0.17 30 - - - B Zhang et al., 2010

PES 30kDa 140-150

PAN 40kDa 100

PVDF 30kDa 80-100

- 20-50 2.5

Haslea ostrearia (M) 40 140PVDF-

0.22 60Chlorella sp. 13.9 -

Nannochloropsis oculata 1490 --- - -

6 - PVDF

Final 

concentration 

-

- - 5.5-8.5 0.1-0.24 50-100

7 - 100 -0.91 Lee et al., 2012

-

-45-90

- 50 2.5

PVDF

Pre-treatments

treatment additive dose

membrane working condition

0-35 -0.008-0.036 -8.5

Microfiltration

Ultrafiltration

Tetraselma suecica (M) 420 >90

>99

1500-2000Nannochloropsis oculata (M) 99

Chlorella sorokiniana 14-29 -

Chlorella vulgaris 2000

40 -Haslea ostrearia (M)

-

- - - -

- - -

10

Rossignol et al., 1999

Danquah et al., 2009

Rossignol et al., 1999

Baerdemaeker et al., 2013

B

B

B

- B

7.5-8 >150 g l-1 60-100 < 10.1-0.2

-

PFTE

0.22 30 5 10-5

chemical flocculation  

Efficiency 

%
pH

material

Concentration 

mg l-1 Scale

-

- - - B

B

B

B- -

Bilad et al., 2012- - B

Bhave et al., 2012PVDF

20 -

 

M: marine algae; B: bench scale; TMP: transmembrane pressure; CFV: cross flow velocity. 
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2.1.4.4 Centrifuge 

The density difference between algae and water enables the use of enhanced 

devices such as centrifuges which are common in sludge dewatering and enable 

high biomass concentrations of more than 20% total solids (TS) to be achieved 

(Mohn, 1980). Consequently, it is regarded as the most reliable approach and is 

common amongst the early schemes. Although conventional sedimentary 

centrifuges might have a discontinuous solid discharged system, they can operate in 

a continuous system showing a treatment capacity up to 400 l min-1 (Kothandaraman 

and Evans, 1972; Shelef et al., 1984;). The biomass recovery efficiency depends on 

(1) the biomass settling rate, (2) the biomass residence time and (3) the biomass 

settling distance. The first parameter is determined according to Stokes’ Law, while 

the residence time and the settling distance depend on the chosen flow rate and the 

specific centrifuge design, respectively (Molina Grima et al., 2003). For disc-stack 

centrifuges, the settling distance ranges between 0.5 and 2 mm for centrifugal forces 

from 4000g to 15000g (Mohn, 1980).  

Compared to the other harvesting technologies, it has the highest energy demand, 

ranging from 1 to 8 kWh m-3 of pond water, which limits its use for large scale 

applications of low cost products (Mohn, 1980; Sim et al., 1988).  

However, the recent economic analysis of Dassey and Theegala (2013) 

reconsidered the use of centrifuge application for algal biodiesel production. The 

authors observed that, for a 3000g system, increasing the flow rate from 1 l min-1 to 

more than 20 l min-1 (lower retention time) decreases the energy consumption from 

20 to 0.8 kWh m-3. Although this generates a reduction of the cell recovery efficiency 

from 94% to below 30%, it appears more economically convenient to process larger 

volumes at lower energy demands, than smaller volumes at higher energy demands. 

Similarly, Harun et al. (2011) reported the potential of using centrifugation in an 

integrated algal biogas and biodiesel production system. Against an estimated 

biogas production of 0.48 m3 kg-1 dried Tetraselmis suecica, the energy demand to 

operate a raceway pond cultivation system with recovery of the biomass using a disk 

stack self-cleaning centrifuge was around 30% of the annual electricity output. 

Although the purity of the biomass is guaranted, the high physical forces involved 

cause cell damage depending on the rotation speed and the cell’s ability to resist 

compression. For instance, investigating the impact of the centrifuge separation on 
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the cell structure of different algae species subjected to acceleration factors between 

1300g (lab-scale centrifuge) and 13000g (supercentrifuge), Heasman et al. (2000) 

reported apparent low cell damage for a number of green algae, while diatom and 

haptophyta were more exposed to cell damage. Independently, on the speed 

adopted, T. chui, N. oculata, Rhodomonas salina and Pavlova lutheri showed low 

cell damage (0 – 3%), while 12% of Isochrysis (T-Iso) and Chaetoceros muelleri cells 

were clearly damaged when using the supercentrifuge. As a consequence, 

centrifuges cause the release of intracellular AOM which could potentially reduce 

compound availability for downstream processes or compromise the biomass 

preservation. 
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2.1.5 Discussion and conclusions 

The review of the scientific work on harvesting technologies undertaken in the last 

few decades has highlighted the continuous efforts to combine low-energy inputs 

with efficient separation systems. In particular, flotation techniques succeeded in 

reducing the overall energy requirements of the process maintaining high cell 

separation efficiencies and high HLR, preferrable for large-scale application (Figure 

2.1 A). Most of the innovations in flotation processes are modifications of the 

conventional DAF system replacing the energy consuming air bubble injection (e.g. 

BDAF), or preventing or lowering the use of coagulants (e.g. PosiDAF, SAF, DOC). 

This has allowed the identification of energetically and economically efficient 

solutions depending on the downstream process requirements (Figure 2.2 B). For 

instance, compared to DAF, BDAF guarantees cell integrity and reduces chemical 

biomass contamination. On the contrary, PosiDAF, SAF and DOF produce 

coagulant-free concentrated biomass, although the impact of the treatments on the 

integrity of the cell structure will depend on the specific alga species treated. 

The identification of new low-cost and equally efficient coagulants, instead, is the 

driving force for chemical flocculation/sedimentation processes, which remain the 

lowest energy demanding harvesting systems. The economy of the processes is 

strongly related to the destabilisation process adopted, making pH-induced 

sedimentation (when applicable) a cheap and valuable alternative to chemical 

sedimentation, reducing operational costs and limiting biomass contamination 

(Figure 2.1 B). However, compared to flotation technologies, sedimentation has a 

smaller HLR (Figure 2.1 A) and requires longer separation times, with the only 

exceptions being ultrasounds or electroflocculation (Table 2.8). In addition, the low 

biomass concentration of 1 - 2% TSS (wt.) in the overflow limits the feasibility of the 

process for large-scale application, especially when dry algae biomass is required. In 

this context, sedimentation finds efficient application as pre-concentration units of 

other more energy intensive systems such as DAF and centrifugation, reducing the 

overall energy demand of the process (Collet et al., 2011; Zamalloa et al., 2010; 

Sturm and Lamer, 2011; Jonker and Faaij 2013). For instance, according to the 

recent techno-economic assessment of Jonker and Faaij (2013), the adoption of a 

settling step prior to centrifugation allowed a reduction in harvesting costs of up to 

80%.  



Innovation on microalgae harvesting technologies for biofuels production: a review 

80 

Low biomass contamination and cell breakage can be achieved with optimised 

membrane filtration (MF), which allows high biomass concentration using medium 

energy demand (Figure 2.1). However, the small HLR (≤ 0.1) combined with the high 

dependence of the separation efficiency on the membrane characteristics (pore size 

and material) and the algae suspension (AOM and cells wall rigidity) limit the use of 

MF in large-scale systems. Similarly, despite the high separation efficiency, the low 

AOM dependence and the guaranteed biomass purity, centrifuges remain too energy 

demanding to meet algae biofuel production requirements (Figure 2.1 A). 
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Figure 2.1 Comparison of the harvesting technologies reviewed in this chapter based 

on (A) operational impact and (B) quality of the separated biomass against final 

biomass concentration. 

B 

A 
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Table 2.8 Summary table of the microalgae harvesting technologies reviewed in this paper. 

Chemical demanda Separation timea

(g m-3) (min)

Sedimentation

pH induced flocculation
medium                                      

(80 - 90)

negligeble/low                

(0-0.1)b

limited                             

(4-15)

vaires largely                 

(10-12h)
low salinity/low cells concentration not efficient with fresh water suspention

electrofloccualtion
medium                                      

(80 - 90)

low/medium high              

(0.15-1)c null
fast/medium fast         

(10-30)
low salinity/low cells concentration

not efficient with fresh water suspention/ 

electrodes need periodical replacemnt

bioflocculation
low                                      

(70 - 80)

negligeble/low                

(0-0.1)d null
vaires largely                 

(10-24h)
low cells concentration

the using bacteria cultures required a 

source of organic carbon

high                                       

(90 - 99)
negligebled

limited                                 

(0.1-12)

very fast/fast                      

(1-20)
low cells concentration

production and reuse of magnetic 

material/pilot demostration required
Flotation

DAF
high                                       

(90 - 99)

low/medium high            

(0.2-0.5)f

vaires largely                 

(2-200)
fast (5-20) high salinity/high AOM/cells size

operational costs are subjected to the 

price of the cuagulants

BDAF
high                                       

(90 - 99)

low                                       

(0.03-0.1)g

vaires largely                 

(2-100)
fast (~  10) high salinity

recover of micrsospheres/                               

pilot demostration required

PosiDAF/SAF
medium                                      

(80 - 90)

negligeble/low                   

(0.003)h

very limited                             

(4-15)
very fast (~ 4) cells size pilot demostration required

DOF
medium                                      

(80 - 90)

neglegible/low                                      

(0.02)i null fast (~ 11) cells resistance pilot demostration require

Electroflottation
medium                                      

(80 - 90)

low/medium high              

(0.15-1)c null fast (7-12) low salinity
not efficient with fresh water suspention/ 

electrodes need periodical replacement

Membrane filtration

Centrifugation
high                                       

(90 - 99)

medium high/ high                               

(0.8-8)k,l null/limited very fast filamentous algae
low efficiency at low energy input/ energy 

intensive

operational costs are subjected to the 

price of the cuagulants

vaires largely                 

(2-200)

Separation technology
Energy demand                                 

(kWh m-3)
Main affecting parameters Practical limitations

ultrasound 
high                                       

(90 - 99)

high salinity/high AOM/low cells 

concentration

vaires largely                 

(10-2h)

Separation efficientya 

(%)

additional costs for reducing fouling, 

cleaning and replace membranes

Magnetic separation

null/vaires largely                 

(0-100)

high AOM/filamentous algae/ high 

biomass concentration

nullvery highe

fast/very fast

low cells concentration
energy intensive/cooling system 

required/pilot demostration required

medium fast                    

(~ 30)

chemical flocculation
high                                       

(90 - 99)

negligeble/low                 

(0-0.1)b

high                                       

(90 - 99)

medium/ medium high                                    

(0.3-0.7)j

microfiltration/                                   

ultrafiltration

 
aaccording to table provided in this paper; bUduman et al., 2010; cVandamme et al., 2011; d Lee et al., 2010; eBosma et al., 2003; fMolina Grima 

et al., 2003; gJarvis et al., 2009; hWilley et al., 2009; iMetcalf and Eddy, 2003b; jBhave et al., 2012; kDassey and Theegala, 2013; lMohn, 1980; 
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Overall, the present review identified a number of feasible low-energy and low-cost 

microalgae harvesting solutions which have the potential to significantly contribute to the 

reduction of the energy and production costs of microalgal biomass, as far as the 

characteristics of the algae suspension respect the requirements of the process. 

Although some of the savings achieved by the novel systems have not yet been 

demonstrated at full-scale, their current understanding and applications are promising. 

One of the most significant findings emerging from this work is the importance of the 

specific characteristics of the algae suspension, identified as the principal factor affecting 

separation efficiency and operational performances across all technologies. This, together 

with the downstream process requirements and the physical properties (size, shape, 

density and charge) of the specific algae, is an important factor in the decision-making 

process when choosing the most suitable harvesting technology. Poor or superficial 

understanding of the characteristics of the algae suspension to harvest might result in 

unexpected failures and low cell recovery, which, in turn, will increase operational costs 

and energy demand 
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Abstract 

Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large 

scale for microalgae harvesting. Compared to conventional harvesting technologies DAF 

allows high cell recovery at lower energy demand. By replacing microbubbles with 

microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been 

reported to achieve the same algae cell removal efficiency, while saving up to 80 % of the 

energy required for the conventional DAF unit. Using three different algae cultures 

(Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work 

investigated the practical, economic and environmental advantages of the BDAF system 

compared to the DAF system. 99% cells separation was achieved with both systems, 

nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on 

the algae species and the pH conditions adopted. In terms of floc structure and strength, 

the inclusion of microspheres in the algae floc generated a looser aggregate, showing a 

more compact structure within single cell alga, than large and filamentous cells. Overall, 

BDAF appeared to be a more reliable and sustainable harvesting system than DAF, and 

was found to be less algal strain specific and more sustainable as it allowed equal cells 

recovery reducing energy inputs, coagulant demand and carbon emissions. 

 

Keywords: microalgae harvesting; dissolved air flotation; ballasted flotation; floc structure; 

carbon footprint; 
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2.2.1 Introduction 

Algae harvesting optimisation is a fundamental need for the feasibility of third generation 

biofuels (biodiesel, bioethanol, biohydrogen and biogas from microalgae) (Lee, 2011). This 

is most apparent in the cases where algae are grown in wastewater to provide a dual 

benefit of nutrient removal and biofuel generation. A reduction of the energy and costs 

associated with this process has the potential to make algae-biofuels more economically 

competitive in the market (Molina Grima et al., 2003). Furthermore, as carbon emissions 

are becoming an important factor in decision making in the water/energy sector (OFWAT, 

2010), more sustainable technologies are required to provide environmental benefits often 

measured in terms of reduced carbon footprint. 

Centrifuges, membrane filtration and flocculation-flotation units are the common harvesting 

systems applied in large scale culture (Christenson and Sims, 2011). While the energy 

demand for centrifuges or pressure and vacuum filters ranges between 1 and 8 kWh m-3 of 

treated water, flocculation-flotation configurations require lower energy inputs (0.1 and 0.5 

kWh m-3) which has seen an increase in research related to flocculation-flotation systems 

in recent years (Molina Grima et al., 2003; Rawat et al., 2013). In the Dissolved Air 

Flotation (DAF) system, micro-bubbles attached to the pre-flocculated algal biomass, float 

the algae floc to the surface allowing high cell recovery (Edzwald, 1993; Rawat et al., 

2013) (Figure 2.2 A). The efficiency of this process, as in all flocculation-flotation 

treatments, relies on floc formation which is affected by particle morphology, suspension 

characteristics and coagulant properties (Pieterse and Cloot, 1997). In particular, the 

extracellular algogenic organic matter (AOM) of the suspension plays a key role in 

coagulant demand and floc structure and strength (Henderson et al., 2010; Li et al., 2011). 

AOM is composed predominantly of carbohydrates (hydrophilic) and proteins 

(hydrophobic) and has a negative charge (≤ -15 mV) depending on the algal strain and its 

growth phase (Henderson et al., 2008a). Optimal coagulant doses allow floc formation to 

be able to resist the shear rate generated during saturated flow injection (450-600 kPa) 

and have been observed to occur at zeta potential values close to +/- 0 mV where the 

coagulant is responsible for particle charge neutralisation (Henderson et al., 2008a). 

A modified DAF system, Ballasted Dissolved Air Flotation (BDAF), has been reported to 

achieve the same removal efficiency while saving from 60% to 80% of the energy demand, 

and related CO2 emissions, compared to conventional flotation units (Jarvis et al., 2009). 

Unlike traditional ballasting techniques where high density granular additives (e.g. 
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microsand) are used to improve sedimentation efficiency (Desjardins et al., 2002), BDAF 

uses low-density microspheres to support flotation (Figure 2.2 B). Microspheres are added 

into the system during the rapid mix stage in the same way as conventional ballasting 

agents, and then incorporated into the floc matrix to drive the flotation process, replacing 

the use of microbubbles (WO/2006/008474 and US Patent 6890431). Once the algae-

bead floc has been harvested, the microspheres can be separated from the algal biomass 

and recycled into the system. The effect of low density glass microsphere addition on the 

pre-flocculation process was first investigated by Jarvis et al. (2009), who identified an 

optimal glass beads concentration close to 300 mg l-1 for harvesting an algae cells 

suspension of 106 cells ml-1. Although the author reported a floc size reduction due to the 

beads addition, the effect of the physical (cells size and shape) and chemical (soluble 

content) algae characteristics on the strength and structure of the ballasted algae floc was 

not investigated. In addition, as the beads’ presence allowed less turbulent flotation 

mechanisms (no saturated flow injection) compared to DAF, there is the potential to 

identify different optimal coagulation conditions that might generate additional advantages 

on top of the energy saving. 

The present work investigates the performance of the BDAF technology applied to three 

different algae (S. obliquus, C. vulgaris and A. maxima) compared to the conventional 

DAF. Optimal flocculation-flotation conditions were identified in terms of pH and coagulant 

dose depending on the specific cell morphology and AOM composition of each alga 

biomass. The impacts of microspheres inclusion into the algal biomass were assessed to 

compare floc characteristic between the two technologies. In addition, life cycle analysis 

(LCA) was applied to both DAF and BDAF harvesting option to investigate practical, 

economic and environmental benefits while moving from one system to the other.  
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Figure 2.2 Schematic representation of Dissolved Air Flotation (A) and Ballasted Dissolved 

Air Flotation (B) systems 
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2.2.2 Materials and Methods 

Algal harvesting batch tests were performed at the stationary growth phase (maximum 

yield) where the cell morphology is homogeneous and the AOM has the greatest effect on 

the coagulation (Appendix A). First, the algae cultures were characterised for cell 

morphology and the AOM composition. Secondly, optimal coagulation conditions were 

identified in terms of pH, coagulant dose, residual cells, turbidity and zeta potential. 

Subsequently, the characteristics of the optimal algae floc were investigated for size, 

strength and fractal dimension.  

2.2.2.1 Algal culture  

The two green algae, S. obliquus (276/42) and C. vulgaris (211/BK), and the blue-green 

alga A. maxima (1475/9) commonly known as Spirulina, were obtained from the Culture 

Collection for Algae and Protozoa (CCAP) (Oban, UK). All algae were cultivated in glass 

tanks illuminated with two fluorescent light tubes, Sun-glo 20 W and Arcadia 18 W. S. 

obliquus and C. vulgaris were grown at 18ºC in Jaworski media (50 litres) under constant 

illumination and mixed using an aquarium pump. A.maxima was grown in Zarrouk media 

(25 litres) at 28 ºC and 16/8 hours light/dark cycle, with daily mixing by hand. 

2.2.2.2 Algae suspension and AOM characterisation 

Cell counting was performed manually using a light microscope with a haemocytometer or 

a Sedge-wick Rafter as appropriate. Algogenic organic matter (AOM) was characterised 

and extracted at the stationary growth phase after centrifugation and filtration (1µm) 

according to the methods described by Henderson et al. (2008a). Samples were 

characterised for protein content, carbohydrate content and dissolved organic carbon 

(DOC). Bovine serum albumin (BSA) and glucose were used for calibration of protein and 

carbohydrate content respectively and read at 750 nm (BSA) and 480 nm (glucose) 

absorbance using a Jenway 6505 UV/Vis spectrophotometer. A Shimadzu TOC-5000A 

(Malvern, UK) was used for DOC analysis. Charge density of the algal suspension was 

measured through zeta potential analysis (Malvern Zetasizer 2000HAS, Malvern, UK) by 

the addition of an increasing dose of PolyDADMAC (Sigma Chemicals, UK) with a defined 

charge density value equal to 6.2 meq g-1 (Sharp et al., 2006). Total suspended solids 

(TSS) were measured according to standard methods (APHA).  
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2.2.2.3 Harvesting performance 

Jar test experiments were carried out using an EC Engineering DBT6 DAF jar tester 

(Alberta, CND). Separate experiments were carried out in duplicate at pH 5, 7 and 9, using 

aluminium sulphate (Al2(SO4)3) as the coagulant. The DAF and BDAF tests were 

performed according to Henderson et al. (2008b) and Jarvis et al. (2009), respectively. 

Briefly, 1 litre of algal suspension was rapidly mixed for 2 to 3 minutes at 200 rpm, while 

varying coagulant doses were added and the pH was adjusted using a 0.1 M HCl (5 M in 

the case of A. maxima) and 0.1 M NaOH solution. Slow mixing (30 rpm) was then 

maintained for 15 minutes (flocculation period). Within the DAF system, air saturated 

deionised water buffered with 0.5 mM NaHCO3 and 1.8 mM NaCl was supplied at 450 kPa 

and an equivalent recycle ratio of 10%. In the BDAF system, 300 mg l-1 of low-density 

glass beads (100 kg m-3) obtained from Trelleborg Emerson and Cuming Inc. (Mansfield, 

USA) were added to the system prior to coagulant addition. Algae flocs were then allowed 

to float for 10 minutes. Clarified samples were taken from the vessel base and 

characterised for residual cells and zeta potential as previously described. Turbidity was 

measured using a HACH 2100N Turbidimeter (Düsseldorf, DE). Residual aluminium 

concentration was measured using a Perkin Elmer AAnalyst800 atomic absorption 

spectrometer (Waltham, USA). 

2.2.2.4 Floc size and breakage 

Jar testing of both systems was completed under verified optimum conditions of pH and 

coagulant dose. To create a growth and breakage floc profile, the algal particle size 

distribution was measured every minute using a Malvern Mastersizer2000 (Malvern, UK). 

A peristaltic pump was used to maintain a constant flow of 1.5 l h-1 from the jar, through 

the laser diffraction unit and back into the jar. The suspension was rapidly mixed (200 rpm) 

for 2 minutes while the coagulant dose and pH were adjusted. Flocculation conditions 

were then maintained at 30 rpm for 15 minutes. Subsequently, the mixing speed was 

adjusted to 30 rpm, 50 rpm, 75 rpm, 100 rpm, 150 rpm and 200 rpm, equivalent to mean 

velocity gradient (G) values of 7.4 s-1, 15.9 s-1, 29.3 s-1, 45.2 s-1, 82.9 s-1, 128 s-1, as 

determined using a conversion equation provided by the Mastersizer supplier, for an 

additional 15 minutes. Fractal dimension values (Df) were obtained from a log - log plot of 

scattering intensity versus wave number considering the gradient of the straight line. Light 

energy intensity values were converted to raw scattering intensity using the software 

provided by the Mastersizer supplier. 
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2.2.2.5 Life cycle assessment 

Life cycle assessment (LCA) was carried out for hypothetical full scale DAF and BDAF 

systems having a treatment capacity (Q) of 20,000 m3 d-1, to compare the energy demand, 

carbon footprint and costs of the two systems. As the focus of this study is the comparison 

of the two harvesting options (DAF and BDAF), the up- and downstream processes are 

excluded from the analysis as they are assumed to be the same in both cases and 

therefore have no effect on a comparative analysis. Calculations were performed for (1) 

operational carbon emissions, based on the operational inputs (electricity, coagulant and 

glass beads) required to harvest the algae biomasses, and (2) embodied carbon 

emissions, based on the two major construction differences between the two systems: the 

saturator for DAF, and the hydrocyclone for BDAF. Carbon emissions are calculated in 

terms of carbon dioxide equivalent (CO2e), a measure of the total global warming potential 

of greenhouse gases, using standard carbon coefficient conversion factors (Table 2.9) and 

kgCO2e d-1 as the functional unit is kgCO2e d-1. The cost assessment was completed 

using available data on average market prices and information from personal 

communication with different suppliers. 

The saturator design was assessed according to the guidelines and parameters reported 

by Edzwald and Haarhoff (2012) for a volumetric air requirement equal to 7 ml l-1: packed 

saturator operating at 500 kPa (saturation gauge pressure), 55 l m-2 s-1 (mass hydraulic 

loading), 9.95% recycle ratio (Qr/Q), packing depth of 1400 mm and associated energy 

consumption, out of any secondary losses, equal to 0.013 kWh m-3 of raw water flow (fresh 

water). Equation 2.1 was used for the determination of the mass (M) of a cylindrical vessel 

with hemispherical ends made of stainless steel A36 

 

where r is the saturator radius, w the packing depth, P the gauge pressure, ρ the steel 

density (7800 kg m-3) and δ the steel ultimate tensile strength (400Mpa). Christy®Pak 

polypropylene pall rings (38 mm, 51 kg m-3, 140 m2 m-3) were considered as packing 

material.  

Conventional hydrocyclones operate at a pressure value between 50 and 300 kPa (Jun et 

al., 2009) and have a total mass of stainless steel or cast iron, according to available 

commercial information, between 8 and 45 kg for a design capacity between 10 and 25 m3 

(2.1) 
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h-1. For the purpose of the LCA, a 150 kPa pressure drop (high efficient sand separator), 

18 kg mass (stainless steel) and a treatment capacity equal to 0.02 Q, were assumed. 

The energy demand for pumping water into both saturator and hydrocyclone units were 

estimated in terms of water-energy according to Equation 2.2  

 

where Pw is the required daily power (kW), Q the water flow rate (m3 d-1), ρ the fluid 

density (1000 kg m-3), g gravity (9.81 m s-2), h the pressure drop (m head) and η the pump 

efficiency (70%).  

The coagulant (aluminium sulphate, Al2(SO4)3) dosage was calculated from the optimal 

doses determined in the present work. For the glass bead demand, assuming a treatment 

capacity of 850 m3 hr-1 and optimal bead concentration of 300 mg l-1, 255 kg hr-1 of beads 

were required. However, when the system is in steady state 242 kg hr-1 of beads were 

recycled inside the system (95% bead recycling efficiency), with 13 kg hr-1 of new beads 

needed as 13 kg hr-1 (1.5 g m-3) of beads remain in the harvested biomass. 

 

Table 2.9 Carbon factors  

Carbon factors Units Value References 

Stainless steel kgCO2e kg-1 3.23 

UM, 2011 
Cast irona kgCO2e kg-1 1.520a 

Polypropyleneb kgCO2e kg-1 2.334b 

Aluminium sulphatec kgCO2e kg-1 0.493c 

Glass beadsd kgCO2e kg-1 0.900d Hammond and Jones, 2011 

Electricitye kgCO2e kWh-1 0.484e DEFRA/DECC, 2013 

aThe emission factor for cast iron is for the product at the factory gate; bThe emission factor is for 

polypropylene fibres; cThe emission factor for aluminium sulphate is for the product in powder form 

at the factory gate; dThe emissions factor is for UK primary glass (cradle-to-gate). Emissions from 

beads loss were excluded from the analysis as they had no significant impact on the overall 

balance; eThe emissions factor is for UK electricity and accounts for emissions from generation as 

well as for losses in transmission and distribution. 

(2.2) 
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2.2.3 Results and Discussion 

2.2.3.1 Algal suspension characteristic 

Key differences between the three algae were observed in terms of their surface area, 

AOM concentration and composition as well as charge density (Table 2.10). To illustrate, 

the surface area of S. obliquus was approximately double that of C. vulgaris at 49.5 and 

28.3 µm2 cell-1, respectively. Compared to these two single cells algae, the filamentous A. 

maxima presented a significantly higher surface area with an average value close to 3720 

µm2 cell-1. In terms of AOM, S. obliquus and C. vulgaris showed comparable DOC 

concentrations, while A. maxima reported higher values. For instance, the carbohydrate 

content of the two green algae ranged between 4 and 5 mg l-1, as glucose, while it was 

seven to ten times higher in A. maxima (38.18 ± 2.62 mg l-1 as glucose). In contrast, the 

protein content was more consistent across the three algae, with S. obliquus at 6.31 ± 1.40 

mg l-1, C. vulgaris at 1.80 ± 0.09 mg l-1 and A. maxima at 5.24 ± 0.1 mg l-1 as BSA. At 

stationary growth phase the pH value of the algae suspensions was close to 7.5, 7.8 and 

9.7 for S. obliquus, C. vulgaris and A. maxima, respectively. The related charge density 

measurement was equal to 1 ± 0.06, 4.6 ± 0.22 and 0.15 ± 0.02 peq µm-2 for the same 

algae with zeta potential values equal to or more negative than -30 mV. As the pH value 

was adjusted to the desired condition, the zeta potential, as well as the AOM 

concentration, reported little adjustments while clear pH-dependence was observed with 

charge density measurements. Growing in salt-free media, the charge density of green 

algae increased with the pH (Wang et al., 2006), from 0.85 to 1.31 peq µm-2, and from 

2.76 to 5.52 peq µm-2, at pH 5 and pH 9, for S. obliquus and C. vulgaris, respectively. In 

contrast, A. maxima, cultivated in a strong base solution, showed higher charge density 

values at lower pH (0.28 ± 0.02 peq µm-2 at pH and 70.31 ± 0.01 peq µm-2at pH 5), 

congruent with polymeric hydrolysis reducing the charge of the functional groups (Kam 

and Gragory, 1999).  

Overall, the three algae showed clear physical and chemical differences, which, according 

to previous investigations have the potential to impact on the specific harvesting 

performance (Zhang et al. 2012; Henderson et al., 2010). To compare, in terms of 

proteins:carbohydrates ratio, our results (Table 2.10) are in the same range as those 

reported by Henderson et al., (2010) for equal or similar algae, like C. vulgaris (0.4), 

Microsystis aeruginosa (0.6), Asterionella formosa (0.2) and Melosira sp. (0.2). As 

reported by the authors, between close algae strains, a higher proteins:carbohydrates ratio 
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suggests a lower coagulant demand, having higher hydrophobicity and consequent lower 

charge density. Similarly, larger cells required higher coagulant doses as well as 

concentrated suspensions and growth media with a salinity concentration higher than 5 g l-

1 (Pieterse and Cloot, 1997; Knuckey et al., 2006). Hence, from our analysis (Table 2.10), 

A. maxima is expected to require the highest coagulant dose compared to S. obliquus and 

C. vulgaris, having the largest surface area, high charge density and high salinity growth 

media. Between the two green algae, the higher proteins:carbohydrates ratio and the 

lower charge density of S. obliquus, suggest this alga will require less coagulant than C. 

vulgaris. However, the larger surface area and the higher proteins content might have a 

detrimental effect on the flocculation process (Henderson et al., 2010) leaving C. vulgaris 

with the lowest coagulant demand. 

 

Table 2.10 Characterisation of microlgal suspention used in jar tests. Algae samples were 

taken at the stationary growth phase and diluted with deionised water, buffered with 0.5 

mM NaHCO3 and 1.8 mM NaCl, to reach the reported concentration. 

 Parameter S. obliquus C. vulgaris A. maxima 

A
lg

a
e

 s
u

s
p
e

n
s
io

n
 

Concentration (cells ml-1) 2x106 ± 1x105 2x106 ± 1x105 2x104 ± 1x103 

Particle shape spindle spherical filament 

Particle sizea (µm) 6 w; 10.5 l 4.5 Ø 4.5 Ø; 300 l 

Surface areaa ( µm2 cell-1) 49.5 28.3 3719.9 

Solids (mg TSS l-1) 174 ± 14 112 ± 14 117 ± 19 

Turbidity (NTUb) 124 ± 5 40 ± 8 105 ± 10 

pH 7.5 ± 0.2 7.8 ± 0.1 9.7 ± 0.2 

Zeta Potential (mV) -34.6 ± 6.0 -30.5 ± 1.2 -44.2 ± 7.8 

Charge density (peq cell-1) 0.050 ± 0.003 0.130 ± 0.006 0.564 ± 0.061 

A
O

M
 

DOC (mg l-1) 3.81 ± 1.81 4.77 ± 0.59 100.5 ± 0.70 

Proteins:DOC ratio 1.91 ± 0.76 0.40 ± 0.33 0.39 ± 0.04 

Carbohydrates:DOC ratio 1.69 ± 0.77 0.92 ± 0.25 0.05 ± 0.01 

Poteins:Carbohydrates ratio 1.24 ± 0.06 0.43 ± 0.16 0.13 ± 0.01 
aaverage value; bNephelometric Turbidity Unit. 
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2.2.3.2 Algal removal and coagulant demand 

High algal cell recovery (≥ 99%) was achieved using both harvesting systems. However, 

significant differences for optimal coagulant dose and zeta potential were observed in 

relation to the algal strain and the pH value used (Figure 2.3). To illustrate, within the DAF 

system (Figure 2.3 – left column), S. obliquus showed complete removal at increasing 

coagulant demand for pH 5, pH 7 and pH 9 at zeta potential values lower than 15mV, 8mV 

and -10mV, respectively. Similarly, C. vulgaris coagulant demand increased with the pH, 

but in all experiments optimal removal occurred at neutral or negative zeta potential 

values. Despite the same range of zeta potential observed with the green algae, A. 

maxima showed different behaviour. In DAF conditions, algae separation predominately 

accrued by sedimentation instead of a flotation mechanism evidenced through visual 

observation of the flocs being too heavy to be lifted by the air bubbles injected at the tests 

air to solids ratio used. Hence, after an initial flotation they started to settle, suggesting 

DAF to be inappropriate for high density flocs (Jarvis et al., 2009). At the highest pH 

condition, the zeta potential value slightly changed with increasing coagulant doses, 

remaining close to the initial value of -38 mV which is congruent with dissociation models 

for coagulants demonstrating that aluminium is in its precipitated hydroxide form at pH 9. 

At pH 7, complete clarification was obtained at -15 mV, while at pH 5 the optimal zeta 

potential value was close to 0 mV. 

Separation trials performed under a BDAF set up achieved the same cell recovery 

observed within the DAF experiment but at lower coagulant doses (Figure 2.3 – right 

column). For instance, coagulant reductions of 40%, 14% and 22% were observed in the 

case of S. obliquus when operated at pH 5, 7 and 9 respectively. In contrast, no significant 

saving was observed with C. vulgaris at pH 5, while 45% and 75% reduction was obtained 

at pH 7 and pH 9, respectively. A. maxima showed removal efficiency below 80% only at 

pH 9. At pH 7 and pH 5, complete removal was obtained at zeta potential values close to -

32 mV and -26 mV, respectively. Coagulant savings reached 95% at pH 5, while remaining 

between 25% and 30% for the other two conditions.  

Overall, DAF was effective only on S. obliquus and C. vulgaris separation, while BDAF 

enables an efficient flotation for both green algae and the filamentous cyanobacteria. Both 

systems reported poor separation (< 80%) at low coagulant doses (< optimal dose), 

however, with ballasting agents the low efficiency was more due to uncompleted algae-

beads floc formation rather than floc breakage as observed during DAF separation 

consistent with the lower levels of energy dissipation encountered in BDAF (Jarvis et al., 
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2011). In all experimental conditions, optimum cell recovery occurred at pH 5 and the 

coagulant demand increased with the pH in all algae suspensions. As organic particles, 

the optimal coagulation condition of microalgae requires a low pH level (~pH 5-6) where 

charge neutralisation mechanisms are dominant (Stumm and Morgan, 1962). Similar 

behaviour was reported in the work of Henderson et al. (2010) where harvesting C. 

vulgaris at pH 7 required four times more coagulant than at pH 5. In agreement with 

previous work, conventional flotation achieved complete algal separation as the zeta 

potential approached neutral or positive values (Henderson et al. 2008b); however, in the 

ballasted flotation experiments, the same removal occurred at more negative zeta potential 

values as a consequence of the reduced coagulant dosage. 

Aluminium sulphate was an effective coagulant and residual aluminium concentration in all 

clarified samples was always equal to or less than 1 mg l-1. In terms of optimal coagulant 

demand, the experimental results confirmed initial considerations (section 2.2.3.1) based 

on cell characteristics and AOM composition and showing values within the range of 

similar freshwater microalgae (Henderson et al., 2010; Molina Grima et al., 2003; Edzwald, 

1993). A. maxima required the highest amount of coagulant (≥ 60 mg Al l-1, at pH 5, DAF), 

followed by S. obliquus (25 mg Al l-1, at pH 5, DAF) and C. vulgaris (2 mg Al l-1, at pH 5, 

DAF). Between the two green algae, the larger surface area and the higher proteins 

contents responsible for protein complexation with aluminium, justify the higher coagulant 

dosage observed in S. obliquus compared to C. vulgaris despite the lower charge density 

(Pivokonsky et al., 2006; Henderson et al., 2010).  

According to our observations, the BDAF has the potential to generate a more 

concentrated final algae paste than DAF. After conventional flotation of S. obliquus the 

solid content of the concentrated biomass was between 1% and 2% in term of TSS 

(biomass concentrated in the top 10 ml of the 1l jar) which is within expected values 

(Rawat et al., 2013). For the same final volume, the TSS percentage obtained using BDAF 

was close to 5% due to the presence of the glass beads. Assuming an efficient post 

flotation beads separation by using a hydrocyclone with 20% (vol.) underflow (Jianghua et 

al., 2009), the estimated final TSS content would range from 5% to 10%. 
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Figure 2.3 Dose response curve and corresponding zeta potential values for S. obliquus, 

C. vulgaris and A. maxima, for DAF (right column) and BDAF (left column) system at pH 5 

(A), pH 7 (B) and pH 9 (C). 
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2.2.3.3 Floc growth and strength profiles 

Floc comparison was made based on equivalent media volumetric diameter (d50). 

Comparing the steady state floc size achieved during chemical (pre DAF) and ballasted 

flocculation, S. obliquus did not show significant differences as the d50 remained close to 

130.3 ± 11.2 µm. In contrast, C. vulgaris reported floc size reduction, from 223.6 ± 14.5 µm 

to 113.8 ± 13.2 µm, while A. maxima floc size grew from 103.3 ± 16.5 µm to 146.3 ± 14.6 

µm. Floc size reduction due to the addition of microspheres was first reported by Jarvis et 

al. (2009), who linked this to a consequent reduction of the floc strength compared to 

conventional aggregates. However, the peculiarity of A. maxima (filamentous algae) 

suggests that the physical property of the cell has a key role in the algae-bead floc 

formation/structure, as observed in conventional algal aggregation (Pieterse and Cloot, 

1997). Despite the flocculation condition investigated, S. obliquus and C. vulgaris achieved 

steady state floc size after 9 to 12 minutes, while A. maxima required less than 4 minutes 

(Appendix C). Accordingly, the C. vulgaris floc growth rate ranged between 10 µm min-1 

and 60 µm min-1 during the first 5 minutes and between 1 µm min-1 and 10 µm min-1 

afterwards until steady state was reached. No flocculation time-lag was observed in any of 

the experiments, suggesting that an optimal coagulant dose was provided (Clasen et al., 

2000). During the first 2 minutes at a high shear rate (while coagulant was added and the 

pH level adjusted), an instant floc formation was observed for S. obliquus and A. maxima. 

Subsequently, the d50 value gradually decreased to a steady state floc size.  

Using the steady state floc size as an indication of the floc strength (Jarvis et al., 2005), C. 

vulgaris formed the strongest floc, followed by S. obliquus and A. maxima in the DAF 

system. Conversely, in the ballasted system, the sequence was reversed with the 

strongest floc associated to A. maxima, followed by S. obliquus and C. vulgaris. Extending 

the analysis to the flocs behaviours when exposed to an increasing shear rate (Figure 2.4), 

the chemically induced floc of the two green algae showed a clear resistance of up to 16 G 

(50 rpm). As the shear rate increased, the degradation rates increased. The same 

correlation was observed using microspheres, but no floc breakage resistance was 

detected at low shear rates confirming a more fragile floc.  
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Figure 2.4 Log log plot of steady state floc size vs increasing shear rate plotted as G, with 

and without microspheres addition 

A more detailed analysis of the floc strength between the two systems was possible 

comparing the floc strength coefficient (log C) and the floc strength constant (ɤ), as well as 

the floc response to increased shear rate exposure. The floc strength coefficient and 

constant were extrapolated from Figure 2.4 as described by Jarvis et al. (2005). The first, 

represented by the y-axis intercept, gives an indication of the floc strength. The second, 

the gradient of the slope, reveals information on floc breakage mechanisms: floc 

fragmentation for ɤ values close to 0.5 and floc erosion for values between 1 and 2 (Li et 

al., 2006). Compared to the conventional flotation system, the addition of glass beads did 

not change the strength coefficient of S. obliquus (Table 2.11). However, it generated an 

18% reduction with C. vulgaris and 3% improvement with A. maxima. This confirmed 

previous observations based on steady state floc size, as the beads addition affects the 

most C. vulgaris’ floc strength and reinforced A. maxima. The calculated floc strength’s 

constant values indicated fragmentation as the main floc breakage mechanism in both 

systems, which is consistent with other observations on similar freshwater algae (Table 

2.11). Furthermore, exposed to an increase shear rate, the d50 showed clear reduction 

from values higher than 100 µm to lower sizes as a result of floc fragmentation (Figure 

2.5). However, as observed with similar algae (Henderson et al., 2006), the two green 

algae showed some evidence of an erosion mechanism after 15 minutes of exposure to an 

increased shear rate, with a small increment in the volume of particle sizes between 4 and 
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6 µm (Figure 2.5 A and C). Furthermore, at ballasted conditions, C. vulgaris reported a 

small increment of large particle sizes (450-650 µm) suggesting floc re-structuring during 

the breakage (Figure 2.5 D). This reinforced the possibility that high post-separation beads 

recovery can be achieved as the algae-beads floc break, enabling beads recycling and 

algae concentrations at the same time. Efficient bead separation was observed at bench 

scale at a high shear rate (200 rpm) for all three algae tested. However, the ratio between 

clearly separated and algae-linked beads was not determined.  
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Table 2.11 Comparison between floc strength constants, floc strength coefficients and floc 

size reduction of different microalgae under different flocculation conditions. 

Particles 

Experiment condition   Floc strength 

References 

Coagulant 
Dose       
(mg l-1) 

pH   log G ɤ %a 

Unballasted 
      

 

  

Scenedesmus obliquus Al 40 5 
 

2.34 0.20 38 

Current workb Chlorella vulgaris Al 10 5 
 

2.84 0.49 72 

Arthrospira maxima Al 134 5 
 

2.23 0.15 8 

Chlorella vulgaris Al - 5 
 

3.82 0.89 89 
Henderson et al., 
2006 

Microcystis aeruginosa 

Al 0.7 6 
 

2.95 0.26 70 

Gonzalez Torres and 
Henderson, 2013c 

Al 1 7 
 

3.09 0.39 78 

Fe 3 6 
 

3.39 0.39 73 

Fe 3 7 
 

3.42 0.39 63 

Al 5 6 
 

3.12 0.33 55 

Al 4 7 
 

2.95 0.21 52 

Fe 20 6 
 

2.98 0.02 9 

Fe 50 7 
 

3.10 0.13 32 

NOM Al - 5.5 
 

2.81 0.21 50 
Henderson et al., 
2006 

NOM Fe 8 4.5 
 

- - 66 Jarvis et al., 2009 

Ballasted 
        

Scenedesmus obliquus Al 30 5 
 

2.34 0.23 44 

Current workb Chlorella vulgaris Al 6 5 
 

2.37 0.33 51 

Arthrospira maxima Al 77 5 
 

2.30 0.13 22 

NOM Fe 8 4.5   - - 75 Jarvis et al., 2009 
aFloc size reduction compared to original size (steady state) after 15 minutes at shear rate of 200 

rpm; bDifferences with previously reported optimal coagulant doses are related to differences in the 

AOM composition of batches of algae used in the two experiments at different times; cGonzalez 

Torres, A., Henderson, R.K., (2013). Personal communication, University of New South Wales, 

Australia 
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Figure 2.5 Floc breakage profile for DAF (left column) and BDAF (right column) 

system, of S. obliquus (A and B), C. vulgaris (C and D) and A. maxima (E and F), 

before and after exposure to a shear rate of 200 rpm. 
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A microscopic analysis of the algae flocs confirmed that beads interact differently 

with unicellular and filamentous algae (Figure 2.6). In the first case, the algae cells 

were distributed around the bead’s surface (Figures 2.6, A2 and B2) creating a 

compact structure (Jarvis et al., 2009). In contrast, filamentous algae tend to create a 

more structured agglomeration where microspheres are in a pivoted position (Figure 

2.6, C2). These observations are confirmed by fractal dimension (Df) analysis (Figure 

2.8). When moving from the DAF to BDAF systems, the Df increases from 2.18 ± 

0.05 to 2.25 ± 0.03 and from 2.43 ± 0.02 to 2.55 ± 0.04 for S. obliquus and C. 

vulgaris, respectively, suggesting a similar compact structure. In contrast Df  

decreased from 2.45 ± 0.08 to 2.25 ± 0.04 in the case of A. maxima endorsing the 

change in structure (from a compact aggregation to a more open one). Exposed to 

increasing shear rate, S. obliquus showed Df reduction to 2 ± 0.01 and 2.04 ± 0.04 

with and without beads, respectively, from 100 rpm and afterwards (Figure 2.7). 

Similarly, the fractal dimension of A. maxima decreased with the shear rate. 

However, resistance to shear rate of or less than 100 rpm was observed only without 

the presence of beads. In contrast, despite the flocculation condition provided, C. 

vulgaris Df increased with the shear rate. Visual observations of samples exposed to 

a high shear rate (200 rpm for 15 minutes) showed an algal re-suspension 

associated with the presence of a clear glass bead layer on the surface. This 

supports the algae-bead floc breakage and suggests that the re-structuring 

mechanism observed within C. vulgaris might affect only the algae cells as 

microspheres float on the surface allowing successful beads recovery.  
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Figure 2.6 Algae floc images ESEM Fei XL30 for S. obliquus (A), C. vulgaris (B) and 

A. maxima (C) in conventional flocculation condition (1) and in ballasted condition 

(2). 
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Figure 2.7 Fractal breakage profile for DAF (light grey) and BDAF (dark grey) 

system, of S. obliquus, C. vulgaris and A. maxima exposed for 15 minutes at 

increasing shear rates 

. 

2.2.3.4 Life cycle assessment 

The results from the LCA show that, compared to the traditional DAF technology, the 

adoption of BDAF allows up to 33%, 58% and 44% carbon emission saving for S. 

obliquus, C. vulgaris and A. maxima, respectively (Table 2.12). Most of the carbon 

savings come from the lower coagulant demand associated with the system as the 

coagulant dosage was always the main contributing factor to operational carbon 

emissions (Figure 2.8). In terms of embodied carbon, the BDAF technology allows a 

saving close to 300 kg CO2e, corresponding to a 40% reduction compared to the 

DAF system. The contributions of the saturator and the hydrocyclone to the total 

embodied carbon were nearly equal. However, significant differences were observed 

between the embodied carbon of the two associated pumps. As the hydrocyclone 

works at lower pressure and treats 5 times less effluent than the saturator, the BDAF 

unit required a smaller pump which generated a 66% CO2e reduction; however, this 

saving was partially outweighed by the glass beads addition with more than 200 kg 

of CO2e (50% of the total BDAF embodied carbon).  

From the economical perspective, the high price of glass beads (£70 - 80 kg-1) 

limited the cost reduction. For instance, on a 10 year bases, the conventional life 

time of a pump (Skongaard and Nielsen, 2004), S. obliquus and A. maxima reported 

economic benefits equal to £1.2 and £18.4 million, while C. vulgaris was more 

economically harvested using the DAF unit, because of the lower coagulant demand 

required compared to the other algae. Overall, compared to the conventional DAF 

system, the BDAF technology was found to be more sustainable in terms of carbon 

footprint and to offer significant economic savings depending on the algae biomass 

used and the price of the flouting ballasting agent.  
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Table 2.12 Carbon footprint and cost analysis of the DAF and BDAF systems. 

Inputs Materials 
Carbon emissionsa    Costs 

DAF BDAF   DAF BDAF 

Embodied   kg CO2 e   £capital costs 

Saturator Stainless steelb 48 -   15000c - 

Packing material Polypropylened 119 -   800e   

Hydrocyclone Stainless steelf - 58   - 3000c 

Beads Glassg - 230   - 15300h 

Pumpi Cast iron 623 208   7500 1500 

Subtotal   790 496   23300 19800 

Saving     295     3500 

Operational    kg CO2e d-1   £ d-1 

Energyj Electricity 317 12   92 3 

Coagulant (S. obliquus) 

Aluminium 
sulphatek 

2485 1864   4032 3024 

Coagulant (C. vulgaris) 621 373 

 

1008 605 

Coagulant (A. maxima) 8324 4783   13507 7762 

Beads Glassg - 12   - 780h 

Saving (10 year life time)   t CO2e   millions £ 

S. obliquus     3340     1.2 

C. vulgaris   

 

1979 

  

-1.1 

A. maxima     13996     18.4 
acalculated applying the carbon factors reported in table 1; b15 kg of stainless steel 

calculated from equation 1; caverage market price for full operating unit (online search); d51 

kg polypropylene according to the information provided by Christy®Catalytics for Christy Pak 

1 Polypropylene Pall Rings; epersonal communication from supplier Christy®Catalytics; f18 

kg as reported in the material and methods (section 2.2.2.5); gcalculations based on the 

information reported in the material and method (section 2.2.2.5); hpersonal communication 

from supplier Trelleborg Offshore, Boston; icarbon emissions based on 410 kg and 137 kg of 

cast iron DAF and BDAF respectively according to commercial information provided by 

Grundfos CAPS (costs were also provided); jelectricity costs of £0.14 kWh-1 (average UK 

value); kcarbon emissions based on data reported in table 3, while costs are based on 

average market prices (Granados et al., 2012). 
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Figure 2.8 Operational carbon footprint comparisons between DAF and BDAF for the 

three algae S. obliquus, C. vulgaris and A. maxima. 
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2.2.4 Conclusions 

Ballasted Dissolved Air Flotation (BDAF) was demonstrated to be a more feasible 

and sustainable microalgae harvesting option compared to the conventional flotation 

technology. The adoption of floating microspheres as ballasting agents (1) allowed 

significant coagulant saving, (2) showed a more reliable technology benefitting from 

a reduced level of energy dissipation within the flotation chamber, and (3) lowered 

the overall carbon emissions and (4) the process costs. The comparison between 

the conventional and the ballasted floc structure and strength revealed that the 

algae-beads aggregation was more affected by the cell’s morphology than the AOM. 

Single cell algae formed compact and strong algae-bead flocs, while filamentous 

species resulted in a more expanded and inferior structure. However, the AOM 

composition was confirmed to be a key parameter for the determination of optimal 

flocculation conditions, as it affected the coagulant demand in both DAF and BDAF 

technologies. Further research focused on the microspheres recovery process is 

required to optimise hydrocyclone configuration in order to guarantee beads 

recovery and energy/costs savings. 
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3 ANAEROBIC DIGESTION OF MICROALGAE 

3.1 Adapting anaerobic digestion bacteria to algal biomass 

Francesco Ometto, Robert M. W. Ferguson, Rachel Whitton, Frédéric Coulon, Bruce 

Jefferson and Raffaella Villa. 

Cranfield University, Bedfordshire (UK) 

 

Abstract 

The adaptation of a microbial community of an anaerobic digestion (AD) to a resilient 

substrate, such as microalgae biomass, has the potential to improve the digestion 

efficiencies and hence the process energy balance. Previous works in the 50s 

showed limited benefits in microalgal digestion due to the presence of a high quantity 

of residual undigested cells in the sludge, reflecting the resistance to bacteria 

degradation of this biomass. However, the knowledge at the time did not allow for a 

detailed characterisation of the bacterial community and the impact of this feedstock 

on the process. In this work, the microbial community of an AD reactor was adapted 

over time to digest single-strain microalgae grown on synthetic media and mixed-

strain algae biomass from a wastewater treatment plant. The adapted community 

showed the ability to process the algal feedstock efficiently without any change in 

reactor performance. Phospholipids fatty acid (PLFA) and 454-Pyrosequencing 

analysis revealed a significant structural change in the adapted systems when 

compared to the original bacterial community.  

These results demonstrated the ability of a conventional AD bacteria population to 

adapt to algal biomass digestion, resulting in a more specialised bacterial community 

which has the potential to generate a more efficient process. However, this does not 

necessary imply higher biogas productions, which are linked to the specific chemical 

characteristics of the algal biomass (e.g to their biomethane potential).  

 

 

Keywords: cell wall breakage, thermal hydrolysis, ultrasounds, enzymes, energy 

balance. 



 

 

3.1.1 Introduction 

Interest in the use of microalgae as a feedstock for anaerobic digestion (AD) arises 

from the potential high energy content enclosed in their biomass and the associated 

potential in reducing greenhouse gas emissions (Schenk et al., 2008). The 

theoretical methane yield of different algae species ranges from 450 to 800 ml g VS-1 

(Heaven et al., 2011), 1-2 times higher than other fermentable biomass feedstock 

(Nallathambi et al., 1997). However, all the digestion work published in the literature 

reports values of methane yield from 30 to 70% lower than their potential theoretical 

value (Table 3.1). Detailed investigations on the microalgae cell composition 

revealed the presence of cell-specific biopolymers in the wall (sporopollenin and 

algaenan). These biopolymers create thick layers with cellulose and hemicellulose 

making microalgae cells resistant to bacterial degradation (Abo-Shady et al., 1993) 

and hence reduce fermentation yields. Thus far, research has mainly focused on the 

optimisation of microalgae pre-treatments to improve cell wall degradation and 

solubilisation (Alzate et al., 2012; González-Fernández et al., 2012). However, the 

energy and additional costs required by these pre-treatments are only balanced by 

the profits created by the final product of the process, and this is not often the case 

for AD and the additional methane yields (Passos et al., 2013).  

A potential alternative to the pre-treatment processes is the adaptation of the 

bacterial population to the microalgae feedstock (Golueke et al., 1957; Supaphol et 

al., 2011). When digesting or co-digesting specific biomass, the characteristic of the 

microbial community plays an important role on the overall digestion performance, 

and it is considered to be one of the factors responsible for low biogas yields 

(Demirel and Scherer, 2008; Supaphol et al., 2011). A similar approach is very often 

used for feedstock containing recalcitrant substrates. 

In their first investigation on algal biomass digestion, Golueke et al. (1957) reported 

to have adapted a microbial population to digest 100% algae feedstock (composed 

of Scenedesmus sp. and Chlorella sp.) by gradually increasing the percentage of 

algal material in the feed over time. Pure algal biomass produced between 200 and 

300 ml gVS-1 as methane after 30 days at 35ºC, comparable to other recently 

reported values (Table 3.1). The microscopic analysis of the digested material 

revealed a large proportion of intact algae cells; for that reason, the authors 

concluded that conventional mesophilic digestion conditions were not able to 
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maximise algal biomass digestion. To our knowledge, no other specific attempts 

have been made to adapt the AD microbial community to efficiently digest 

microalgae. Despite the contribution of the original investigation (Golueke et al., 

1957), the scientific and technological knowledge of the time did not allow a detailed 

investigation of the microbial population to ascertain if the limited digestion process 

was related to the specific microbial activity, the surrounding inhibiting conditions or 

solely to the algal biomass characteristics. This understanding has particular 

relevance when waste algal biomass from a eutrophic environment is used as 

additional feedstock for existing AD plants (Allen et al., 2013), which can accept the 

additional organic loading if the performance of the reactor can be maintained. 

The current work aims to address this knowledge gap by adapting a select microbial 

community able to degrade microalgal biomass in a mesophilic environment and to 

examine the changes in the community structure caused by this adaptation. The 

microbial community structure was determined using phospholipids fatty acid (PLFA) 

and 454-pyrosequencing analysis before, during and after the course of the 

experiment to follow microbial temporal changes and to determine adaptation and 

digestion efficiency improvement. Semi-continuous sludge digesters were fed with a 

gradual increase of algae biomass to reach a final ratio between primary sludge (PS) 

and algae of 20:80, from an initial condition of 100% PS. Two different algae 

biomass were used: (1) cultivated microalgae from culture collection and (2) natural 

wastewater alga biomass recovered from the University wastewater treatment plant. 

Adapted and non-adapted communities were then characterised and used as 

inoculum for a BMP analysis of three different algae biomass to assess their 

bacterial activity. 
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Table 3.1 Microalgae methane yield comparison between theoretical and 

experimental data. 

Theoretical

ml CH4 gVS-1 ml CH4 gVS-1
%b

Chlorella vulgaris 544-569 350-372 61-68
Frigon et al., 2013;                       

Ras et al., 2011

Chlorella sorokiniana - 279-287 - Frigon et al., 2013

Chlorella sp. - 290-328 -
Frigon et al., 2013; 

Zamalloa et al., 2012

Scenedesmus obliquus 531-536 279-287 68-70
Frigon et al., 2013; 

Zamalloa et al., 2012

Arthrospira maxima 483-484 250-340 52-70
Samson and LeDuy, 

1982

Arthrospira platensis 481-500 285-301 - Mussgnug et al., 2010

Dunaliella salina 471 307-339 57-62 Mussgnug et al., 2010

Chlamydomonas reinhardtii 579 382-392 65-67 Mussgnug et al., 2010

Euglena Gracilis 555-558 299-303 53-54 Mussgnug et al., 2010

Botryococcus braunii - 320-366 - Frigon et al., 2013

Nannochloropsis gaditana - 224-232 - Frigon et al., 2013

Scenedesmus sp., Chlorella  sp. - 230-260 40-48 Golueke et al., 1957

Scenedesmus  sp., Chlorella  sp. - 143 25-29 Yen and Bume, 2007

Chlamydomonas sp.,  Nitzschia , 

Chlorella sp., Scenedesmus  sp.
- 156 27-29 Passos et al, 2013

Chlamydomonas  sp. , 

Scenedesmus  sp., unkown
- 387-407 66-77 Alzate et al.,  2012

Algae References

Experimental

 
aHeaven et al., 2010; bpercentage production compared to theoretical values; 
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3.1.2 Material and methods 

3.1.2.1 Algae biomass 

The green algae Scenedesmus obliquus (276/42) and Chlorella sorokiniana 

(211/8K), and the cyanobacteria Arthrospira maxima (1475/9) were obtained from 

the Culture Collection for Algae and Protozoa (CCAP), (Oban, UK). S. obliquus and 

C. sorokiniana were cultivated in 50 L of Jaworski media under constant illumination 

and mixing at 20ºC, while the A. maxima was cultivated in 25 L of Zarrouk media at 

26ºC, under a 16/8 light/dark cycle and daily manual mixing (Ometto et al., 2014). 

Culture collection algae (CCA) were harvested in their stationary growth phase (15-

20 days) using a laboratory centrifuge to reach a volatile solid content of 15 ± 2 g l-1 

(Appendix A). The wastewater algal biomass (WWA) was obtained from Cranfield 

University wastewater treatment plant (WWTP) during a seasonal algae bloom on 

the secondary sedimentation tank. It was characterised by a mixture of non-identified 

single cells and filamentous microalgae species, and by the presence of the 

macrophyta Lemna sp.. The biomass was collected using a sieve, homogenised with 

a blender and diluted with onsite effluent water to a final volitele solid (VS) 

concentration of 24 ± 2 g l-1. All biomass was maintained at 4ºC until utilisation.  

3.1.2.2 Adaptation procedure 

Digested wastewater sludge (28 ± 2 gVS l-1) obtained from a local treatment work 

was used as the starting inoculum to digest two different substrates: a mixture of 

culture collection algae (70% S. obliquus and 30% C. sorokiniana) having a VS 

concentration equal to 15 ± 2 g l-1 and the wastewater algae described in section 

3.1.2.1. PS, obtained from a local WWTP, with a VS concentration of 30 ± 2 g l-1 was 

used as a substrate in the control reactors. To limit the introduction of new bacteria 

into the system, PS was autoclaved (30 min at 121 ºC) before utilisation. The 

experiment was performed in triplicate using 2 L glass bottles placed in a water bath 

at 38ºC and equipped with the appropriate apparatus for gas collection and feed 

injection/sampling inlet (Figure 3.1). The digesters were set up and operated as 

follows: At zero time, each digester was filled with 300 ml of inoculum and 1500 ml of 

PS. Every two days, 200 ml of sample was removed from each digester and 

replaced with 200 ml of fresh substrate, with a loading rate of between 2 and 3 

gVSadd d-1 depending on the substrate characteristics. For the first 11 days (1.2 
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hydraulic retention time), all bottles were fed with PS to allow optimal digestion 

conditions. After that, PS was used as feed in the control, while the CCA and WWA 

digestors were fed with the following mixture of PS and CA or WWA: 80% PS and 

20% algae in volume (80/20), between day 12 and day 28, 50/50 from day 30 to day 

48 and 20/80 from day 50. Biogas measurements were converted to standard 

temperature and pressure (STP), and the methane content was detected using a 

Servomex 1440 gas analyser (Crowborough, UK). Solid content, pH, Alkalinity, COD 

and sCOD were measured according to standard methods (APHA). Digestate 

composition in terms of total carbon and nitrogen (TCN) was determined according 

to standard method ISO 10694:1995 using a TCN Vario III Elementar Analyser 

(Isoprime, DE) on freeze-dried samples. Statistical analysis (ANOVA) of biogas 

production was carried out in http://www.r-project.org/, with significance accepted  at 

a p value equal to 0.05. 

Acidified water bathWater bath at 38°C

Gas 

collection 

column

Sample 

bottle

Gas sampling point
Feeding

 inlet/outlet

Air pump 

connection

 

Figure 3.1 Anaerobic digestion semi-continuous reactor. 

3.1.2.3 Volatile Fatty Acids (VFA)  

Digestate (40 ml) was centrifuged at 5000 g for 5 min and the supernatant was 

syringe filtered at 0.45 μm (Millipore, DE). 5 μl of 97% sulphuric acid was added to 

the sample to prevent acid degradation and stored at – 20ºC until analysis. VFA 

analysis was performed on 100 μl samples using a HPLC (535 Kontron, Bio-TEK, 

UK) equipped with UV detector (210 nm) and a Bio-Rad fermentation column (Cat 

125-0115, 300 x 7.8 mm) maintained at 65ºC. The mobile phase was 0.001 M 

http://www.r-project.org/
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sulphuric acid in HPLC grade water with a flow rate of 0.8 ml min-1. Acetic, propionic, 

n-butyric, and iso-butyric acids were quantified using an external multilevel 

calibration ranging from 0.1 g l-1 to 5 g l-1. The error in the repeatability of 

measurements for each acid was 0.6%, 0.77%, 0.72%, and 1.13%, respectively. 

3.1.2.4 Phospholipids Fatty Acids (PLFAs) 

Total lipids were extracted from 40 g aliquot of freeze-dried digestate using a 

modified version of the Bligh-Dyer technique as described by Frostegård et al. 

(2011). Briefly, dried fatty acid methyl esters (FAMEs) were resuspended in 0.2 ml of 

Hexane (Sigma, UK) and analysed by gas chromatography equipped with a flame 

ionisation detector (GC-FID Agilent Technologies 6890N) (Pankhurst et al., 2012). 

FAMEs were identified by comparison of retention times with the 26 bacterial acid 

methyl ester (BAME) standards (SUPELCO, Sigma, UK). 24.44 µg ml-1 of 

Nonadecanoic acid methyl ester (Sigma, UK), used as an internal standard, was 

added to each sample after the solid phase extraction. The taxonomic affiliations 

were undertaken in accordance with the data reported by Londry et al. (2004) and 

Ferguson (2013). Gram-positive bacteria were represented by the series of iso and 

anteiso branch saturated PLFA. Gram-negative bacteria were represented by 

cyclopropane, hydroxyl and monounsaturated PLFA. The 16:0 straight chain PLFA 

was previously identified as an ubiquitous bacterial marker (Piotrowska-Seget and 

Mrozik, 2003). The PLFA 18:2w9cis and 18:1w7trans were used as markers for 

Clostridia. Bacterial biomass was converted into a number of cell equivalents using a 

conversion factor of 5.9 x 1010 cells per µmol of PLFA (Kieft et al., 1994). 

3.1.2.5 454-Pyrosequencing analysis and bioinformatics  

DNA was extracted from 200 mg of the sample using a MoBio Power Soil kit (MO 

BIO Laboratories, Inc, UK). The quality of the extracted DNA was assessed on 0.8% 

agarose gels. Phusion high fidelity polymerase (Biolabs, New England, UK) was 

used for the amplification of different 16S rRNA gene fragments as described in 

Ferguson, 2013. The sequence data was processed using the CloVR-16S 1.0 

pipeline (http://clovr.org/) following the method described by White et al. (2011). 

Briefly, the Qiime script “plit_libraries.py” (http://qiime.org) and the Mothur script 

“unique.seqs” were used to remove poor quality sequences and to cluster unique 

sequences, respectively. Putative chimeras were identified against the “16S rRNA 

http://qiime.org/
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gold database” from isolated representative sequences, using default parameters 

and were excluded from further analysis. Following a preliminary sequence grouping, 

classification and allignament using the Qiime workflow 

“pick_otus_throigh_otu_table.py”, the sequences were clustered into operational 

taxonomic units (OTUs) with a 97% nucleotide sequence identity threshold for all 

readings, using the Qiime script “pick_otus.py”. The representative sequences of 

each cluster were then classified at Phylum, Class, Order, and Family (0.5 

confidence threshold) using the Ribosomal Database Project Bayesian classifier 

(http://rdp.cme.msu.edu/) with the script “assign_taxonomy.py”. The results are 

presented as the number of sequences assigned to OTUs identified at the respective 

taxonomic levels. Weighted Unifrac was carried out with Qiime and was clustered 

using the function “hclust” in r (http://www.R-project.org/). 

3.1.2.6 Biochemical Methane Potential (BMP) 

Anaerobic digestion batch experiments were performed according to the method 

described by Angelidaki et al. (2009). The three adapted digestates (PS, FWA and 

WWA) collected at day 65 from the 2 l digestors were used as inoculum, while 

concentrated S. obliquus was used as substrate. 100 ml serum bottles were filled 

with 40 ml of inoculum/substrate (VSinoculum:VSsubstrate ratio equal to 2) and 20 ml of 

nutrient solution (Appendix B). The pH was adjusted to 7 ± 0.2 using 1 M NaOH and 

1M HCl solution. Samples were flushed with N2 gas, sealed with a PTFE crimp cap, 

and placed at 38ºC under constant agitation (150 rpm). Biogas production was 

determined at days 2, 5, 8, 12, 16 and 21. Measured data was converted to STP and 

corrected by subtracting the average blank control’s (inoculum + nutrients) biogas 

volumes from each test digester’s biogas volume. All experiments were performed in 

triplicate.  

http://rdp.cme.msu.edu/
http://www.r-project.org/
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3.1.3 Results 

3.1.3.1 Adaptation experiment: digestion performances 

Despite the different yields observed for the three systems, the trends in biogas 

production were similar in all the reactors, showing stable production from day 18 (2 

HRT) (Figure 3.2 A). The control (100% PS) yielded between 200 and 288 ml 

kgVSadd
-1 as biogas, at 80% methane. Similar values were observed in the WWA 

reactors, where the increasing amount of waste algae biomass in the feedstock did 

not affect the digestion performances. On the contrary, compared to the control, the 

addition of CCA caused a 30% decrease in the biogas production showing between 

130 and 150 ml kgVSadd
-1 (60 – 70% methane). Statistical analysis confirmed the 

similarities between the control and WWA reactors (p > 0.05), and the significant 

differences of those compared to CCA (p < 0.05). 

The VS content decreased in all the reactors from an initial concentration of 30 g l-1 

to 12 g l-1 from day 29 (Figure 3.2 C), showing a higher VS reduction in the control 

(62 ± 1%) compared to the CCA (53 ± 5%) and WWA (41 ± 5%). This is in 

agreement with the observations of Golueke et al. (1957) and our microscopic 

analysis of the samples, which identified the presence of intact post-digestion algae 

cells, suggesting limited digestion (Figure 3.3). The pH values (Figure 3.2 D) 

remained constant in all reactors  for the entire duration of the experiment (pH 7.5 ± 

0.3). Conversely, from an initial value close to 3700 mg CaCO3 l-1 at day 18, the 

alkalinity decreased until day 65 by 18%, 28% and 46% for the control, WWA and 

CCA sample, respectively (Figure 3.2 D). 

Although the specific chemical composition of the three different substrates was 

unknown, the similarities between PS and WWA suggested a more similar biomass 

composition compared to the CCA. According to the calculation of Heaven et al. 

(2011), the theoretical methane production of S. obliquus and Chlorella sp. ranges 

between 450 and 530 ml kgVSadd
-1, a lower value to the one accepted for 

conventional PS, e.g. 500 – 700 ml kgVSadd
-1 (Metcalf and Eddy, 2003). Therefore, a 

lower yield in the CCA sample was to be expected in processing a feedstock with a 

lower energetic content compared to the control. However, while this can explain the 

digestion performance at the end of the experiment when 80% of the substrate is 

made of algae, the low production between day 18 and day 31 is more likely to 

reflect some inhibiting factors affecting the overall digestion performance as the 
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amount of algae biomass introduced in the system is marginal (20%) compared to 

PS. 
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Figure 3.2 Adaptation experiment results: (A) biogas production, (B) methane 

content, (C) volatile solid concentration and (D) pH and alkalinity over time. 
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Figure 3.3 Residual post digestion algae cells (Light microscope x20). 

 

3.1.3.2 Changes in the microbial community 

PLFA analysis was used to quantify changes in the bacterial community. The 

increasing amount of algal biomass addition in the digesters significantly affected the 

original bacteria community (wastewater sludge). The initial addition of algae to the 

feed caused a significant decrease in bacterial biomass, calculated from PLFA 

analysis, in both CCA and WWA samples reporting biomass values an order of 

magnitude lower than the control (Figure 3.4). Further increases in the proportion of 

algae in the feed to 50/50 on day 30 resulted in further decreases in bacterial 

biomass only when digesting WWA. However, at day 56, the bacterial biomass 

returned to the intial value of 3 108 cells kgVS-1. This suggests that, although the 

biomass was partially able to recover and sustain the same level of biogas 

production as the control, a change in community had occurred (Schwarzenauer and 

Illmer, 2012).  
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Figure 3.4 Available microbial biomass into the system. Average value on triplicate 

sample, error bars denote standard deviation.  

The dominant PLFAs in the control were 14:0, 15:0i, 15:0ai, 16:1w7c, 16:0, 18:1w9c, 

18:1w9t and 18:0. This indicates that the bacterial community was dominated by low 

GC G+, Clostridium, Bacillus and Actinobacteria (Figure 3.5). These PLFAs 

remained stable in the control for the duration of the trial. The addition of algae to the 

feed produced an increase in the 18:1w9trans PLFA of between 20% and 120% on 

day 21; this was accompanied by a corresponding decline in the PLFA 18:1w9cis. 

This caused a change in the cis-trans ratio which is a known response to starvation 

stress in PLFA fingerprints. This indicates that the VS introduced by PS/Algae 

mixture was not fully available to the bacterial community, resulting in starvation and 

the decrease in biomass reported in Figure 3.4 (Frostegård et al., 2011). 

There were changes in the structure of the bacterial lipid fingerprint also with 16:0, 

15:0i, 15:0ai, and16:1w7c and 18:0 PLFA not present on day 21 in both CCA and 

WWA and reappearing on day 56 in the CCA samples only. All of these PLFA are 

markers for low GC G+, Clostridium, Bacillus and Actinobacteria. This indicates 

either a shift in the community structure within these groups and/or change in 

function of the bacterial community. By day 56, the 18:1w9cis PLFA reappeared with 

a increment of 18% compared to the control, indicating that the community was no 

longer starved and it had adapted to digesting the algal feed. While in the CCA 

samples, the specific PLFAs reappearing indicates a temporary change/stress in the 
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bacteria community being able to recover and return to similar initial condition, their 

complete disappearance in the WWA suggests a significant change of the bacteria 

population.  
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Figure 3.5 Mol % of dominant PLFA (> 5%). Dots highlight the PLFA available in the 

control experiment (A) that disappear at day 21 when digesting CCA (B) and WWA 

(C) to reappeared or not at day 56. 
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3.1.3.3 454-Pyrosequencing analysis.  

454-Pyrosequencing was carried out to determine the detailed structure of the 

bacterial communities after the adaptation period on day 65. 2347 sequences were 

retrieved from the three samples; > 98% of the sequences were of the target length 

of between 350 and 450 base pairs, indicating the recovery of good quality 

sequences. 

The WWA had double the number of operational taxonomic units (OTUs) compared 

to the control; 195 vs 77 (Table 3.2). Both algal treatments showed higher diversity 

(Shannon index H' = -∑s
(i=1) pi log(pi)) compared to the control starting point. 

However, the evenness of the diversity (Pielou's evenness J' = H'/H'max where 

H'max=log(S)) was lower for both algae treatments (Table 3.2). Lower evenness is a 

sign of higher specialisation of the adapted bacterial communities as a result of the 

bacterial selection process. This has implications for AD operators as bacterial 

communities with lower evenness are known to be less resilient to stress and these 

digesters may, therefore, be more prone to poor performance when process 

conditions change, such as feedstock composition and concentration (Wittebolle et 

al., 2009; Werner et al., 2012) 

Table 3.2 Structure comparison between adapted bacterial communities. 

Treatment Control (PS) CCA WWA 

OTUs 77 103 195 

Diversity (H’) 3.12 3.76 4.02 

Evenness (J) 0.72 0.68 0.59 

 

UNIFRAC analysis showed that all three treatments had distinct microbial 

communities with very little similarity between treatments. Although the algal 

treatments were marginally more similar to each other than to the control, they were 

still > 35% dissimilar, showing that the different algal feedstock had different effects 

on the bacteria. The structures of the bacterial communities are displayed in Figure 

3.6. The control treatment had > 25% unknown bacterial OTUs and was dominated 

by Clostridia, Bacteroidetes, and Proteobacteria which is consistent with other 
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studies of bacterial communities in AD (Schlüter et al., 2008; Kröber et al., 2009; Lee 

et al., 2012; Werner et al., 2012; Ferguson, 2013).  

The digestion of CCA resulted in high numbers of OTUs related to candidate phylum 

OP10, recently classified as Armatimonadetes. The dominant Clostridia orders were 

also different to the control with dominance of Thermoanaerobacteriles and 

Erysipelotrichales (in contrast to Clostridiales). An increase in OP10 was not 

replicated with the WWA treatment, however, the previously undetected order, 

Thermotogae made up > 20% of OTUs. There were also OTUs of photosynthetic 

bacteria from the Phylum Cyanobacteria. The light available to the microbial 

population in the reactor is limited, therefore it is very likely that these bacteria were 

present in the algae feed. This suggests that some of the bacterial diversity observed 

in the WWA sample came from the algal feed which added a heterogeneous mixture 

of algae species and aquatic species into the digester capable of surving in 

anaerobic conditions. This explains the higher number (double) of OTUs detected in 

this sample in comparison with the control and CCA treatment, where this effect was 

minimised by the single algal culture used. The presence of these OTUs from the 

algal cultivation stage may have been significant in the improved performance in 

comparison to the CCA treatment, as these OTUs will have originated from an 

ecosystem where algae was the main carbon source.  
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Figure 3.6 Proportion of OTUs determined by 454-pyrosequencing in the Control. 

Rings show Phylum, Class and Order from inner to outer ring. 

 

 

Control 
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Figure 3.7 Proportion of OTUs determined by 454-pyrosequencing, in the culture 

collection algae (CCA) and wastewater algae (WWA). Rings show Phylum, Class 

and Order from inner to outer ring. 

CCA 

WWA 
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3.1.3.4 Adapted digestate characterisation 

To evaluate the quality of the adapted seeds and their ability to digest specific algae 

biomass, at day 65 all three digestates were characterised in terms of pH, alkalinity, 

VFA and C:N ratio, and used as inoculum for the BMP test of three different 

microalgae: S. obliquus, C. sorokiniana and A. maxima. For all considered 

parameters, the control (digested PS) and the WWA digestate showed small 

differences reflecting the similar performances observed during the adaptation 

experiment (Figure 3.2). Conversely, CCA showed lower alkalinity, C:N ratio and 

total VFA concentration. However, despite the differences between the three 

samples, all parameters compared well to conventional sets of data for optimal AD 

with the only exception being the C:N ratio (Table 3.3). While, theoretically, the 

optimal C:N ratio for AD ranges between 20:1 and 30:1 (Parkin and Owen, 1986), 

sewage sludge is efficiently digested at a C:N ratio lower than 16:1 (Stroot et al., 

2001). Using algae biomass, Ehimen et al. (2010) reported an optimal digestion of 

residual Chlorella biomass (2% VS) preliminary processed for lipid extraction, 

applying a C:N ratio from 10 to 15. A different study showed high methane yields 

(0.57 m3 l-1 d-1) from a mixture of Scenedesmus sp. and Chlorella sp. having a C:N 

ratio of 6.7 and a VFAs content close to 5000 mg l-1 (Yen and Brune, 2007).  

Table 3.3 Characterisation of digestate 

Digestate pH 
Alcalinity         
mg CaCO3 l

-1 
Total VFA               
mg l-1 

C:N 

Control 7.8 3040 ± 200 1.58 ± 0.30 7.36 ± 0.02 

CCA 7.4 1884 ± 107 0.87 ± 0.34 5.74 ± 0.08 

WWA 7.7 2595 ± 274 1.29 ± 0.36 7.92 ± 0.03 

 

The BMP of S. obliquus using the three different inoculum showed similar (p > 0.05) 

cumulative methane production, equal to 236 ± 23 ml gVSadd
-1 and comparable with 

those obtained in similar batch digestion conditions reported in Table 3.1 (Table 3.4). 

Similar behaviour was observed digesting A. maxima, while the three inoculums 

performed differently with C. sorokiniana (p < 0.05), with the PS-seed yielding 20% 

and 35% more than the CCA-adapted and the WWA-adapted, respectively. 
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However, taking into account the different amounts of biomass available in the 

different systems, estimated from the PLFAs analysis, the bacterial activity in the 

three substrates was between 4 to 14 times higher when using algae-adapted 

communities than the PS-adapted (Table 3.4). This suggests that even if the 

increment in the cumulative biogas production per kg VS added was undetectable, 

the algae-adapted bacteria were more active on digesting algae than the non-

adapted.  Indeed, a lower amount of adapted organisms produced as much biogas 

as the higher quantity of non-adapted bacteria. The small scale of the test did not 

allow the determination of the VS reduction; however, this is likely to be similar 

between the three different communities. 

Table 3.4 BMP analysis bacterial activity estimation 

Algae Inoculum 
Kd                              
(d-1) 

Biogas             
(ml gVS -1) 

Methane            
(ml gVS -1) 

Bacteria activity*                            
(mlCH4 nmolPLFA-1) 

S. obliquus 

WWS seed 0.25 534 ± 9 258 ± 27 0.06 

CCA seed 0.20 508 ± 52 226 ± 17 0.23 

WWA seed 0.16 457 ± 42 244 ± 14 0.30 

C. sorokiniana 

WWS seed 0.13 420 ± 41 191 ± 8 0.04 

CCA seed 0.12 354 ± 16 154 ± 11 0.17 

WWA seed 0.11 252 ±28 123 ± 21 0.15 

A. maxima 

WWS seed 0.14 310 ± 31 123± 17 0.03 

CCA seed 0.10 317 ± 13 120 ± 9 0.13 

WWA seed 0.16 305 ± 18 119 ± 16 0.15 

*methane production per unit of bacterial biomass. 
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3.1.4 Conclusion 

The present study, designed to determine the capability of a conventional anaerobic 

microbial community to digest algal biomass, demonstrated that: 

 the inclusion of algal biomass into the feed of a conventional AD process 

caused a shock to the endogenous bacterial community and a negative impact 

on the digester yields;  

 the impact of the algal biomass on the digester yields will depend on the algae 

methane content in comparison to the original feed and it will be greater when 

this difference is high; 

 acclimation with algae biomass caused a structural change in the original AD 

bacterial community, not only a metabolic adaptation of the endogenous 

microorganisms; 

 compared to a conventional bacterial community, the adapted microorganisms 

were more efficient at digesting algae showing higher yields per unit of 

bacterial biomass;  

These results demonstrated the ability of a conventional AD bacteria population to 

adapt to algal biomass digestion, resulting in a more specialised bacterial community 

which has the potential to generate a more efficient process. However this does not 

necessarily imply higher biogas productions, which are linked to the specific 

chemical characteristics of the algal biomass (e.g to the biomethane potential).  

This confirmed (1) the limited digestibility of raw algae biomass and (2) the need for 

preliminary treatment of the algae cells to allow higher yields. 

An implication of this work relates to the use of seasonal waste algae biomass from 

natural environment as a valuable feedstock for existing AD plants. Adapted 

digesters, processing constantly small amounts of algae, have the potential to accept 

higher seasonal loading without causing detrimental effects on the overall 

performances of the reactor.  



Adapting anaerobic digestion bacteria to algal biomass 

149 

3.1.5 Acknowledgments 

The authors would like to thank the EU Framework 7 project Advanced Technologies 

for Water Resources and Management (ATWARM - Marie Curie Initial Training 

Network, No. 238273) as well as the Engineering and Physical Sciences Research 

Council (EPSRC), Anglian Water, Severn Trent Water and Scottish Water for their 

financial and intellectual support.  

3.1.6 References 

Abo-Shady. A.M., Mohamed, Y.A., Lasheen, T., 1993. Chemical composition of the 

cell wall in some green algae species. Biol. Plantarum. 35, 629-632.  

Allen, E., Browne, J., Hynes, S., Murphy, J.D., 2013. The potential of algae blooms 

to produce renewable gaseous fuel. Waste Manage. 33(11), 2425-2433. 

Alzate, M.E., Munoz, R., Rogalla, F., Fdz-Polanco, F., Pérez-Elvira S.I., 2012. 

Biochemical methane potential of microalgae: influence of substrate to 

inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 

123, 488-494. 

Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., 

Kalyuzhnyi, S., Jenicek, P., van Lier J.B., 2009. Defining the biomethane 

potential (BMP) of solid organic waste and energy crops: a proposed protocol 

for batch assays. Water Sci. Technol. 59, 927-934. 

Demirel B, Scherer, P., 2008. The roles of acetotrophic and hydrogenotrophic 

methanogens during anaerobic conversion of biomass to methane: a review. 

Rev. Environ. Sci. Biotechnol. 7, 173-190. 

Ehimen, E.A., Sun, Z.F., Carrington C.G., Birch, E.J. and Eaton-Rye, J.J., 2011. 

Anaerobic digestion of microalgae residues resulting from the biodiesel 

production process. Appl. Energ.88(10), 3454-3463. 

Ferguson, R.M.W., 2013. Feedstock influence on the process parameters and the 

microbial community in anaerobic digestion. Ph.D. thesis, Cranfield University, 

UK (2013). 

Frigon, J.C., Matteau-Lebrun, F., Adou, R.H., McGinn, P.J., O’Leary, S.J.B., Guiot, 

S.R., 2013. Screening microalgae strains for their productivity in methane 

following anaerobic digestion. Appl. Energ. 108, 100-107. 



Adapting anaerobic digestion bacteria to algal biomass 

150 

Frostegård, A., A. Tunlid, E. Baath, 2011. Use and misuse of PLFA measurements in 

soils. Soil Biol. Biochem. 43(8), 1621-1625. 

Golueke, C.G., Oswald, W.J., Gotaas, H.B., 1957. Anaerobic digestion of algae. 

Appl. Biotechnol. 5, 47-55. 

González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P., 2012. Impact of 

microalgae characteristics on their conversion to biofuels. Part II Focus on 

biomethane production. Biofuels Bioprod. Bioref. 6, 205-218. 

Heaven, S., Milledge, J., Zhang, Y., 2011. Comments on anaerobic digestion of 

microalgae as a necessary step to make microalgal biodiesel sustainable. 

Biotechnol. Advanc. 29(1), 164-167. 

Kieft, T.L., Ringelberg, D.B., White, D.C., 1994. Changes in ester-linked phospholipid 

fatty acid profiles of subsurface bacteria during starvation and desiccation in a 

porous medium. Appl. Environ. Microb. 60(9), 3292-3299. 

Kröber, M., Bekel, T., Diaz, N.N., Goesmann, A., Jaenicke, S., Krause, L., Miller, D., 

K. Runte, J., Viehöver, P., Pühler A., Schlüter, A. 2009. Phylogenetic 

characterization of a biogas plant microbial community integrating clone 

library 16S-rDNA sequences and metagenome sequence data obtained by 

454-pyrosequencing. J. Biotechnol.142(1), 38-49. 

Lee, S.H., Kang, H.J., Lee, Y.H., Lee, T.J., Han, K., Choi, Y., Park, H.D., 2012. 

Monitoring bacterial community structure and variability in time scale in full-

scale anaerobic digesters. J. Environ Monit. 14(7), 1893-1905. 

Londry, K.L., Jahnke L.L., Des Marais, D.J., 2004. Stable carbon isotope ratios of 

lipid biomarkers of sulfate-reducing bacteria. Appl. Environ. Microb. 70(2), 

745-751. 

Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O., 2010. Microalgae as substrates 

for fermentative biogas production in a combined biorefinery concept. J. 

Biotechnol. 150, 51-56. 

Nallathambi, G.V., 1997. Anaerobic digestion of biomass for methane production: a 

review. Biomass Bioen. 13, 83-114. 

Ometto, F., Pozza, C., Whitton, R., Smith, B., Torres, A.G., Henderson, R.K., Jarvis, 

P., Jefferson, B. and Villa R., 2014. The impact of replacing air bubbles with 

microspheres for the clarification of algae from low cell-density culture. Water 

Re. 53, 168-179. (Current Thesis, Paper 2.2). 



Adapting anaerobic digestion bacteria to algal biomass 

151 

Pankhurst, L. J., Whitby, C., Pawlett, M., Larcombe, L.D., McKew, B., Deacon, L.J., 

Morgan, S.L., Villa, R., Drew, G.H., Tyrrel, S.,. Pollard, S.J.T, Coulon, F., 

2012. Temporal and spatial changes in the microbial bioaerosol communities 

in green-waste composting. FEMS Microbiology Ecol. 79(1), 229-239. 

Parkin, G.F., Owen, W.F., 1986. Fundamental of anaerobic-digestion of wastewater 

sludge. Journal of Environmental Engineering. 112, 867-920. 

Passos, F., Garćia, J., Ferrer, I., 2013. Impact of low temperature pretreatment on 

the anaerobic digestion of microalgal biomass. Bioresour. Technol. 138, 79-

86. 

Piotrowska-Seget, Z., Mrozik, A., 2003. Signature lipid biomarker (SLB) analysis in 

determining changes in community structure of soil microorganisms. Pol. J 

Environ. Stud. 12(6), 669-675. 

Samson, R., LeDuy, A., 1982. Biogas production from anaerobic digestion of 

Spirulina maxima algal biomass. Biotechnol. Bioeng. 24(8), 1919-1924. 

Schenk, P.M., Thomas Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., 

Posten, C., Kruse, O. and Hankamer, B., 2008. Second generation biofuels: 

high-efficiency microalgae for biodiesel production. Bioenergy Research. 1(1), 

20-43. 

Schlüter, A., Bekel, T., Diaz, N.N., Dondrup, M., Eichenlaub, R., Gartemann, K.H., 

Krahn, I., Krause, L., Krömeke, H., Kruse, O., Mussgnug, J.H., Neuweger, H., 

Niehaus, K., Pühler, A., Runte, K.J., Szczepanowski, R., Tauch, A., Tilker, A., 

Viehöver P., Goesmann A., 2008. The metagenome of a biogas-producing 

microbial community of a production-scale biogas plant fermenter analysed by 

the 454-pyrosequencing technology. J Biotechn. 136(1-2), 77-90. 

Schwarzenauer, T., Illmer, P., 2012. PLFA profiles for microbial community 

monitoring in anaerobic digestion. Folia Microbiol. 57(4), 331-333. 

Song, Y.C., Kwon, S.J., Woo, J.H., 2004. Mesophilic and thermophilic temperature 

co-phase anaerobic digestion compared with single-stage mesophilic and 

thermophilic digestion of sewage sludge. Water Res. 38, 1653-1662. 

Stroot, P.G., McMahon, K.D., Mackie, R.I., Raskin, L., 2001. Anaerobic codigestion 

of municipal solid waste and biosolids under various mixing condition. I. 

Digestr performance. Water Res. 35, 1804-1816. 



Adapting anaerobic digestion bacteria to algal biomass 

152 

Supaphol, S., Jenkins, S.N., Intomo, P., Waite, I.S., O’Donnell, G.A., 2011. Microbial 

community dynamics in mesophilic anaerobic co-digestion of mixed waste. 

Bioresour. Tehcnol. 102, 4021-4027. 

Ras, M., Lardon, L., Bruno, S., Bernet, N., Steyer, J., 2011. Experimental study on a 

coupled process of production and anaerobic digestion of Chlorella vulgaris, 

Bioresour. Technol. 102, 200-206. 

Wang, Y. Zhang, Y., Wang, J., Meng, L., 2009. Effect of volatile fatty acid 

concentrations on methane yield and methanogenic activity. Biomass 

Bioenerg. 33, 848-853. 

Werner, J.J., Knights, D., Garcia, M.L., Scalfone, N.B., Smith, S., Yarasheski, K., 

Cummings, T.A., Beers, A.R., Knight, R., Angenent, L.T., 2012. Bacterial 

community structures are unique and resilient in full-scale bioenergy systems. 

Proceedings of the National Academy of Sciences of the United States of 

America. 108(10), 4158-4163. 

White, J.R., Arze, C., Matalk, M., Team, T.C., Angiuoli, S., Fricke, F.W., 2011. 

CloVR-16S: phylogenetic microbial community composition analysis based on 

16S ribosomal RNA amplicon sequencing - standard operating procedure, 

version1.0. Nature Procedings. DOI:10.1038/npre.2011.5888.1 

Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., De 

Vos, P., Verstraete, W., Boon, N., 2009. Initial community evenness favours 

functionality under selective stress. Nature. 458(7238), 623-626. 

Yen, H.W., Brune, D.E., 2007. Anaerobic co-digestion of algal sludge and waste 

paper to produce methane. Bioresour. Technol. 98(1), 130-134.  

Zamalloa, C., Boon, N., Verstraete, W., 2012. Anaerobic digestibility of 

Scenedesmus obliquus and Phaedactylum tricornutum under mesophilic and 

thermophilic conditions. Appl. Energ. 92, 733-738.  

 



 

 

3.2 Impacts of microalgae pre-treatments for improved anaerobic 

digestion: thermal treatment, thermal hydrolysis, ultrasound, 

enzymatic hydrolysis. 

Francesco Omettoi, Gerardo Quirogaii, Pavel Psenǐckǎiii, Rachel Whittoni, Bruce 

Jeffersoni and Raffaella Villai. 
i Cranfield University, Bedfordshire (UK) 

ii University of Oviedo, Oviedo (ES) 

iii Czech University of Life Sciences Prague, Prague (CZ) 

 

Abstract 

Anaerobic digestion (AD) of microalgae is principally inhibited by the chemical 

composition of algae cell walls containing cellulose and acetolysis resistant 

biopolymers (ARB) able to resist bacterial degradation. The adoption of pre-

treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis 

have the potential to break the cell wall, partially degrade these biopolymers and 

release the intracellular algogenic organic matter (AOM) removing the inhibitory 

components and enhancing biogas yields. This work investigated the effect of four 

different pre-treatments on the microalgae cells, and their impact on the quantity of 

soluble biomass released in the media and thus on the digestion process yields. The 

analysis of the composition of the soluble COD released and of the TEM images of 

the cells showed two main degradative actions associated with the processes: (1) 

cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis 

and ultrasound) and (2) degradation of the cell wall constituents with the release of 

intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic 

hydrolysis). As a consequence of this, enzymatic hydrolysis showed the greatest 

biogas yield increments (> 270%) followed by thermal hydrolysis (60 – 100%) and 

ultrasounds (30 – 60%) depending on the algae species 

 

 

Keywords: microalgae, cell wall degradation, pre-treatments, anaerobic digestion, 

enzymes, thermal hydrolysis, ultrasounds. 
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3.2.1 Introduction 

Microalgae are currently considered as the best biomass for the production of 

renewable energy. Their high energy content, fast growth rate and the ability to 

adapt to a number of different environments give them the potential to meet all 

energetic, economic and environmental requirements for sustainable energy 

production (Mata et al., 2010; González-Fernández et al., 2012a). However, the 

overall energy balance of the conversion process may still be uneconomic as a result 

of the sequence of energy intensive steps required to cultivate, harvest and pre-treat 

the biomass (Acién et al., 2012; Slade and Bauen, 2013). Of the currently available 

biomass to energy technologies, such as gasification, thermochemical liquefaction, 

direct combustion and anaerobic digestion (AD), AD provides the most feasible 

process for large scale application which, depending on the chemical composition, 

has the potential to yield up to 800 mlCH4 gVS-1 (Heaven et al., 2011). One of the 

reasons is that it does not require high concentrated and/or pre-dried biomass which 

reduces the energy inputs required to produce the feedstock (Pragya et al., 2013). 

However, some microalgae species have the ability to resist microbial degradation, 

achieving significantly lower methane yields than expected (Golueke et al., 1957; 

Ometto et al., 2014). Detailed investigations on microalgae structure and chemical 

composition identified the cell wall as the main limiting factor to microbial 

degradation (Atkinson et al., 1972; Burczyk et al., 1999). In particular, cellulose and 

acetolysis resistant biopolymers (ARB), such as sporopollenin and algaenan, provide 

microalgae cells with the strength and thickness to resist bacterial degradation. 

During AD, limited cell wall degradation will affect the amount of intracellular 

algogenic organic matter (AOM) released in the media and, therefore, methane 

production. 

High energy (thermal and ultrasound) and low energy (mechanical and biological) 

pre-treatments can be used to: (1) degrade the cell wall, (2) release AOM and hence 

(3) enhance methane production (Alzate et al., 2012; González-Fernández et al., 

2012b; Cho et al., 2013a). For example, a mixture of microalgae pre-treated at 

110°C, 140°C and 170°C for 15 minutes produced increases in soluble COD which 

yielded methane increments of 19%, 33% and 46% respectively from an initial value 

of about 270 ml gVS-1 (Alzate et al., 2012). Similar increases to methane production 
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have been obtained at lower temperatures i.e. 55°C (+ 11%), 75°C (+ 21%), 95°C (+ 

39%), using a longer treatment time (5 hours) (Passos et al., 2013).  

When using ultrasound, the required specific energy input depends on the physical 

characteristics of the algae cell, e.g. shape, size and intracellular structure (Purcell et 

al., 2013). For example, when the filamentous algae Microspora sp. was treated at 

57 MJ kg-1, a 60% increase in total COD solubilisation and 22% in methane 

production was achieved (Alzate et al., 2012). Higher energy inputs were required to 

process single cell algae such as Scenedesmus sp. (130 MJ kg-1) and Chlorella sp. 

(1600 MJ kg-1) to double the methane production from 164 to 306 ml gVS-1 and from 

250 to 450 ml gVS-1, respectively (González-Fernández et al., 2012b; Park et al., 

2013).  

Very often, however, the additional methane yield does not offset the pre-treatment 

energy requirements leading to an overall negative energy balance (Cho et al., 

2013a; Passos et al., 2013). Low energy pre-treatments are preferred as they are 

more likely to achieve a more balanced process. Mechanical pre-treatments, such as 

quartz sand grinding under wet or dry conditions, have shown limited benefits 

applied to Chlorella sp. for lipid extraction (Zheng et al., 2011). In contrast, the same 

authors reported that biological pre-treatments using enzymatic additions like 

cellulases proved to be more successful. In agreement to this work, Yin et al. (2010) 

observed that the addition of cellulases to C. sorokiniana enhanced cell wall 

degradation and produced increases in the release of proteins, peptides and sugars 

of 25, 6 and 8 times, respectively, after three hours at 50°C. Similarly, the addition of 

cellulases to C. vulgaris produced 60% and 85% hydrolysis yields, after 24 h and 72 

h treatment (Cho et al., 2013b). To the best of our knowledge, only the work of 

Ehimen et al. (2013) investigated the effect of this treatment on AD, reporting an 

increase in methane production of 40% pre-treating Rhizoclonium biomass 

(filamentous cladophorales) with an enzymatic mixture containing protease, α-

amylase, xylanase, lipase and cellulose. 

The fact that pre-treatments increase the soluble COD fraction is a clear indication of 

intracellular AOM release, caused by a stress to the microalgae cells which can 

result in higher digestion efficiency. Although different studies have compared the 

digestibility improvements of the algae biomass subjected to different pre-treatments 

(Alzate et al., 2012; González-Fernández et al., 2012c; Cho et al., 2013a; Ehimen et 
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al., 2013), so far their effects on the structure of the microalgal cells have not been 

fully investigated. Attempts to quantify physical cell breakage efficiency have been 

made using light microscopy, particle size distribution and dual-fluorescence analysis 

(González-Fernández et al., 2012b; Purcell et al., 2013), without a real 

understanding of the degradation mechanisms.  

Batch anaerobic digestion experiments were used to assess the effect of different 

pre-treatments (thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis) on 

the methane production of three microalgae species (Scenedesmus obliquus, 

Chlorella sorokiniana and Arthrospira maxima) commonly found in wastewater 

treatments plants. The three algae, chosen for their differences in cell wall structure 

and composition, were tested under different operating conditions and optimised for 

maximum soluble COD release, and hence biogas production, with each process. In 

addition, this paper provides the first insight into the degradation mechanism of 

physical and biological pre-treatments on the algal cell. 
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3.2.2 Materials and methods 

3.2.2.1  Analytical methods 

The algae biomass was characterised for solids content and soluble matter 

composition (COD, proteins and carbohydrates) before and after each treatment. 

COD and solid content were measured in duplicate using standard methods (APHA). 

Soluble matter was obtained after centrifugation at 60,000 rpm for three minutes and 

syringe filtration (0.45 µm). The soluble protein (sP) and soluble carbohydrate (sC) 

contents were quantified using the methods described by Frølund et al. (1995) and 

Dubois et al. (1956). Protein content was measured at 750 nm as bovine serum 

albumin (BSA) equivalent (Sigma-Aldrich, UK), while carbohydrate content was 

measured at 480 nm as glucose equivalent (Sigma-Aldrich, UK). The lipid content, 

defined as other compounds including lipids, was estimated by subtracting the 

protein and carbohydrate sCOD equivalent from the total sCOD, 1.25 gO2 gBSA-1 

and 1.07 gO2 gGlucose-1, respectively. A statistical study on the sCOD set of data 

was performed using a Scheirer-Ray-Hare test with a significant acceptance at a p 

value equal to 0.05. The ratio between volatile suspended solids (VSS) and total 

volatile solids (VS) was adopted as the solubilisation index.  

Visual inspection of the algae cells was performed using an optical microscope and 

TEM analysis. For TEM sample preparation, concentrated cell paste was washed 

with a series of rinses (sodium cacodylate buffer) and fixatives (Gluaraldehyde, 

Osmium tetroxide and Uranyl acetate), dehydrated with Ethanol and Propylene oxide 

and embedded in Araldite CY 212 as described by Audrey et al. (1998). All analyses 

were carried out in triplicate.  

3.2.2.2 Algal cultures  

All algae cultures were obtained from the Culture Collection for Algae and Protozoa 

(CCAP), (Oban, UK). S. obliquus (276/42) and C. vulgaris (211/BK) were grown on 

Jaworski media at 18°C under constant illumination while A. maxima (1475/9) was 

grown on Zarrouk media at 28°C using a 16/8 hours light/dark cycle (Ometto et al., 

2014). The algae biomass was collected during the stationary growth phase 

(Appendix A) and concentrated to 20 ± 2 g l-1 as total solids (TS) by a combination of 

sedimentation and centrifugation. Samples were stored at 4°C, for a maximum of 7 

days, before pre-treatment. 
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3.2.2.3 Pre-treatments condition  

3.2.2.3.1 Thermal and Thermal Hydrolysis  

Thermal (T) and thermal hydrolysis (TH) treatments were undertaken using a 

Baskerville autoclave and steam generator WON15827 (Manchester, UK). The unit 

is composed of two connected pressure vessels: a reactor vessel and a steam 

generator. For thermal treatments, an aliquot of concentrated algal biomass (200 ml) 

was placed in the reactor vessel, heated and maintained at the required temperature 

for 30 minutes. For thermal hydrolysis treatments, steam was first generated in the 

steam generator vessel and then injected into the reactor unit containing the same 

amount of algae biomass, pre-heated at 70ºC to limit condensation effect. 

Five temperatures were tested using both configurations: (1) 105°C, (2) 120°C, (3) 

145°C, (4) 155°C and (5) 165°C, with associated saturated pressure close to 1, 2, 3, 

5 and 7 bar. The final volume of the sample was measured and used for further 

calculations.  

3.2.2.3.2 Ultrasound 

Five specific energy inputs (Ei) were applied to each sample using a Hielscher 

Ultrasound UP400S (Teltow, DE): (U1) 0.35, (U2) 3.5, (U3) 10, (U4) 20 and (U5) 35 

MJ kg TS-1. Between 250 and 500 ml of concentrated algae was placed in a glass 

beaker and then placed in an ice bath to limit ultrasonically derived temperature 

increases. The power input was fixed at 100W (24 kHz) and the fixed energy input 

was achieved with a consequential exposition time of 50 sec (U1), 5 min (U2), 8 min 

(U3), 10 min (U4) and an additional 10 min (U5), respectively. Minor deviations from 

these values were observed due to equipment sensitivity and different TS in the 

initial samples according to Equation 3.1 (Alzate et al., 2012): 

 

where P represents the power (Watt), t the exposure time (seconds), V the sample 

volume (millilitres) and TS the total solid concentration (g l-1). At the end of each 

treatment time, 100 ml of sample was collected and used for analysis.  

 

(3.1) 
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3.2.2.3.3 Enzymatic 

Five commercial enzymes (E1, E2, E3, E4, E5), with different specific activities, were 

tested under optimal environmental conditions according to the information provided 

by the suppliers (Table 3.5). Preliminary tests were undertaken to identify the optimal 

enzymatic concentration. Between 5 to 10 ml of algae was centrifuged, re-

suspended in a pH 6 buffer solution (0.1M Na2HPO2 and 0.1M NaH2PO4) to reach 

2% TS, and incubated with the enzymes for 24 h at 50°C using increasing enzyme 

concentrations (25, 50, 150, 250, and 350 u ml-1). The released soluble content was 

measured as reported in section 3.2.2.1. 

Table 3.5 List of enzymes and their characteristics.  

Enzyme Commercial name Composition Supplier 

E1 DepolTM 40L 
Cellulase 1,200 u g-1 + 800 u g-1 

Endogalactouronase 
Biocatalysts Ltd, UK 

E2 LipomodTM 957 
Esterase 3,600 u g-1 + Protease 

90 u g-1 
Biocatalysts Ltd, UK 

E3 DepolTM 220L Alpha amylase 25,000 u g-1 Biocatalysts Ltd, UK 

E4 Pectinase P2611 Pectinase 3,800 u g-1 Sigma Co Ltd, UK 

E5 LipomodTM 166P Esterase 5,220 u g-1 Biocatalysts Ltd, UK 

3.2.2.4 Batch anaerobic digestion test  

Anaerobic digestion batch experiments were performed using a modified method of 

Angelidaki et al. (2009) as previously described in Ometto et al. (2013). Briefly, tests 

with untreated and treated algae biomass (substrate) were conducted in a 1:1 

(substrate:inoculum) volatile solid (VS) ratio, using digested sludge obtained from a 

local wastewater treatment plant as inoculum (Appendix B). Samples were flushed 

with N2 gas, sealed with a PTFE crimp cap, and placed at 38°C under constant 

agitation (150 rpm). Biogas production was determined every two to three days until 

no significant gas production was detected, for a maximum of 35 days. Data was 

converted to standard temperature and pressure (STP). The biogas volume 

produced by the test substrate was corrected by subtracting the average blank 

controls production (inoculum + nutrients). Methane content was detected using a 
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Servomex 1440 gas analyser (Crowborough, UK). For the digestion of enzymatically 

pre-treated algae, using E1, E2 and a 1:1 (E1:E2) mixture at 150 u ml-1, separate 

blank tests were carried out to quantify the effect of the enzymatic addition to the 

inoculum digestion. All experiments were conducted in triplicate and cellulose was 

used as an external control to verify inoculum activity over time. 

3.2.2.5 Energy balance 

The ratio between energy input and energy output (Ei/Eo) of each pre-treatment 

condition was considered as an indication of the energy balance. Values lower or 

equal to 1 represent positive and neutral balance, respectively (Passos et al., 2013).  

The energy output (Eo = kJ gVS-1) was measured on the net increase methane 

content (ΔP) expressed in ml CH4 gVS-1, multiplied by the methane heating value (ξ 

= 35,800 kJ mCH4
-3) as reported in Equation 3.2: 

 

The energy input (Ei = kJ gVS-1) was estimated using Equation 3.1 (section 2.2.2) for 

ultrasound treatment, and Equation 3.3 (Passos et al., 2013) for thermal and 

enzymatic treatments, where the main energy input was related to the heat required 

to raise the biomass from the initial temperature (T0) to the pre-treatment 

temperature (Tp). T0 was assumed equal to the ambient temperature (20 °C) while Tp 

was equal to 50°C, 105°C, 120°C, 145°C, 155°C or 165°C. For specific density (ρ) 

and specific heat (γ) values, microalgal suspension was assumed equal to water, 1 g 

ml-1 and 4.18 x10-3 kJ g-1 °C -1, respectively. Heat losses were assumed to be 

negligible, while heat recovery efficiency (ϕ) was assumed equal to 85%.  

 

(3.2) 

(3.3) 
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3.2.3 Results and Discussion 

3.2.3.1 Pre-treatments optimisation 

3.2.3.1.1 Thermal and Thermal Hydrolysis  

During thermal (T) and thermal hydrolysis (TH) pre-treatments, the biomass was 

subjected in both cases to a combined thermal and pressure increase, causing cell 

degradation and an incremental release of the sCOD fraction (Figure 3.8). 

Preliminary investigations demonstrated that the range of pressures reached during 

the experiments (from 1 to 7 bar) alone were too low to affect the microalgae cell 

structure (data not shown). It was therefore assumed that the temperature was the 

main regulator mechanism for biomass solubilisation in both systems (Valo et al., 

2004; Cho et al., 2013a).  

After thermal hydrolysis (TH), the amount of sCOD released by S. obliquus and C. 

sorokiniana increased with the temperature to a maximum of 508 mg gTS-1 (22 fold) 

and 400 mg gTS-1 (5.4 fold), respectively. This was translated in a VSS/VS ratio 

decrease, from an initial value close to 1, to 0.58 ± 0.02 with both algae 

corresponding to a 40% biomass solubilisation (Table 3.6). Similarly, Cho et al. 

(2013a) obtained a 5.5 fold sCOD increase after autoclaving a mixture of 

Scenedesmus sp. and Chlorella sp. for 30 min at 120°C, while Keymer et al. (2013) 

obtained a 10 fold sCOD increase at 170°C using a mixture of natural algae, 

confirming comparable treatment efficiency. In contrast, the cyanobacteria A. 

maxima released a constant amount of sCOD between 105°C and 155°C with a 

VSS/VS ratio between 0.71 and 0.78 across the range. At 165°C the sCOD 

concentration doubled to 116 mg gTS-1 in both pre-treatments (Figure 3.8), reaching 

a 65% solubilisation, higher than the one obtained with the single cell algae. 

At temperatures lower than 150°C, each algal species released similar amounts of 

sCOD in the two pre-treatments, confirming our initial hypothesis that identified the 

temperaure as the main degradation regulator. At temperatures higher than 150°C, 

the two green algae released significantly more sCOD with the TH treatment than 

with the thermal treatment, whereas the sCOD increase with the filamentous 

cyanobacteria was again similar for both pre-treatments. This suggests that, for 

single cell algae characterised by the presence of cellulose and ARB, the rapid 

change of temperature/pressure caused by steam injection was only effective at 

pressures higher than 4 bar. 
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Floc formation due to cell wall breakage was observed with all three microalgae; S. 

obliquus and C. sorokiniana produced significant floc formations only at 

temperatures higher than 145°C, while A. maxima started to form aggregates at 

105°C. Post-treatment floc formation due to exopolymers and intracellular 

compounds released during the treatment is an indication of cell wall breakage 

(González-Fernández et al., 2012b). At 165 °C, A. maxima showed a homogenous 

mixture which, together with high sCOD values and low VSS/VS ratios, suggests an 

almost complete biomass solubilisation. These results show that, in addition to the 

temperature of the treatment, the algal species and characteristics are equally 

important when using thermal pre-treatments. Cellulose-free cells, such as 

cyanobacteria, achieve significantly higher cell damage at lower temperatures while 

ARB-enriched cells, such as green algae, require more than 165°C to achieve 

complete solubilisation.  

 

 

Figure 3.8 Thermal (T) and Thermal Hydrolysis (TH) solubilisation. Released soluble 

COD at increasing treatment temperatures (p<0.05). 
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3.2.3.1.2 Ultrasounds 

When exposed to increasing energy with ultrasounds, all three algae released 

additional sCOD. The two green algae S. obliquus and C. sorokiniana showed a 

linear correlation between the energy input and the sCOD released (Figure 3.9). The 

highest sCOD increase occurred at 35 MJ kg TS-1 (U5), 10 fold for S. obliquus (346 

mg gTS-1) and 5 fold for C. sorokiniana (166 mg gTS-1). However, both algae 

reported a limited solid solubilisation (VSS/VS), close to 20% (Table 3.6). In contrast, 

A. maxima reached 82% solubilisation at a lower energy input of 10 MJ kgTS-1 (U3) 

showing small differences when subjected to higher energy treatments. Due to the 

lack of cellulose and ARB components, this confirmed that, similar to what was 

observed for the thermal treatments, A. maxima can be degraded more easily than 

the two green algae. Furthermore, compared to Scenedesmus sp. and Chlorella sp., 

Arthrospira sp. is characterised by the presence of septa and air vesicles on the cell 

wall structure making this alga particularly sensitive to the localised high pressures 

produced by ultrasonic treatment (Purcell et al., 2013).  

In agreement with our results, when treating different mixtures of algae biomass, 

Alzate et al. (2012) reported different energy demands to achieve equal COD 

solubilisation for filamentous and single cells algae. Microspora sp., a filamentous 

algae, was efficiently treated using 50% less energy (~25 MJ kg-1) than single cells 

algae Acutodesmus obliquus, Oocystis sp. and Nitzschia sp. Limited impact on the 

cell wall structure of single cell microalgae, despite the high energy used, was also 

reported by González-Fernández et al. (2012a) who observed similar particle size 

distribution when treating S. obliquus at energy inputs ranging from 35.5 MJ kg-1 

(equal to U5) to 129 MJ kg-1. Our results suggest that ultrasound produced more 

structural damage on the cells of A. maxima whereas most of the sCOD released by 

the green algae was the result of intracellular AOM escaping the cell boundaries. 
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Figure 3.9 Ultrasound solubilisation. Released soluble COD after exposure to 

increasing amount of energy (p<0.05). 

3.2.3.1.3 Enzymatic hydrolysis  

Enzymatic hydrolysis was performed using single enzymes and mixed enzymatic 

preparations. During these pre-treatments, the action of low temperature thermal 

treatment (50°C for 24 hours) was combined with the catalytic activity of the 

enzymes. Compared to single enzymes, mixtures of enzymes released more than 

double the sCOD (Figure 3.10). The cellulase and pectinase mix (E1) and the 

esterase and protease mix (E2) were the most effective catalysts for all three algae 

followed by the single enzyme esterase (E5). The α-amylase (E3) was particularly 

active on C. sorokiniana, whereas pectinase (E4) mainly degraded S. obliquus 

suggesting a more selective action for these two enzymes being cell-algal and cell-

wall component specific. 

A consistent dose of between 150 and 250 u ml-1 was required to maximise the 

sCOD released irrespective of the enzymes used (Figure 3.10). In particular, using 

E2 S. obliquus required 250 u ml-1 to release up to 360 mg gTS-1 as sCOD, while 
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with C. sorokiniana and A. maxima maximum hydrolysis occurred with 150 u ml-1 

releasing 389 and 434 mg gTS-1, respectively. Similar dosages were applied by Yin 

et al. (2010) using Chlorella sp., suggesting optimal enzymatic additions for 

microalgae with a low (10% w/w) and high (20% w/w) solid concentration close to 

150 u ml-1. Although it was not possible to measure the VSS/VS ratio, due to the 

influence of the enzymatic addition on the VS, the amount of sCOD released by the 

enzymes was similar to the amount released by the thermal treatment (TH165), 

suggesting a comparable solid solubilisation (35 – 45%).  

As for the other pre-treatments, the performance of the enzymes is linked to the cell 

wall composition of the different algae. The main components of Scenedesmus sp. 

and Chlorella sp. cell wall are sugars (24 – 74%), uronic acid (4 – 24%), proteins (2 – 

11%), glucosamine (0 – 15%), in addition to cellulose and hemicellulose 

(Blumreisinger et al., 1983). On the contrary, the cell wall of A. maxima, a cellulose-

free microalga, is composed of murein (peptidoglycan) layers covered by a coat of 

lipopolysaccharide (Tomaselli, 2007). In agreement with previous investigations, 

cellulases performed well with all three algae (Yin et al., 2010; Fu et al., 2010; Harun 

et al., 2011; Zheng et al., 2011). However, in our work, the mix of protease and 

esterase released higher amounts of sCOD than those previously reported (Sander 

and Murthy, 2009; Ehimen et al., 2013). This suggests that for an effective enzymatic 

hydrolysis of the microalgae wall, it is necessary to take into account the protein and 

polysaccharide component as well as the cellulose component. The visual 

observation of the pre-treated algal biomass revealed a significant change in colour 

from dark green to dark brown with no formation of algal floc. This suggests that with 

the enzymatic hydrolysis, different breakage mechanisms produced the release of 

sCOD compared to the thermal and ultrasound pre-treatments.  
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Figure 3.10 Enzymatic hydrolysis. Released soluble COD released (out of sCOD 

released by control sample incubated without any enzymes) with different enzymes 

(E1-E5) at increasing dosage (25, 50, 150, 250, 350 u ml-1) for S. obliquus (SO), C. 

sorokiniana (CS) and A. maxima (AM) (p<0.05). 

3.2.3.2 Treatment comparison: efficiency and cell wall breaking mechanisms  

The composition of the AOM released by thermal hydrolysis at 165ºC (TH5) and 

ultrasonic pre-treatment at 35 MJ kg TS-1 (U5) was compared to the enzymatic one 

(average value between E1 and E2 at 150 u ml-1). The amount of soluble proteins 

(sP), carbohydrates (sC) and other compounds, including lipids (sL), released by the 

algal biomass changed significantly with each treatment and for each of the algal 

species investigated (Figure 3.11). The differences in composition of the soluble 

fraction indicate different mechanisms of action between the three pre-treatment 

processes tested. For single cell algae such as S. obliquus and C. sorokinian,a most 

of the protein and lipid content of the biomass belongs to the intracellular AOM, while 

carbohydrates are the main constituent of the cell wall (Blumreisinger et al., 1983; 

Heaven et al., 2011). Consequently, releases of organics that are high in protein and 

lipid content suggest an efficient release of the AOM and cell wall breakage, 

whereas high sugar concentrations suggest efficient degradation and solubilisation 

of the cell wall constituents. Accordingly, the differences in composition can be used 

as a diagnostic indicator of the principle mechanism of action.  

Thermal hydrolysis was the most effective pre-treatment in releasing proteins, 

followed by ultrasounds and enzymes. To illustrate, in the case of S. obliquus, the 
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protein content released by thermal hydrolysis (80% of sCOD) was equal to 331 mg 

gTS-1 as BSA, 2.8 and 4.2 times higher than with ultrasound and enzymes, 

respectively. Similarly, C. sorokiniana (77% of sCOD) reported a 4.5 fold increase in 

protein content compared to ultrasounds and 1.2 fold increase compared to 

enzymatic hydrolysis. No significant differences were observed with A. maxima 

across the three systems with an average value close to 50 mgBSA gTS-1 (~50% of 

sCOD after TH and U, 20% after enzymatic hydrolysis).  

Ultrasounds released the highest amount of other/lipids, equal to 46% and 31% of 

the total sCOD for S. obliquus and C. sorokiniana, respectively, followed by 

enzymatic and thermal hydrolysis. When using A. maxima, the enzymatic hydrolysis 

was more effective than ultrasound, producing more than 70% of the total released 

sCOD as lipid-related compounds. Consequently, both ultrasound and thermal 

hydrolysis resulted in cell wall breakages and the associated release of AOM. 

In contrast, enzymatic hydrolysis was the most effective pre-treatment in releasing 

carbohydrates followed by TH and ultrasound, and so operated by cell wall 

degradation rather than direct breakage. In particular, with S. obliquus, enzymatic 

hydrolysis (38% of sCOD) increased the soluble carbohydrate concentration by 1.7 

times more than TH, and 4.5 times more than ultrasound. Similarly, with C. 

sorokiniana, the sC concentration increased to 42 mg gTS-1 as glucose with 

ultrasound, and to 65 and 95 mg gTS-1 after TH and enzymes, respectively. A. 

maxima showed similar low concentrations after each treatment (5% of sCOD as an 

average value).  

A. maxima has a different distribution of proteins, carbohydrates and lipids between 

the AOM and the membrane (Heaven et al., 2011; Tomaselli, 2007). A high lipid 

content suggests membrane degradation and solubilisation, whereas high protein 

and carbohydrate contents indicate the release of intracellular AOM. Hence, 

enzymes seem to act preferentially on cell wall components, while thermal and 

ultrasound treatments produce a release of AOM due to structural cell wall 

deterioration.  
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Figure 3.11 Comparison between soluble content released by thermal hydrolysis 

(TH), ultrasound (U) and enzymatic (E) treatments on algae biomass. 

The difference in action mechanisms was confirmed by microscopic analysis of 

untreated and treated green algae cells (Figure 3.12). The TEM images of untreated 

cells clearly showed all main microalgae cell components, such as the cell wall, the 

nucleus and thylakoids filling most of the cytoplasm (Figure 3.12, SO1 and CV1). 

Thermal hydrolysis expanded and partially disaggregated the cell wall structure 

causing the release of internal AOM in the media. This is clearly shown in Figures 

3.12 SO2 and CV2 by the loss of cell turgidity and the appearance of empty/clear 

areas inside the cells boundaries. As previously reported by Choi et al. (2011), 

ultrasound treatment caused a loss of external cell boundaries (small black points 

surrounding the cell wall) and release of AOM into the media (Figures 3.12, SO3 and 

CV3). Loss of external cell boundaries and cell turgidity were less evident after 

enzymatic hydrolysis, despite the high amount of AOM released (clear spaces inside 

the cells boundaries and high measured sCOD). The less distorted cell structure 

suggests a more specific degradation and solubilisation of the cell wall components 

(e.g. mono-, di-saccharides) (Figure 3.12, SO4 and CV4). For instance, investigating 

the sugar composition of the material released by enzymatic hydrolysis of Chlorella 

sp., Rodrigues and da Silva Bon (2011) were able to ascertain the cell wall 

composition of different algae strains demonstrating specific enzymatic activities on 

cell wall.  
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Figure 3.12 TEM picture of S. obliquus (SO) and C. sorokiniana (CS), untreated (1) 

and after thermal hydrolysis (2), ultrasound (3) and enzymatic (4) treatment. 

Nomenclatures: cw= cell wall; n= nucleus, t= thylakoids. 
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3.2.3.3 Pre-treatment effects on energy recovery 

3.2.3.3.1 Anaerobic digestion batch test 

Anaerobic digestion of untreated microalgae biomass produced up to 88 ± 2, 118 ± 5 

and 60 ± 6 ml kg VS-1 as methane, for S. obliquus, C. sorokiniana and A. maxima, 

respectively. All pre-treated biomass showed digestion improvements with the only 

exception of A. maxima when treated at 105°C and 120°C (Table 3.6). With thermal 

treatments, the maximum methane improvement occurred at 165°C with S. obliquus 

yielding 268 ± 2 ml kg VS-1 (+ 208%) followed by A. maxima (+ 70%) and C. 

sorokiniana (+ 98%). Compared to the thermal treatments, the ultrasound produced 

96% methane improvement with S. obliquus, 38% with A. maxima and 42% with C. 

sorokiniana. Using similar digestion conditions, Alzate et al. (2012) reported 55% 

methane production improvement, from 198 ± 9 to 307 ± 9 ml gVS-1, digesting a 

mixture of natural algae pre-treated at 170°C. When treated with ultrasound (10 - 57 

MJ kg-1), the same algal mixture showed a methane yield increment of between 6 

and 13%, confirming that thermal treatments can be more effective than ultrasounds 

in enhancing microalgae digestibility. 

Compared to thermal treatments, enzymatic hydrolysis produced significantly higher 

amounts of methane. Depending on the algae species when using E1 and E2, the 

methane production improved up to 12 times with yields ranging between 477 and 

730 ml gVS-1. Using a 1:1 (E1:E2) enzymatic mixture, further increases were 

achieved at a 16 fold increase in methane production increments with A. maxima, 

6.7 folds with S. obliquus and 3.5 folds with C. sorokiniana.  

Similar results were observed when digesting PS undergoing the same pre-

treatments. The highest methane increase, equal to 174%, was obtained after 

enzymatic hydrolysis (E1:E2), while thermal hydrolysis (TH5) and ultrasound (U5) 

produced improvements of 111% and 45%, respectively.  

To our knowledge, a direct comparison on AD production of similar enzymatically 

treated microalgae has never been published. However, the work of Donoso-Bravo 

and Fdz-Polanco (2013) on enzymatic treatment of sewage sludge enriched with 

grease trap waste compares well to our results with E1 (585 ml gVS-1). Using lipases 

as main hydrolytic agents, the authors measured a methane production of 500 ml 

gVS-1 equal to a 130% increase. 



Chapter 3 

171 

Although enzymes are sensitive to pH and temperature changes, once inside the AD 

reactor, they are likely to contribute to the overall digestion process, firstly by 

supporting the hydrolysis activity, and secondly by contributing to the biogas 

production as an additional substrate (proteins). For instance, while the batch 

digestion of the inoculum showed a biogas production equal to 50 ± 5 ml gVS-1, the 

inoculum with the enzymes produced between 100 and 150 ml gVS-1 biogas, 

depending on the enzymes.  

In agreement with previous investigation on AD feedstock pre-treatments, digestion 

improvements were proportional to the COD solubilisation achieved (Carrère et al., 

2010). However, similar amounts of sCOD and VS released by the same algae 

produced different methane yields when pre-treated with different processes (Figure 

3.13). For instance, with C. sorokiniana, sCOD concentration of 200 mg gVS-1 

produced between 150 and 200 ml gVS-1 of methane after thermal or ultrasound pre-

treatment (Figure 3.13 A) and 400 ml gVS-1 after enzymatic hydrolysis (Figure 3.13 

B). Similar results were observed with S. obliquus and A. maxima at 450 mg sCOD 

and 1300 mg sCOD, respectively (Figure 3.13).  

These results mirror those reported in Section 3.2.3.2 for the action mechanism of 

the pre-treatments. The higher yields obtained after enzymatic hydrolysis were the 

direct consequence of efficient cell wall biochemical degradation which enabled (1) 

removal of the limiting factors affecting the AD process (cellulose and ARB being 

able to resist bacteria degradation) and, depending on the algae species, (2) release 

of a higher amount of energetically valuable components such as sugars and lipids. 

In contrast, the high intracellular AOM released after thermal and ultrasonic 

treatments was the result of cell wall breakage only which did not allow the 

solubilisation of bacterial resistant or inhibitory compounds. 
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Figure 3.13 Methane productions per available sCOD post (A) physical pre-

treatments including thermal (dotted markers), thermal hydrolysis (lined markers) 

and ultrasound (full markers), and (B) enzymatic hydrolysis. Empty markers 

represent untreated biomass. 
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Table 3.6 Summary table: biogas production pre and post treatment (mean±SD) of all tested biomass. 

VSS/VS Biogas (ml/gVSadd) Increasea  (%) CH4
b (%) E i/E 0 VSS/VS Biogas (ml/gVSadd) Increasea  (%) CH4

b (%) E i/E 0 VSS/VS Biogas (ml/gVSadd) Increasea  (%) CH4
c (%) E i/E 0 VSS/VS Biogas (ml/gVSadd) Increasea  (%) CH4

b (%) E i/E 0

Controld 0.95 265±10 - 60 - 0.96 273±37 - 62 - 1.16 185±20 - - - 0.82 480±38 - 68 -

T1 0.83 270±11 10 60 3.09 0.87 297±27 9 55 4.73 0.78 129±20 -11 - - 0.55 484±91 38 63 0.49

T2 0.87 359±14 35 60 1.33 0.96 310±68 14 66 11.12 0.79 127±24 -12 - - 0.45 451±45 29 66 0.55

T3 0.78 337±39 27 65 1.58 0.61 356±16 30 58 5.96 0.78 219±06 51 - 27.64 0.55 440±78 26 66 0.96

T4 0.83 370±35 40 63 2.06 0.54 313±54 15 60 6.14 0.78 175±14 21 - 78.06 0.55 412±96 18 61 1.15

T5 0.6 381±14 44 68 2.11 0.63 393±50 44 69 1.67 0.37 250±5 72 - 21.80 0.56 567±65 62 66 0.66

TH1 0.85 331±85 25 60 2.51 0.79 301±11 10 57 6.54 0.77 157±09 8 - 212.97 0.55 415±64 19 65 0.81

TH2 0.82 340±14 28 67 1.39 0.86 298±20 9 58 10.01 0.71 138±12 -5 - - 0.39 507±74 45 65 0.59

TH3 0.75 313±23 18 63 2.69 0.72 324±53 19 60 8.34 0.78 173±18 19 - 85.42 0.55 567±57 62 66 0.54

TH4 0.89 404±6 52 60 1.60 0.53 315±41 15 64 3.86 0.77 235±9 62 - 24.16 0.55 510±82 46 63 0.53

TH5 0.58 548±2 107 70 0.75 0.57 461±4 69 69 1.22 0.35 200±40 38 - 43.60 0.58 640±3 83 68 0.46

U1 0.99 266±27 2 64 1.21 0.95 249±12 2 62 5.43 0.75 206±3 33 - 1.88 0.97 675±50 29 70 0.26

U2 0.99 299±24 14 60 4.18 0.88 252±40 3 65 10.86 0.49 199±21 28 - 22.22 0.82 654±23 24 69 4.11

U3 0.89 333±16 27 73 3.83 0.89 320±25 31 66 3.17 0.18 203±22 31 - 58.19 0.82 520±37 9 70 55.42

U4 0.90 292±12 8 63 13.21 0.90 368±12 34 64 5.26 0.15 180±5 16 - 214.87 0.80 553±84 5 68 14.64

U5 0.89 307±15 18 65 27.85 0.83 375±35 53 65 10.06 0.13 214±18 38 - 162.94 0.73 616±17 18 69 13.06

E1e - 1425±224 403 63 0.06h - 1158±116 236 46 0.07h - 1461±173 630 - 0.04h - 975±84 174 62 0.08h

E2f - 1065±201 273 58 0.07h - 868±253 227 56 0.10h - 1545±201 672 - 0.04h - 609±54 71 62 0.10h

E1:E2g - 1669±63 485 63 0.06h - 1292±148 387 60 0.09h - 1996±254 898 - 0.03h - 886±268 150 68 0.08h

Treatment 
Primary SludgeArthrospira maximaChlorella sorokinianaScenedesmus obliquus

 
acompared to the control batch experiment performed with every new batch of algae; bmethane content at the end of the batch digestion; cnot 

directly measured over time and assumed equal to 60%; daverage value between all control experiment performed; einoculum+enzymes biogas 

production equal to 102 ± 19 ml gVS-1; finoculum+enzymes biogas production equal to 121 ± 23 ml gVS-1; ginoculum+enzymes biogas 

production equal to 124 ± 22 ml gVS-1; henergy to produce the enzymes was exclude from the calculation; 
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3.2.3.3.2 Energy aspects 

In most of the tested conditions, the excess methane production was not sufficient to 

balance the energy required to pre-treat the biomass. Data plotted on a log-log scale 

chart (Ei/Eo ratio vs biogas increment) shows three clusters for the three main 

different pre-treatments (Figure 3.14). The enzymatic pre-treatment results are 

located at the bottom right part of the graph representing the most energetically 

balanced conditions, as the biogas production over balanced the energy input (+15 

kJ kgVS-1). The central part of the diagram is predominantly populated by thermally 

treated biomass and distributed across the neutral energy balance line (log Ei/Eo = 

1). Higher energy inputs (higher temperatures), were responsible for higher methane 

yields and a more positive energy balance. Results relating to the ultrasound are 

located on the top left part of the diagram, with an average net energy balance of 

close to -30 MJ kg VS-1. In this case, low specific energy inputs were more 

energetically efficient even with methane increments lower than 50%. To compare, 

the results reported by Cho et al. (2013a) on Scenedesmus sp. and Chlorella sp. 

biomass pre-treated with ultrasound (39 - 234 MJ kg VS-1) and thermal treatment fit 

the clusters of Figure 3.14, confirming the different energy impacts of the two pre-

treatments. When applied to wastewater sludge, thermal treatment showed more 

positive energy balances than treated microalgae, while ultrasounds and enzymatic 

hydrolysis provided similar results. The more negative energy balance of A. maxima 

when subjected to thermal pre-treatments was related to the low biogas yields 

measured in the batch tests. This was mainly due to the release of lower energy 

content compounds compared to those released after ultrasounds and enzymatic 

hydrolysis. 
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Figure 3.14 Energy balance of each treated biomass at related percentage biogas 

increment: S. obliquus (lined markers), C. sorokiniana (full markers), A. maxima 

(dotted markers) and primary sludge (empty markers); fragmented markers line (Cho 

et al., 2013) 
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3.2.4 Conclusions  

The pre-treatment process used to degrade microalgae cells and the algae species 

involved in the process have a substantial impact on the efficiency of the digestion of 

microalgae biomass. Although each of the pre-treatments analysed improved the 

soluble fraction of the biomass by reducing its VS content, only the enzymatic 

hydrolysis enabled the solubilisation of the cell wall constituents. This allowed a 

higher biogas production compared to thermal and ultrasound pre-treatments 

responsible for physical cell wall degradation (deformation and breakage). In 

particular, ARB-enriched algae (e.g. Chlorella sp. and Scenedesmus sp.) required 

more energy intensive pre-treatments (higher temperatures, higher specific energy 

and higher enzymatic dosages) than cellulose free algae (e.g. Arthrospira sp.). 

Although the current study is based on small batch experiments, the findings suggest 

the key role of pre-treatments is in the optimisation of biogas production from 

microalgae. Of the methods currently used by the industry to pre-treat organic waste 

and sludge, ultrasounds produced the most energetically imbalanced process while 

high temperature thermal hydrolysis and enzymatic hydrolysis were the most 

energetically efficient. Further investigation and experimentation into the effect of 

enzymatic additions on AD is strongly recommended to validate the very positive 

impact on the process and their costs/feasibility for large scale applications. 
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4 IMPLICATIONS OF THE WORK 

4.1 Key observations 

The key observations from the work presented in this thesis are: 

1. The characteristics of the whole microalgae suspension in terms of cell size, 

shape and concentration, and extracellular algogenic organic matter (AOM) 

play a fundamental role on the cell recovery efficiency, limiting the number of 

applicable harvesting solutions for large-scale cultivation plants. Viable 

harvesting solutions include the innovative Ballasted Dissolved Air Flotation 

(BDAF) and low energy sedimentation systems (Paper 2.1, section 2.1.5). 

2. With all three algae, optimal doses were observed at zeta potential values 

close to zero. Lower dosage was always linked to low pH values and low 

protein:carbohydrate ratio in the algae suspension (Paper 2.1, Section 2.1.2 

and 2.2, Section 2.2.3.2). 

3. Ballasted dissolved air flotation (BDAF) was identified as a feasible harvesting 

system reducing chemical demand by 14 - 95% depending on the algae 

suspension, carbon emission by 33 – 58% and energy demand by 60 – 80% 

compared to the use of traditional DAF (Paper 2.2, Sections 2.2.3.1 and 

2.2.3.4). 

4. The microbial community within an anaerobic digester will adapt to the 

presence of algae, enabling it to be used as a feedstock material without the 

need for pre-treatments (Paper 3.1, Section 3.1.3.4). 

5. The impact of pre-treatment on algae is species specific due to differences in 

the cell wall composition of each algae (Paper 3.2, Section 3.2.3.2). 

6. The composition and quantity of released soluble COD post pre-treatment is 

an effective parameter to indicate the potential increase in biogas production 

(Paper 3.2, Section 3.2.3.3). 

7. Enzymatic hydrolysis is the most effective and energetically efficient pre-

treatment able to achieve complete algae digestion. Thermal hydrolysis and 

ultrasounds also provided a high release of soluble COD, however the 

biomass degradation was often not able to generate enough additional biogas 

to offset the energy input required by the pre-treatment (Paper 3.2, Section 

3.2.3.3.2). 
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4.2 Energy neutral microalgae wastewater nutrient removal strategy 

4.2.1 Introduction 

Overall, the consideration of the findings outlined in the thesis concern the impact 

of choices in terms of algal species, harvesting technologies and pre-treatments 

on the overall energy balance of an integrated microalgae wastewater treatment.  

The most pertinent application with which to assess such impacts relates to the 

use of algal based wastewater treatment to upgrade the treatment capability of 

existing small sewage works (2,000 – 5,000 p.e.). Treatment flowsheets for such 

applications are traditionally based around low energy, relatively passive, low 

maintenance technologies for the removal of BOD and suspended solids with 

some degree of nitrification. An illustrative example flowsheet would include a 

primary sedimentation tank followed by a trickling filter and a final sedimentation 

tank (or humus tank) that will meet a 20/30 BOD/SS standard (Figure 4.1). Future 

legislation is expected to require substantial improvement in the removal of 

ammonia and phosphorus with the possibility of discharge consents as low as 1 

mg l-1 (Vale, 2013). Traditional upgrading options to meet such a standard would 

commonly involve rebuilding the sewage works based on high energy processes 

such as activated sludge or membrane bioreactors with chemical dosing for 

phosphorus removal (Metcalf and Eddy, 2007; Shi, 2011). This deviates from the 

preference at such scales for low energy, low maintenance systems and so 

provides an opportunity for the development of alternative technology options. At 

present, this is most commonly manifested in the form of aerated wetlands that 

enable tight ammonia standards without excessive demand on energy or 

maintenance (Butterworth et al., 2013). However, micro algae systems (MAS) 

differentiate from the other possible options as the nutrient removal process 

occurs as a consequence of controlled algal growth thus providing a source of 

additional anaerobic digestion feed material and hence energy production. 

Consequently, the use of MAS offers the potential to treat sewage effluent in 

small works down to low nutrient concentrations on a net energy neutral basis 

and hence maintain the overarching philosophy of the original sites.  
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To establish the potential impact of differences in algal species, harvesting 

approach and pre-treatment options on the efficancy of MAS, a series of 

implementation scenarios have been considered. All are based around a small 

treatment works (2,000 p.e.) reflecting the most likely application scale for 

wastewater microalgae systems. The analysis only considers the upgrade 

components in each case to establish the relative suitability of each upgrade 

option. In total, three upgrade options have been considered based on either the 

most likely low impact option currently used (Case A: aerated wetland) or the use 

of MAS after primary sedimentation (Case B – high biomass production) or as a 

tertiary treatment option (Case C – lower biomass production) (Figure 4.1). 

Additionally, two algal reactor configurations are considered based on high rate 

algal ponds (HRAP) and photobioreactors (PBR) to reflect current discussions on 

preferred technology (Whitton et al., 2013). 

S1 S2

S1

S1 S2

S2

TF HU

TFMAS

TF Wetlands

A

B

C

Sludge

Sludge

Sludge

Final effluent

S1 S2TF

Base case

Sludge

Final effluent

Microalgae

Microalgae

NH4-N 40 mg/l

PO4-P 4 mg/l

BOD 120 mg/l

NH4-N 15 mg/l

PO4-P 2 mg/l

BOD <20 mg/l

NH4-N <1 mg/l

PO4-P <1 mg/l

BOD <20 mg/l

 (BOD removal)

HU

Final effluent

NH4-N <1 mg/l

PO4-P <1 mg/l

BOD <20 mg/l

Final effluent

NH4-N <1 mg/l

PO4-P <1 mg/l

BOD <20 mg/l

MAS

 

Figure 4.1 Business case scenarios. TF: trickling filter: MAS: microalgae system; HU: 

harvesting unit; WTS: wetlands; S1: primary sedimentation; S2: secondary 

sedimentation. 
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4.2.2 Materials and methods 

4.2.2.1 Design parameters 

All cases have been designed to meet the new standard with validation of 

design decisions based on information from existing literature and the results 

obtained in the current thesis. For instance, aerated wetlands as tertiary 

treatments (Case A) have been shown to meet a 10 mgTN l-1 (Austin and 

Nivala, 2009) and allow phosphorus concentration below 0.25 mgPO4-P l-1 

(Leader et al., 2005; Ko et al., 2004). Equivalent evidence for the MAS systems 

(Cases B and C) indicates an ability to meet both ammonia and phosphorus 

removal targets in both scenarios. For instance, previous studies have 

demonstrated the ability of MAS to reduce initial concentrations of 13 mgNH4-N 

l-1 and 2 mgPO4-P l-1 to below the detection limit based on a 7 to 9 days 

retention time resulting in an algal biomass production of 0.2 - 0.4 gDM l-1 

(Sydney et al., 2011). Similarly, use of an open pond in Scotland enabled 

effluent NH4-N concentration of between 1 and 0.5 mg l-1 and PO4-P between 

0.9 and 0.03 mg l-1 with a 7 day hydraulic retention time (HRT) using primary 

effluent with a harvested biomass of between 0.3 and 0.4 gDM l-1, depending on 

the specific HRT and season (Cromar and Falloefield, 1997). Accordingly, it is 

common to operate open ponds under different HRTs between warm and cold 

seasons to guarantee constant N and P removal (Craggs et al., 2012; Cromar 

and Falloefield, 1997). 

The specific design parameters adopted for each scenario are reported in Table 

4.1. The nutrient uptake achieved by growing microalgae (Case B and Case C) 

was evaluated using two different growth-systems: a high rate algae pond 

(HRAP) and a close photobioreactor (PBR) to reflect current design discussions 

on new systems. Three different algae species were used for this study: 

Scenedesmus obliquus (90% VS), Chlorella vulgaris (90% VS) and Arthrospira 

maxima (70% VS). Although, A. maxima requires different conditions (additional 

salts, higher temperatures and pH values), we have assumed that the 

composition of the base-case effluent will allow the growth of all three algae, so 

that we can consider the impact of a filamentous algae species compared to 
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single cells (S. obliquus and C. vulgaris). The algal biomass concentration 

achieved at the end of the treatment was assumed to be equal to 200 mgDM l-1 

and 400 mgDM l-1 in Case B and Case C, respectively, using HRAPs, and equal 

to 300 mgDM l-1 and 600 mgDM l-1 for the same cases when using PBRs 

(Olguín et al., 1997; Garcia et al., 2000; Baliga and Powers, 2010;.Craggs et al., 

2012). To guarantee constant nutrient uptake, the MAS was operated at longer 

HRTs during the cold seasons compared to spring and summer (Garcia et al., 

2000) and the target removal based on data from existing literature on an 

example effluent quality from the base case (Metcalf and Eddy, 2007). 
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Table 4.1 Main design parameter and assumption 

Design parameters Value Notes Reference

Trickling filter

Inflow 336 m3 d-1 Water availability of 210 l d-1 p.e.-1 Metcalf and Eddy, 2007

Dimension 84 m
2

HLR of 4 m
3
 m

-2 
d

-1. Metcalf and Eddy, 2007

Primary effluent 335 m3 d-1 Assuming dry solid production of  70 kg m-3 at 6 % TS. Metcalf and Eddy, 2007

Final effluent 333 m3 d-1 Assuming dry solid production of  60 kg m-3 at 1.5 % TS. Metcalf and Eddy, 2007

Solids production 74 kgVS d-1 2.4 m3 d-1 at 5 % VS content assumed equal for all scenarios.

Energy demand 0.252 kWh m-3 Applied to Base case: average energy demand of the whole treatment 

plant .
Shi, 2011

Aerated wetland

Dimension 3423 m2 Considering an inflow of 10.3 m2 m-3. Austin and Nivala, 2009

Biomass production negligible
Occasional biomass from cuts of the vegetation and operational 

maintenance was excluded from the analysis
Ko et al., 2004

Energy demand 0.49 kWh m-3 Aerated wetland Austin and Nivala, 2009

High rate pond

HRT 7 - 10 d 7d HRT from Oct. to Mar. and 10d HRT from Apr. to Sep. Garcia et al., 2000

8340 m2 0.4 m depth for 10d HRT for Case C (primary effluent).

8379 m2 0.4 m depth for 10d HRT for Case B (secondary effluent).

22 - 57 kgVS d-1

Seasonal variation of the biomass was taken into account considering 

200 mg l-1 as maximal production between May and July with 50% 

reduction from Nov. to Feb. and 25% reduction in the remaining 

months. VS/TS ratio equal to 0.9 for S. obliquus  and C. vulgaris , and 

0.7 for A. maxima.

33- 85 kgVS d-1

Seasonal variation of the biomass was taken into account considering 

300 mg l-1 as maximal production between May and July with 50% 

reduction from Nov. to Feb. and 25% reduction in the remaining 

months. VS/TS ratio equal to 0.9 for S. obliquus  and C. vulgaris , and 

0.7 for A. maxima.

Energy demand 25 kWh ha
-1

 d
-1 Mixing using paddle wheels. Jonker and Faaij, 2013

Photobioreactor

HRT 3 - 5 d
3d HRT from Oct. to Mar. and 5d HRT from Apr. to Sep., considering 

1/2 HRT required compare to HRAP.
Arbib et al., 2013

Dimension 6000 m2 Tubes with 0.3m diameter, 400 m long, organised in four tuber per lines 

having a distance of 1 meter between one to another.
Acién et al., 2012

44 - 114 kgVS d-1

Seasonal variation of the biomass was taken into account considering 

400 mg l-1 as maximal production between May and July with 50% 

reduction from Nov. to Feb. and 25% reduction in the remaining 

months. VS/TS ratio equal to 0.9 for S. obliquus  and C. vulgaris , and 

0.7 for A. maxima.

66 - 128 kgVS d-1

Seasonal variation of the biomass was taken into account considering 

600 mg l-1 as maximal production between May and July with 50% 

reduction from Nov. to Feb. and 25% reduction in the remaining 

months. VS/TS ratio equal to 0.9 for S. obliquus  and C. vulgaris , and 

0.7 for A. maxima.

Energy demand 0.3 kWh m-3
Mixing using turbulent air flow. In the literature, value varies largely from 

0.08 up to 2.5 kWh m-3.
Norsker et al., 2012

Olguín et al., 1997;                               

Garcia et al., 2000;       

Baliga and Powers, 2010;              

Craggs et al., 2012;                                                                                                             

Arbib et al., 2013;                     

Bahadar and Khan, 2013.

Dimension

Biomass production

Biomass production
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The energy and carbon impact of the harvesting step was evaluated using three 

different technologies: Dissolved Air Flotation (DAF), Ballasted Dissolved Air 

Flotation (BDAF) and sedimentation (SED) to benchmark against systems 

where self flocculation occurs (Collet et al., 2011; Zamalloa et al., 2011). In the 

sedimentation case, additional thickening is required which is assumed to be 

achieved through the use of a floatation thickener. In all harvesting 

configurations, cell recovery efficiency was assumed to be equal to 95% with 

the solid content of the harvested biomass varying between each system based 

on the specific overflow applied (Table 4.2). For the reasons reported in Paper 

2.2, DAF was excluded from the analysis when using A. maxima. 

Table 4.2 Harvesting design parameter and assumption 

Design parameters Value Notes Reference

Dissolved Air Flotation (DAF)

Chemical demand 10 - 40  mgAl l-1 

10 mg l-1 of suspended C. vulgaris,  and 40 mg l-1 of suspended S. 

obliquus . Coagulant demand was estimated to increased to 30 and 

60 mg l-1, respectively, for the same three algae, when considering 

combine sedimenadation and DAF  to achieve same final biomass 

concentration.

Current Thesis, Paper 2.2

Overflow solids concentration 3 % TS Average value reported in the literature considering 95 % separation efficiency.Rawat et al., 2013

Energy demand 0.3 kWh m-3 Average value reported in the literature. Molina Grima et al., 2003

Ballasted Dissolved Air Flotation 

(BDAF)

Chemical demand 6 - 77  mgAl l-1 6 mg l-1 of suspended C. vulgaris , 30 mg l-1 of suspended S. 

obliquus  and 77 mg l-1 of suspended A. maxima . 
Current Thesis, Paper 2.2

Glass microspheres demand 1 - 5 kg d-1 300 mg l-1 are required to harvest the biomass; 99 % beads 

recovery with a treatment capacity of 14 m3 h-1.
Current Thesis, Paper 2.2

Overflow solids concentration 5 % TS Average estimated value considering 95 % separation efficiency. Current Thesis, Paper 2.2

Energy demand 0.05 kWh m-3 Average estimated value reported in the literature. Jarvis et al., 2009

Sedimentation 

Overflow solids concentration 1 % TS Average value reported in the literature  considering 95 % separation efficiency.Yahi et al., 1995

Energy demand 0.02 kWh m-3 Average value reported in the literature. Yahi et al., 1995
 

4.2.2.2 Energy balance 

The energy balance of each scenario refers to the net energy demand between 

the electricity used by the nutrient removal process and ancillary equipment 

(harvest and pre-treatment) and the electricity generated by anaerobic digestion 

of the additional algal biomass. The methane yield of the wastewater sludge 

produced by the base case was assumed constant in all scenarios at 800 ml 
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kgVSadd
-1 (Shi, 2011), whereas the methane content of the different algal 

species was varied according to the data in Chapter 3 complimented with data 

from the literature. Untreated algae biomass was assumed to yield 

approximately 30% of the theoretical methane production (Heaven et al., 2011), 

whereas the adoption of thermal (thermal hydrolysis at 165°C) and enzymatic 

(8x106 u kgTS-1 at 50°C) pre-treatments produced up to 60% and 90%, 

respectively. In Case B, the theoretical methane value of S. obliquus, C. 

vulgaris and A. maxima was assumed equal to 534 ml kgVSadd
-1, 652 ml 

kgVSadd
-1 and 482 ml kgVSadd

-1, respectively. The same values were applied to 

Case C with the exception of C. vulgaris which was assumed to have a lower 

methane content equal to 534 ml kgVSadd
-1 (Heaven et al., 2011). The higher 

amount of available nitrogen when cultivating Chlorella sp. in primary effluent 

instead of secondary causes a change in the composition of the biomass, 

reducing the amount of lipid content and therefore theoretical methane potential 

(Sialve et al., 2009). The electricity generated with AD was calculated assuming 

an 80% biomass digestion efficiency, and a methane energy conversion of 9.7 

kWh m-3 at 30% efficiency (Ometto et al., 2013). While the energy demand by 

enzymatic hydrolysis was expected to be offset by the heat generated by the 

CHP system, thermal hydrolysis requires additional energy input estimated at 

approximately 20% of the produced biogas (Pérez-Elvira and Fdz-Polanco, 

2012). 

4.2.2.3 Operational cost and carbon footprints 

Operating costs and carbon footprints were calculated in British Pound Sterling 

(£) and carbon dioxide equivalent (CO2e), respectively, applying standard 

conversion factors (Table 4.3). The estimation included the net electricity 

required to run the MAS or aerated wetland, the amount of chemicals, glass 

microspheres (for BDAF harvesting unit) and enzymes used, and the 

transportation of the additional algal biomass from the WWTP to the AD plant. 

According to the National Non-Food Crops Centre (http://www.biogas-

info.co.uk/index.php/ad-map.html), in England there are 213 AD plants, which 

gives a density value of 0.002 AD plant per squared kilometer. Assuming the 

base case is located in the middle of a 500 km2 area, the return trip for the 

http://www.biogas-info.co.uk/index.php/ad-map.html
http://www.biogas-info.co.uk/index.php/ad-map.html
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transportation of the sludge/biomass was assumed equal to 50 km. The number 

of trucks required was calculated considering the volume of sludge and biomass 

produced by each specific scenario configuration according to Table 4.3. 

Table 4.3 Carbon and costs factors adopted for the analysis 

Value Unit Notes Reference

Carbon factors 

Electricity 0.484 kgCO2e kWh-1

UK electricity generation considering 

losses in transmission and 

distribution.

DEFRA/DECC, 2013

Aluminium sulphate 0.493 kgCO2e kg-1 In powder form at the factory gate. UM, 2011

Sodium bicarbonate 1 kgCO2e kg-1 In powder form at the factory gate. UM, 2011

Microspheres 0.9 kgCO2e kg-1  UK primary glass production (cradle-

to-gate).
Hammond and Jones, 2011

Enzymes 4 kgCO2e kg-1

Average value of five different 

emission factors of different enzymes 

including protease, glucoamylase and 

alpha-amylase.

Nielsen et al., 2007

Transport 0.722 kgCO2e km-2 15t diesel truck at average loading  

value.
DEFRA/DECC, 2013

Loading 0.5 kgCO2e m-3
considering diesel emission factor of 

0.0869 kgCO2e MJ-1.

Personal communication: Beatrice 

Smyth, Northern Ireland Water, 

Belfast (2013)

Costs

Electricity 0.14 £ kWh-1 Average UK value.

Aluminium sulphate 800 £ ton-1 Average market prices. Granados et al., 2012

Sodium bicarbonate 90 £ ton-1 Average market prices for metal salts.
http://www.alibaba.com/showroom/sod

ium-bicarbonate-price.html

Microspheres 10000 £ ton-1
16 % of the original market price for 

small quantity 60£ kg-1.

Personal communication: Will Ricci, 

Trelleborg Offshore, Boston (2013)

Enzymes 1000 £ ton-1

Average market price for powder 

enzymes at 200000 U gTS-1, equal to 

30g kgTS-1 algae.

http://www.alibaba.com/product-

gs/1537723257/Industrial_Enzyme_Al

kaline_Protease.html?s=p

Transport 1 £ km-1 Considering a 10 m3 truck.
http://www.ooida.com/EducationTools/

Tools/costpermile.asp

Loading 60 £ h-1

Average UK  operator costs, 

considering 0.8 h for 

loading/unloading per truck.  



Chapter 4 

193 

4.2.3 Results  

4.2.3.1 Energy balance 

The energy produced from anaerobic digestion of the collected sludge from the 

base case (BC) was sufficient to exceed that required for operation generating a 

net surplus of 4.2 MWh y-1. As the production occurs at centralised sites the 

generated energy is unavailable for direct use on the site but does demonstrate 

the overall energy sustainability of using low energy treatment technologies on 

a catchment basis. Inclusion of an aerated wetland (AW) to upgrade the 

treatment capacity of the works increased energy demand by 59.6 MWh y-1 

resulting in a net deficit of 55.4 MWh y-1.  

The use of MAS resulted in additional energy production to a maximum of 43 

MWh y-1 which occurred when either S.obliquus or C. vulgaris was grown in 

primary effluent using a photo-bioreactor, harvested by BDAF and pre-treated 

with enzymatic hydrolysis. However, the generated energy was insufficient to 

offset the average energy demand of a PBR at 145 MWh y-1 and was just in 

excess of the minimum reported energy demand of a PBR at 39 MWh y-1 

(Figure 4.2 B and Appendix D). In contrast, the lower energy demand required 

to operate HARP, 6.5 MWh y-1, resulted in more cases exceeding the energy 

demand with examples for all three algal species considered (Figure 4.2 A). 

Comparison across these cases revealed that use of traditional DAF and not 

including a pre-treatment step prevented the production of an excess amount of 

energy. Additionally, in only one case thermal pre-treatment was able to 

generate a net production (use of BDAF and growth in a HARP using primary 

effluent). Consequently, the results indicate that net energy production across 

the MAS can only occur if a low energy harvest technology such as BDAF and 

enzymatic hydrolysis pre-treatment is used.  
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Figure 4.2 Available energy for nutrients removal (net electricity produced from 

the algae, subtracted of the energy required for harvesting and pre-treatment) 

using two different cultivation systems (A) high rate algae pond and (B) 

photobioreactors. NT: non pre-treated; TH: thermal hydrolysis; ENZ: enzymatic 

hydrolysis. 

Consequently, the use of MAS resulted in a net reduction in energy deficit in all 

cases compared to the aerated wetland (Case A) with a few scenarios resulting 

in an overall net energy generation of between 2.2 and 12.8 MWh y-1. 

Therefore, if appropriate choices are made with respect to algal species, 

harvest technology and pre-treatment, then energy neutral nutrient polishing is 

possible. Analyses across all the scenarios revealed that energy surplus was 

possible in cases where enzymatic hydrolysis was coupled with BDAF (Figure 

4.3). Inclusion of BDAF as the harvest step significantly reduced the overall net 

energy deficit in all cases with a maximum deficit of 7.1 MWh y-1 representing a 
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minimum reduction of 88% compared to the aerated wetland. In comparison 

use of traditional DAF resulted in a reduction in the net energy deficit of 

between 39% and 7% compared to the aerated wetland demonstrating that 

MAS provides benefits even when utilising established harvest options. The 

choice of algal species had a relatively minor impact when choosing between 

the two single cell algae with the C. vulgaris reducing the net deficit slightly 

compared to S. obliquus. The minor difference observed due to algal species is 

congruent with the fact that the impact is more prominently observed in relation 

to chemical dose requirements during harvest. This is expected to have an 

insignificant impact on energy but becomes more important during carbon 

emission and cost analysis (Figure 4.3 and 4.4). In contrast, comparison with 

the filamentous algae indicated a significant difference where the reduced 

biogas productivity of the A. maxima reduced the net benefit of MAS and 

resulted in only one scenario where a net energy surplus was generated 

(BDAF, enzymatic hydrolysis and growth in a HARP using primary effluent) 

(Figure 4.3 C). The choice of pre-treatment options had a significant impact on 

the overall net energy balance with the maximum difference between options 

observed between no treatment and enzymatic hydrolysis at 16 MWh y-1. 

Thermal hydrolysis was positioned in between the other two options with a 

reduction from 8 to 10 MWh y-1 in comparison with enzymatic hydrolysis.  
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Figure 4.3 Additional energy demand for (A) S. obliquus; (B) C. vulgaris and (C) 

A. maxima compared to the base case (BC) and aerated wetland (AW), based 

on using a HARP - negative numbers represent a surplus of electricity. 
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4.2.3.2 Operational carbon footprint 

The inclusion of an aerated wetland increased the operational carbon of the 

base case by 28.85 tCO2eq y-1 as a consequence of the additional electricity 

demand for delivering the required oxygen (Figure 4.4). In contrast, the 

additional carbon footprint associated with the electricity demand was lower in 

all MAS systems reaching a maximum of 62% and a minimum of 0.15% of the 

aerated wetland case. However, in all MAS systems additional operational 

carbon footprint was required in terms of the transport of the additional biomass 

and the coagulating chemicals for the DAF plant and further requirements 

based on the replacement of lost glass beads used in the BDAF configurations 

and enzymes where enzymatic hydrolysis was used. Between the two green 

algae, the additional carbon footprint was most pronounced in the case of S. 

obliquus due to its higher coagulant dose requirements as a consequence of 

the elevated protein content in the excreted AOM (Paper 2.2, Section 2.2.3.1). 

The impact of this made the total operational carbon footprint exceed that of the 

aerated wetland when traditional DAF was used as the harvest technology. To 

illustrate, the additional carbon footprint associated with coagulant use was 13.6 

tCO2eq y-1 for S. obliquus, and 6.4 tCO2eq y-1 for C. vulgaris representing 46% 

and 16.8% of the total footprint. In the latter case, the reduced chemical use 

resulted in an overall lower carbon footprint associated with MAS even when 

DAF was used. A significant further reduction was observed when low energy 

harvesting as employed with, for instance, the total operational carbon footprint 

ranging between 2.1 and 14.5 tCO2eq y-1. Component analysis of the BDAF 

cases with C. vulgaris revealed the enzymes to represent the single biggest 

component, contributing up to 65% of the total footprint. In contrast, the very 

high coagulant demands associated with harvest of filamentous algae A. 

maxima exerted the largest impact on the total carbon footprint contributing up 

to 99% of the total and a maximum footprint of 30.8 tCO2eq y-1 associated with 

use of BDAF and no pre-treatment (Figure 4.4 C). Overall, a much greater 

impact was observed in relation to the selection of algae species compared to 

the analysis of energy reflecting the significant impact that species selection is 

known to have on coagulation (Henderson et al., 2010; Ometto et al., 2014).  
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Figure 4.4 Additional operational carbon emission for (A) S. obliquus, (B) C. 

vulgaris and (C) A. maxima, compared to the base case (BC) and the aerated 

wetland (AW), based on using a HARP. 
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4.2.3.3 Operational costs 

The total additional opex associated with the aerated wetland is significantly 

lower than all MAS cases for S. obliquus and A. maxima reflecting the high 

coagulant demands exerted by these two algal species. To illustrate, the 

aerated wetland resulted in an increased opex of £8,352 y-1 compared to an 

opex range for S. obliquus of between £9,838 y-1 and £30,599 y-1 corresponding 

to treatment costs of 6.8 p m-3, 7.9 p m-3 and 24.7 p m-3 respectively. This 

compares to typical operating costs associated with activated sludge processes 

of 7 p m-3 (Shi, 2011) and a recent reported cost of 14 p m-3 to implement 

reactive media in constructed wetland for phosphorus removal (Jefferson, 

2013). In comparison, when C. vulgaris is considered, the lower coagulant 

requirement significantly reduces the total additional opex such that treatment 

costs vary between 3.5 p.m-3 and 10.1 p m-3 for BDAF and DAF configurations 

respectively. Correspondingly, MAS utilising appropriate algae and harvest 

technology can deliver a total treatment opex lower than that of the aerated 

wetland. The impact of pre-treatment options on opex was relatively minor 

compared to the impacts associated with selection of algal species and harvest 

technology. To illustrate, the maximum difference in annual opex associated to 

pre-treatment choice was £2,468. This compares to a maximum calculated 

annual income of £2,397 associated to additional energy production equivalent 

to 1.9 p m-3 for the BDAF, enzymatic hydrolysis treatment in primary effluent 

configuration (Case C).  
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Figure 4.5 Additional operational costs for (A) S. obliquus, (B) C. vulgaris and 

(C) A. maxima, compared to the base case (BC) and the aerated wetland (AW), 

based on using a HARP - negative number represent the energy surplus sold to 

the market . 
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4.2.4 Discussion and conclusions 

It was originally hypothesised that the inclusion of a microalgae system (MAS) 

on a wastewater treatment flow sheet could provide a route for energy-neutral 

nutrient removal systems if low energy harvesting technologies were adopted 

and an efficient energy conversion of the algae biomass was guaranteed. From 

the analysis of the different scenarios, MAS proved to be a viable alternative 

compared to conventional upgrade technologies such as aerated wetlands as 

applied to small municipal WWTs.  

To produce an integrated energy neutral MAS, it is necessary to combine low 

energy harvesting processes with efficient AD pre-treatments. In particular, the 

case scenarios, which included BDAF for harvesting microalgae and enzymatic 

hydrolysis for the pre-treatment, generated a surplus of energy compared to the 

base case and confirmed the original hypothesis (Table 4.4). Further, in 

comparison to the aerated wetland, significant enhancement of the energy 

associated to nutrient polishing could be achieved with a net difference of 

between 58 and 72.4 MWh y-1. However, current aerated wetland systems are 

undergoing energy optimisation as they known to use around 2.5 Wh person-1, 

a value similar to the energy demand of activated sludge on a per population 

basis (Pearce, 2013). Consequently, the difference is likely to be reduced with 

anticipated savings of up to 50% in the total energy demand expected with the 

next generation of aerated wetlands. However, irrespective of efficiency savings 

all alternatives to MAS will exert an additional energy demand on the system 

and so will neither exceed the potential of MAS due the options ability to 

produce energy from the waste algal biomass.  

Accordingly, the main advantage of MAS is the waste algae biomass generated 

representing a valuable feedstock for AD. Hence, future technology 

developments within MAS that increase productivity or reduce associated 

energy use will further enhance the suitability of the technology. To illustrate, 

the adoption of cultivation system such as PBRs allow higher biomass 

productivity, limit cross infection by unwanted algae species or microorganisms 

preventing loss of biomass, and so should be preferred (Day et al., 2012). 

However, as previously observed, these technologies are currently too energy 
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demanding to allow excess of energy production such that currently, HRAP are 

the only feasible MAS configuration (Slade and Bauen, 2013). Further, the 

above analysis has been based on day light irradiation and seasonal weather 

variations associated with the UK limiting the algae biomass productivity 

(Cromar and Falloefield, 1997; Roleda et al., 2013). A higher or lower irradiation 

over the year will generate a higher and lower amount of energy available for 

nutrient removal as defined in section 1.1.3.1. In addition, the location of the 

MAS near sources of spare heat and CO2 such as a CHP system, will allow the 

use of these two resources able to support the algal growth and mitigate 

adverse weather condition such as low temperatures (Ventura et al., 2013). For 

instance, an increase in biomass concentration at the harvesting point from 200 

gDM m-3 to 240 gDM m-3 (+ 20%) during the summer season (pick value) will 

allow an additional algal energy output of 31 %, 29 % and 45 % for S. obliquus, 

C. vulgaris and A. maxima, respectively, when considering BDAF as the 

harvesting technique and enzymatic hydrolysis as the AD pre-treatment in Case 

B (Figure 4.6). This will allow even A. maxima, primarily unable to balance the 

energy requirement of the HRAP in (Figure 4.2), to generate an energy surplus 

equal to 50 kWh y-1. Conversely, a reduction of the algae biomass will reduce 

the overall energetic benefits depending on the algae species. In Case B, S. 

obliquus will be able to guarantee an energetically self-sufficient HRAP with a 

28% biomass reduction, while, the higher energy content of C. vulgaris allows 

an higher biomass reduction of 37% before the energy balance ceases to be 

beneficial. Similar behaviour was observed in Case C with Scenedesmus sp. 

and Chlorella sp. Were able to resist a 48% reduction in biomass, compared to 

33% when cultivating A. maxima.  
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Figure 4.6 Impact of algae biomass variation on available energy for nutrient 

removal considering the optimal case scenario (BDAF + Enzymatic hydrolysis). 

Translation of the above analysis to more amenable climates for algal growth 

indicates that the overall balance becomes significantly enhanced. To illustrate, 

assuming a S. obliquus biomass concentration equal to 500 mg l-1 is applied all 

year round, a maximum surplus energy generation of 17.2 MWh y-1 could be 

achieved when using BDAF for harvesting and enzymatic hydrolysis as the pre-

treatment to AD (an improvement of 5.5 MWh y-1 compared to the best case 

described in the current analysis). Consequently, where sufficient land is 

available and the climate appropriate, MAS can be implemented at larger 

wastewater treatment plants contributing to both nutrient removal and the 

overall energy balance (Ometto et al., 2013).  

While the energy balance of the system is more affected by the technologies 

adopted to process the algae and the amount of generated biomass, the 

specific algae species primarily impact on coagulant doses and related 

operational carbon emissions and opex. In the present analysis the coagulant 

demand was fixed for each alga according to the experimental observations 
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reported in Chapter 2 (standard growth medium, stationary growth phase). 

However, at full scale the specific growth stage at the harvesting point will be 

defined by the HRT adopted to meet the prefixed nutrients concentration in the 

final effluent. Therefore, the specific characteristic of algae biomass, such as 

AOM, charge density and cells concentration are expected to vary over time 

affecting the optimal coagulant demand (Appendix A, Figure A.3). Monitoring 

the zeta potential will help maintain a high harvesting efficiency (Henderson et 

al., 2008; Ometto et al., 2014) but will impact the overall balances through a 

potential increase in chemical use. To illustrate, a 10% increase in coagulant 

demand when harvesting C. vulgaris, S. obliquus, and A. maxima (Case B, 

BDAF follow by enzymatic hydrolysis) will increase the annual operational costs 

by £330 (+ 5%), £1,700 (+ 9%) and £4,250 (+ 9%), respectively (Figure 4.7 A). 

Correspondingly, C. vulgaris appears the most robust choice of algae as the 

impact in changing coagulant demand has the least impact. For instance, a 

positive economic balance can be maintained until a 40% increase in coagulant 

dose when comparing the contribution of the overall system with aerated 

wetlands (Table 4.4). In addition, the higher energy output of this specific algal 

species when cultivated under low nitrogen concentration (Case B), limits the 

impact of the coagulant demand on the opex (Figure 4.7 A). Conversely, with S. 

obliquus a 60% reduction of the coagulant dose is required in order to be more 

favourable than the aerated wetland solution, while the cultivation of A. maxima 

represents, in all cases, the most expensive scenario (Table 4.4).  

In term of carbon footprint, an additional 0.21, 1 and 3.2 tCO2eq y-1, for C. 

vulgaris, S. obliquus, and A. maxima, respectively, was observed when 

considering a 10% increase in coagulant demand irrespective of the treatment 

configuration adopted (Figure 4.7 B). When comparing the overall carbon 

emission of the MAS with the aerated wetlands (Case A), both green algae 

maintain environmental benefits up to an 80% increase in coagulant demand. In 

contrast, the significantly higher coagulant dosage required by A. maxima 

results in an higher total carbon emission than the aerated wetland unless the 

coagulant demand is reduced by 15%.  



Chapter 4 

205 

 

 

Figure 4.7 Impact of coagulant demand variation on (A) operational costs and 

(B) operational carbon emissions of the optimal case scenario identified (BDAF 

+ Enzymatic hydrolysis). 
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Overall, the adoption of appropriate MAS enables the net generation of energy 

to be maintained at small works even when meeting tighter nutrient discharge 

consents and so fits with the current philosophy on small works (Vale, 2013). In 

contrast, even the most effective MAS option required an increase in opex of 

234% and an increase in carbon footprint of 362% compared to the base case. 

Nevertheless, despite the environmental impact, applying a carbon emissions 

price of £4.94 per tCO2 (Ares, 2013), the economic impact of the carbon 

footprint is negligible compared to the overall operational costs (Table 4.4). In 

all cases, MAS provided benefits compared to the aerated wetland, 

demonstrating the overall suitability of the technology option for upgrading small 

works.  

Ultimately, consideration of the impact of design choices on the efficacy of MAS 

shows that harvest technology, pre-treatment options and algal reactor 

configuration principally influence the overall energy balance. In contrast, the 

impact of choice with regards to algal species is most predominantly observed 

in terms of the carbon footprint and the opex where the specific algae growth 

conditions will significantly impact on the overall outcomes of the system.  
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Table 4.4 Comparison between optimal energy balances considering the 

contribution of the overall system.  

Scenario 

Net energy 
consumption 

Operational 
emissions 

Carbon emission 
costs 

Operational 
costs 

MWh y-1 tCO2eq y-1 £ y-1 £ y-1 

Base Case -4.3 2.4 11.9 3,200 

Case A 55.4 29.2 144.9 11,600 

Case B (HRAP)
a 

 

 

 

 

 

S. obliquus -9.2 16.5 81.5 22,500 

 

C. vulgaris -11.7 8.4 41.5 10,200 

 

A. maxima -2.6 32.5 160.5 52,400 

Case C (HRAP)
a 

 

   

 

S. obliquus -17 16.8 82.9 22,100 

 

C. vulgaris -17 8.7 43 7,500 

 

A. maxima -11.6 32.8 162 51,930 
aalgae using BDAF as harvesting system and enzymatic hydrolysis as pre-treated; 

negative number represent surplus of energy; a economics saving when using MAS 

compared to aerated wetlands (Case A), applying a carbon emissions allowances of £ 

4.94 per tCO2 (Ares, 2013) 
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5 CONCLUSIONS AND FUTURE WORKS 

5.1 Conclusions 

The major conclusion of this work was that microalgae represents a viable 

alternative for wastewater nutrients removal systems, improving the energy 

balance of a small integrated microalgae wastewater treatment when combined 

with low cost harvesting technologies and high efficient AD pre-treatments such 

as thermal or enzymatic hydrolysis. However, the feasibility of the system will 

depend also on the algae species used for the process. 

Specific conclusions were as follows: 

 A review of the innovation on microalgae low energy harvesting 

technologies showed that the specific characteristics of the algae 

suspension, such as spent growth media (which includes of algogenic 

organic matter) and cell’s physical characteristics, determine the range of 

technologies which can guarantee efficient separation and low cost 

processes (Paper 2.1; Objective 1). The work also suggests that the 

quality of the recovered algal biomass will depend on the harvesting 

system and that the market price of the final algae products will also help 

to determine the most appropriate process. Hence, when selecting the 

harvesting technology for specific applications, it is fundamental to know 

in detail the characteristics of the algal biomass and the 

economical/energy targets to achieve.  

 The low-energy harvesting system used in Paper 2.2, Ballasted 

Dissolved Air Flotation (BDAF), was demonstrated to be a low-cost and 

more sustainable alternative to the original Dissolved Air Flotation (DAF) 

process, suitable for low cost algae derived products such as biofuels. In 

addition to the energy savings, the adoption of floating microspheres in 

place of air micro-bubbles was able to reduce coagulant demand (up to 

95% depending on the algae species), generating carbon and economic 

saving (Paper 2.1; Objective 2). The cost of the process could be further 

decreased once the separation and recovery method of the glass 
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microspheres will be optimised. Similarly to the coagulant demand, the 

bead separation process will be linked to the algae species treated and 

to the strength of the algae-bead floc formed by the algae. The floc 

structure obtained using low concentrations of coagulant is different 

when treating single cells or filamentous algae. The latter in particular 

showed a more expanded and loose structure, suggesting lower energy 

requirements for the bead recovery system. 

 Algae biomass can be used as anaerobic digestion (AD) feedstock, and 

their degradation yields can be improved by adapting the microbial 

community of the digester. Indeed, algae harvested from the wastewater 

treatment plant will be associated to a microbial community adapted to 

use the algae cells and their degradation products. As suggested in 

Paper 2.1, the endogenous microbial community added to the digester 

with the wastewater algae produced a positive impact on the composition 

of the AD microbial community and the reactor performance (Paper 2.1; 

Objective 2 and 3). Hence, when digesting untreated algae, it is 

recommended to provide an adaptation period to the AD system using 

step-wise additions and after that maintain a constant amount of algae in 

the feedstock. This finding is of particular interest for processing 

seasonal algae waste from eutrophic environments which can therefore 

be treated by existing facilities without compromising their performances. 

 The stoichiometric biogas potential of microalgae can only be achieved 

by pre-treating the biomass. As for the harvesting process, optimal pre-

treatment conditions are algae species specific (Paper 3.2; Objective 4). 

In particular, higher energy intensive processes need to be used when 

dealing with single cell algae containing acetolysis resistant polymers 

(ARB). As a consequence, when designing new microalgae cultivation 

systems for biogas or biofuel production, the pre-treatment unit needs to 

take into account the specific characteristics of the algae biomass to 

allow efficient cell degradation. Conversely, when integrating a 

microalgae nutrient removal process on an existing WWT plant with on-
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site sludge pre-treatments, the algae biomass could be selected to 

maximise the impact of the existing pre-treatment unit. Amongst the pre-

treatments investigated in Paper 3.2, enzymatic hydrolysis showed the 

highest levels of cell solubilisation, producing the most positive energy 

balance. This suggests that the breakage of the cell wall membrane 

obtained using physical pre-treatments is not sufficient to guarantee 

complete microalgae digestion which required solubilisation of the 

bacterial resistant compounds affecting digestion. 

 The inclusion of the microalgae system (MAS) as an upgrade option for 

small sewage works enables delivery of stringent effluent nutrient 

discharge concentrations whilst generating surplus of energy (Paper 4.2; 

Objective 5). The utilisation of a low-energy harvesting unit (e.g. BDAF), 

combined with an efficient low-energy pre-treatment (e.g. enzymatic 

hydrolysis) showed the potential to more than offset the energy demand, 

generating additional energy saving. This saving can be used to balance 

the low biomass availability expected when processing final wastewater 

effluent, where the low nutrient content limits the growth of excess 

biomass.  

 Compared to alternative conventional low–energy wastewater treatments 

such as aerated wetlands, the MAS was demonstrated to be more 

economic and sustainable, reducing operational costs and carbon 

emissions (Paper 4.2; Objective 5).  

 The impact of design choices on the efficancy of MAS demonstrated that 

harvest technology, pre-treatment options and algal reactor configuration 

principally influenced the overall energy balance. In contrast, the impact 

of algal species selection is most predominantly observed in terms of the 

carbon footprint and the opex. 
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5.2 Future works 

In the course of this project, a few areas for further research have been 

identified. These are listed below: 

 Chapter 2 showed that the AOM composition and the physical 

characteristics of the microalgae cells have a large impact on the 

harvesting process costs and hence on the whole production cost of 

algae biomass. Additional algae species need to be characterised to 

provide a broader picture of the influence of different algae and their 

AOM composition on specific harvesting technologies. All the thesis work 

was carried out using algae cultivated indoor on synthetic media to allow 

a fair comparison of the different methods investigated. A follow-on 

investigation on the impact of wastewater on the AOM composition and 

cell characteristics of algae grown in environmental conditions will allow 

validatation of the results into more practical applications. 

 A large- and pilot-scale BDAF harvesting system using algae grown in 

wastewater is required to validate the energy and financial savings 

identified in the current thesis. In particular, the microsphere separation 

process needs to be set-up to guarantee efficient algae–bead separation 

without compromising the integrity of the algae cells. In addition, as for 

the previous point, other algae species and/or mixed communities need 

to be tested to verify the performance of the system in environmental 

conditions. 

 The glass microspheres (ballasting agents) represent the major costs for 

the BDAF harvesting system. Substitution of those with a more 

economical material, such as biopolymers, has the potential to make this 

technology more competitive on the market. However, different materials 

will impact differently on the algae-bead floc formation and the coagulant 

dosages which will need to be addressed by further experimental work. 

 Pilot- and full-scale facilities for AD of microalgae biomass are still 

limited. A pilot-scale study will confirm the overall feasibility of the 
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process. In addition, the behaviour of the algae biomass when pre-

treated and/or co-digested with wastewater sludge or other biomass, or 

when using a mix of different algae species needs to be addressed with 

further research. 

 The results reported in Paper 3.2 demonstrated the use of enzymes as 

an efficient low energy pre-treatment to enhance the methane production 

from microalgae biomass. The outcomes of this work are very promising 

and, together with the current research interest in this area, suggest the 

need for additional investigations of the enzymatic hydrolysis using 

different enzymes. For example, the adoption of enzymes working at low 

temperatures could allow their direct application in the reactor without the 

need of a separate pre-treatment step of the biomass. In addition, the 

impact of the enzymes on the AD microbial community, as well as on 

digestion parameters such as volatile fatty acids, alkalinity and pH, need 

to be investigated.  
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Appendix A - Microalgae growth curve 

Growth curves of Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima. 

Cell counting was performed manually using a light microscope with a 

haemocytometer for S. obliquus and Chlorella sp. or a Sedgewick Rafter for A. 

maxima. All algal biomass was harvested at the stationary growth phase (maximum 

yield) where the cell morphology is homogeneous and the AOM has the greatest 

effect on the coagulation. 

 

Figure A.1 Microalgae grow curve. Chlorella vulgaris (A), Scenedesmus obliquus (B) 

cultivated in Jaworski's medium and Arthrospira maxima (C) cultivated in Zarrouk’s 

medium.  



 

 

A.1 Jaworski's medium 

In 1 litre, 1 ml of stock solution: 4 g/200ml Ca(NO3)2 4H2O; 2.48 g/200ml KH2PO4; 

10g/200ml MgSO4 7H2O; 3.18 g/200ml NaHCO3; 0.45 g/200ml EDTAFeNa and 

EDTANa2; 0.496 g/200ml H3BO3 with 0.278 g/200ml MnCl2 4H2O and 0.2 g/200ml 

(NH4)6Mo7O24 4H2O; 0.008 g/200ml Cyanocobalamin with Thiamine HCl and Biotin; 

26 g/200ml NaNO3; 7.2 g/200ml Na2HPO4 12H2O. 

A.2 Zarrouk medium 

In 1 litre: 18.0 g NaHCO3, 2.5 g NaNO3, 0.5 g K2HPO4, 1.0 g K2SO4, 1.0 g NaCl, 

0.04 g CaCl2, 0.08 g Na2EDTA, 0.2 g MgSO4·7H2O, 0.01 g FeSO4·7H2O and 1.0 ml 

trace elements (TE). TE: 2.86 g H3BO3, 0.02 g (NH4)6Mo7O24, 1.8 g MnCl2·4H2O, 

0.08 g Cu2SO4, 0.22 g ZnSO4·7H2O, all in 1 litre). 

A.3 Algogenic Organic Matter (AOM)  

In Figure A.2 the composition of the AOM released at exponential (EXP) and 

stationary (ST) growth phase of different algae species is compared. The 

proteins:carbohydrates ratio affects the hydrophobicity of the overall algae 

suspension, and therefore the charge density and coagulant demand (Chapter 2). 

 

Figure A.2 AOM concentration in different algae species. EXP = exponential growth 

phase; ST = stationary growth phase. *Henderson et al., 2010. 
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Appendix B  - Preliminary experiments of anaerobic 

digestion 

B.1 Experiment 1 

Correlation between small (100 ml serum bottle placed in an incubator at 38°C with 

constant shaking) and large (1000 ml duran bottle placed at 38°C in a water bath 

and shake manually once a day) batch digestion experiments using a number of 

different samples including microalgae (mixture of Scenedesmus obliquus and 

Chlorella sp.), digestate from four AD plants and cellulose.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1 Biogas production (ml gVSadd
-1) using large scale and small scale batch 

system. 

Cellulose 

Digestate A 

Digestate B 

Digestate C 

Digestate D 



 

 

B.2 Experiment 2 

Batch anaerobic digestion of cultivated algae biomass under different 

VSinoculum:VSsubstrate ratio (VSr) using Scenedesmus obliquus, Chlorella sorokiniana, 

Arthrospira maxima, Primary sludge (PS) and a mixture of PS and waste activated 

sludge (WAS). 

Table B.1 Biogas production of different substrates. 

Substrate 

  VSr 2:1    VSr 1:1   VSr 1:2 

 

 Kh  Biogas CH4 

 

 Kh  Biogas CH4 

 

 Kh  Biogas CH4 

  (d
-1

) (ml gVS
-1

) (%)   (d
-1

) (ml gVS
-1

) (%)   (d
-1

) (ml gVS
-1

) (%) 

S. obliquus 

 

0.26 563±112 61 

 

0.08 335±10 58 

 

0.05 317±85 43 

C. sorokiniana 

 

0.27 425±38 67 

 

0.07 298±03 60 

 

0.06 322±64 54 

A. maxima 

 

0.14 310±30 62 

 

0.12 145±06 - 

 

- - - 

PS 

 

0.15 614±14 82 

 

0.09 350±62 83 

 

0.08 278±03 83 

PS/WAS 80/20  0.12 286±48 70  0.13 330±86 85  0.10 234±7 75 

PS/WAS 60/40  0.25 540±2 83  0.11 463±73 81  0.08 324±104 80 

 

 

Figure B.2 Small scale anaerobic digestion apparatus 
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Appendix C  - Paper 2.2 supporting information 

 

Figure C.1 Floc growth and breakage profile for DAF (left column) and BDAF (right 

column) system, of S. obliquus (A and B), C. vulgaris (C and D) and A. maxima (E 

and F) at increasing shear rate  
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Appendix D - Paper 4.2 supporting information 

 

Figure D.1 Additional energy demand for (A) S. obliquus; (B) C. vulgaris and (C) A. 

maxima compared to the base case (BC) and aerated wetland (AW), based on using 

a PBR - negative numbers represent a surplus of electricity.  

 



 

 

 

Figure D.2 Additional operational carbon emission for (A) S. obliquus, (B) C. vulgaris 

and (C) A. maxima, compared to the base case (BC) and the aerated wetland (AW), 

based on using a PBR. 
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Figure D.3 Additional operational carbon emission for (A) S. obliquus, (B) C. vulgaris 

and (C) A. maxima, compared to the base case (BC) and the aerated wetland (AW), 

based on using a PBR. 
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Appendix E  - Improving the energy balance of an 

integrated microalgal wastewatert treatment process  

Francesco Ometto, Rachel Whitton, Frédéric Coulon, Bruce Jefferson and Raffaella 

Villa. 

Cranfield University, Bedfordshire, UK 

Pubblished in Waste and Biomass Valorization (March 2012) 

Abstract  

The inclusion of a microalgal system in a wastewater treatment flowsheet for residual 

nutrient uptake can be justified by processing the waste biomass for energy 

recovery. Low energy harvesting technologies and pre-treatment of the algal 

biomass are required to improve the overall energy balance of this integrated 

system. Scenedesmus obliquus and Chlorella sp., achieving nitrogen and 

phosphorus removal rates higher than 90%, were used to compare cells recovery 

efficiency and energy requirements of two energy efficient harvesting systems: 

Dissolved Air Flotation (DAF) and Ballasted Dissolved Air Flotation (BDAF). In 

addition, thermal hydrolysis was used as a pre-treatment to improve biogas 

production during anaerobic digestion. The energy required for both systems was 

then considered to estimate the daily energy demand and efficiency of two 

microalgae wastewater treatment plants with a capacity of 25,000 and 230,000 p.e., 

respectively. Overall, a high algal cells recovery efficiency (99%) was achieved using 

low energy demand (0.04 kWh m-3 for BDAF) and a coagulant dose reduction 

between 42 and 50% depending on the algal strain. Anaerobic digestion of pre-

treated S. obliquus showed a 3-fold increase in methane yield. Compared to a 

traditional activated sludge process, the additional tertiary microalgal treatment 

generates an integrated process potentially able to achieve up to 76% energy 

efficiency. 

 

 

Keywords: microalgae, harvesting, cell wall, thermal hydrolysis, anaerobic digestion, 

energy balance.  
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E.1.1 Introduction 

Utilisation of algae as part of a nutrient removal strategy within wastewater treatment 

enables relatively passive polishing of residual nitrogen and phosphorus in reactors 

with residence times ranging between 2 - 4 days (Martinez et al., 2000; Xin et al., 

2010). For instance, batch reactors operated over a 2-day cycle time containing 

Chlorella vulgaris and Scenedesmus obliquus resulted in 80 and 96% removal of 

ammonia respectively (Ruiz-Marin et al., 2010). Extending residence times to 15 

days with S. obliquus has demonstrated the capability to reach effluent concentration 

as low as 0.01 mg l-1 total phosphorus (TP) (Xin et al., 2010) indicating potential for 

small works to meet very low discharge consents as long as sufficient land is 

available. In addition to nutrient removal, microalgae can acts as CO2 sequestration 

agent at rates of around 1.8 kgCO2 kgbiomass
-1 and so have the potential to be 

integrated into biogas upgrade loops as a means of CO2 disposal.  

A range of reactor configurations have been considered including algal ponds, 

photo-bioreactors, immobilisation and attached systems (Demirbas et al., 2010; 

Christenson et al., 2011; Pittman et al., 2011). Photo-bioreactors are typically used 

when high value products are generated from the algae biomass where 

concentrations in the reactors can reach up to 2 kg m-3 (Min et al., 2011; Tredici 

2007). In the Case of wastewater treatment the majority of systems are based on 

algal ponds where biomass concentration remains below 1 kg m-3 with average 

values between 0.2 and 0.6 kg m-3 (Cromar and Fallowfield 1997; Tredici 2007). In 

either configuration two additional requirements must be met for them to be 

integrated into a wastewater treatment flowsheet. Firstly, the algae must be 

separated from the water phase prior to discharge and secondly the algae must be 

used/disposed of. In the wastewater context, anaerobic digestion of the collected 

biomass appears the most sensible option as the quantities are generally quite small 

and the AD assets already exist. In such cases an interesting opportunity presents 

itself whereby the energy required to operate the algae reactors may be offset by the 

additional energy produced through digestion of the used algal biomass. 

Examination of the requirements for integration of algae reactors into a standard 

wastewater flowsheet reveals two key components: (i) the need for a low energy cell 

recovery system to reduce energy requirement for biomass harvesting and (ii) the 
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need to maximum biogas production from algae through pre-treatment of the algal 

cells.  

Typical separation processes used for algae harvest include centrifuges or pressure 

and vacuum filters with associated energy demands ranging between 0.3 and 8 kWh 

m-3 (Molina Grima et al., 2003). At large scale, low energy systems (< 0.3 kWh m-3) 

such as chemical flocculation, bio-flocculation or autoflocculation, are considered 

efficient pre-concentration technologies which can reduce operation costs when 

combine with traditional harvesting system (Beach et al., 2012; Salim et al., 2012) 

The main alternative to those is the use of dissolved air flotation (DAF). The system 

generates micro bubbles of air which attach to algae cells and allow them to float 

(Edzwald, 1993). Generation of the bubble is through released of a supersaturated 

water solution akin to beer production and has an energy associated with it of around 

0.3 kWh m-3 (Jarvis et al., 2009). Recent innovations in the technology have 

replaced the produced air with glass beads in a process called ballasted dissolved 

air flotation (BDAF) were the beads can be recycled enabling reduction in energy of 

60 – 80% compared to traditional DAF systems (Jarvis et al., 2009). Anaerobic 

digestion of algae in traditional mesophilic digesters yields between 30% and 50% of 

the potential theoretical values (Golueke et al., 1957; Mussgnug et al., 2010; Heaven 

et al., 2011) Higher efficiencies has been reported for thermophilic conditions or 

when co-digesting algae with other biomass (Yen and Brune 2007; Zamalloa et al., 

2012). In all cases, the hardness of the cell wall seems to represent the main 

inhibitor factor (Golueke et al., 1957; Gonzalez-Fernandez et al., 2012a). The cell 

wall of green algae is mainly composed of sugars (24 – 74%), such as glucose, 

mannose and galactose, forming cellulose and hemicellulose with biopolymers (e.g. 

sporopollenin, algaenan) which are responsible of the thickness and the resistance 

of the cells to bacteria degradation (Abo-Shady et al., 1993; Gonzalez-Fernandez et 

al., 2012b). In order to overcome this limitation, a range of pre-treatment methods 

such as ultrasound, high temperature, French press and enzymes have been used 

to improve algae digestion and biomethane yields (Alzate et al., 2012; Gonzalez-

Fernandez et al., 2012b; Ehime et al., 2013). In relation to wastewater treatment, 

one of the most commonly used pre-treatment processes is the thermal hydrolysis 

(STOWA, 2006; Shi, 2011). The process works by applying a combination of 

temperature (150 – 170 °C) and pressure (6 - 8 bar), which breaks down the physical 

structure of all the organic material including algae. 
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Linking together the innovative approaches outlined here potentially improves the 

opportunity to be more sustainable and energetically balanced in relation to nutrient 

removal. The current paper considers this by evaluating the impact of inclusion of 

these technologies in a wastewater flowsheet containing an algal reactor for nutrient 

polishing (Figure 4.6). In particular the work compares Dissolved Air Flotation and 

Ballasted Dissolved Air Flotation for algae collection and the effect of a thermal 

hydrolysis pre-treatment on algal cell disruption and digestion yields using S. 

obliquus and Chlorella sp. The two technologies were combined in different 

scenarios to estimate the energy demand and the energy efficiency at two different 

scales of operation: 25,000 and 230,000 p.e., respectively. 

c

Influent

wastewater

Residual 

N and P

ALGAL TREATMENTACTIVATED SLUDGE DIGESTION

AD

Biogas

Digestate

Wastewater sludge

Treated effluent

HARVESTING PRE-TREATMENT

 

Figure E.1 Schematic diagram of an integrated microalgae wastewater treatment 

process 

E.1.2 Materials and methods 

Algal culture  

Experiments were conducted on two single cell green microalgae species: S. 

obliquus (276/42) and Chlorella sp. (211/BK) which were obtained from the Culture 

Collection for Algae and Protozoa (Oban, UK) and cultivated in Jaworski Media 

(Henderson et al., 2009). Algal growth was characterised using cell counting with 

soluble protein content (sPC) and soluble carbohydrate content (sCC) measured 

according to the methods described in Henderson et al. (2009). Solids content, 

chemical oxygen demand (COD) and soluble COD (sCOD) were measured 

according to APHA standard methods (Greenberg et al., 1992). 

Microalgae harvesting  

Jar tests experiments (1l) were undertaken using an EC Engineering DBT6 DAF jar 

tester (Alberta, CND). The DAF and BDAF tests were performed according to 
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Henderson et al. (2009) and Jarvis et al. (2009), respectively. Biomass concentration 

of 5 x 106 ± 105 cells ml-1 was used for the different testing condition. The pH was 

adjusted to 7 using a 0.1 M HCl and 0.1 M NaOH solution. 300 mg l-1 of low-density 

glass beads between 40 and 100 µm with a density of 100 kg m-3, from Trelleborg 

Emerson and Cuming Inc. (Mansfiled, USA) were used after a pre-flotation test to 

eliminate non-floating beads (Jarvis et al., 2009), Aluminium sulphate (Al2(SO4)3) 

was used as coagulant. The clarified samples were analysed for residual cell 

content. All analyses were carried out in duplicate. 

Thermal hydrolysis treatment  

Thermal hydrolysis of the algal biomass was achieved using a Baskerville autoclave 

and steam generator WON15827 (Manchester, UK). The unit is composed of two 

connected pressure vessels. Steam generated at 165°C and 8 bar was flash-injected 

for 30 min into the reaction vessel where concentrated algae, 200 ml at 2.0 ± 0.5 g 

TS l-1, were maintained at 90°C. Cell counting, solid content, COD, sCOD, sCP, sPC 

were measured in duplicate before and after treatment. 

BioMethane Test (BMT) 

The biomethane production was determined using a modified method of Angelidaki 

et al. (2009) Digested sludge seed (inoculum) was obtained from a local WWTP and 

incubated at 38°C for 2-3 weeks to eliminate any residual activity. Seed and pre-

concentrated algal biomass were mixed to obtain a volatile solids (VS) ratio of 1:1 

(VSseed:VSalgae). 20 ml of the mix was then transferred to a 100 ml serum bottle. The 

pH was adjusted to a value of 7 using a 1 M NaOH solution and the bottles were 

filled with 40 ml of nutrient solution (Angelidaki et al., 2009) to a final volume of 60 ml 

leaving a head space of 40 ml. All tests were flushed with N2 gas, sealed with a 

PTFE crimp cap, and then placed into a shaking incubator at 38°C and 150 rpm. 

Biogas production and composition were determined at day 2, 5, 8, 12, 16, 21 and 

25. The methane content was measured using a Servomex 1440 gas analyser 

(Crowborough, UK). All tests were conducted in triplicate using treated or untreated 

algae.  

Energy efficiency evaluation 
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The daily energy demand and efficiency of an integrated wastewater plant involving 

an activated sludge (AS) system followed by a microalgal raceway pond and an on-

site anaerobic digestion (AD) was evaluated using the data reported by Shi (2011) 

and by Zamalloa et al. (2011). The efficiency of the WWTP is defined as the 

percentage amount of energy produced compare to the total energy demand. The 

treatment capacity and energy requirement of the two plant sizes considered are 

shown in Table 4.3. Six different scenarios with different configuration were 

considered including:  

1. Activated Sludge and Anaerobic Digestion (AS+AD) 

2. Activated Sludge, Algal Pond, DAF harvesting system and Anaerobic 

Digestion (AS+Pond+DAF+AD) 

3. Activated Sludge, Algal Pond, BDAF harvesting system and Anaerobic 

Digestion (AS+Pond+BDAF+AD) 

4. Activated Sludge and Anaerobic Digestion with a Pre-Treatment step 

(AS+Pre-treat.+AD) 

5. Activated Sludge, Algal Pond, DAF harvesting system and Anaerobic 

Digestion with a Pre-Treatment step (AS+Pond+DAF+Pre-treat.+AD) 

6. Activated Sludge, Algal Pond, BDAF harvesting system and Anaerobic 

Digestion with a Pre-Treatment step (AS+ Pond+BDAF+Pre-treat.+AD). 

Harvesting energy demand values used were equivalent to 0.3 kW m-3 and 0.04 kW 

m-3 for DAF and BDAF system, respectively (Jarvis et al., 2009). The energy 

generated by the wastewater sludge digestion was back calculated from the 

assumed energy efficiency (Table E.1). Additional energy from algal digestion was 

estimated using the methane yields reported in the present work, applying a 

methane energy conversion of 9.7 kWh m-3 and 30% efficiency (Shi, 2011). 
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Table E.1 Integrated WWTP parameter design 

Traditional WWTP (AS+AD) TP25K TP230K 

Capacity 25000 p.e. 230000 p.e. 

Influenta 4200 m3 d-1 38640 m3 d-1 

Energy demand (AS)b 0.6 kWh m-3 0.45 kWh m-3 

Energy efficiency without AD pre-treatmentc 25% 35% 

Energy efficiency with AD pre-treatmentc 40% 60% 

Algal treatment  TP25K TP230K 

Pond dimensiond 8.4 ha 77.3 ha 

Biomass production (VS)e 1.06 ton d-1 9.74 ton d-1 

Energy demand (cultivation)f 
32.5 kWh ha-1 d-

1 
32.5 kWh ha-1 d-

1 

awater availability of 210 l d-1 p.e. and a recovery coefficient of 0.8; belectricity consumption 

(Shi, 2011; c assuming a thermal hydrolysis energy demand of 30 Wh pe-1 d-1(STOWA, 

2006); draceway pond with 4 d HRT (Xin et al., 2010) and 0.2 m depth (Zamalloa et al., 

2011); ebiomass concentration of 280 g VS m-3 and an harvesting recovery coefficient of 0.9 

for both S. obliquus and Chlorella sp.; felectricity consumption of a low level mixing system 

(paddle wheel) to guarantee a velocity 15 cm s-1 (Zamalloa et al., 2011). 

E.1.3 Results and discussion 

Harvesting technologies 

Full algal cells recovery (> 99 %) was achieved using both harvesting systems: 

BDAF confirming the potential to use a lower energy alternative to traditional DAF. 

The associated energy saving of using BDAF as opposed to DAF was estimated at 

0.26 kW m-3 resulting in an overall reduction in energy of 0.98 MWh d-1 at the small 

scale and 9.04 MWh.d-1 at the larger scale (Table E.2). An additional benefit of using 

the BDAF configuration was observed in association to chemical usage with a 40% 

reduction in metal coagulant use at the operating pH of 7 with S. obliquus and 50% 

lower with Chlorella sp. (Table 4.4). The difference in coagulant demand between S. 

obliquus and Chlorella sp. relates to differences in the AOM (Algogenic Organic 

Matter) composition for the two algae (Henderson et al., 2010) with the reduced 

charge density associated with the AOM produced from Chlorella sp. requiring less 

coagulant for optimal removal. It was estimated that the BDAF allows coagulant 

saving up to 100 g Al2(SO4)3 m
-3 of influent water depending on the algal species. 
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This reduction could represent an economic saving of € 525 d-1 at small scale, and € 

4057 d-1 at larger scale, based on the current average market price (Granados et al., 

2012) of the aluminium salts. 

Table E.2 Cells recovery, energy input and coagulant dose required (mean ± SD) for 

DAF and BDAF. 

 
Cell 
recovery 

% 

Coagulant dose 

mg Al l-1 

Energy input* 

kW m-3 

Coagulant 
dose 

Energy 
input* 

kW m-3  mg Al l-1 

  DAF  BDAF  

S. obliquus 99  40 ± 14 0.3 23 ± 9 0.04 

Chlorella 
sp. 99 8 ± 2 

0.3 
4 ± 1 0.04 

* According with Jarvis et al. (2009). 

Thermal hydrolysis of the algal biomass 

Thermal hydrolysis has a significant impact on the properties of the algal biomass of 

both species. To illustrate, in the case of S. obliquus the ratio between volatile 

suspended solids and volatile solids (VSS/VS) of the concentrated biomass 

decreased from 0.8 ± 0.2 to 0.5 ± 0.2 as a result of pre-treatment. Whereas, in the 

case of Chlorella sp. the VSS/VS ratio decreased from 1 ± 0.2 before treatment to 

0.8 ± 0.1 after treatment indicating a greater resistance to the impact of elevated 

temperatures and pressures. Microscopic analysis supported the observation of a 

difference in impact due to species selection based on the percentage of cells 

disrupted which decreased from 70 % in the case of S. obliquus to less than 50 % in 

the case of Chlorella sp. In addition, both algae showed post treatment aggregates 

as a consequence of releasing high amount of intracellular molecules which suggest 

that cells wall was disrupted (González-Fernández et al., 2012). The impact of these 

differences in terms of the released organic material were most noticed in terms of 

proteins where application of the pre-treatment step increase the level of soluble 

proteins from 25 mg l-1 to 8149 mg l-1 in the case of S. obliquus compared to an 

increase from 27 mg l-1 to 2722 mg l-1 in the case of Chlorella sp. A smaller level of 

difference was observed as a function of algal type in the case of soluble COD, 

which increased by 7528 mg l-1 and 5306 mg l-1 for S. obliquus and Chlorella sp. 

respectively. Whereas more similar changes in soluble carbohydrates were observed 

at 2018 mg l-1 for S. obliquus and at 2137 mg l-1 for Chlorella sp. 
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The impact of this greater release of soluble material in the case of S. obliquus is 

observed in relation to the BMT (anaerobic digestion for 25 days at 38°C) where 

application of a pre-treatment step increased the methane yield from 0.13 ± 0.02 m3 

kg-1 VSadd to 0.32 ± 0.05 m3 kg-1 VSadd. This value is closer to the range of the 

theoretical methane content (0.53 - 0.54 m3 kg-1 VSadd) as calculated by Heaven et 

al., (2011). Untreated Scenedesmus biomass was reported to yield between 0.12 

and 0.18 m3 kg-1 VSadd (Mussgnug et al., 2010; González-Fernández et al., 2012b). 

Our results compare favourably to the one reported by Gonzalez-Fernandez et al. 

(2012b) who obtained a methane production of 0.22 m3 kg-1 VSadd (133 dm3 kg-1 

CODin) after thermal treatment at 90 °C for 3h. Similarly, Alzate et al. (2012) 

achieved a final methane production of 0.36 and 0.40 m3 kg-1 VSadd, closer to our 

values, digesting a mixed culture (10 gTS kg-1, 20 % Scenedesmus sp.) after 

treatment at 140 °C (1.2 bar) and 170°C (6.4 bar), respectively. The equivalent trial 

with Chlorella sp. generated only a small change in methane yield, from 0.10 ± 0.01 

to 0.15 ± 0.01 m3 kg-1 VSadd, suggesting lower impact of the combined heat and 

pressure treatment on the cell wall. Theoretical methane conversion values for this 

algae range between 0.45 and 0.57 m3 kg-1 VSadd (Heaven et al., 2011). Different 

authors (Mussgnug et al., 2010; Ras et al., 2011) reported higher methane yields 

than the one reported in this paper digesting untreated Chlorella biomass (0.15 - 

0.35 m3 kg-1 VSadd). However, our biogas yields were similar to the one reported in 

literature and increased from 0.29 ± 0.01 to 0.49 ± 0.03 m3 kg-1 VSadd after the pre-

treatment (Figure E.3). The lower methane yields obtained suggest a potential 

inhibition of the methanogenesis process, probably related to the chemical 

composition of the algal biomass. Moreover, the thermal pre-treatment of Chlorella 

sp. released a similar amount of carbohydrates and COD, but less proteins then S. 

obliquus. These differences have generated different C:N ratios in the two systems 

which, as reported by other authors (González-Fernández et al., 2012b), could have 

affected the overall biogas composition. This is confirmed by the methane content in 

the biogas which decreased from 60 % to 51 % after pre-treatment whit Chlorella sp. 

(Figure E.3b), while increased from 46 % to 73 % whit S. obliquus (Figure E.2b). 

Microscopic observations of the digested samples showed no residual intact cells 

only for pre-treated S. obliquus (Figure E.4b). In all the other cases, residual algal 

biomass was identified in the residual solids after digestion (Figure E.4a, E.4c and 
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E.4d) indicating the pre-treatment had not sufficiently enhanced digestion of 

Chlorella sp. The results presented here are in agreement with Valo et al., (2004), 

who demonstrated that thermal hydrolysis pre-treatment of a specific biomass (waste 

activated sludge) resulted in enhanced biogas production and methane yield due to 

a reduction of the solids content and a parallel increase of organic compounds 

released. However, the current work identifies that in the specific case of microalgae 

the impact is likely to be highly related to a given algal species. The differences are 

likely to be due to the thickness and composition of the cell wall, which is known to 

vary between species (Mussgnug et al., 2010; González-Fernández et al., 2012a).  

 

Figure E.2 S. obliquus BMT cumulative biogas production (a) and percentage 

methane content (b) of treated and untreated algal biomass at 38°C. 

 

 

Figure E.3 Chlorella sp. BMT cumulative biogas production (a) and percentage 

methane content (b) of treated and untreated algal biomass at 38°C. 
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Figure E.4 Microscope analysis of digested sample (optical microscope x40); a) S. 

obliquus untreated, b) S. obliquus treated, c) Chlorella sp. untreated, d) Chlorella sp. 

treated. 

Energy balance 

Anaerobic digestion of the collected sludge generates 25% and 35% of the total 

energy demand required to run the works for the control case (scenario1, no algae, 

no pre-treatment) for the small and the large scale respectively (Table E.3). The 

remaining difference demonstrates the importance of sludge imports on the overall 

energy balance on operating sites. Generating additional solids for anaerobic 

digestion through the algal reactors, a possible alternative to sludge imports, 

(scenario 2) resulted in an increase of the overall net energy demand of the works by 

61 and 95% for the small and large cases for both algal types. The increase was a 

result of the energy required to operate the pond and DAF units not being offset by 

the increased energy production. Adoption of the innovative BDAF process (scenario 

3) reduced this impact with an increase in net energy demand of only 9 and 14.5%. 

These levels are similar to those of other tertiary nutrient removal processes which 

suggest algal reactors may be suitable for use on an energy basis even with low 

biogas yields. For instance, the energy values related to alternative tertiary 

treatments, such as wetlands (0 – 0.21 kWh m-3) (Austin and Nivala, 2009) always 

required additional energy demand and do not produce a valuable feedstock. 

Inclusion of a sludge pre-treatment device in the non-algal case (scenario 4) resulted 

in an increase in energy production of 0.68 MWh d-1 at the smaller scale and 8.48 

MWh d-1 at the larger scale. The additional energy production resulted in an increase 

in the net energy balance across the works whereby the site produced 40% and 60% 

of the total demand at the small and large scale respectively. The increased energy 

production from inclusion algae into the pre-treated sludge mix (scenario5) enabled a 

greater proportion of the increased energy demand from inclusion of the pond and 
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the DAF unit to be met at both scales. To illustrate, inclusion of an algae nutrient 

process decreased the overall energy efficiency of the works to 36% at the smaller 

scale using Chlorella sp., a decrease of 4% compared to the pre-treated sludge only 

Case (Figure E.5, scenario 4). At the larger scale, the energy efficiency decreased 

by 12% to a total value of 48% of the works demand due to the limited impact of the 

pre-treatment on the algal methane production. In comparison, S. obliquus, which 

showed higher energy production after pre-treatment, reported a 4% energy 

efficiency improvement at small scale. However, at large scale the overall efficiency 

decreased from 60% to 57%. Switching to the BDAF unit for harvest, changed the 

balance significantly. In the Case of the small works an increase in net energy 

demand of 0.12 MWh d-1, compare with the control case, was observed only 

considering Chlorella sp., although this included the entire energy demand of the 

pre-treatment unit and so generated the lowest energy option in total. This was 

further magnified at the larger scale where the increased energy generation from the 

pre-treated algal biomass more than offset the energy demand of the pond, BDAF 

and pre-treatment units leading to a net energy gain of 4.48 MWh d-1 for S. obliquus 

and 1.08 MWh d-1 for Chlorella sp. In this case the energy production from biomass 

generated on site (sludge and algae) was able to meet 76% and 64% of the total 

demand for energy, which represents an increase of 16 and 4% over the sludge only 

case (scenario 4) 

. 
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Table E.3 Energy demand and efficiency of different integrated WWTPs configurations for both treatment plants and algal strain 

 Energya (MWh d
-1

) 

 Energy demand S. obliquus Chlorella sp. 

Scenarios description 
Activated 
Sludge 

Algae 
Pond 

Algae 
Harvest 

Sludge/Algae 
Pre-treat. 

AD 

Energy 
recovery 

Net energy 
consumption 

AD 

Energy 
recovery 

Net energy 
consumption 

 1 AS+AD 2.52    -0.63b 1.89b -0.63b 1.89b 

T
P

 2
5

K
 

2 AS+Pond+DAF+AD 2.52 0.27 1.13  -0.88 3.04 -0.88 3.04 

3 AS+Pond+BDFA+AD 2.52 0.27 0.15  -0.88 2.06 -0.88 2.06 

4 AS+Pre-treat.+AD 2.52   0.75 -1.31b 1.96b -1.31b 1.96b 

5 AS+Pond+DAF+Pre-treat.+AD 2.52 0.27 1.13 0.75 -2.05 2.62 -1.68 2.99 

 6 AS+Pond+BDAF+Pre-treat.+AD 2.52 0.27 0.15 0.75 -2.05 1.64 -1.68 2.01 

 1 AS+AD 17.39    -6.09b 11.30b -6.09b 11.30b 

T
P

 2
3

0
K

 2 AS+Pond+DAF+AD 17.39 2.51 10.43  -8.35 21.98 -9.65 21.98 

3 AS+Pond+BDFA+AD 17.39 2.51 1.39  -8.35 12.94 -9.65 12.94 

4 AS+Pre-treat.+AD 17.39   6.90 -14.57b 9.72b -14.57b 9.72b 

5 AS+Pond+DAF+Pre-treat.+AD 17.39 2.51 10.43 6.90 -21.37 15.86 -20.24 19.26 

 6 AS+Pond+BDAF+Pre-treat.+AD 17.39 2.51 1.39 6.90 -21.37 6.82 -20.24 10.22 

a) positive numbers represent electricity consumption values while negative numbers show electricity produced; b) the value reported for 

scenarios 1 and 4 represent energy generated from wastewater sludge digestion. In all the other scenarios the value shows the energy 

generated from algae/sludge co digestion by adding the two estimated energy values. 
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Overall, the results demonstrate that when appropriate choices are made 

around the ancillary equipment then the use of algae for nutrient removal can 

represent a viable source of energy production and hence provide an energy 

neutral nutrient removal strategy. Critical to this is the use of pre-treatment to 

ensure the inclusion of algae in the anaerobic digestion generates sufficient 

biogas to justify its inclusion. In such Case algae could be viewed as an 

appropriate alternative to co-digestion of imported non-sewage sludge wastes. 

The importance of this is that it avoids logistic and regulatory barriers and it 

enhances biogas production in digesters meant for sewage sludge processing. 

However, pre-treatment alone is insufficient as the energy demand of traditional 

technologies for algal separation is likely to be too high to justify the approach. 

In such case the significance of BDAF system becomes more important as it 

lowers the total energy demand by 1 MWh d-1 at small scale and 9 MWh d-1 at 

larger scale compared to the traditional DAF system. Ultimately both 

components are required to enhance the potential for inclusion of algae as a 

nutrient removal process. 

The impact of which algae are used within the nutrient removal process was 

demonstrated in this study by looking at two similar single cell green algae both 

of which are commonly used in algal biomass production. In the current case an 

8-9% difference was seen on the overall balance as a function of species with 

Chlorella sp. generating less energy than S. obliquus. The difference is thought 

to occur due to the combination of the strong species–specific wall structure 

found within Chlorella sp. (Syrett and Thomas, 1973; González-Fernández et 

al., 2012a) and the differences within the AOM generated and released after 

pre-treatment, effecting the final biogas composition. Given that the structure of 

the two algae strains is reasonably similar it is reasonable to assume that when 

using other algae species significantly different outcomes may occur. Common 

algae species found in the UK include filamentous strains of green, diatoms and 

blue-greens all of which have examples of appendages and mobility associated 

to them (Henderson et al., 2008a). Previous work on separation of algae has 

shown that such differences can have a significant impact on the chemical and 

energy requirements for harvesting (Henderson et al., 2008b; Henderson et al., 
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2010). In addition previous studies on different algae have also shown species-

specific outcomes in relation to the impact of pre-treatment and the biogas 

production achieved (Mussgnug et al., 2010; Alzate et al., 2012; Ehime et al., 

2013). Importantly the selection of the most appropriate algae species for 

enhanced nutrient removal from wastewater in temperate climates remains 

unclear and highlights that understanding the overall impact of the use of algae 

cannot be determined without knowledge of the species involved.  

 

 

Figure E.5 Plant efficiency (column) and Energy balance (square) of the 

scenarios: S. obliquus in TP 25K (a) and TP 230K (b); Chlorella sp. in TP 25K 

(c) and TP 230K (d).  
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E.1.4 Conclusions 

The adoption of low energy harvest and algal biomass pre-treatment has been 

shown to have a significant impact on the overall suitability of using algae for 

nutrient removal in wastewater treatment. The BDAF process reduced the 

overall energy requirements between 30 % and 40 % depending on the plant 

size. Thermal hydrolysis pre-treatment allowed a complete utilisation of the 

included S. obliquus cells under mesophilic temperatures maximising the 

potential energy gain from inclusion of the biomass. The combination of the two 

technologies demonstrated the possibility of achieving high-energy efficiency 

(76 %) and a more sustainable WWTP. Adoption of the approach needs 

knowledge of the specific species involved in the removal process as different 

strains of algae require different pre-treatment conditions and will be able to 

release different amount of energy and this remains a key research challenge 

going forward.  
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