Damping identification sensitivity in flutter speed estimation
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Predicting flutter remains a key challenge in aeroelastic research, with certain models relying on modal parameters, such as natural frequencies and damping ratios. These models are particularly useful in early design stages or for the development of small Unmanned Aerial Vehicles (maximum take-off mass below 7 kg). This study evaluates two frequency-domain system identification methods, Fast Relaxed Vector Fitting (FRVF) and the Loewner Framework (LF), for predicting the flutter onset speed of a flexible wing model. Both methods are applied to extract modal parameters from Ground Vibration Testing data, which are subsequently used to develop a reduced-order model with two degrees of freedom. The results indicate that FRVF- and LF-informed models provide reliable flutter speed, with predictions deviating by no more than 3% (FRVF) and 5% (LF) from the N4SID-informed benchmark. The findings highlight the sensitivity of flutter speed predictions to damping ratio identification accuracy and demonstrate the potential of these methods as computationally efficient alternatives for preliminary aeroelastic assessments.
Description
Software Description
Software Language
Github
Keywords
DOI
Rights
Relationships
Resources
Funder/s
The authors from Cranfield University disclosed receipt of the following financial support for the research, authorship, and/or publication of this article. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) [grant number 2277626]. The third author is supported by the Centro Nazionale per la Mobilità Sostenibile (MOST–Sustainable Mobility Center), Spoke 7 (Cooperative Connected and Automated Mobility and Smart Infrastructures), Work Package 4 (Resilience of Networks, Structural Health Monitoring and Asset Management).