The glutamate post-synaptic density in schizophrenia

dc.contributor.advisorToro, Carla
dc.contributor.authorMatas, Emmanuel
dc.date.accessioned2013-07-26T14:49:01Z
dc.date.available2013-07-26T14:49:01Z
dc.date.issued2012-11
dc.description.abstractNon-competitive antagonists of the glutamate N-methyl-D-aspartate receptor (NMDAR) induce a broad range of schizophrenia-like symptoms in humans. Consequently hypothesis has emerged suggesting that glutamate or NMDAR hypofunction may occur in schizophrenia. The NMDAR is localised at dendritic spines of neurons and is embedded in a multi-protein complex called the post-synaptic density (PSD). The biochemical composition of the postsynaptic membrane and the structure of dendritic spines are continuously modulated by glutamatergic synaptic activity. The activity-dependent interaction between glutamate receptors and proteins of the PSD stimulate intracellular signalling pathways underlying learning and memory processes. These may be disturbed in schizophrenia. In the present study we hypothesised that molecules of the PSD may be disturbed in expression in the premotor cortex of patients with schizophrenia. Postmortem premotor cortex from patients with schizophrenia, major depressive disorder, bipolar disorder and healthy controls were processed for PSD extraction and purification. Protein expression of the PSD fraction was assessed using co-immunoprecipitation (co-IP) and Western blotting (WB) methods. The expression of NMDAR subunit NR2A, PSD-95, Ca2+/calmodulin-dependent protein kinase II subunit β (CaMKIIβ) and truncated isoform of the tropomyosin receptor kinase type B (TrkB-T1) were significantly reduced in schizophrenia. A significant decrease in the expression of NR2A was also observed in patients with major depressive disorder relative to controls. A decrease in the abundance of key PSD proteins in schizophrenia provides strong evidence that PSD function and possibly synaptic plasticity may be disturbed in the premotor cortex in the disease. There may also be more subtle disturbances in PSD function in major depressive disorder.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/7999
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University 2012. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner.en_UK
dc.subjectpremotor cortexen_UK
dc.subjectsynaptic plasticityen_UK
dc.subjectprotein-protein interactionsen_UK
dc.titleThe glutamate post-synaptic density in schizophreniaen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Emmanuel_Matas_Thesis_2012.pdf
Size:
8.02 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: