Degradation of Environmental Protection Coatings for Gas Turbine Materials

Show simple item record

dc.contributor.advisor Simms, Nigel J.
dc.contributor.advisor Nicholls, J. R.
dc.contributor.author Nalin, Laura
dc.date.accessioned 2010-07-29T09:37:24Z
dc.date.available 2010-07-29T09:37:24Z
dc.date.issued 2008-12
dc.identifier.uri http://hdl.handle.net/1826/4522
dc.description.abstract Nowadays, problems of component materials reliability in gas and oil-fired gas turbines focus on assessing the potential behaviour of commonly employed coatings, in order to avoid expensive and unpredictable failure in service and producing new materials whose performance meets life time and manufacturing/ repairing requirements. This MPhil project has investigated the oxidative and corrosive degradation mechanisms for some of the alloy/coatings systems (CMSX-4, CMSX-4/ RT22, CMSX-4/ CN91 and CMSX-4/ “LCO22”), which are currently used for turbines blades and vanes, in order to achieve a better knowledge of materials behaviour and to improve models for the prediction of turbine components’ lives. To achieve this target the study has made use of realistic simulations of turbine exposure conditions in combined with pre- and post-exposure metrology of bar shape materials samples, while optical microscopy has been applied to describe the microstructural evolution during the exposure and the products of the degradation for the hot corrosion. For high temperature oxidation, over extended periods of time (up to 10,000 hours), the research has allowed to describe the morphological changes in respect of the exposure time and temperature and to determine the oxidation kinetics experienced by the alloy and coatings. A model has been presented for predicting θ- α-Al2O3 growth. Moreover, using NASA COSP spalling model, with rate constants values coming from this study, a comparison between experimental mass change data and prediction has been shown. The hot corrosion study has provided new quantitative metal loss data and observations that extend/validate an existing model for materials life prediction, based on defining the severity of the corrosion conditions through measures of gas composition and contaminant deposition flux. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.title Degradation of Environmental Protection Coatings for Gas Turbine Materials en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Masters en_UK
dc.type.qualificationname MPhil en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics