Monitoring the response of roads and railways to seasonal soil movement with persistent scatterers interferometry over six UK sites

Show simple item record

dc.contributor.author North, Matthew
dc.contributor.author Farewell, Tim
dc.contributor.author Hallett, Stephen
dc.contributor.author Bertelle, Audrey
dc.date.accessioned 2017-09-07T14:49:01Z
dc.date.available 2017-09-07T14:49:01Z
dc.date.issued 2017-09-04
dc.identifier.citation Matthew North, Timothy Farewell, Stephen Hallett and Audrey Bertelle. Monitoring the response of roads and railways to seasonal soil movement with persistent scatterers interferometry over six UK sites. Remote Sensing, 2017, Vol. 9, Iss. 9, article number 922 en_UK
dc.identifier.issn 2072-4292
dc.identifier.uri http://dx.doi.org/10.3390/rs9090922
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/12457
dc.description.abstract Road and rail networks provide critical support for society, yet they can be degraded by seasonal soil movements. Currently, few transport network operators monitor small-scale soil movement, but understanding the conditions contributing to infrastructure failure can improve network resilience. Persistent Scatterers Interferometry (PSI) is a remote sensing technique offering the potential for near real-time ground movement monitoring over wide areas. This study tests the use of PSI for monitoring the response of major roads, minor roads, and railways to ground movement across six study sites in England, using Sentinel 1 data in VV polarisation in ascending orbit. Some soils are more stable than others—a national soil map was used to quantify the relationships between infrastructure movement and major soil groups. Vertical movement of transport infrastructure is a function of engineering design, soil properties, and traffic loading. Roads and railways built on soil groups prone to seasonal water-logging (Ground-water Gley soils, Surface-water Gley soils, Pelosols, and Brown soils) demonstrated seasonal subsidence and heave, associated with an increased risk of infrastructure degradation. Roads and railways over Podzolic soils demonstrated relative stability. Railways on Peat soils exhibited the most extreme continual subsidence of up to 7.5 mm year−1. Limitations of this study include the short observation period (~13 months, due to satellite data availability) and the regional scale of the soil map—mapping units contain multiple soil types with different ground movement potentials. Future use of a higher resolution soil map over a longer period will advance this research. Nevertheless, this study demonstrates the viability of PSI as a technique for measuring both seasonal soil-related ground movement and the associated impacts on road and rail infrastructure. en_UK
dc.language.iso en en_UK
dc.publisher MDPI en_UK
dc.rights You are free to: Share — copy and redistribute the material in any medium or format Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
dc.subject Persistent Scatterers Interferometry en_UK
dc.subject Sentinel 1 en_UK
dc.subject synthetic aperture radar en_UK
dc.subject infrastructure en_UK
dc.subject soil movement en_UK
dc.subject soil compression en_UK
dc.subject shrink swell en_UK
dc.subject environmental risk en_UK
dc.subject road en_UK
dc.subject railway en_UK
dc.title Monitoring the response of roads and railways to seasonal soil movement with persistent scatterers interferometry over six UK sites en_UK
dc.type Article en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics