Multi-objective control allocation

Show simple item record

dc.contributor.advisor Savvaris, Al
dc.contributor.author Jamil, Ramey
dc.date.accessioned 2016-10-14T08:19:08Z
dc.date.available 2016-10-14T08:19:08Z
dc.date.issued 2012
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/10735
dc.description.abstract Performance and redundancy requirements imposed on state-of-the-art unmmaned combat aerial vehicles often lead to over-actuated systems with a mix of conventional and novel moment generators. Consequently, control allocation schemes have become a crucial part of the flight control architecture and their design is now a growing problem. This thesis presents a four control allocation scheme designed to meet multiple objectives and resolve objective conflicts by finding the ‘Pareto’ optimal solution, namely; Weighted Control Allocation, Minimax Control Allocation, Canonical Control Allocation and Classical. This is defined as a solution to the multi-objective optimisation problem which is non-dominated for all objectives. The scheme is applied to a six degrees of freedom nonlinear simulation of an aircraft equipped with conventional control surfaces as well as fluidic thrust vectoring and circulation control. The results indicate a perfect allocation of the total control demand onto the actuator suite. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University, 2012. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. en_UK
dc.title Multi-objective control allocation en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics